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Abstract

Stylized facts of asset returns are widely established. Among these are e.g. non-normality,
volatility clustering and high persistence. Another important recurring aspect is the existence of
financial exuberance, often interpreted as an explosive price bubble. Exuberance periods consist
of two parts, (i) the temporary explosive price period and (ii) the mean-reverting reverse period
of market correction. We provide a comprehensive analysis of exuberance periods by analysing
30 markets from different asset classes over a time period of fifty years. We cover international
stock markets, the US housing market, Gold, Silver and Oil as well as the Bitcoin prices. Overall,
we find 143 exuberance phases and document evidence on important characteristics like (i)
durations of explosive phases, (ii) collapse duration and behaviour during market correction
phases, (iii) magnitude of autoregressive parameters during exuberance and market correction
and (iv) distributional characteristics like fat tails and shifts in the innovation variance. We
classify the cross-sectional results on 143 exuberance phases into relatively low, middle and
high values. We test a number of common beliefs in the literature and provide new insights
into typical empirical properties of explosive prices and their collapse. Our results indicate
significant discrepancies with typical settings in the literature. Empirical explosiveness is much
milder and collapse phases are in most cases smooth rather than abrupt. Moreover, prices do not
revert back to the initial value, but stay significantly above. The simplified view that prices are
strongly exploding with a full collapse in short time is not supported by our results. Duration
dependence modelling reveals that the length of the explosive phase is positively affected by
economic growth, while the collapse duration is only driven by the length of the preceding
explosive phase in a positive way. Finally, we offer empirically relevant parametrizations for
data generating processes and study the consequences for the empirical performance of popular
bubble detection and date-stamping procedures.
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1 Introduction

Due to the extensive number of financial exuberances and crises that took place during the last

30 years (e.g., dot-com bubble, sub-prime mortgage crisis, European debt crisis) and their serious

consequences on whole economies and societies as well as their contagion effects, there is an ever-

growing interest in how to detect and deal with such extreme situations. Many authors investigate

bubbles and exuberance periods in financial time series. Phillips, Wu, and Yu (2011) have developed

a popular procedure to date stamp periods of financial exuberance. In order to be able to capture

multiple explosive periods in a single financial time series, they offer an extended approach which

is known as the Generalized Supremum Augmented Dickey Fuller (GSADF) Test in 2015 (Phillips,

Shi, and Yu, 2015a; Phillips, Shi, and Yu, 2015b).

The goal of our research is to investigate the behaviour of daily real log-prices during the two phases

of financial exuberance, namely the time from start to peak of the exuberance period (explosive

period) and from the first day after the peak until the end of exuberance (mean-reverting period).

Naturally, the question emerges what we understand under the term "exuberance" and more specif-

ically, how it is related to the often used word "bubble". First of all, both of them are no synonyms.

While exuberances show explosive behaviour - which is also true for bubbles - not each exuberance

period is a bubble. Thus, one can assume that bubbles imply exuberance but the reverse is not

true. Kindleberger and Aliber (2015) define a bubble as "[...] a generic term for the increases in the

prices of securities or currencies in the mania phase of the cycle that cannot be explained by the

changes in the economic fundamentals." We do not account for fundamentals because they cannot

be estimated in a reasonable and most importantly reliable way (Siegel, 2003; Rosser, 2013). Using

dividends to obtain the fundamental value is problematic because not each company pays dividends,

they are not smooth, their prediction is hardly possible, more and more firms nowadays engage in

share buyback systems rather than paying dividends and dividends are heavily influenced by firm

decisions and are thus no reliable indicator for company health and performance (Basse, Klein,

Vigne, and Wegener, 2021). Using more modern proxies like future/forward prices comes with its

own problems. Therefore, the best guess we can make is to rely on real prices (a.k.a. inflation

adjusted prices). So, using statistical procedures we identify periods of exuberance which can then

be further analysed by macroeconomic techniques and judgement to determine if it is a bubble or

not.
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While stylized facts1 of financial time series in general are well-investigated (Pagan, 1996; Cont,

2001), there is not much known about the behaviour in different states of a financial time series.

Therefore, we start by examining the empirical features of explosive phases and their corresponding

mean-reverting market correction phase from a meta-analytical viewpoint.

The following general stylized facts have been demonstrated in the literature: log-returns of many

financial time series do not show autocorrelation but instead autocorrelation is present in squared

and absolute returns (Pagan, 1996; Cont, 2001). Furthermore, many time series show power-law

distribution similarities but when increasing the latency of the data, e.g., from daily to yearly, the

distribution becomes more and more like a normal distribution (Mandelbrot, 1963; Fama, 1965;

Mandelbrot, 1967). Another finding is a gain/loss asymmetry as well as a phenomenon called

"volatility clustering" (Engle, 1982; Bollerslev, 1986). In such a case, periods of low volatility tend

to be followed by low volatility and periods of high volatility by high volatility. Another important

finding are heavy tails, so that the emergence of extreme events is much more likely than in the

case of a normal distribution (Mandelbrot, 1963; Fama, 1965; Mandelbrot, 1967). Besides these

findings, also a leverage effect has been identified. It states that many volatility measures are

negatively correlated with returns (Glosten, Jagannathan, and Runkle, 1993; Zakoian, 1994).

We strive to close the gap between the literature on explosive price periods, bubble tests (and related

econometric (monitoring) procedures) and stylized facts and subsequently, to develop new stylized

facts. We are doing this by analysing the identified exuberance periods returns concerning their

distributional and dynamic properties for both the explosive and reverse period. Additionally, we

analyze some general financial exuberance characteristics. Therefore, we look into how much value

is typically gained during an explosive period and how much is lost in the reverse. Besides, we also

investigate the duration of an exuberance period and the ratio of the duration of the explosive period

compared to the reverse. Furthermore, we provide specific values for the autoregressive parameter

in dynamic time series models during the explosive and reverse phase. Typical perceptions on these

quantities might differ significantly from empirical features. Our whole analysis is done - in contrast

to most of the existing literature on financial exuberance - based on real daily data.2

Based on our analysis of 143 identified exuberance periods, we are able to extract the subsequent
1Characteristics that are shared by many different kinds of financial time series are called "stylized facts" (Cont,

2001).
2In line with Whitehouse (2019), we use daily data because they provide more information than monthly data

about the underlying data generating process. Furthermore, the investigation of exuberance characteristics and
stylized facts, i.e., persistence and distribution, results in a serious small sample problem if one uses monthly instead
of daily data.
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stylized facts which show major differences to assumed theoretical DGP settings in the literature:

(i) Empirical explosiveness illustrated by autoregressive model parameters, is much milder and

collapse phases are in most cases smooth rather than abrupt. Especially, assumed one period

reverses like in Evans (1991) are hardly observable. (ii) Prices do not revert back to the initial

value, but stay significantly above. So, theoretical models based on the believe that the first day

before and after the exuberance is over have equal prices is not empirically justified. Thus, the

simplified view that prices are strongly exploding with a full collapse in short time is not supported

by our data-driven results. (iii) Duration dependence modelling reveals that the length of the

explosive phase is positively affected by economic growth, while the collapse duration is only driven

by the length of the preceding explosive phase in a positive way. (iv) Finally, we offer empirically

relevant parametrizations for data generating processes. We extract median values for the DGP’s

parameters and additionally generate low- and high-setting values. So, our DGPs are able to

account for different types of financial exuberances. Based on them, we study the consequences for

the empirical performance of popular bubble detection and date-stamping procedures and clearly

illustrate that they suffer in power by applying data-driven rather than theoretical assumed DGP

parametrizations. With our research we thus contribute to the existing literature of stylized facts by

enlarging it and we additionally provide empirical-reliable, data-driven parametrizations of DGPs,

so that new developed exuberance and bubble detection procedures can be tested based on realistic

data generating processes rather than on some solely theoretically driven processes.

The structure is as follows: Section two gives a literature overview and part three describes the used

data set. Section four deals with the testing and identification procedure for financial exuberance

periods and in the upcoming fifth section, the identified price exuberance periods are described and

additionally, we provide basic characteristics and stylized facts of those periods. The sixth section

consists of Monte Carlo simulation results for the power of popular unit root tests against explosive

alternatives based on empirically relevant specifications of the DGPs. Conclusions are drawn in

section seven.

2 Literature Review

Due to the severe systematic and societal consequences of financial turmoil and crisis (e.g., tulip

mania, south sea bubble, great depression, dotcom bubble, global financial crisis), there is a rich

history of research which deals with such situations. Nevertheless, the starting point is quite recently
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in 1978. Before, there was a common believe that financial crisis cannot be modelled mathematically.

Kindleberger (1978)3 set the basis by describing the theoretical aspects and consequences of manias,

panics and crashes. Amongst his work, there have been published other famous books about the

general structure of financial crisis, most prominently "This time is different: Eight centuries of

financial folly" by Reinhart and Rogoff (2009). Next to this more qualitative books, there is a great

strand of literature about econometric and time series based bubble detection procedures. The first

bubble test has been proposed by Flood and Garber (1980). Based on this research, Blanchard

(1979)4 showed that speculative bubbles do not collide with the rationality assumption. Then there

is the category of variance bounds tests which has been proposed by Shiller (1981) and LeRoy and

Porter (1981). Initially, they have not been developed for bubble detection but they are used by

many authors for this purpose. Then in 1987, West introduced a two-step procedure (West, 1987;

West, 1988). During the same time, Diba and Grossman (1987), Diba and Grossman (1988a),

and Diba and Grossman (1988b) applied standard stationarity- and cointegration-based tests for

bubbles. Their approach has been famously criticised by Evans (1991) who especially pointed out

that the above tests have poor power issues in detecting periodically collapsing bubbles. A detailed

overview of econometric exuberance detection procedures up to the beginning of the 21st century

can be found in Gürkaynak (2008). Another more recent category of bubble detection procedures is

based on fractional integration tests, see e.g., Cunado, Gil-Alana, and Gracia (2005) and Frömmel

and Kruse (2012).

Beginning with Phillips, Wu, and Yu (2011) (PWY), the area of recursive unit root testing for

bubbles gained popularity. They propose a right-tailed unit root test (supremum augmented Dickey-

Fuller (SADF) test) which is not only able to detect exuberance periods but is also able to estimate

the start and endpoint of a bubble. Further simulation results of the SADF test under different DGP

settings is provided by Phillips, Shi, and Yu (2014). In the meantime, Homm and Breitung (2012)

(HB) tested the power of different statistical procedures which have not been applied to exuberance

detection so far and benchmarked them against the SADF test. They were able to show that two

tests, namely one Chow-type Dickey Fuller test and a modified test of Busetti and Taylor (2004)

show higher power than the SADF test. Furthermore, they successfully applied CUSUM tests for

date stamping bubbles. A generalization of the CUSUM procedure has been done by Astill, Harvey,
3Today, his book is available as the 7th edition (Kindleberger and Aliber, 2015). His work has been hold to life by

Robert Z. Aliber after Kindleberger past away in 2003. So, for the 5th to 7th edition, Aliber has been responsible.
4Interestingly, nevertheless Blanchard based his analysis on Flood and Garber (1980), Blanchard’s article has been

published earlier.
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Leybourne, Taylor, and Zu (2021). In 2015 then, the SADF test has been enlarged by Phillips, Shi,

and Yu (2015a) (PSY) and Phillips, Shi, and Yu (2015b) to solve the power issues if there are

multiple periodically collapsing bubbles within a time series, which is typically the case. So, they

propose a generalization of the SADF test, namely the GSADF test for explosiveness testing and

the backward SADF (BSADF) test for date stamping. Both approaches are nowadays considered as

the market standard and have been applied to numerous markets, e.g., Anundsen, Gerdrup, Hansen,

and Kragh-Sorensen (2016) for housing, Corbet, Lucey, and Yarovaya (2018) for cryptocurrencies,

Brunnermeier, Rother, and Schnabel (2020) for stock markets and systematic risk and Contessi,

De Pace, and Guidolin (2020) for fixed income markets.

There are many different studies which consider different aspects that are not accounted for in PWY

and PSY. Harvey, Leybourne, and Sollis (2015) compare the power of PWY and HB and finally

propose a unions of rejection strategy. Harvey, Leybourne, Sollis, and Taylor (2016) investigate

the effect of non-stationary volatility on the performance of the PWY procedure and proposed a

wild bootstrap procedure which Phillips and Shi (2020) later used in the PSY setting. Nowadays,

the wild bootstrap approach has emerged as the standard procedure to conduct robust inference.

Phillips and Shi (2018) address the empirically highly relevant issue of smooth collapses in the

context of bubble detection and date-stamping. In the mean time, Harvey, Leybourne, and Zu

(2019) and Whitehouse (2019) developed GLS based versions of PWY and a unions of rejections

strategy based on OLS PWY and GLS PWY. Moreover, Hafner (2020) investigates the effect of a

time-varying volatility, consisting of a deterministic long-term component and a stochastic short-run

element, on the PWY procedure, Pedersen and Schütte (2020) consider the performance of PWY

and PSY in the case of autocorrelated innovations and propose a sieve bootstrap procedure while

Kurozumi, Skrobotov, and Tsarev (2021) consider the case of time-varying non-stationary volatility

for PSY. Recently, Monschang and Wilfling (2021) test different exuberance detection procedures

in the case of leverage effects by introducing a TGARCH model into their DGP.

Next to this research branch, Harvey, Leybourne, Sollis, and Taylor (2016) have proposed a BIC

procedure to date stamp a single bubble and Harvey, Leybourne, and Whitehouse (2020) enlarged

the procedure to date stamp multiple bubbles. Furthermore, Astill, Harvey, Leybourne, and Taylor

(2017) provide a new procedure to test for end of sample bubbles, Guo, Sun, and Wang (2019)

introduces a new test of explosiveness and Harvey, Leybourne, and Zu (2020) propose a sign-based

version of PSY.5

5An extensive overview of bubble detection procedures of the ’newer’ generation can be found in Skrobotov (2022).
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Furthermore, there is the literature on co-explosiveness of bubbles in financial time series, see e.g.,

Evripidou, Harvey, Leybourne, and Sollis (2022). It is important to mention that this list is by no

means complete due to the rich amount of literature published about financial crisis and bubbles.

3 Data

During the analysis, a diverse range of financial time series is analysed. This include equity market

indices, precious metals, oil, cryptocurrencies and real estate indices. The advantage of this high

diversity of financial time series is to search for stylized facts and not just for some asset specific

findings.

All time series are downloaded as price indices from REFINITIV Datastream (formerly known as

Thomson Reuters Datastream). In each case, we use daily observations which start at 2nd January

19706 or if data are not available from this point in time, the longest available history is used.

Equity indices are chosen in such a way that not only the most important indices of the world

are considered but also emerging and frontier markets as well as indices from countries which are

spread all around the world. This is done to avoid a bias towards developed countries and to the

biggest financial markets, especially towards the United States. Therefore, we use a total of 24

indices from Europe (AEX, CAC 40, DAX 30, FTSE 100, OMXH and SMI), America (Mexico IPC,

NASDAQ, S&P 500 and S&P TSX Composite), Asia (Hang Seng, IDX Composite, KOSPI, NIFTY

500, NIKKEI 225, Shanghai SE A Share, Straits Times Index L and TOPIX), Africa (FTSE South

Africa, HRMS, MASI and TUNINDEX) and the two intercontinental countries Israel (Israel TA

125) and Russia (MOEX). An overview of all applied stock market indices is available in Table 1.

In addition to stock market indices, we also consider the two precious metals gold and silver which are

often used and assumed as safe heaven assets due to their low correlation to stock and bond market

indices and they are also seen many times as assets which can protect against inflation (Hillier,

Draper, and Faff, 2006; Bauer and B. M. Lucey, 2010; Bauer and McDermott, 2010; Bampinas and

Panagiotidis, 2015). Besides, to get a broader picture, also the two oil indices Crude Oil WTI7

6Start is not on the 1st January 1970 because in most countries, stock exchanges were closed on this day.
7To be able to apply the logarithm, the negative value of USD 37.63 at 20th April 2020 is replaced by USD 0.0001.

This negative value occurred due to the lag of storage of oil producers due to a lag of demand for WTI oil and was
a unique event never happened before (Corbet, Goodell, and Günay, 2020).
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Table 1: Stock market indices applied in the analysis

index Datastream currency country start date end date

AEX AMSTEOE EUR The Netherlands 1983-01-03 2021-04-30
CAC 40 FRCAC40 EUR France 1990-01-01 2021-04-30
DAX 30 DAXINDX EUR Germany 1970-01-02 2021-04-30
FTSE 100 FTSE100 GBP United Kingdom 1988-01-01 2021-04-30
FTSE South Africa JSEOVER ZAR South Africa 1995-06-30 2021-04-30
Hang Seng HNGKNGI HKD Hong Kong 1980-10-01 2021-04-30
HRMS EGHFINC EGP Egypt 1995-01-02 2021-04-30
IDX Composite JAKCOMP IDR Indonesia 1996-01-01 2021-04-30
Israel TA 125 ISTA100 ILS Israel 1987-04-23 2021-04-30
KOSPI KORCOMP KRW Republic of Korea 1974-12-31 2021-04-30
MASI MASIIDX MAD Morocco 2007-01-01 2021-04-30
Mexico IPC MXIPC35 MXN Mexico 1988-01-04 2021-04-30
MOEX RSMICEX RUB Russian Federation 1997-09-22 2021-04-30
NASDAQ NASCOMP USD United States 1971-02-05 2021-04-30
NIFTY 500 ICRI500 INR India 2011-01-03 2021-04-30
NIKKEI 225 JAPDOWA JPY Japan 1970-01-02 2021-04-30
OMXH HEXINDX EUR Finland 1987-01-02 2021-04-30
S&P 500 S&PCOMP USD United States 1970-01-02 2021-04-30
S&P TSX Composite TTOCOMP CAD Canada 1970-01-02 2021-04-30
Shanghai SE A Share CHSASHR CNY China 1992-01-02 2021-04-30
SMI SWISSMI CHF Switzerland 1988-06-30 2021-04-30
Straits Times Index L SNGPORI SGD Singapore 1999-08-31 2021-04-30
TOPIX TOKYOSE JPY Japan 1970-01-02 2021-04-30
TUNINDEX TUTUNIN TND Tunisia 1997-12-31 2021-04-30

This table provides an overview of all applied stock market indices in the analysis. They are sorted
alphabetically based on their first letter. The first column provides the name of each index and the
second the Datastream symbol that has been used to obtain the data. In the third column, the ISO
4217 currency codes for the indices are provided. The next column illustrates the country which
is covered by the specific index and the last two columns provide the starting and end date of the
index which is used in the analysis section.
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and Europe Brent are investigated.8 On top of this, Bitcoin is considered as a representative of the

new asset class cryptocurrencies. Especially against the background of the global financial crisis of

2007/09, also the DJ US Real Estate Index is investigated. Table 2 provides an overview of the

used assets other than stock market indices.

Table 2: Indices of other assets than stocks applied in the analysis

index Datastream currency asset category start date end date

Bitcoin BTCTOU$ USD cryptocurrency 2011-08-18 2021-04-30
Crude Oil WTI CRUDOIL USD oil 1983-01-10 2021-04-30
DJ US Real Estate DJUSRE$ USD real estate 1992-01-02 2021-04-30
Europe Brent EIAEBRT USD oil 1987-05-20 2021-04-30
Gold GOLDBLN USD precious metal 1980-01-01 2021-04-30
Silver SILVERH USD precious metal 1980-01-01 2021-04-30

This table provides an overview of all applied assets in the analysis which are no equity indices.
They are sorted alphabetically based on their first letter. The first column provides the name of
each asset/index and the second the Datastream symbol that has been used to obtain the data.
In the third column, the ISO 4217 currency codes for the indices are provided. The next column
states the asset category which is covered by the specific index and the last two columns illustrate
the starting and end date of the index which is used in the analysis section. Due to the reliability
of data, Gold and Silver are only considered from 1st January 1980 and not prior.

We perform our analysis based on real log prices, so that price increases simply driven by inflation

are cancelled out. This is done by dividing the assets’/indices’ price by the consumer price index

(CPI) of the corresponding country/region:9

ptreal = ln

(
Pt

CPIt

)
. (1)

4 Econometric methods

In the literature, there are many different tests for identifying periods of financial exuberance.

The most often applied models are based on the idea of rational bubbles. In this chapter, the

well-known Generalized Supremum Augmented Dickey Fuller (GSADF) technique of Phillips, Shi,

and Yu (2015a) and Phillips, Shi, and Yu (2015b) and their date stamping procedure (Backward

Supremum Augmented Dickey Fuller (BSADF) Test) are described.
8Because gold, silver and oil are considered as homogenous assets, we decide to focus on a few hand selected time

series of these assets because the use of more time series would not result in an additional information gain.
9Due to the fact that CPIs are only available on a monthly basis, the monthly CPI corresponding to each in-

dex’s/asset’s currency is used as a proxy for the daily price level. Some time series are shorten because of the later
availability of CPI values. Furthermore, all price data are scaled by 100 to avoid situations where the logarithm of
the real price is negative. This is done to do not have problems with situations where the start of exuberance is with
a negative price and its peak is positive because in such situations, one cannot reasonably calculate growth rates.
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4.1 Testing for multiple explosive prices

The idea is to apply a recursive regression procedure based on ADF tests because it has been

demonstrated in the literature that standard unit root and cointegration tests are not able to

detect multiple collapsing bubbles within the same time series (Flood and Garber, 1980; Flood and

Hodrick, 1986; Evans, 1991). The right-tailed unit root test is constructed based on the following

ADF-regression which is simply estimated by ordinary least squares (OLS):

∆yt = µr1,r2+ρr1,r2yt−1 + εt. (2)

The first difference of log real prices ∆yt (which are log returns) is regressed on the sum of a

slope µr1,r2 , a ρr1,r2 weighted first order lag of the log real price yt−1, and the error term εt. This

ADF regression is estimated multiple times by using different subsets of the sample data. The null

hypothesis of a unit root is then tested against the alternative hypothesis of a (mildly) explosive

process:10

H0 : ρr1,r2 = 0 (unit root),

H1 : ρr1,r2 > 0 (mildly explosive behaviour).

The normalized subset’s start and end values r1 and r2 are both defined in such a way that they

are allowed to grow. The minimum value of r1 is 0. So, r1 starts with the first observation of the

applied data set. Its maximum is set to the difference between the value of r2 and the minimum

window size r0. In contrast, r2 runs from r0 to the latest (most new) observation (1) in the data

set:

r1 ∈ [0, r2 − r0],

r2 ∈ [r0, 1].

The minimum window size r0 is defined as 0.01 + 1.8/
√
T , where T illustrates the number of

observations. The size of the subsample is increased by one observation until the limit is reached -

the last observation of the used data set.
10Equivalently, often the following version of the ADF regression is used: yt = µr1,r2 + ρcyt−1 + εt. In this setting

ρc = ρr1,r2 + 1 and consequently, the null hypothesis ρc = 1 is tested against the alternative of ρc > 1 (Contessi,
De Pace, and Guidolin, 2020).
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The GSADF test is then stated as:

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF r2r1 }. (3)

To identify if financial exuberances are in the sample, the calculated GSADF statistic is compared

to its critical value of the distribution under the null hypothesis. This critical value is determined

by a bootstrapping procedure proposed by Phillips and Shi (2020) which accounts for potential

heteroskedasticity issues. This procedure consists of five steps. First, the ADF regression model

is estimated under the hypothesis that ρ is 0 based on the total available data set. In the second

step, a bootstrap sample is constructed and after it, the PSY test statistic series and based on it,

the maximum value is calculated. Next, these two steps are repeated n times (in this research, 300

times). In the last step, the 95% quantile of the series of maximum values is calculated and this is

the critical value of the test. If there are no exuberance periods found in the time series, the time

series is considered to do not show financial exuberant prices at any time and therefore drops out

of the following date stamping and analysis.

4.2 Identification of explosive periods

The previously described approach is able to detect the existence of exuberant prices but it does

not allow for date stamping. To locate the begin and end of exuberance, the so-called backward

SADF (BSADF) test of Phillips, Shi, and Yu (2015a) and Phillips, Shi, and Yu (2015b) is applied.11

It performs ADF tests based on a backward expanding sample which has a fixed endpoint r2 but

varying starting points r1:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

{ADF r2r1 }. (4)

11We apply these procedures due their vast popularity in applied work. Thereby, we enable comparison to existing
results in the empirical literature. However, it might be interesting to compare the outcomes to those obtained from
CUSUM-based and BIC procedures in future work. The latter ones are typically performing somewhat better, see
Homm and Breitung (2012), Breitung and Kruse (2013), Harvey, Leybourne, and Sollis (2017), Whitehouse (2019)
and Harvey, Leybourne, and Whitehouse (2020).
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The initiation date r̂e is the first time, where the test statistic exceeds its critical value (scvr2(βT ))

and the termination date r̂f is the date at which the test statistic first lies below its critical value:

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) > scvr2(βT )}, (5)

r̂f = inf
r2∈[r̂e,1]

{r2 : BSADFr2(r0) < scvr2(βT )}. (6)

To make the identification technique of Phillips, Shi, and Yu (2015a) and Phillips, Shi, and Yu

(2015b) more robust, to account for the fact that no econometric model is perfect and to produce

better results, we make an adjustment. We only consider periods of financial exuberance which

have a duration of at least 66 business/trading days.12 Shorter periods are excluded to reduce the

influence of noise and to account for the fact that no exuberance detection model is perfectly de-

signed. On top of this, small duration periods are hardly considered as being a financial exuberance

period.13

5 Identified periods of exuberance and stylized facts

In this section we intensively discuss the identified exuberance periods.14 Based on the BSADF

test, we have identified positive exuberances in 29 out of all 30 investigated time series. Only WTI

Oil does not show such behaviour. In these 29 time series, we detect 146 positive exuberances.15

In contrast, we identify negative exuberance periods in only 23 out of all 30 assets/indices and the

total amount of negative exuberances is 63.16

First, we provide basic characteristics of financial exuberance periods. Duration is defined as the
12The duration is set based on Phillips and Shi (2018). They use monthly data and require three subsequent

observations that are detected by the BSADF procedure to be considered as a financial exuberance period. Because
we are using daily data, we scale the number of required observations to 66 trading days which is the approximate
number within a three month period.

13All financial exuberance periods with a duration of at least 66 trading days are used to analyse the basic
characteristics of exuberance periods like duration, starting value, peak value, end value etc. But in the upcoming
analysis of stylized facts, the minimum duration of both financial exuberance parts (explosive and reverse period)
is slightly adapted because otherwise, the applied models have not enough observation data and could lead to
false/biased results. This is a trade-off which automatically emerges while combining the areas of financial exuberance
and stylized facts.

14A detailed overview with all 143 identified exuberance periods can be found in the appendix in Table 15, Table 16,
Table 17, Table 18, Table 19.

15Three exuberance periods are dropped out because they are not fully burst at the end of our observation sample.
These exuberances are in BITCOIN, NASDAQ and S&P 500. Using them would bias our results because we would
analyse exuberance periods which are not over. So, we have in total 143 positive exuberance periods.

16All identified positive exuberance periods are shown with some details in the appendix. In the following, when
using the term exuberance period we always refer to the positive ones. A further future research could deal with
negative exuberances which consists of a crash and a following recovery phase rather than first an explosive period
and then a crash. Literature dealing with such type of exuberance are e.g., Fry and Cheah (2016), Goetzmann and
Kim (2018), and Acharya and Naqvi (2019).
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number of trading days a financial exuberance period consists of. The mean value in our sample is

307.06 days with a median value of 150. The shortest exuberances are only 66 days and they have

been identified in the Brent Oil time series for the period running from 2008-05-02 to 2008-08-01 and

in the DAX30 time series running from 1989-07-14 to 1989-10-13. In contrast, the longest identified

exuberance periods were observable in TOPIX (1983-10-27 to 1991-11-29, 2112 trading days) and

TUNINDEX (2005-04-05 to 2013-05-27, 2125 trading days). The mean duration is mainly driven by

the duration of the explosive period which is on average 2.52 (219.90/87.16) times longer than that

of the reverse period. Looking on the average duration ratio rather then dividing the mean explosive

duration by the mean reverse duration, the ratio is even bigger (4.90). Similar but smaller results

are obtained by using the median value instead. In this case, the explosive period is more than

three times as high (3.08, respectively 3.10) than the reverse period. Another finding is the much

higher increase during the explosive period compared to the decline in the reverse. The increase is

approximately 41% (based on mean) or 22% (based on median) while the decrease is 19% (mean)

or 11% (median) (Table 3).

Table 3: Basic characteristics of financial exuberance periods

mean median sd min max 5%Q 95%Q
duration 307.06 150 407.46 66 2125 69.10 1338.50
explosive duration 219.90 114 299.49 16 1603 41.00 948.50
reverse duration 87.16 37 125.89 2 692 8.00 394.90
duration ratio 4.90 3.10 5.82 0.21 47.00 0.51 15.11
increase explosive 0.41 0.22 0.56 0.05 4.42 0.07 1.30
decrease reverse -0.19 -0.11 0.22 -1.52 -0.02 -0.58 -0.03

This table provides an overview of the basic characteristics of the identified financial exuberance
periods. Mean, standard deviation (sd), 5% quantile (5%Q) and 95% quantile (95%Q) are round
to two digits while median, minimum value (min) and maximum value (max) are stated in integers
for duration, explosive duration and reverse duration. Duration ratio is defined as the quotient of
explosive duration and reverse duration.

This overview clearly illustrates that the often made assumption of a 1-period-crash 17 is in general

not justified for the well-known financial exuberance periods. Additionally, after the exuberance is

over, the real asset price does not reach the level which it had before the exuberance started. The

new value is most often much higher compared to the initial value. To statistically justify both

observations, we run hypothesis tests. First, we test the common belief that prices collapse within

a single period. As the minimal reverse duration is equal to two days, a test based on daily periods
17Evans (1991) bubble DGP which is based on monthly data, assumes that there is a "hard" crash within one

month.
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can only reject such a null hypothesis. However, most econometric procedures are simulated on

a monthly basis, such that we might instead test the one-sided null hypothesis that the collapse

duration is smaller or equal to 22 trading days (which corresponds to a single period on a monthly

frequency). Based on normality of log-durations18, we obtain a t-statistic of 7.07.19 Hence, the null

hypothesis is clearly rejected in favor of the alternative that durations exceed 22 days on average.

Second, we test the hypothesis of a full collapse (irrespective of its duration). A full collapse is

characterized by a complete reversion of the price to the initial pre-explosive value. In other words,

the market correction brings the price back to its value before the exuberance period started. This

might take place within a single period (sudden collapse) or within a prolonged phase (disturbing

collapse). The former possibility is already rejected based on our previous findings. What remains

is the possibility of a disturbing or smooth collapse. One-sided testing of the null hypothesis of a

full collapse leads to a heteroskedasticity-robust t-statistic of 4.46. Taking the evidence together,

the form of a smooth collapse — as innovated in Phillips and Shi (2018) — is clearly supported on

average.

Next, we further analyse the relation between returns in the explosive and reverse period. The

following return scatter plot (see Figure 1) which is similar to Etienne, Irwin, and Garcia (2014)

shows a clear linear relationship between the cumulated returns for the phase (i) from peak to burst

(y-axis) and (ii) start to peak (x-axis) (R2 = 0.822). The returns from start to peak are significantly

larger in magnitude as the reversions from peak to burst. An interesting outlier is one of the Bitcoin

cases (2013-01-08 to 2014-09-17) where the log-return in the explosive phase exceeds 400%, while

its reversion is less than 100%.

Keeping this in mind, we will later construct new data generating processes (DGP) which are much

more realistic and backed by empirical results compared to the DGP of Evans (1991). Especially,

we account for the diversity of financial exuberance periods, so that we develop more than one DGP.

5.1 AR parameter estimation

Another important information when dealing with often applied AR(1) models is the value of the

AR parameter ρ.20 Therefore, we provide evidence that in the explosive period, ρ is, like expected,
18The distributional behaviour of durations is shown in some detail in the subsection Duration testing and mod-

elling.
19Throughout the analysis, we entertain Huber-Eicker-White robust standards errors against cross-sectional het-

eroskedasticity (Eicker, 1967; Huber, 1967; White, 1980).
20To avoid estimation issues due to very small periods of explosiveness or reverse, we eliminate all periods with

less than 10 trading days.
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Figure 1: Returns during explosive and reverse period

slightly greater than 1. In all investigated exuberance periods, it is always greater than 1. The

lowest observed value is 1.00008 while the highest one is 1.01627. Its average value is 1.00049 based

on mean and 1.00023 based on median. In contrast, in each reverse period, ρ lies between 0.99771

and 0.99996. Thus, it is close to unity but slightly smaller than 1 and has an average value of

0.99953 (mean) or 0.99967 (median) (Table 4). Knowing these specific values is essential to be able

to state an empirical justified data generating process.

Table 4: AR(1) model parameters of exuberances

mean median sd min max 5%Q 95%Q
AR1 expl 1.00049 1.00023 0.00145 1.00008 1.01627 1.00010 1.00126
AR1 rev. 0.99953 0.99967 0.00044 0.99771 0.99996 0.99848 0.99993

This table provides an overview of the AR(1) model parameter for both the explosive and reverse
period. Provided are the mean, median, standard deviation (sd), minimum value (min), maximum
value (max), 5% (5%Q) and 95% quantile (95%Q). All values are rounded to five digits.

For the comparison of daily explosive autoregressive parameters (ρd) to monthly counterparts (ρm)

— as typically considered in the related literature — we apply the simple conversion ρm = ρ22d . Our

results suggest monthly explosive autoregressive parameters of 1.004 (low); 1.008 (mid) and 1.046
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(high). They clearly indicate that typical autoregressive parameters used in Monte Carlo simulations

are far too high and lead to too optimistic results as the econometric procedures clearly benefit from

large autoregressive roots exceeding unity. Testing (one-sided) the null hypothesis that the average

autoregressive parameter we find empirically equals 1.02 on a monthly basis (usually the minimal

value for explosive roots, see e.g. Homm and Breitung (2012) and many others) leads to t = 3.37.

Hence, the null hypothesis is clearly rejected in favour of smaller autoregressive parameters. In our

Monte Carlo simulations, we investigate the impact of these findings on the power of the popular

ADF-type tests against explosiveness.

5.2 Grouping and parameter estimation

For our later developed data generating processes (DGPs) we group our data into three different

categories (low, mid, high) (see Table 5).

Table 5: Plain vanilla DGP parameter values

group 1 group 2 group 3
1 p0 4.51 6.76 8.94
2 Te;Tr (81;28) (226;99) (815;350)
3 ν 4 5 6
4 σ2e ;σ2r (0.000057;0.000096) (0.000156;0.000329) (0.001008;0.001278)
5 ρe 1.000163 1.000352 1.002027
6 ρr 0.998638 0.999480 0.999804

This table provides an overview of the eight variables/parameters set for the DGP. While the starting
price p0 is rounded to two digits, both variances and AR coefficients are round to six digits due to
their smallness. Duration and variances for both periods are stated in tuples because empirically
mixing these parameters from different groups is not observable.

5.3 Duration testing and modelling

Logarithmic durations (explosive expansion and mean-reverting collapse phases) are investigated

in terms of their distributional characteristics. We find that the normality hypothesis for both

durations cannot be rejected at any conventional significance level. The p-values for the Jarque and

Bera (1980) test are equal to 0.51 and 0.26 for explosive and mean-reverting durations, respectively.

This result motivates the use of a log-normal distribution for the survival regressions involving the

durations in level.

Turning to the duration dependence modelling (see e.g. McQueen and Thorley (1994) and Lunde

and Timmermann (2004)), we investigate the role of annual US real interest and growth rates on the
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durations of explosive and collapse phases. The macroeconomic data is obtained from the FRED

and matched to the beginning of the explosive phase, similar to Kennan (1985) for the modelling of

strike durations. Based on our previous investigations, we apply a parametric log-normal survival

model. Contrary to Lunde and Timmermann (2004), we do not find evidence for the effect of interest

rates (t = 1.33). However, it must be noted that the authors consider bull and bear markets which

are different from the phases we investigate here, albeit clearly related in concept. We find real

GDP growth to have a positive and significant impact on the length of explosive regime durations

(t = 2.14). Moreover, collapse durations are not driven by economic measures, but strongly depend

on the length of the preceding explosive phase (t = 9.60) (see Figure 2). In short, long explosive

phases do not collapse quickly, but rather take their time (R2 = 0.302).
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Figure 2: Log durations during explosive and reverse period

5.4 Distribution

Since Mandelbrot (1963), Fama (1965), and Mandelbrot (1967) there is evidence that most financial

time series exhibit heavy tails and thus, the log returns do not follow an often assumed normal

distribution. Instead it has been shown that the process looks more like a Pareto or power law
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distribution. In the following, we investigate if this finding can be confirmed for exuberance periods

and both its explosive and reverse part. The first step in our analysis is therefore to create QQ-plots

to visually analyse this task. Next we estimate the sample skewness and kurtosis and finally, we

determine the tail-index.

The QQ-plots clearly illustrate that the great majority of investigated exuberance periods as well

as both subperiods strongly differ from a normal distribution. Due to the high number of QQ-plots

(3× 143 QQ-plots), they are not printed here and are available on request. Next, we calculate the

skewness (s) and kurtosis (k) to determine if they differ from the Gaussian distribution (McNeil,

Frey, and Embrechts, 2015):

s =
1
T

∑T
i=1(Xi − X̄)3[

1
T

∑T
i=1(Xi − X̄)2

]1.5 , (7)

k =
1
T

∑T
i=1(Xi − X̄)4[

1
T

∑T
i=1(Xi − X̄)2

]2 . (8)

The skewness is found to be negative on average for all three periods which is a well-known stylized

fact of exuberance periods (Cont, 2001). Based on both mean and median, the skewness is most

negative for the complete exuberance (-0.45 and -0.46) compared to its subperiods (-0.23 and -

0.23 for explosive period and -0.33 and -0.25 for reverse period). Comparing the skewness of the

explosive and reverse period, the mean of the reverse period is more negative but based on median,

there are hardly differences between both parts. Based on the standard deviation, minimum and

maximum value as well as on the 5% and 95% quantile, it is obvious that there is a high fluctuation

between the skewness of the investigated exuberances. This is not surprising due to the fact that

many exuberances and crisis are driven by different causes like greed, moral hazard, strong currency

depreciations/appreciations, credit and housing markets turmoil etc. The kurtosis also differs for all

three periods. The mean and median values are both higher for the complete exuberance (6.03 and

5.91) rather than for both subperiods (explosive: 5.91 and 3.99, reverse: 4.22 and 3.21). Comparing

both subperiods, the kurtosis is higher during the explosive period. The following table provides an

overview of these two moments (Table 6):21

In the last step, to further confirm if there are heavy tails, we apply the weighted Hill estimator

of Huisman, Koedijk, Kool, and Palm (2001). This estimator fixes the small sample issue and the
21The four moments are calculated for all exuberance, explosive and reverse periods which consist of at least 10

trading days.
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Table 6: Skewness and kurtosis of exuberance, explosive and reverse periods

mean median sd min max 5%Q 95%Q

skew
exub -0.45 -0.46 0.65 -2.38 2.58 -1.47 0.60
expl -0.23 -0.23 0.75 -3.07 2.93 -1.24 0.93
rev -0.33 -0.25 0.64 -3.31 0.98 -1.39 0.52

kurt
exub 6.03 4.54 4.72 2.50 32.14 2.90 14.48
expl 5.91 3.99 7.78 2.21 66.54 2.54 15.16
rev 4.22 3.21 2.82 1.46 18.88 2.05 10.33

challenge of choosing the threshold value k which emerges in the original Hill estimator (Hill, 1975).

The Hill estimator for the largest positive returns is defined as:

ξ(k) =
1

k

k∑
i=1

[ln(rT−i+1)− ln(rT−k)]. (9)

It is applied to increasing sorted returns, such that r1 ≤ r2 ≤ · · · ≤ rT . But because risk man-

agement is mainly concerned with the most negative returns and the Hill estimator is only able to

handle positive values, all returns are multiplied by (−1) to obtain losses, so, e.g., a −5% return

is a 5% loss. Now, Huisman, Koedijk, Kool, and Palm (2001) use the Hill estimator definition but

instead of only calculating the Hill estimator for one specific chosen k, the idea is to calculate the

Hill estimator for the threshold values k ∈ {1, 2, . . . , κ} and then, the weighted Hill estimator is

defined as:

ξm(κ) =
κ∑
k=1

w(k)ξ(k). (10)

The weighted hill estimator is calculated based on weighted least squares (WLS) and it is the first

element of the vector bWLS :

bWLS = (Z ′W ′WZ)−1Z ′W ′Wξ∗. (11)

Z is a κ×2 matrix with 1’s in its first column and k ∈ {1, 2, ..., κ} in its second column. W is a κ×κ

weighting matrix with {
√

1,
√

2, . . . ,
√
κ} on its diagonal and Os everywhere else. Additionally, ξ∗

is a vector containing all Hill estimates up to the maximum threshold κ. The maximum threshold

value is then chosen in line with Huisman, Koedijk, Kool, and Palm (2001) who suggest δ =

T/2. Estimating the parameters using OLS would result in two major issues, namely neglecting

heteroscedasticity and correlation between the variables γ(k). Therefore, a weighted least squares
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(WLS) approach is applied. Based on the weighted Hill estimator the tail index α is defined as:

α =
1

ξ
. (12)

Applying this procedure to our data, we obtain that on average and based on median as well,

the tail index is about 4 to 6 what means that the underlying stochastic process has a finite fourth

moment. Furthermore, with only a handful of exceptions, each exuberance period and its subperiods

have a finite variance. Furthermore, we find support of the gain/loss asymmetry because the tail

indexes for losses are smaller and thus, more extreme than the tail estimates for the largest returns

(Table 7).22

Table 7: Tail estimator of largest returns and losses

mean median sd min max 5%Q 95%Q

positive tail
exub 6.44 5.48 4.25 2.50 25.07 2.91 13.26
expl 6.14 5.61 2.92 2.19 18.06 2.82 10.44
rev 5.94 4.50 4.05 2.47 16.59 2.54 13.63

negative tail
exub 5.38 4.44 3.92 1.84 23.31 2.44 11.83
expl 4.50 4.21 1.72 2.28 7.67 2.45 7.40
rev 5.48 4.80 3.22 1.98 14.19 2.19 11.85

To summarize, most exuberance, explosive and reverse periods show signs of non-normality and of

underlying stochastic processes which have finite variance.

Finally, we test the null hypothesis of no structural break in the innovation variance during the

explosive and the collapse phase. The resulting t-statistic equals 7.61 and thus confirms the existence

of a structural change in the unconditional variance. Moreover, we are able to quantify typical break

sizes. These are 1.27 (low); 1.69 (mid) and 2.11 (high). Compared to the existing literature, these

break sizes are relatively small.

6 Monte Carlo simulations

This subsection features Monte Carlo simulation results regarding the empirical power of popular

tests. Based on our main findings, we construct data generating processes (DGPs) which include

the stylized facts of explosive and reverse periods. In contrast to the well-known data generating
22In line with Huisman, Koedijk, Kool, and Palm (2001) their weighted Hill estimator is applied to all exuberance,

explosive and reverse periods which have at least 100 positive or negative returns. Otherwise, the estimator would
be biased.
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process of e.g. Evans (1991), our processes are able to model a long-lasting reverse rather than a

one period reverse which in most cases cannot be empirically confirmed. Moreover, they do not rely

on the assumption of a full collapse, i.e. a sudden or disturbing collapse. In particular, we are able

to model a smooth collapse.

First, we start with a ’plain vanilla DGP’ which is later increased in its complexity. The DGP is

split into one part which models the explosive behaviour of the exuberance and one part which

captures the reverse period. p0, our initial real log-price is set based on empirical observations. All

following prices pt with t ∈ {1, 2, . . . , Te} - where Te is the duration of the explosive period - are

calculated based on an AR(1) process. The same is true for the reverse period. So, both parts of

the DGP are defined as:

pt = ρept−1 + σeut, t = 1, ..., Te (13)

pt = ρrpt−1 + σrut, t = Te + 1, ..., T. (14)

We have ρe > 1 and ρr < 1. The innovations ut are drawn from a standardized t-distribution with

ν degrees of freedom. A variance shift is captured by the structural break in the scaling parameters

σe and σr. We start (and end) with a random walk regime of 50 observations which has the same

innovation variance as the proceeding (preceding) explosive (mean-reverting) regime. The respective

end (starting) value is matched to with the simulated trajectory in order to exclude artificial jumps

in the simulated data.

We run the SADF test of Phillips, Wu, and Yu (2011) with zero lag augmentation. Hence, we provide

the test with the information about the first-order lag structure and the maximum of one single

explosive phase. To do so, we implement 729 different value combinations (36) of the parameters

stated in Table 8, Table 9 and Table 10. However, we do not impose further simplifications. In

further considerations, currently under investigation, we remove these information.

Some results are already available: Empirical power for the average case (group 2 for all relevant

parameters, see exemplary Table 8) leads to an empirical power of 52.9%. A larger starting value

leads to higher power. Clearly, a longer duration of the explosive regime increases power. Also, the

empirical power rises (as expected) with an increasing explosive autoregressive coefficient. Finally,

an increased innovation variance reduces power as the signal-to-noise ratio worsens. The degrees of

freedom ν controlling the excess kurtosis does not impact power in any noticeable way, therefore,

no results are reported here but they are available on request.
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Table 8: Empirical power - ceteris paribus analysis for group 1

p0 Te Tr ν σ2e σ2r ρe ρr Power
4.51 81 28 5 0.00100805 0.00127795 1.00016253 0.999804 0.051
6.76 81 28 5 0.00100805 0.00127795 1.00016253 0.999804 0.065
4.51 226 99 5 0.00100805 0.00127795 1.00016253 0.999804 0.044
4.51 81 28 5 0.00015589 0.00032906 1.00016253 0.999804 0.072
4.51 81 28 5 0.00100805 0.00127795 1.00035159 0.999804 0.058
4.51 81 28 5 0.00100805 0.00127795 1.00016253 0.999480 0.056
8.94 81 28 5 0.00100805 0.00127795 1.00016253 0.999804 0.068
4.51 815 350 5 0.00100805 0.00127795 1.00016253 0.999804 0.084
4.51 81 28 5 0.00005670 0.00009570 1.00016253 0.999804 0.080
4.51 81 28 5 0.00100805 0.00127795 1.00202689 0.999804 0.206
4.51 81 28 5 0.00100805 0.00127795 1.00016253 0.998638 0.060

Table 9: Empirical power - ceteris paribus analysis for group 2 (baseline)

p0 Te Tr ν σ2e σ2r ρe ρr Power
6.76 226 99 5 0.00015589 0.00032906 1.00035159 0.999480 0.529
4.51 226 99 5 0.00015589 0.00032906 1.00035159 0.999480 0.263
8.94 226 99 5 0.00015589 0.00032906 1.00035159 0.999480 0.771
6.76 81 28 5 0.00015589 0.00032906 1.00035159 0.999480 0.105
6.76 815 350 5 0.00015589 0.00032906 1.00035159 0.999480 0.910
6.76 226 99 5 0.00005670 0.00009570 1.00035159 0.999480 0.901
6.76 226 99 5 0.00100805 0.00127795 1.00035159 0.999480 0.099
6.76 226 99 5 0.00015589 0.00032906 1.00016253 0.999408 0.141
6.76 226 99 5 0.00015589 0.00032906 1.00202689 0.999480 1.000
6.76 226 99 5 0.00015589 0.00032906 1.00035159 0.998638 0.533
6.76 226 99 5 0.00015589 0.00032906 1.00035159 0.999804 0.517

Table 10: Empirical power - ceteris paribus analysis for group 3

p0 Te Tr ν σ2e σ2r ρe ρr Power
8.94 815 350 5 0.00005670 0.00009570 1.00202689 0.998638 1.000
6.76 815 350 5 0.00005670 0.00009570 1.00202689 0.998638 1.000
8.94 226 99 5 0.00005670 0.00009570 1.00202689 0.998638 1.000
8.94 815 350 5 0.00015589 0.00032906 1.00202689 0.998638 1.000
8.94 815 350 5 0.00005670 0.00009570 1.00035159 0.998638 1.000
8.94 815 350 5 0.00005670 0.00009570 1.00202689 0.999480 1.000
4.51 815 350 5 0.00005670 0.00009570 1.00202689 0.998638 1.000
8.94 81 28 5 0.00005670 0.00009570 1.00202689 0.998638 1.000
8.94 815 350 5 0.00100805 0.00127795 1.00202689 0.998638 1.000
8.94 815 350 5 0.00005670 0.00009570 1.00016253 0.998638 0.859
8.94 815 350 5 0.00005670 0.00009570 1.00202689 0.999804 1.000

23



Now, we also provide four examples which will serve throughout the analysis as ’running examples’

(Table 11).

Table 11: Running examples

index/asset p0 Te Tr ν σ2
e σ2

r ρe ρr Power
Gold (GFC) 5.65 376 127 5 0.000102 0.000324 1.000233 0.999604 0.323
NASDAQ (dot-com) 6.18 1368 386 5 0.000181 0.000914 1.000196 0.999625 0.533
DJ US RE (GFC) 4.95 127 75 5 0.000060 0.000154 1.000396 0.999565 0.667
Brent Oil 3.94 45 21 5 0.000413 0.000539 1.001300 0.998218 0.209

The first one is the Gold price during the Great Financial Crisis (GFC). The second one is the

prominent NASDAQ index during the famous dot-com bubble. The other two examples are the

housing market (DJ US RE) and Brent Oil during the GFC. Typical trajectories of the simulated

prices are given in the figures below (see Figure 3, Figure 4, Figure 5, Figure 6). The simulated

power shows that the Gold bubble was more difficult to detect in relative terms when compared

to the NASDAQ, given the differences in empirical power. The GFC period in the housing market

is detected with quite a high power which is due to the relatively low innovation variance in both

the explosive and reverse period. In contrast, identifying the GFC in the Brent Oil index shows

a low power of 0.209 which is mainly due to the short duration and the relatively high innovation

variance in the explosive period.

Overall, the empirical power is not extensively high for three of the given empirical cases. As the

simulations already contain a number of simplifications, the simulated power can be seen as some

kind of an upper bound as the power will be reduced by search for the optimal lag length via the

BIC and especially when considering a supremum statistic with an unknown timing of the bubble.

Furthermore, the possibility of having more than one single explosive phase in the sample further

reduces power. These issues are currently under consideration by the authors as well.
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Figure 3: Typical trajectory of explosive Gold prices during the GFC.
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Figure 4: Typical trajectory of explosive Nasdaq prices during the dot-com bubble.
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Figure 5: Typical trajectory of explosive housing prices during the GFC.
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Figure 6: Typical trajectory of explosive oil prices during the GFC.
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7 Conclusions

We provide new and comprehensive evidence on explosive phases in market prices. We establish a

couple of new stylized facts which are useful for the understanding of these outstanding periods,

often interpreted as bubbles. They are also useful for the specification of empirically relevant

parameter settings in simulations for the performance of popular tests and monitoring procedures.

In fact, our results on thirty different markets over a period of fifty years yields 143 explosive phases.

Their characteristics deviate significantly from commonly entertained data generating processes in

the following ways: (i) explosiveness is typically remarkably mild, (ii) collapse phases are smooth

and (iii) market prices do not fully drop back to the initial pre-explosive value, but stay way above.

We also find quite heterogeneous durations of explosive and mean-reverting phases. In addition,

we confirm the existence of volatility shifts in the innovations, with an increased variance in the

collapse period. Moreover, innovation distributions are fat-tailed and almost symmetric. However,

the idealistic view that market prices are strongly exploding and fully collapsing in very short time

is definitely not supported by our results. These stylized facts have important implications for

the empirical power of tests and the performance of monitoring procedures typically conducted in

practice. In particular, we find that most explosive phases of financial exuberance are much harder

to detect than expected, at least given what the literature has suggested so far.

A natural extension of our research is the investigation of the multivariate perspective because during

major financial exuberances, many different indices are influenced. This can e.g., be seen for the dot-

com-bubble or the global financial crisis 2007/09. In the context of regulation and the subsequent

avoidance of spillover and contagion effects, a knowledge of the behaviour of multiple time series

(portfolio context) is essential. On top of this, the financial exuberance monitoring technique of

Phillips, Shi, and Yu (2015a) and Phillips, Shi, and Yu (2015b) could likely be enhanced by including

other macroeconomic variables or by applying more advanced techniques like deep neural networks.
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Appendix

DGPs and parameter settings

We provide an overview of the DGPs, assumptions and parameters which are applied during finite

sample Monte Carlo power simulations of financial exuberance detection and date stamping pro-

cedures in the literature. Therefore, we first briefly describe the used frameworks of more than 20

research papers and in the end, we provide an extensive overview of the applied parameter settings:

Phillips, Wu, and Yu (2011)

The following DGP (Evans (1991) type model) is assumed (pp. 218-221):

Pt = P ft +20Bt,

P ft = µD(1 + g)g−2 +
Dt

g
,

Dt = µD +Dt−1 + εd,t,

Bt+1 =


(1 + g)Btεb,t+1 if Bt ≤ α[
ζ + π−1(1 + g)θt+1(Bt − (1 + g)−1ζ)

]
εb,t+1 if Bt > α

with g > 0, εd,t ∼ NID(0, σ2d), εb,t = exp(yt − τ2/2), yt ∼ NID(0, τ2), θ follows a Bernoulli process

that takes the value 1 with probability π and 0 with 1− π, and E(Bt+1) = (1 + g)Bt.

The following parameter settings are used: µd = 0.0373, σ2d = 0.1574, D0 = 1.3, T = 100, g =

0.05, α = 1, ζ = 0.5, B0 = 0.5, τ = 0.05, π = {0.999, 0.99, 0.95, 0.85, 0.75, 0.5, 0.25}.

Homm and Breitung (2012)

The following DGP is assumed (pp. 212-222):

yt = ρtyt−1 + εt,

E(εt) = 0, E(ε2t ) = σ2, y0 = c <∞.

The hypothesisH0 : ρt = 1, t = 1, 2, . . . , T is tested againstH1 : ρt =


1 for t = 1, . . . , [τ∗T ]

ρ∗ > 1 for t = [τ∗T ] + 1, . . . , T

The following parameter settings are used: y0 = 0, εt is Gaussian white noise, T ∈ {100, 200, 400}, τ∗ ∈

{0.7, 0.8, 0.9}, ρ∗ ∈ {1.02, 1.03, 1.04, 1.05}. Additionally, the break date estimators are testes on the
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following parameter settings: τ∗ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, T ∈ {200, 400}, ρ∗ = 1.05.

Also the case of randomly starting bubbles is investigated. Therefore, a different DGP/model is

applied:

Pt =P ft +Bt

P ft =
1 +R

R2
µ+

1

R
Dt,

Dt = µ+Dt−1 + ut,

Bt =


Bt−1 + RBt−1

π θt if Bt−1 = B0

(1 +R)Bt−1 if Bt−1 > B0

for t = 1, . . . , T

θ is a Bernoulli process which takes on the value of 1 with probability π and on 0 with 1− π.

The following parameter settings are used: R = 0.05, µ = 0.0373, D0 = 1.3, ut ∼ identical normally

distributed(0, 0.1574), (B0, π) ∈ {(B0 = 2, π ∈ {no bubble, 0.02, 0.05, 0.10, 0.25, 0.50, 1.00}),

(B0 = 0.05, π ∈ {no bubble, 0.01, 0.02, 0.05, 0.10})}, T ∈ {100, 200}.

Another DGP is applied for periodically collapsing bubbles, namely the Evans (1991) DGP. The

equations for the fundamental value P ft and the dividend process Dt remain the same as before,

but the composition of the bubble component changes:

Pt = P ft + 20Bt,

Bt+1 =


(1 +R)Btut+1 if Bt ≤ α

[δ + π−1(1 +R)θt+1(Bt − (1 +R)−1δ)]ut−1 otherwise

For δ and α it holds: 0 < δ < (1 + R)α, {ut}∞t=1i.i.d., ut ≥ 0, Et(ut+1) = 1∀t, {θt}∞t=1 iid Bernoulli

process.

The following parameters are used: ut = exp(ζt − 1
2τ

2), ζt ∼ iidN(0, τ2), α = 1, δ = 0.5, τ =

0.05, R = 0.05, T = 100, π ∈ {no bubble, 0.999, 0.990, 0.950, 0.850, 0.750, 0.500, 0.250}.

Breitung and Kruse (2013)

The following DGP is assumed (pp. 918-927):
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yt = Bt + P ft

Bt = %Bt−1 + ut

P ft = P ft−1 + εt

with % ∈ {1+rπ , 1 + c
T 0.75 }, εt ∼ iidN(0, 1), ut ∼ iidN(0, σ2u), λ2 = σ2u/σ

2
ε , T0 = [τ0T ].

The following parameter settings are used: T ∈ {69, 100, 121}, τ ∈ [0.4, 0.8] as the searching in-

terval for the bubble crash, r = 0.05, c ∈ {0.5, 1, 2, 3, 4, 5}, π ∈ {0.90, 0.92, 0.94, 0.96, 0.98}, % =

[1.02, 1.2088]. Only bubbles longer than [0.4T ] periods are considered. The bubble size is measured

by the variance ratio λ2, λ ∈ {0.1, 1, 10}.

Phillips, Shi, and Yu (2014)

The following DGP is assumed (pp. 325-327):

Pt = P ft +κBt,

P ft =
µρ

(1− ρ)2
+

ρ

1− ρ
Dt,

Dt = µ+Dt−1 + εDt,

Bt+1 =


ρ−1BtεB,t+1 if Bt < b[
ζ + (πρ)−1θt+1(Bt − ρζ)

]
εB,t+1 if Bt ≥ b

with ρ−1 > 1, εDt ∼ iidN(0, σ2d), εB,t = exp(yt − τ2/2), yt ∼ NID(0, τ2), θ follows a Bernoulli

process that takes the value 1 with probability π and 0 with 1− π, and E(Bt+1) = ρ−1Bt.

The following parameter settings are used: T ∈ {100, 200, 400}, P f0 ∈ {41.195, 94.122}, κ ∈ {20, 150}, ρ ∈

{0.952, 0.985}, B0 = 0.50, π = 0.85, ζ = 0.5, τ = 0.05, b = 1, µ = 0.0020, σ2D = 0.0034.

Harvey, Leybourne, and Sollis (2015)

The following DGP is assumed (pp. 174-180):
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yt =


yt−1 + vt t = 2, . . . , bτ1T c

(1 + δ)yt−1 + vt t = bτ1T + 1c, . . . , bτ2T c

yt−1 + vt t = bτ2T + 2c, . . . , T

with δ ≥ 0, y1 = v1, ybτ2T c+1 = ybτ2T c + vbτ2T c+1 + y∗1(δ > 0), vt = mds with σ2, suptE(ε4t ) <

∞, v1 = op(T
−1/2). Two cases for y∗ : y∗ = 0 RW directly after explosive period vs. y∗ =

ybτ1T c − ybτ2T c hard crash, then RW after explosive period.

The following parameter settings are used: T = 300 in combination with δ ∈ {0, 0.001, 0.002, . . . , 0.080},

T = 600 in combination with δ ∈ {0, 0.001, 0.002, . . . , 0.040}, vt ∼ iidN(0, 1), (τ1, τ2) ∈ {(0.45, 0.55),

(0.40, 0.60), (0.90, 1.00), (0.80, 1.00)}. For robustness testing, T = 300 is used in combination

with vt ∼ t5. To investigate the effect of the explosive period’s location, the following param-

eter settings are used: vt ∼ iidN(0, 1), T = 300, δ = 1.05, (τ1, τ2) = (0.70, 0.80), E = bτ1T c ∈

{210, 211, . . . , 300}. So, the sample end is shrunk. This is also done for an early bubble with

(τ1, τ2) = (0.20, 0.30) and the start date S = bτ2T + 1c ∈ {1, 2, . . . , 91} which results in effective

sample sizes T ∗ of 210 to 300.

Phillips, Shi, and Yu (2015a)

The following DGP is assumed (pp. 1059-1065):

Pt = P ft +κBt,

P ft =
µρ

(1− ρ)2
+

ρ

1− ρ
Dt

Dt = µ+Dt−1 + εDt , εDt ∼ N(0, σ2D),

Bt+1 =


ρ−1BtεB,t+1 if Bt < b[
ζ + (πρ)−1θt+1(Bt − ρζ)

]
εB,t+1 if Bt ≥ b

with κ > 0, εB,t = exp
(
yt − τ2

2

)
, yt ∼ N(0, τ2), θt is a Bernoulli process which is 1 with probability

π and 0 with 1− π.

The following parameter settings are used: µ = 0.0024, ρ ∈ {0.975, 0.980, 0.985, 0.990}, D0 =

1.0, σ2D = 0.0010, κ = 20, ζ = 0.50, π ∈ {0.25, 0.75, 0.85, 0.95}, B0 = 0.50, b = 1, τ = 0.05, T ∈

{100, 200, 400, 800, 1600}.
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The following DGP for exactly one bubble is considered:

Xt =Xt−11{t < τe}+ δTXt−11{τe ≤ t ≤ τf}

+

 t∑
k=τf+1

εk +X∗τf

1{t > τf}+ εt1{t ≤ τf}

with δT = 1 + cT−α, c > 0, α ∈ (0, 1), εt ∼iid (0, σ2), X∗τf = Xτe +X∗, τe = bTrec.

The following parameter settings are used: x0 = 100, σ = 6.79, c = 1, α = 0.6, T = 100, τe =

{b0.2T c, b0.4T c, b0.6T c} and the bubble length τf − τe = {b0.10T c, b0.15T c, b0.20T c}.

The following DGP for exactly two bubbles is considered:

Xt =Xt−11{t ∈ N0}+ δTXt−11{t ∈ B1 ∪B2}

+

 t∑
k=τ1f+1

εk +X∗τ1f

1{t ∈ N1}

+

 t∑
l=τ2f+1

εl +X∗τ2f

1{t ∈ N2}

+ εt1{t ∈ N0 ∪B1 ∪B2}.

with N0 = [1, τ1e), B1 = [τ1e, τ1f ], N1 = (τ1f , τ2e), B2 = [τ2e, τ2f ], N2 = (τ2f , τ ].

The following parameter settings are used: x0 = 100, σ = 6.79, c = 1, α = 0.6, T = 100, τ1e =

b0.2T c, τ2e = b0.6T c, τ1f−τ1e = {b0.10T c, b0.15T c, b0.20T c}, τ2f−τ2e = {b0.10T c, b0.15T c, b0.20T c}.

Harvey, Leybourne, Sollis, and Taylor (2016)

The following DGP is assumed (pp. 558-560):

yt = µ+ut

ut =



ut−1 + εt t = 2, . . . , bτ1,0T c

(1 + δ1,T )ut−1 + εt t = bτ1,0T c+ 1, . . . , bτ2,0T c

(1− δ2,T )ut−1 + εt t = bτ2,0T c+ 1, . . . , bτ3,0T c

ut−1 + εt t = bτ3,0T c+ 1, . . . , T

with δ1,T ≥ 0, δ2,T ≥ 0, u1 = op(T
1/2) and for {εt} the following holds: εt = σtzt, zt ∼ iid(0, 1), E|zt|r <
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K < ∞ for r ≥ 4, σt = ω(t/T ), ω(.) ∈ D is non-stochastic and strictly positive. There are four

different models of ω(s) considered:

ω(s) = σ0 + (σ1 − σ0)1(s > τσ) single volatility shift

ω(s) = σ0 + (σ1 − σ0)1(0.4 < s ≤ 0.6) double volatility shift

ω(s) = σ0 + (σ1 − σ0)
1

1 + exp{−50(s− 0.5)}
logistic smooth transition in volatility

ω(s) = σ0 + (σ1 − σ0)s trending volatility

with s ∈ [0, 1].

The following parameter settings are used: µ = 0, u1 = ε1, zt ∼ iidN(0, 1), T = 200, δ1,T = δ1 ∈

{0.02, 0.04, 0.06, 0.08}, δ2,T = 0, τ1,0 = 0.4, τ2,0 = 0.6, σ1/σ2 ∈ {1/6, 1/3, 1, 3, 6}. For the case of a

single volatility shift, τσ ∈ {0.3, 0.5, 0.7}.

Astill, Harvey, Leybourne, and Taylor (2017)

The following DGP is assumed (pp. 655-664):

yt = µ+ut t = 1, . . . , T +m

ut =


ut−1 + εt t = 1, . . . , T

φut−1 + εt t = T + 1, . . . , T +m

with {εt} having mean 0, is stationary and ergodic.

The following parameter settings are used: µ = 0, u0 = 100, εt ∼ iidN(0, 1), bubble length m ∈

{2, 5, 10}, T ∈ {100, 200}, φ ∈ [1, φmax], φmax = 1.05 for m = 2 and φmax = 1.02 for m ∈ {5, 10}

with a grid of 50. To measure the speed of detection a bubble length m = 20 is considered and the

sample is defined as 1, . . . , E with E ∈ {181, 182, . . . , 200}, φ ∈ {1.01, 1.02}. Additionally, the case

of a variance break is considered:

εt ∼


iidN(0, 1) t = 1, . . . , Tσ

iidN(0, σ2) t = Tσ + 1, . . . , T ∗

with σ2 ∈ { 1
10 ,

1
5 , 1, 5, 10}, Tσ ∈ {T2 , T

∗ − 5}.
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Harvey, Leybourne, and Sollis (2017)

The following DGP is assumed (pp. 126-129):

yt = µ+ ut,

ut =



ut−1 + υt t = 2, . . . bτ1,0T c

(1 + δ1)ut−1 + υt t = bτ1,0T c+ 1, . . . , bτ2,0T c

(1− δ2)ut−1 + υt t = bτ2,0T c+ 1, . . . , bτ3,0T c

ut−1 + υt t = bτ3,0T c+ 1, . . . T

.

δ1 ≥ 0, δ2 ≥ 0, u1 = Op(1). Furthermore, the innovation process {υt} is given by:

υt = C(L)ηt, C(L) :=

∞∑
j=0

CjL
j

with C(1)2 > 0,
∑∞

i=0 i|Ci| <∞, {ηt} ∼ i.i.d.(0, 1) and finite fourth moment. The short run variance

of υt is given by σ2υ =
∑∞

j=0C
2
j . Based on the general DGP setting introduced, 4 different kinds of

DGPs are applied during the analysis; these are:

unit root bubble collapse unit root mathematics
DGP 1 X X 0 < τ1,0 < 1, τ2,0 = 1
DGP 2 X X X 0 < τ1,0 < τ2,0 < 1, τ2,0 = τ3,0
DGP 3 X X X 0 < τ1,0 < τ2,0 < 1, τ3,0 = 1
DGP 4 X X X X 0 < τ1,0 < τ2,0 < τ3,0 < 1

The following parameter settings are used: T = 200, δ1 ∈ {0.0400, 0.0425, . . . , 0.1000}, fraction

of minimum duration for bubble s = 0.1, tolerance k ∈ {0, 1, 5}, duration bubble regime b0.2T c,

duration reversion process in GDP 4 b0.1T c, magnitude of stationary parameter in GDP 3 and 4:

δ2 ∈ {δ1, δ1/2}, yt with µ = 0, υt ∼ iidN(0, 1).

Phillips and Shi (2018)

The following DGP is assumed (pp. 719-725):

Xt =


cT−η +Xt−1 + εt t ∈ N0 ∪N1

δTXt−1 + εt t ∈ B

γTXt−1 + εt t ∈ C
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with B = [Te, Tc] as the bubble episode, C = (Tc, Tr] as the collapse period with Tr as the recovery

date and the normal market periods are N0 ∪ N1 = [1, Te) ∪ (Tr, T ], δT = 1 + c1T
−α with c1 >

0, α ∈ [0, 1), γT = 1− c2T−β with c2 > 0, β ∈ [0, 1), εt ∼ iid(0, σ2).

The following parameter settings are used: X0 = 100, c = c1 = c2 = 1, T = 100, η ∈ {0.6, 1, 2}, σ =

6.79, α = 0.60, β = 0.1, dCT = b0.01T c, dBT = b0.20T c, fe = 0.4 (bubble start date). Furthermore,

the collapse type sudden (which is already implemented β = 0.1, dCT = b0.01T c) is compared to

disturbing collapse (β = 0.5, dCT = b0.1T c) and smooth collapse (β = 0.9, dCT = b0.2T c). For

robustness testing, in the case of disturbing collapse, additional parameter settings are applied:

β ∈ [0.3, 0.7], dCT ∈ [0.05T, 0.15T ].

For the delay evaluation of market recovery, the following settings are used: X0 = 100, σ = 6.79, c =

c1 = c2 = 1, α = 0.6, dBT = b0.20T c, fe = 0.4, T = 100 and T = 200 is additionally used.

Guo, Sun, and Wang (2019)

The following DGP is assumed (pp. 85-87):

yt = µT + ρyt−1 + ut, t = 1, 2, . . . T

with ρ = 1 + c
kT
, c = 1, kT = Tα, α ∈ (0, 1).

The following parameter settings are used: µT ∈ {0, T−α/2, T−α/4, 1}, y0 = µT , ut ∈ {∼ iidN(0, 1),∼

iidU(−
√

3,
√

3)}, T = 100, α = 0.5.

Moreover, simulations are run considering weakly dependent errors (but only with µT = T−α/4):

AR case: ut = θut−1 +
√

1− θ2e1,t, e1,t ∼ iidN(0, 1). MA case: ut = θe2,t−1 +
√

1− θ2e2,t, e2,t ∼

iidN(0, 1), θ ∈ {0.00, 0.25, 0.50, 0.75}, α = 0.5, T = 100.

Harvey, Leybourne, and Zu (2019)

The following DGP is assumed (pp. 1140-1143):

yt = µ+xt

xt = (1 + ρt)xt−1 + ut

ut = σtεt.

with E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1, {us}s≥1, E(ε4t ) < ∞, σt = σ(t/T ), σ(.) ∈ D[0, 1], ρt = 0 for

t = 2, . . . , [τ∗T ], ρt = c/T for t = [τ∗T ] + 1, . . . , T .
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The following parameter settings are used: T = 200, µ = 0, x1 = 0, εt ∼ iidN(0, 1), τ∗ ∈ {0.6, 0.8}, c ∈

{0, 1, . . . , 8}. 9 different functions of volatility σ(r) are considered:

σ(r) = 1∀r constant volatility

σ(r) = 1 + 51(r ≥ 0.3) early upward shift

σ(r) = 1 + 51(r ≥ 0.8) late upward shift

σ(r) = 1 + 51(r < 0.3) early downward shift

σ(r) = 1 + 51(r < 0.8) late downward shift

σ(r) = 1 + 5r upward trend

σ(r) = 6− 5r downward trend

σ(r) = 1 + 51(0.4 < r ≤ 0.6) double shift

σ(r) = dσ2(r) = 0.03(0.25− σ2(r))dr + 0.1
√
σ2(r)dB(r) stochastic volatility.

Whitehouse (2019)

The following DGP is assumed (pp. 35-37):

yt = µ+βt+ ut,

ut =



T 1/2σα t = 1

ut−1 + vt t = 2, . . . , bτ1T c

(1 + δ)ut−1 + vt t = bτ1T c+ 1, . . . , bτ2T c

ut−1 + vt t = bτ2T c+ 1, . . . , T

with δ = c/T, c ≥ 0. For vt (mds), the following assumptions are made: E(v2t ) = σ2 <∞,
1
T

∑T
t=1 v

2
t →p σ

2, supt
∑T

t=1E(v2t ) <∞. For every ε > 0 it is: limT→∞ σ
−2T−1

∑T
t=1

∫
v2>εTσ2 v

2dFt(v) =

0 with Ft as the distribution function of vt. To test for the effects of heteroskedasticity also a GARCH

version of the innovation term vt is used: vt = ηt
√
ht with ηt ∼ iidN(0, 1) and ht = ω+γv2t−1+φht−1.

The following parameter settings are used: T = 150, α ∈ {0, 10}, [τ1, τ2] ∈ {[0.45, 0.55], [0.2, 0.8], [0.15, 0.25],

[0.75, 0.85]} as the starting and end value of the bubble, c ∈ {{0, 1, . . . 56}, [0, 3.00]}, ω = 30, γ =

0, φ = 0.6.

Hafner (2020)

The following DGP is assumed (pp. 244-245):
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yt = (1 + δJt)yt−1 + εt

with Jt = I(t ≥ T/2), δ = 0 for first sample part, δ > 0 for second part. εt = g(t/T )
√
htξt, ξt ∼

iid(0, 1) is a centered normalized negative logχ2 distribution.

The following parameter settings are used: δ ∈ {0, 0.01, 0.02, 0.03}, g(t/T ) = 0.05(1+c cos(πt/T )2), c ∈

{1, 2}, ht = ω + α
ε2t−1

g( t−1
T

)2
+ βht−1, α = 0.1, β = 0.85, ω = 1− α− β, T ∈ {100, 200, 500}.

Harvey, Leybourne, and Whitehouse (2020)

The following DGP is assumed (pp. 232-234):

yt = µ+ xt + ut,

ut = (1 + ρt)ut−1 + vt,

ρt =
N∑
j=1

{ρ∗j11
(
bτ∗j1T c < t ≤ bτ∗j2T c

)
+ ρ∗j21

(
bτ∗j2T c < t ≤ bτ∗j3T c

)
− 1(t = bτj3T c+ 1)},

xt =

N∑
j=1

ubτ∗j3T c1
(
t > bτ∗j3T c

)

with ρ∗j1 ≥ 0, ρ∗j2 ≤ 0 ∀j = 1, . . . , N, τ∗11 > 0, τ∗N3 ≤ 1, τ(j+1)1 > τ∗j3.

The following parameter settings are used: (N,T ) ∈ {(2, 200), (3, 300)}, vt ∼ iidN(0, 1), µ = 0 and

then, the following six cases are run:

N T (τ∗11, τ
∗
12, τ

∗
13) (ρ∗11, ρ

∗
12) (τ∗21, τ

∗
22, τ

∗
23) (ρ∗21, ρ

∗
22) (τ∗31, τ

∗
32, τ

∗
33) (ρ∗31, ρ

∗
32)

2 200 (0.2, 0.3, 0.4) (0.1, -0.05) (0.6, 0.7, 0.8) (0.1, -0.05)
2 200 (0.3, 0.5, 0.55) (0.05, -0.05) (0.75, 0.85, 1.0) (0.075, -0.05)
2 200 (0.2, 0.3) 0.075 (0.6, 0.7, 0.75) (0.075, -0.075)
2 200 (0.4, 0.5) 0.05 (0.95, 1.0) 0.05
3 200 (0.2, 0.35, 0.4) (0.075, -0.075) (0.6, 0.7, 0.75) (0.075, -0.075) (0.9, 1) 0.075
3 200 (0.3, 0.4, 0.5) (0.075, -0.05) (0.6, 0.7, 0.75) (0.075, -0.05) (0.85, 0.95, 1) (0.075, -0.05)

The following situations are modelled by the DGPs (i) first explosive regime with collapse, second

explosive regime with collapse, (ii) first explosive regime with collapse, second explosive regime

with collapse running to sample end, (iii) first explosive regime without collapse, second explosive

regime with collapse, (iv) first explosive regime without collapse, second explosive regime running

to sample end, (v) first explosive regime with collapse, second explosive regime with collapse, third

explosive regime running to sample end, (vi) first explosive regime with collapse, second explosive
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regime with collapse, third explosive regime with collapse running to sample end.

Harvey, Leybourne, and Zu (2020)

The following DGP is assumed (pp. 139-144):

yt = µ+ ut

ut =



ut−1 + εt t = 2, . . . , bτ1T c

(1 + δ1,T )ut−1 + εt t = bτ1T c+ 1, . . . , bτ2T c

(1− δ2,T )ut−1 + εt t = bτ2T c+ 1, . . . , bτ3T c

ut−1 + εt t = bτ3T c+ 1, . . . , T

with δ1,T ≥ 0, δ2,T ≥ 0, δi,T = ciT
−1, ci > 0, i = 1, 2, u1 = op(T

1/2), E(εt) = 0, εt = σtzt, zt ∼

iid(0, 1), E(|zt|r) < ∞ for r ≥ 4, σt = σ(t/T ), σ(.) ∈ D is non-stochastic and strictly positive.

Based on the general DGP setting introduced, 4 different kinds of DGPs are applied during the

analysis; these are:

unit root bubble collapse unit root mathematics
DGP 1 X X 0 < τ1 < 1, τ2 = τ3 = 1
DGP 2 X X X 0 < τ1 < τ2 < 1, τ2 = τ3
DGP 3 X X X 0 < τ1 < τ2 < 1, τ3 = 1
DGP 4 X X X X 0 < τ1 < τ2 < τ3 < 1

The following parameter settings are used: T = 100, µ = 0, u1 = ε1, zt ∼ iidN(0, 1), σ1 ∈

{1/6, 1/3, 1, 3, 6}, c1 ∈ {2, 4, 6, 8}. For DGP 1: σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ 1), τ1 ∈

{0.4, 0.8}. For DGP 2: σ(s) = 1(0 ≤ s ≤ τ1) + σ11(τ1 < s ≤ τ2) + 1(τ2 < s ≤ 1), τ2 = 0.7, τ1 ∈

{0.1, 0.5}. DGP3 and 4 are not applied.

Kurozumi (2020)

The following DGP is assumed (pp. 520-524):

Xt =µ+ (Xt−1 + εt)1(t ≤ m+ ke) + (δmXt−1 + εt)1(m+ ke + 1 ≤ t ≤ m+ kc)

+

Xm+ke +X∗ +

t∑
j=m+kc+1

εj

1(t ≥ m+ kc + 1)
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with δm = 1 + c
mα , c > 0, α ∈ (0.5, 1).

The following parameter settings are used: µ = 0,m ∈ {50, 100, 200}, and the monitoring procedure

is stopped at m̄ ∈ {2m, 4m, 6m}, X∗ = 0, δm = 1 + c/100, c ∈ {0.5, 1.0, . . . 5.0}, ke ∈ {0, 0.5m, 1m},

size of the bubble regime: 10, 25, 50, 75, 100 (kc = ke + 10, ke + 25, . . . , ke + 100). The following

three cases are considered:

(i) X0 = 100 and {εt} ∼iid N
(
0, σ2

)
, σ = 6.79

(ii) X0 = 100, {εt} ∼iid t(5) scaled to a standard deviation of 6.79,

(iii) X0 = 376.8, εt = vt
√
ht, {vt} ∼iid N(0, 1), ht = ω + αε2t−1 + βht−1, ω = 30.69, α = 0, β = 0.61.

Pedersen and Schütte (2020)

The following DGP is assumed (pp. 216-220):

yt =



yt−1 + vt t = 1, . . . , τe − 1

δ1yt−1 + vt t = τe, . . . , τc − 1

δ2yt−1 + vt t = τc, . . . , τx − 1

yt−1 + vt t = τx, . . . , T

with δ1 = 1 + T−α, δ2 = 1− T−α, vt = φ1vt−1 + εt + ϑ1εt−1 + ϑ2εt−2 + ϑ3εt−3, εt ∼iid N(0, σv).

The following parameter settings are used: y0 = 100, σv = 6.79, α = 0.6, (T, δ1, δ2) ∈ {(100, 1.06, 0.94),

(200, 1.04, 0.96), (400, 1.03, 0.97)}. For the innovation term, different models are applied: White

noise, MA(1) (ϑ1 = 0.5), MA(3) (ϑ1 = ϑ2 = ϑ3 = 0.5) and AR(1) (φ1 = 0.5). Additionally,

(re = 0.4, rc = 0.6, rx = 0.7), (re = 0.4, rc = 0.7, rx = 0.8), (re = 0.2, rc = 0.4, rx = 0.5), (re = 0.8).

For their base case re = 0.4, rc = 0.6, rx = 0.7 with T ∈ {100, 200, 400}, local power curves are

constructed with y0 = 0, σv = 1, δ1 = 1 + c/T, δ2 = 1− c/T, c ∈ {1, 2, . . . , 24}.

Next, the previously applied DGP with one bubble is allowed to have more bubbles (DGP is not

stated in their paper!). Here, T = 200, the innovation models are the same as before. Three

combinations of bubbles are considered: Short-long bubble (re1 = 0.2, rc1 = 0.3, rx1 = 0.35, re2 =

0.6, rc2 = 0.8, rx2 = 0.85), long-short bubble (re1 = 0.2, rc1 = 0.4, rx1 = 0.45, re2 = 0.6, rc2 =

0.7, rx2 = 0.75), long-long bubble (re1 = 0.2, rc1 = 0.4, rx1 = 0.45, re2 = 0.6, rc2 = 0.8, rx2 = 0.85).

Astill, Harvey, Leybourne, Taylor, and Zu (2021)
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The following DGP is assumed (pp. 18-25):

Yt = µ+ut t = 1, . . . , γT

ut =



ut−1 + et t = 1, . . . , T

ut−1 + et t = T + 1, . . . , bτ1T c

(1 + δ)ut−1 + et t = bτ1T c+ 1, . . . , bτ2T c

ut−1 + et t = bτ2T c+ 1, . . . , bγT c

with 1 ≤ τ1 ≤ τ2 ≤ γ, γ > 1, u0 = Op(1), εt ∼ iidN(0, 1), µ = 0. Remark: The observations from

t = 1, . . . , T are used as the training sample for CUSUM, thus the DGP structure looks a little

different to the other DGPs.

The following parameter settings are used: bτ1T c ∈ {220, 230}, bτ2T c = bτ1T c+25, δ ∈ {0.004, 0.006

, 0.008, 0.010}. Additionally to the homoscedastic error term assumption, a smooth transition is

considered: σt = 1 + a[1 + exp(−θ(t − Tb))]−1 with θ = 0.25, Tb = bτ1T c, a ∈ {0,
√

2 − 1,
√

3 −

1,
√

4 − 1}. All parameter remain the same but δ = 0.007 is applied. Additionally, the authors

consider the case where an explosive period is present in the training sample (for brevity, this is not

stated here.)

Kurozumi (2021)

The following DGP is assumed (pp. 320-325):

Xt = µ+ (δmXt−1 + εt)1(t ≤ m+ ke) + (δmXt−1 + εt)1(t ≥ m+ ke + 1)

with t = 1, . . . ,m, . . . , m̄, µ = 0, δm = 1 + c
mα , ke = bmβc, εt ∼iid N(0, σ2).

The following parameter settings are used: α = 0.75, c ∈ {2, 4, 6},m ∈ {100, 200, 400} (monitoring

period), m̄ = 4m (end of monitoring period), thus, the length of the monitoring period is 3m,

β ∈ {0, 0.27, 0.33, 0.375, 0.5, 0.55, 0.67, 0.75, 0.77, 0.83, 0.875, 1}, X0 =
√
mx0, x0 = 10/6.79.

Kurozumi, Skrobotov, and Tsarev (2021)

The following DGP is assumed (pp. 11-14):
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yt = µ+ut

ut =



ut−1 + εt t = 1, . . . , bτ1,0T c

(1 + δ1)ut−1 + εt t = bτ1,0T c+ 1, . . . , bτ2,0T c

(1− δ2)ut−1 + εt t = bτ2,0T c+ 1, . . . , bτ3,0T c

ut−1 + εt t = bτ3,0T c+ 1, . . . , T

εt = σtet

with δ1 ≥ 0, δ2 ≥ 0, 0 ≤ τ1,0 < τ2,0 ≤ τ3,0 ≤ 1, µ = 0, {et} is a mds with E(e2t |Ft−1) =

1, E(|et|p|Ft−1) < ∞ almost surely for p > 6, σt = ω(t/T ), ω(s) ∈ D[0, 1] for s ∈ [0, 1] is a non-

stochastic and strictly positive function.

The following parameter settings are used: u0 = e0, et ∼ iidN(0, 1), T ∈ {100, 200}, δ1 ∈ {0, 0.02, 0.04,

0.06, 0.08, 0.10}, δ2 = 0, bτ1,0T c = 0.4T, bτ2,0T c = 0.6T . For the volatility, four different functions

are applied:

ω(s) = σ0 + (σ1 − σ0)1(s > τσ) single shift in volatility

ω(s) = σ0 + (σ1 − σ0)1(0.4 < s ≤ 0.6) double shift in volatility

ω(s) = σ0 + (σ1 − σ0) 1
1+exp{−50(s−0.5)} logistic smooth transition in volatility

ω(s) = σ0 + (σ1 − σ0)s trending volatility

with τσ ∈ {0.3, 0.5, 0.7}, σ1/σ2 ∈ {16 ,
1
3 , 1, 3, 6}.

Lui, Xiao, and Yu (2021)

The following DGP is assumed (pp. 526-527):

yt = µn + ρyt−1 + ut, t = 1, 2, . . . , n.

with y0 = 0, µn = µ
nϑ
, ρ = (1 + cm/n), c > 0, ut = (1− L)dεt, εt ∼iid N(0, 1).

The following parameter settings are used: (n,m) ∈ {(100, 10), (500, 15), (1000, 20)}, d ∈ {−0.45,−0.4,

−0.3,−0.2,−0.1,−0.01}, c ∈ {0.5, 1}, µ = 1, ϑ = 1
2 − d+ 0.1.

Monschang and Wilfling (2021)

The following DGP (Rotermann and Wilfling (2018) model) is assumed (pp. 156-165):
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Pt = P ft +Bt

P ft =
1 + r

r2
µ+

1

r
Dt,

Dt = µ+Dt−1 + et,

Bt =


α
ψπBt−1ut with probability π

1−α
ψ(1−π)Bt−1ut with probability 1− π

with ψ := (1+r)−1, α ∈ (0, 1), π ∈ (0, 1], απ > 1, 1−α
ψ(1−π) < 1, {ut}∞t=1 ∼ iid lognormally distributed ut ∼

LN(−l
2

2 , l2). Another time, the same DGP is applied with TGARCH(1,1) errors:

εt = st
√
ht,

st ∼ iidN(0, 1),

ht = ω + γε2t−1 + βht−1 + φε2t−11(εt−1 < 0).

The following parameter settings are used: µ = 0, D0 = 1.6942, α = 0.9675, ψ = 0.9840, π =

0.9595, B0 = 10.1925, l2 = 0.0061, σ2e ∈ {0.4476, TGARCH(ω = 0.4387, γ = 0, β = 0.9319, φ =

0.1306)}, T ∈ {100, 200, 400, 800, 1600}. The robustness is tested by varying some parameters on a

ceteris-paribus basis (but only for T = 400): µ ∈ {0.000, 0.001, 0.002, 0.003}, ψ ∈ {0.975, 0.980, 0.985,

0.990}, (π, α) ∈ {(0.35, 0.3675), (0.55, 0.5775), (0.75, 0.7875), (0.95, 0.9975)}, π and α are changed in

such a way that the mean bubble growth rate is still 1.06.

To evaluate the performance of date stamping procedures, they apply a modified version of the

DGP suggested by Phillips and Shi (2018):

yt =


aT−η + yt−1 + εt t ∈ N0 ∪N1

δT yt−1 + εt t ∈ B

γT yt−1 + εt t ∈ C

with εt ∼ TGARCH(1, 1), δT = 1+c1T
−α̃, γT = 1−c2T−β̃, B = [bTrec, bTrfc], C = (bTrfc, bTrrc], N0∪

N1 = [1, bTrec) ∪ (bTrrc, T ]

The following parameter settings are used: TGARCH : ω = 0.4387, γ = 0, β = 0.9319, φ =
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0.1306, T = 100, a = η = c1 = c2 = 1, y0 = 100, α̃ = 0.6, re = 0.4, rf = 0.6, dB = b0.2T c.

For the collapse types sudden, disturbing and smooth, the following three settings are applied:

(β̃, rr, dc) ∈ {(0.1, 0.61, b0.01T c), (0.5, 0.7, b0.1T c), (0.9, 0.8, b0.20T c)}.
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Parameter overview

In the first column, the authors of the investigated paper are stated, in the second and third

columns are the autoregressive parameters for the explosive (ρe) and reverse/crash period (ρc).

In the columns 4 to 6 are the duration of the complete process simulated (T ), the explosive (Te)

and reverse/crash duration (Tc). In the next column is the distribution of the innovation terms

(distinnov) and the two upcoming columns show the variance of the innovations during the explosive

(var(innov)e) and reverse/crash period (var(innov)c). The last column states the initial value of

the process (y0) that is simulated. In the tables, the parameters are labelled in the same way, so the

names/symbols applied are not necessarily the same as in the investigated papers. For comparability

purposes, e.g., the autoregressive parameter is always stated as the parameter itself and not as, e.g.,

1 + δ, 1 + c/T are something else. If the applied framework is too far away from the autoregressive

DGP setting, then it is labelled as ’not comparable’. If for a specific parameter/variable, there is

no value given (but maybe an integration order), it is labelled as ’no specific value stated’. In the

case, that something like the reverse/crash period is not modelled, then ’not considered’ is stated.

For convenience and comparability purposes, only the AR setting of studies like Homm & Breitung

(2012) and Monschang & Wilfling (2021) are provided in the tables. Their additional settings which

are too far away from the autoregressive explosive world are not stated.
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