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Abstract

Our objective is to price the cross section of asset returns. Despite considering hun-
dreds of systematic risk factors (“factor zoo”), factor models still have a sizable pricing
error. A limitation of these models is that returns compensate only for systematic risk.
We allow compensation also for unsystematic risk. The resulting stochastic discount
factor (SDF) prices the cross section of stock returns ezactly, resolving the factor zoo.
Empirically, more than half the variation of this SDF is explained by the unsystematic
risk component, which is correlated with strategies reflecting market frictions and be-
havioral biases.
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1 Introduction

A major challenge in asset pricing is to explain the cross section of asset returns. To address
this challenge, the literature has examined a large number of systematic or common risk
factors, leading to a factor zoo (Cochrane, 2011). However, virtually all models featuring
factors from this zoo have sizable pricing errors, called alpha. A limitation of these models is
that they allow expected returns to be related only to systematic sources of risk and preclude
compensation for unsystematic risk, that is, asset-return shocks orthogonal to common risk
factors. In our work, we allow compensation for unsystematic risk. This insight leads to

exact pricing of the cross section of stock returns, resolving the factor zoo.

To price the cross-section of assets, we use as a foundation for our analysis the APT
of Ross (1976, 1977). The APT provides an ideal framework because it allows expected
returns to contain asset-specific components that are unrelated to common risk factors and

satisfy a no-arbitrage restriction.

Our first contribution is to derive an admissible SDF, namely an SDF that prices a given
cross section of assets correctly, assuming asset returns are described by the APT. In par-
ticular, we show theoretically how unsystematic risk enters into this admissible SDF, which
leads to our key insight that the asset-specific components of expected returns are not pric-
ing errors but compensation for unsystematic risk. Thus, we depart from the conventional
wisdom that financial markets compensate investors only for exposure to systematic sources
of risk.! To provide microfoundations for the idea that unsystematic risk can indeed be a
component of the SDF, we demonstrate that the SDF implied by an equilibrium model such
as Merton (1987), where investors are aware of only a subset of available securities, is one
where unsystematic risk is priced even when the number of assets is large. Furthermore, we
show that equilibrium asset returns and the SDF in Merton (1987) coincide with the ones

implied by the APT.

Our second contribution is to provide empirical support for our insight that unsystem-
atic risk is priced and to quantify its importance. To do this, we estimate the admissible

SDF implied by the APT model for asset returns. Using data for monthly returns on 202

!The standard view in finance that unsystematic risk should be diversified away holds only because the
return for bearing unsystematic risk is assumed to be zero in popular factor models. When unsystematic
risk earns a nonzero reward then, instead of diversifying this risk, an investor will optimally adjust her
portfolio to reap this compensation, as shown in Raponi, Uppal, and Zaffaroni (2022). As a result, the SDF
will consist of not just a component based on systematic sources of risk but also a component based on
unsystematic risk.



portfolios of stocks, we identify and characterize the two components of the SDF, one which
reflects systematic risk (SDF-S) and the other unsystematic risk (SDF-U). A central finding
from our analysis is that the asset-specific components in expected returns, which represent
compensation for unsystematic risk, are nonzero in the data, and the SDF-U component
explains more than half of the admissible SDF’s variation. Thus, unsystematic risk plays a
major role in pricing the cross-section of asset returns, despite the risk premia associated

with each unsystematic shock being small on average.

We explore the nature of the SDF-U component by examining the composition of the
portfolio that represents it. We find that small stocks contribute substantially to SDF-U,
followed by stocks with extremely low or high values of net issuances. We also regress
the SDF-U component on 457 trading strategies examined in the literature and find that
strategies related to behavioral biases and financial frictions exhibit the largest correlations,
in excess of thirty percent. The most prominent strategies are those based on 5-year analyst
growth forecast (La Porta, 1996), betting against beta (Frazzini and Pedersen, 2014), long-
term behavioral mispricing (Daniel, Hirshleifer, and Sun, 2020), ratio of book debt to market

equity (Bhandari, 1988), and implied equity duration (Dechow, Sloan, and Soliman, 2004).

These high correlations imply that the expected excess returns on these trading strate-
gies are large and reflect sizable compensation for bearing unsystematic risk. We find,
for instance, that the risk premium for unsystematic risk associated with the strategy of
La Porta (1996) is 8.20% per annum. There are 27 other strategies with an absolute value of
risk premium earned for exposure to unsystematic risk greater than 5% per annum. Thus,
one can use these strategies to construct a portfolio with high expected excess returns but

zero exposure to systematic risk.

Turning next to the analysis of the systematic component of the SDF, we find that the
market factor explains 95% of its variation. At first glance, this finding may seem surprising
in light of the extensive literature documenting the poor performance of the market factor
in explaining the cross-sectional differences in stock returns.? However, even though the
market factor does not explain the cross-section of expected stock returns, we find, similar
to Clarke (2020), among others, that it plays an important role in determining the level of
stock returns. The systematic component of the SDF accounts for only 44% of the variation
in the admissible SDF, so the overall contribution of the market factor to the total variation

in the admissible SDF is only 42% (= 95% x 44%). We also find that the cross-sectional

2See Fama and French (2004) for a review of this literature.



differences in expected stock returns, in addition to the SDF-U component, are spanned by
their exposures to nineteen traded factors. Among these traded factors, the size factor of
Fama and French (1993) is the most prominent, explaining 89% of the residual systematic

variation in the SDF after accounting for the market factor.

Our third contribution is to use our framework to shed light on the poor performance of
popular candidate factor models used to price a cross section of stock returns. We consider:
(1) a model with the market factor, as suggested by the capital asset pricing model (CAPM)
of Sharpe (1964), (ii) a model with the consumption-mimicking portfolio, as implied by the
consumption capital asset pricing model (C-CAPM) of Breeden (1979), and (iii) the three-
factor model (FF3) of Fama and French (1993). These candidate factor models may be
misspecified because they omit systematic sources of risk, which have been the focus of the
existing literature. But, the candidate models may be misspecified also because they omit
asset-specific components in expected returns. We identify and characterize the required

correction term for each of these models to obtain an admissible SDF'.

The main insight from our analysis of these three candidate models is that their im-
plied SDF's represent less than 50% of the variation in the admissible SDF. The principal
source of missing variation is unsystematic risk, which, in these models, has zero compensa-
tion. Moreover, once we use our approach to include what is missing in each of these three
candidate models, we obtain admissible SDFs that are almost perfectly correlated. More
generally, the quantitative importance of the SDF-U component suggests that candidate
factor models with different proxies for only common risk factors will not lead to an admis-
sible SDF. Instead, to obtain an admissible SDF one must recognize that unsystematic risk

is priced, and we show how to do this.?> This insight resolves the factor zoo.

When traditional asset pricing models, such as the CAPM, fail to explain a cross-section
of stock returns, the response has typically been to search for additional systematic factors.
For instance, momentum (Jegadeesh and Titman, 1993), value (Fama and French, 2015),
and investment (Hou, Xue, and Zhang, 2015) have attracted attention as successful ex-
planatory factors. We find that such factors are successful, at least partly, because they
correlate more highly with the aggregate measure of unsystematic risk than with the sys-

tematic component of the SDF. These factors appear to be weak (Lettau and Pelger, 2020;

30ur findings emphasize the arguments of MacKinlay (1995) and Daniel and Titman (1997) about the
importance of characteristics for understanding risk premia and the inability of a factor model to explain
a cross section of stock returns, but with two crucial differences. First, our model ensures asymptotic no-
arbitrage. Second, we demonstrate that, in our framework, the asset-specific components in expected returns
represent compensation for unsystematic risk.



Giglio, Xiu, and Zhang, 2021); that is, they affect only a small number of asset returns from

the cross-section of stock returns considered.

The fourth contribution of our work is methodological. The implicit accounting for un-
systematic risk in factor models via weak factors suggests that perhaps adding an arbitrary
combination of factors to a misspecified candidate factor model can capture the SDF-U
component. However, we show formally that this is not the case. The SDF-U component
is a weak factor in the cross-section of asset returns. Estimating reliably the risk premium
associated with a weak factor is not feasible statistically. Therefore, one cannot recover
an admissible SDF simply by using the traditional two-pass regression. Our approach,
by explicitly accounting for compensation for unsystematic risk, allows us to recover an

admissible SDF.

Our work is related to several strands of the literature. First, because we correct a
given candidate factor model through the lens of a misspecified SDF, we contribute to the
literature that studies misspecification of the SDF and develops methods to estimate the
minimum-variance SDF, that is, the projection of the SDF on asset returns. The idea
of misspecification of the SDF motivates the work of Hansen and Jagannathan (1991),
who provide the minimum-variance bound that any admissible SDF must satisfy. Luttmer
(1996) extends their analysis to economies with proportional transaction costs, short-sale
constraints, and margin requirements. Korsaye, Quaini, and Trojani (2021) advance this
literature substantially by allowing for more general convex pricing constraints, which then
allows them to nest in a single unifying framework several asset-pricing approaches not
covered by the SDF literature. In contrast to these papers, our objective is not to identify
a bound on the SDF; instead, we provide the exact correction required for a proposed SDF

to become admissible, and we highlight the role of unsystematic risk in this correction.

Several papers have developed a nonparametric approach to correct misspecified SDF
models. Hansen and Jagannathan (1997) provide the smallest additive nonparametric ad-
justment (in a least-squares sense) required to make a given SDF admissible. Sandulescu and
Schneider (2021) build on Almeida and Schneider (2021) to construct an SDF that is a sum
of a linear part which is identical to that from Hansen and Jagannathan (1997) and a non-
linear part that ensures the positivity of the SDF and leads to an admissible SDF. Almeida
and Garcia (2012) provide an additive correction term based on minimum-discrepancy pro-
jections. Ghosh, Julliard, and Taylor (2017) provide a multiplicative correction using a

Kullback-Leibler entropy-minimization approach. In contrast, we ensure positivity of the



SDF by specifying it in an exponential form. More importantly, we focus on highlighting

the compensation in expected returns for unsystematic risk.

To get as close as possible to the true SDF, ideally, one would like to estimate a projection
of the SDF on a large number of assets. However, it is challenging to use these nonparametric
approaches when the number of basis assets is large relative to the number of observations.
To handle a large number of assets, Kozak, Nagel, and Santosh (2020), Lettau and Pelger
(2020), and Giglio and Xiu (2021) develop methods based on Principal Component Analysis
(PCA) for estimating the SDF, identifying factors that price the cross-section of expected
returns, and estimating risk premia in the presence of model misspecification, respectively.
However, these papers focus on systematic sources of risk and do not study the compensation
for unsystematic risk. Our approach, being founded on the APT, handles a large number

of assets and allows explicitly for the compensation for unsystematic risk.

Our work is also related to the literature on the idiosyncratic-volatility puzzle, which
studies the relation between the compensation for asset-specific risk and the wolatility of
the asset-specific shock; see, for example, Fama and MacBeth (1973) and Ang, Hodrick,
Xing, and Zhang (2006), with a comprehensive review provided by Bali, Engle, and Murray
(2016). In contrast to this literature, we construct an SDF so that the compensation for
unsystematic risk represents the negative covariance between this SDF and unsystematic
shocks (rather than their volatility). Moreover, if one relied on the insights of the idiosyn-
cratic volatility literature, one would expect an idiosyncratic-volatility factor to span the
SDF-U component. However, we find that the idiosyncratic-volatility factors of Chen and
Zimmermann (2021), Jensen, Kelly, and Pedersen (2021), and Kozak, Nagel, and Santosh
(2020) account for at most 20% of the variation (in the R? sense) of our SDF-U component.

Therefore, what is missing from factor models is not an idiosyncratic-volatility factor.

The rest of the paper is organized as follows. Section 2 presents our theoretical results for
constructing an admissible SDF. Section 3 provides details of how to estimate an admissible
SDF. Section 4 describes the data we use to illustrate our approach. Section 5 presents the
empirical findings from applying our approach to this data. Section 6 provides an example
of an equilibrium model in which unsystematic risk is priced. We conclude in Section 7.

Proofs are collected in an appendix, with additional results in the Internet Appendix.



2 From a Candidate to an Admissible SDF

Our work is founded on the classical APT of (Ross, 1976), with Chamberlain (1983) and
Chamberlain and Rothschild (1983) providing a more formal treatment. Effectively, the
APT is our working assumption about the true data-generating process for asset returns.
There are several advantages of using the APT. First, it is a flexible model that does not take
a stand on what constitutes a pricing factor. Second, it is a no-arbitrage model; the absence
of arbitrage opportunities implies the existence of an SDF. Third, and more importantly
for us, it allows for asset-specific components in expected returns that are unrelated to

systematic (common) risk.

In this section, we first review the classical APT. Next, we derive the closed-form expres-
sion for an SDF under the APT, thereby complementing Chamberlain (1983), who shows
existence and continuity of the “cost functional” (i.e., the SDF) under the classical APT,
without providing its closed-form representation. We then explain how to correct a misspec-
ified SDF implied by an arbitrary factor model of asset returns. Finally, we address three
empirical challenges that we face when estimating the admissible SDF: (i) nonnegativity of
the SDF, (ii) econometric feasibility of the SDF, and (iii) weak factors (e.g., Lettau and
Pelger, 2020) in the candidate factor model.

2.1 The SDF under the Arbitrage Pricing Theory (APT)

Let the N-dimensional vector Ryt = (Ry 441, R2441,-.., Rn+1) denotes the vector of
gross returns of the IV risky assets between ¢ and ¢ + 1. Let Ry; be the gross return on the
risk-free asset over the same time period.* Let f;,1 be the K x 1 vector of common risk

factors, with K < N and a K x K positive definite covariance matrix Vy = var(fi41) > 0.

The classical APT builds on the following two assumptions.

Assumption 1 (Linear Factor Model). The vector Ry11 of gross asset returns satisfies

Riy1 =E(Riy1) + B(frr1 — E(fig1)) + €rs1,

where E denotes an operator of mathematical expectation, 8 = (b1, B2, ...,8n)" is the

N x K full-rank matriz of loadings of asset returns on the common factors, the vector

41f a risk-free asset does not exist, one can use instead the return on the minimum-variance portfolio or
the return on the zero-beta portfolio.



of asset-specific errors e;r1 has zero mean and the N X N positive-definite covariance ma-

5

triz V., = var(ey4+1) > 0 with uniformly bounded eigenvalues.” The asset-specific shocks ey11

are uncorrelated with the K common factors fii1, implying that the covariance matrix of

returns is Vg = var(Ry1) = BViB + Ve.

Assumption 2 (Asymptotic No Arbitrage). There are no arbitrage opportunities for a
sufficiently large number of assets N ; that is, there is no sequence of portfolios containing

a large number of risky assets with the weights w = (w1, wa,...,wy)’, for which:

var(R;,w) — 0 and (E(Ri41) — Rpln)w >8>0 as N — oo,

where § denotes an arbitrary positive scalar and 1y denotes the N x 1 vector of ones.

Assumptions 1 and 2 imply that a model of asset excess returns is

Riy1 — Ry = a+ BA+ B(frr1 — E(fir1)) + €41, (1)

where the expected excess returns E(R;y1 — Ry 1n) = a + B contain two components: a
and SA. The K x 1 vector of risk premia A represents the compensations for one unit of
asset exposures to the factors fi41. Ingersoll (1984) derives the precise condition for A to
exist and shows that A = limy_, (B’Ve_lﬁ)_l BV Y E(Ri+1) — Reln). The N x 1 vector
a = (E(Ri+1) — Rptln) — BA, which is typically referred to as the vector of pricing errors,

satisfies the following no-arbitrage restriction
a'Vla < 65 < o0, (2)

as shown in Ross (1976), Huberman (1982), Chamberlain and Rothschild (1983), and In-

gersoll (1984), where 4, is some arbitrary positive scalar.

Proposition 1. An SDF M1, implied by the APT model for asset returns is
M1 = Mz‘il + M,

NVt

where, M{il = T;(ftﬂ — E(ft+1))
aV; 1
and M, = ———e441,
t+ Rf

with cov(M},, M¢,,) = 0.

°In the APT of Chamberlain and Rothschild (1983), the covariance matrix V. is not restricted to be
diagonal. The case of non-diagonal matrix V. corresponds to the presence of weak factors, ftwffk, in the

shocks e4q1.



The SDF component My, is a linear function of asset-specific shocks ey scaled by
the risk-free rate. The presence of the SDF-U component in the admissible SDF leads to
the main insight of our approach, which is the interpretation of the vector a. When viewed

through the lens of an SDF, the following expression

a= —cov(Mip1,em41) X Ry = —cov(Mf, 1, e441) X Ry,

shows that the vector a should be interpreted as compensation for asset-specific risk e;1,
rather than pricing errors. This interpretation paves the way for a quantitative assessment

of asset-specific risk in financial markets that we will undertake in our empirical analysis.

2.2 Correcting Misspecified SDF Models

Relative to the APT, any standard candidate factor model with K" observable risk factors
Jih1 suffers from potentially two sources of misspecification. First, the candidate model may
omit systematic risk factors, that is, K" < K. Second, as is often the case, the candidate
model may not allow for asset-specific components of expected excess returns, represented
by the vector a in equation (1); however, in the true model, some components of this vector
a may be nonzero. A popular example of a candidate model is the market model, in which

the vector f] includes only the market factor, K" = 1, and a“*" = Op.

To understand the implications of model misspecification, consider a candidate model
with both sources of potential misspecification, that is, a®®" = Oy and K" < K. Let %"
denote the N x K" matrix of loadings of asset returns on the candidate factors and A"
the K" x 1 vector of risk premia for unit exposures to these factors. The candidate factor

model implies

Riyr = Bpely = oo BEUAT 4 BN (FEY — E[fFA]) + e, (3)

where a = (E(Riy1) — Rpeln) — A captures the residual variation in the expected
excess returns left unexplained by compensation for asset exposures to common risk factors,
and e;41 with covariance matrix V. captures the residual variation in asset returns that is

can

not explained by the set of candidate factors f{].

The proposition below shows that, just as the vector a in the classical APT satisfies
the no-arbitrage restriction given in expression (2), the vector of pricing errors « in the
candidate model satisfies a similar no-arbitrage restriction even if the candidate model

omits some systematic risk factors.



Proposition 2 (APT in the presence of model misspecification). Suppose that the vector
of asset returns Ryy1 satisfies Assumptions 1 and 2. Given a candidate factor model with
K™ factors, suppose the first K™ = K — K eigenvalues of the covariance matric V.
are unbounded when N — oo, the remaining eigenvalues are uniformly bounded, and the
smallest eigenvalue is strictly positive. Then, the pricing error « in the misspecified can-
didate model satisfies the following no-arbitrage restriction, for some constant gapt possibly

different from b5,

Vo la < bap, (4)

where, by no arbitrage, there exist an N x 1 vector a, K™ x 1 vector A™*, and an N x K™

matriz B™S such that

o = [EispAmIS 4 g and Ve =var(ep41) = pmis gmis’ 4y (5)

We see from (5) that « is the sum of the vector a and the compensation for the missing
systematic risk, S™SA™S with A™® being the matrix of loadings of asset returns on the
missing systematic risk factors and A\™® being the vector representing the prices of the
missing systematic risk factors. The covariance matrix V. is the variance of asset returns
because of their exposure to the systematic risk factors ftlff that are missing in the candidate

model and the asset-specific shocks ey 1.

Without loss of generality, given that ft“jrlf are latent factors, we can rotate them freely

and normalize them in an arbitrary way, and so we assume that the factors ftrilf are mutually
orthogonal to the factors f{, and ftriif‘ has a K™ x K™ jdentity covariance matrix Vimis =

var(f{}7) = Ixmis. Therefore, the covariance matrix of asset returns can be represented as

Vi = var(Ryp1) = B Vyean B0 + gmiSAMIS 1V, where Vyess = var(f£21).

Next, we establish a class of admissible SDF's, given a misspecified candidate factor
model for asset returns. To this end, we identify and construct the correction terms that

transform the misspecified SDF implied by the candidate model to an admissible SDF.

Recall that the candidate factor model of asset returns has two sources of misspecification
relative to the true APT model given in expression (1). First, the candidate model includes
K < K risk factors, thereby omitting K™ = K — K" risk factors. Second, the
candidate model omits the nonzero vector a by assuming that a®®" = On. The admissible
linear SDF is the sum of the Mf 75", the SDF implied by the candidate factor model, and

a correction term labeled the alpha-SDF My ;. The correction term has two components:

10



Mf ffig and M{, ;. The first component accounts for the omitted systematic risk factors

Ji5, whereas the second component accounts for omitted asset-specific components a in

expected returns.
Proposition 3 (SDF: Linear Case). Under Assumptions 1 and 2, there exists an admissible
SDF My,

Myyy = MES™ + M2y = MIS™ + (M + MPT™), (6)

~~
— A
_Mt+l

1yy—1
1 ()\can) rcan

where, Mﬁiian = ﬁf - T(fffll - E(fiE1)),
. (Amis)/v—mlis A '
MRS = —— L2 (s~ B(fER)),
t+1 Rf i+ i+
" alv'e—l
My = — Ry €t+1, (7)

with cov(Mﬁﬁan, &) =0, cov(MfH,Mﬁffis) =0, cov(Mﬁflan,MfJ;TiS) = 0, and where,

without loss of generality, as indicated earlier, Vimis = I gmis.

The correction components M, ; and Mf flnis are latent quantities, and therefore, the
issue of econometric identification arises. At the estimation stage, we resolve this identifi-
cation challenge by imposing the no-arbitrage restriction given in expression (4) that gives

us precisely the condition required to identify Mg, and M)’ s,

The dependence of M{, ; on e;y1 in equation (7) implies that expanding a candidate
model to include an increasing number of observable variables proxying for common risk
factors is not a fruitful avenue to obtain an admissible SDF. In Appendix A.2, we show that
M{, , is a weak factor in the cross-section of asset returns. Therefore, even if it were possible
to add to a candidate factor model an observable variable that was perfectly correlated with

M(L

41, it would not lead to an admissible SDF because the risk premia associated with a

weak factor cannot be estimated accurately (Anatolyev and Mikusheva, 2021). We show
below how to account for unsystematic risk and construct an accurate estimator of My, 4,

and hence, of an admissible SDF.

2.3 Accounting for Time-Variation in Risk Premia

In our discussion above, to identify an admissible SDF we have used the classical APT set-

ting where the prices of risk and the asset exposures to systematic risk factors are constant.

11



However, one may wonder whether the vector a represents, instead of compensation for
asset-specific risk, time-variation in asset factor exposures and/or prices of risk. We show
in Appendix A.3 that this is not the case and that, even if the exposures and price of risk
are time varying, our method allows us to construct an admissible unconditional SDF. In
particular, if the omitted source of time-variation arises from a common state variable, then
its effect is captured by Mtﬁ ﬁnis via the scaled factors of Gagliardini, Ossola, and Scaillet
(2016) and Gagliardini, Ossola, and Scaillet (2019). Alternatively, if the omitted source of

time-variation arises from asset-specific state variables, then its effect is captured by Mt‘lﬂ.6

2.4 Constructing an Admissible SDF in Practice

There are three problems in constructing an admissible SDF in practice. First, the linear
SDF characterized in Proposition 3 may not always be strictly positive, which could result
in negative asset prices. Second, the components Mtﬁ _;Tis and M, depend on unobservable
quantities, fﬁ_‘f and ey 1, respectively. Finally, a candidate factor model may omit not only

strong but also weak factors. We explain below how to address these three challenges.

2.4.1 Exponential SDF

There are at least two approaches for ensuring that the SDF is positive. The first approach
is to express the SDF as the payoff to an option (Hansen and Jagannathan, 1997, eq.
(24)). The second approach is to specify the SDF as an exponential function of the payoffs
(Gourieroux and Monfort, 2007; Ghosh, Julliard, and Taylor, 2017). For obtaining closed-

form solutions, we assume that asset returns are Gaussian and follow the second approach.

Proposition 4 (SDF: Exponential Case). Under Assumptions 1 and 2 and the assumption

that returns Ryy1 are Gaussian, there exists an admissible SDF Mexp 141

3, mis

p,t+1 X Mexp,t-i—l’ where

_ psBcan a
MeXP7t+1 = Mexp,t—H X Mex

1 1
ME = o [ = AV (3 — B - o vy,

i mis/y,— mis mis 1 mis/y,— mis
Mgégj;i1 = exp [— A b/melis(ft-ﬁ - E(ft—f—i)) - 5)\ b,Vfrnlis)\ 5}7

1
a /‘7—1 /‘ r—1
Mexp,t—l—l = exp [7 aVe €141 — ia’ e a],

a B,can o 3, mis ,can . o )
where cov(Mg, 111, Mydp 1) = 0, cov(My s Meypy1) =0, and Vimis = Tgomis.

51f the compensation for asset-specific risk a; itself is time-varying, our method recovers the average a;.

12



2.4.2 Projection SDF

Even if the values of the parameters of the data-generating process (3) are known, the
admissible SDF Meyp, ++1 depends on the unobservable quantities f{fﬁf’ and e;+1, which means
Mexp,t+1 is not feasible empirically. To overcome this challenge, we rely on a projection
version of the SDF, Mexp7t+1, with 7 used to indicate projected quantities. In particular, we
take the exponential function of the linear projections of My, ; and Mf ﬁlis on the set of the

risk-free and risky assets to obtain”

A~ _ 1 B
Mp i1 = €xp [ —d'Vy "(Rey1 — E[Reqq]) — §CLIVR 1@} ) (8)
Mﬂ,mis — ex [ _ (ﬁmiSAmis),V_l(R _ E[R ]) o 1(6mis)\mi5)lv_16mis)\mis] (9)

exp,t+1 p R t+1 t+1 5 R ’

where, from Proposition 2,
E[Riy1] — Rps = a + B™SA™S 4 geanyean,

and Vi = Bcanvfcanﬁcan/ + ﬁmis’ﬁmis TV

Note that the component Mi’;?;ll depends on only observable quantities, so that the pro-

jection nonnegative admissible SDF takes the form

mis ¥

Y _ pgBscan B, a
Mexp,tJrl - Mexp,t—l—l x Mexp,t+1 X Mexp,t+1'

The next proposition shows that, as N — oo, the SDF components, Méi;n ;il and

Mgy 141, and their corresponding projection versions, Migl EH, and ngw 41, have the
same limits. We denote the matrix of the loadings of returns on the candidate and missing
factors by 8 = (8" |, ™) and an arbitrary K x K positive-definite matrix by A > 0.
We use — to denote convergence in probability and a = o(b) with b > 0 to denote that
la|/b — 0, as N — oo, where the dependence of a and b on N is implicit; for additional

details about this notation, see Appendix A.1.%

Proposition 5 (Limiting properties of SDF projections). Under Assumptions 1 and 2 and
the conditions Nfllgcanlvaflﬁcan — D> 0; Nflﬁmislve—llgmis — B> 0’ Bcan/vefla —

"The formulae (8) and (9) indicate that the assumption that asset returns are Gaussian is mild in
practice. By the arguments of the Central Limit Theorem, the projection version of our feasible SDF, being
an exponential function of the sum of N asset returns that are non-Gaussian, is approximately log-normal
as N — oo.

8Strictly speaking, the matrix of loadings 8 from the data-generating process given in expression (1) can
be different from the matrix 8 = (8°*® , 8™) because missing factors are identified only up to a rotation.
This difference, however, does not have any economic bearing.
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o(NY?), and ™'V, g = o(N%), as N — oo,

“ra a P ~r3,mis ,mis p
exp,t+1 — M, xp,t+1 7 07 M, - M , ? 07

B, or/3,mi B, Y or3,mi Y
COV(Mex;iSI:-lv Mexg,lllfj-l) — 07 COV(Mex;ifrif—h gxp,t—i—l) - 07 COV(Mexgj;i-la ngp,t—i—l) — 0.
The above proposition implies that in order to construct the admissible SDF we do not
need to pre-estimate the missing factors and asset-specific risk that may have been omitted

in the candidate factor model.

3 Estimation Details

In this section, we describe our approach for estimating the admissible SDF and the role
played by the no-arbitrage restriction (4). We also discuss how to identify the number of
missing factors in a candidate factor model and choose the no-arbitrage bound dap¢. Finally,

we provide a diagnostic tool for detecting missing factors in a candidate factor model.

3.1 Our Estimation Approach

We recover the admissible SDF in two steps. In the first step, we use a (pseudo) Gaussian
maximum-likelihood estimator (MLE) subject to the no-arbitrage restriction formulated in
expression (4) to estimate the model of asset returns given in expression (3), in which the
candidate factor model consists of K" > 0 factors. Without loss of generality, we consider
candidate factor models that include tradable factors represented by either factor returns
(for example, the market factor) in excess of the risk-free rate, long-minus-short strategies,
or factor-mimicking portfolios. In the second step, we use the results in Propositions 4 and
5 to recover the nonnegative feasible admissible SDF. Section IA.2 of the Internet Appendix
contains a more general case, in which (i) the candidate model for asset returns includes
both tradable and nontradable factors and (ii) the risk factors in the candidate model are

allowed to be correlated with the missing systematic risk factors.

3.1.1 The Objective Function

For a generic vector © that collects all the elements of the matrices 2, g™ V, Viean,

and vectors A \MS_and a, the (up to a constant) Gaussian joint log-likelihood of the
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vectors of asset returns in excess of the risk-free rate, R;1 — Ry 1y, and observable factors

fi scaled by T' is

log(1(©)) = — los(|V]) 1 los(|V™")

T-1 T-1
1 — ]‘ can can can can
~or 2 fnle e - H;u E(f531)) Viean (31 = E(fE21),

where Eip1 = Rt+1 o thlN —a— /BmiS)\mis o l@can)\cam Bcan(fcan (fcan)) and Va —
[fmis gmis’ Y7 - Because it is not possible to obtain consistent estimates of the weak factors

(Lettau and Pelger, 2020, prop. 2), we assume that V, is diagonal.

We maximize this log-likelihood function subject to the no-arbitrage restriction. We

substitute the expression in (4) with

a'V;la < dapt, (10)

which is computationally more convenient.

We use the the Karush-Kuhn-Tucker multiplier method to solve the resulting constrained

optimization problem:

6= arggnax{log(L(@)) — k(a'V e — Sapt) 1, (11)

where k is the Karush-Kuhn-Tucker multiplier on the no-arbitrage restriction. The quan-
tities K™ and dapt are obtained using a cross-validation procedure that is explained in

Section 3.2 below. Appendix A2 provides the solution to the optimization problem.

3.1.2 The Role of the No-Arbitrage Restriction

The no-arbitrage restriction on the vector a serves several purposes. Economically, it rules
out asymptotic arbitrage. For example, if the elements of the vector a were left uncon-
strained, the Hansen and Jagannathan (1997) (HJ) distance would explode, as we show
in Section 5. Moreover, the no-arbitrage restriction constrains the Sharpe ratio of the so-
called alpha portfolio of Raponi, Uppal, and Zaffaroni (2022).? In the same spirit, Kozak,
Nagel, and Santosh (2020) rule out near-arbitrage opportunities by restricting the maximum

squared Sharpe ratio implied by the entire SDF.

9This alpha portfolio is an inefficient portfolio that, when combined with a portfolio invested in the
candidate factors (the so-called beta portfolio), delivers a portfolio on the efficient frontier.
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Statistically, the no-arbitrage restriction (when binding) leads to identification of the
vectors a and \™. Specifically, at the estimation stage, the no-arbitrage restriction provides
N conditions that allow us to split the estimate of a into the estimates of a and ™S A™is,
Identification of @ and A™® is a necessary step for constructing the missing systematic and
asset-specific components of the admissible SDF, Mtﬁ ﬁlis and M, |, respectively. Even in
population, the no-arbitrage restriction binds and is further influenced by the presence of

financial frictions (Korsaye, Quaini, and Trojani, 2019, sec. 2).

Finally, the estimator of a under the no-arbitrage restriction has the form of a ridge esti-
mator, as can be seen from Proposition A2. The ridge estimator has the appealing property
of mitigating estimation noise that, in our case, affects estimates of asset-specific risk pre-
mia. The estimation noise can be significant because the vector a is an N-dimensional

object representing a component of expected returns.

3.2 Identifying the Number of Missing Systematic Risk Factors and 0,

Given that a candidate factor model for asset returns may feature 0 < K" < K risk
factors, we need to determine the number K™ of missing systematic risk factors ftri‘f We
estimate K™ and the bound dapt on the no-arbitrage restriction (10), employing cross-
validation and using as a selection metric the HJ distance. The choice of the HJ distance

is natural, given our objective of identifying what is missing in asset-pricing factor models.

Our cross-validation procedure uses 20 folds. We split the entire sample into 20 folds
and estimate the model on all but one fold, which is used for validation. We repeat this
procedure 20 times and compute the HJ distance on the validation folds. We fix a grid of
dapt from O to 0.1 that corresponds to Sharpe ratios ranging from 0 to 0.32 per month for
the portfolio associated with purely asset-specific risk.' We vary the number of systematic
factors missing in the candidate model, K™, from 0 to 10. We pick K™ and the value
of dapt that deliver the smallest HJ distance in the validation step. Our procedure never
selects the boundary values of K mis and dapt- Finally, using the optimal K mis and dapt, We

reestimate the model on the entire sample.

In the literature, other methods have been used for selecting the number of systematic
risk factors in SDF models. For example, Giglio and Xiu (2021) use an information criterion

similar to Bai and Ng (2002). Lettau and Pelger (2020) and Kozak, Nagel, and Santosh

ORoss (1977) suggests using a bound that is a multiple of the Sharpe ratio for the market portfolio, which
is about 0.4 per annum.
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(2020) use economic restrictions relating expected returns to the covariance of returns with
factors, in addition to time-series information on the variation in asset returns.'! Because
none of these approaches directly applies to a model with asset-specific components in
expected returns, we face a choice: either to use a two-stage estimation that pins down
K™ ip the first step and dapt in the second step or to design our own method. We choose
the latter and optimize the objective function that explicitly incorporates a no-arbitrage

restriction while selecting K mis and dapt simultaneously to minimize the HJ-distance.

3.3 Detecting Missing Factors

Propositions 4 and 5 imply that, as N — oo, the estimated SDF component log(]\fo’Ir;1 SH)
converges to a linear function of the missing factors. The following proposition shows that
a simple time-series regression applied to this component reveals if a set of observable
variables g; explains the variation in asset returns that is left unexplained by a candidate

factor model and, if so, delivers the prices of risk associated with these missing factors.

~r3,mis

Proposition 6 (Detecting missing factors). Consider the regression of log(My.,

) on an

intercept and the vector gy,
log(MZ5Y) = Y0+ 719¢ + ue.
Under the assumptions of Proposition 5 and if g¢ = Qf™S for some nonsingular Q, as

N — oo we have

1= —(Q) Vs A™ and Ry o 1

On the other hand, if g; is orthogonal to f™ then

’Ayl L) OKmis and R; L} O

Proposition 6 does not require large T" but only large N; that is, R; L5 1as long as T'
exceeds the number of factors in the vector g;. Our approach for identifying factors that
are correlated with the missing component of the candidate SDF is robust with respect to

weak factors and also to factors with asset exposures that are highly correlated. The latter

"Even though our objective function is similar to that of Lettau and Pelger (2020), there are several
important differences in the two approaches. First, our goal is not to compress « as much as possible, but
rather to ensure that the no-arbitrage restriction holds. From the perspective of the corrected model, « is
not a pricing error, and therefore does not need to be the null vector. Second, our objective function, does
not explicitly include a pricing metric measuring goodness of fit. If we were to include such a pricing metric
in the objective function, we would have to augment our log-likelihood function with an additional penalty
term represented by the HJ distance.
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would lead to multicollinearity in the second pass of the traditional two-pass cross-sectional
regression method. Our method does not suffer from this limitation because we do not
need to estimate the exposures of basis assets to these factors but only to verify that these

factors have explanatory power for the SDF.

4 Data

In this section, we describe the data that we use for our empirical analysis. In the first
subsection, we describe the set of basis assets that we use to estimate the SDF. In the
second subsection, we describe the set of factors that could potentially be related to the

estimated SDF and its components.

4.1 Basis Assets

We construct a projection of the SDF on a large set of standard characteristics-based port-
folios of U.S. stocks. As in Giglio and Xiu (2017), we use monthly return data for 202
portfolios from July 1963 to August 2019 from Kenneth French’s website. The data in-
cludes returns on 25 portfolios sorted by size and book-to-market ratio (ME & BM), 17
industry portfolios (Ind), 25 portfolios sorted by operating profitability and investment
(OP & INV), 25 portfolios sorted by size and variance (ME & VAR), 35 portfolios sorted
by size and net issuance (ME & NetISS), 25 portfolios sorted by size and accruals (ME &
ACCR), 25 portfolios sorted by size and beta (ME & BETA), and 25 portfolios sorted by
size and momentum (ME & MOM). Instead of individual assets, we use portfolios because

they exhibit a more stable factor structure (Lettau and Pelger, 2020; Giglio and Xiu, 2021).

4.2 Factors Potentially Spanning the SDF

To examine which economic variables may explain the variation in the SDF, we collect a
comprehensive set of variables available at a monthly frequency that include both traded
and non-traded factors (e.g., macroeconomic variables, and uncertainty indices). We briefly
describe these factors below, with details about the data sources and construction of these

variables provided in Section TA.3 of the Internet Appendix.

Our set of 457 traded factors includes returns on the trading strategies analyzed in

Kozak, Nagel, and Santosh (2020), Bryzgalova, Huang, and Julliard (2020), Chen and
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Zimmermann (2021), and Jensen, Kelly, and Pedersen (2021). We also include factors from
Novy-Marx (2013) and Hou, Mo, Xue, and Zhang (2021), and the momentum up-minus-
down (UMD) factor from the AQR data library.

Our set of non-traded factors includes 103 variables. We include the factors considered
in Bryzgalova, Huang, and Julliard (2020). We augment these factors with the first three
principal components of 279 macro variables from Jurado, Ludvigson, and Ng (2015) and
the first eight principal components of 128 macro variables from the FRED-MD dataset
of McCracken and Ng (2015). We include consumption growth and inflation constructed
from real per capita consumption data on nondurables and services and the corresponding
price index from the Bureau of Economic Analysis (BEA). We also include the market-
dislocation index (Pasquariello, 2014), the disagreement index (Huang, Li, and Wang,
2021), the Chicago Board Options Exchange (CBOE) volatility index (VIX), the U.S.
economic-policy-uncertainty (EPU) index (Baker, Bloom, and Davis, 2016), the equity-
market-volatility (EMV) tracker (Baker, Bloom, Davis, and Kost, 2019), the credit-spread
index (Gilchrist and Zakrajsek, 2012), the Chicago Fed National Financial Condition Index
from FRED, the consumer-sentiment index, the U.S. business-confidence index, the U.S.
consumer-confidence index, the U.S. composite-leading indicator, the coincident-economic-
activity index, the NBER recession index, the TED spread, the effective federal-funds rate,
and the real federal-funds rate. For variables that are persistent, we include their levels and

first-order differences, as well as, where appropriate, the AR(1) or VAR(1) innovations.

5 Empirical Analysis

In this section, first we estimate the admissible SDF under the APT and characterize its
components, thereby establishing the relative quantitative importance of systematic versus
unsystematic risk. Then, we examine commonly used candidate factor models of asset
returns, such as the market model, the consumption-CAPM model, and the Fama and
French (1993) three-factor model. For each of these models, we characterize the missing

systematic and unsystematic components of the corresponding SDF's.

5.1 The SDF under the APT Model for Asset Returns

We start our analysis by constructing the SDF implied by the APT model for asset returns

in (1); that is, for the true model of returns. To determine the number of latent factors K
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Figure 1: Model selection using the HJ distance
This figure illustrates how the HJ distance changes with K and dape. The two panels show the
estimation results based on cross validation.The panel on the left plots the HJ distance for a given
choice of K as one varies dapt. The panel on the right displays the dape (numbers inside the box)

that minimizes the HJ distance for a given choice of K.
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and the no-arbitrage bound d,p¢, we use the HJ distance and employ 20-fold cross validation,

as described above.

The two panels of Figure 1 illustrate how the HJ distance changes as we vary K and
dapt- We see that the combination of K = 2 latent factors (see left panel) and Ja,¢ = 0.0016
(see right panel) achieves the smallest HJ distance, consistent with the evidence on low-
dimensional factor pricing models in Kozak, Nagel, and Santosh (2018).'2 The nonzero
value for the optimal d,p¢ indicates that unsystematic risk is priced, that is, the vector
a # Op. This constitutes our first main finding because it challenges the conventional view

that asset returns compensate only for systematic (common) risk factors.

To understand the importance of accounting for compensation for asset-specific risk, we
explore how the HJ distance changes if we set a = 0. We find that a model with K = 2 and
a = Op has significantly higher HJ distance—about 15% higher than when a # 0x. When
studying the pricing errors across the 202 basis assets, we observe that the largest increase

in pricing errors from setting a = Oy is for the portfolios sorted by size and variance.

In similar vein, to understand the importance of unsystematic risk, one could also con-

sider models based on principal components of demeaned asset returns. Again, we find that

2The difference in performance of the optimal model relative to models with alternative K and dapt is
statistically significant. Throughout the paper, for statistical inference, we use bootstrap methods.
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Figure 2: Estimated asset-specific risk and its compensation
This figure illustrates the estimated elements of the vector a and diagonal matrix V. for the 202
basis assets, which we split into eight groups based on characteristics by which stocks are sorted
into portfolios. The top panel shows the asset-specific volatilities diag(Vel/ 2) and the bottom panel
shows the compensation a for asset-specific risk.
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ignoring compensation for asset-specific risk leads to a statistically significant increase in
the HJ distance. For example, a candidate model with the first two principal components
(PCA2) has an HJ distance 14.91% larger than that implied by the APT-model. We also
find that a naive strategy of including a larger number of principal components in the fac-
tor model of asset returns leads to inferior pricing performance of the implied SDF because
improving the fit of the covariance matrix of asset returns by using a larger number of prin-
cipal components worsens the fit of expected excess returns.'® This tradeoff is consistent

with the evidence in Lettau and Pelger (2020) and Kozak, Nagel, and Santosh (2020).

Below we will shed light on which basis assets contribute most to the SDF-U component.

We will also explore which tradable strategies reflect risk premia for the unsystematic risk.

Figure 2 illustrates the estimated elements of the vector a and diagonal matrix V, for
the 202 basis assets. The top panel shows that these assets have different asset-specific

volatilities, so our assumption that V. is a diagonal rather than spherical matrix is war-

13The HJ distances of the models based on the first one to five principal components, relative to that of
the APT model, are 14.76%, 14.91%, 17.42%, 35.11%, 34.98%, respectively.
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Figure 3: Comparing average excess returns with model-implied risk premia
This figure overlays the average excess returns on the test assets with the model-implied risk premia
after undoing the effect of shrinkage for the ridge estimator of the vector a.
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ranted. The bottom panel indicates that the compensation for exposures of basis assets to

individual asset-specific shocks is small relative to the premia of conventional risk factors.

A common approach for evaluating asset-pricing factor models is to plot average excess
returns on the test assets against the model-implied risk premia. We follow this approach
in Figure 3, which shows that, as expected, our model exhibits a perfect fit. This is a con-
sequence of our main insight, namely to interpret elements of the vector a as compensation

for exposure to individual asset-specific shocks, as opposed to pricing errors.'*

Next, we study the time-series properties of the estimated SDF, Mexp,t+1a and its com-

ponents, ngp’tﬂ and M’ Figure 4 shows that both ngp?tﬂ and Mimﬂ, exhibit

exp,t+1-
sizable volatility during recessions and also during normal times. We see that different
components of the SDF dominate its variation in different time periods. For example, in
the Fall of 1987, common systematic shocks in asset returns are responsible for a dramatic

increase in the level and volatility of the SDF. On the other hand, in the early 2000s, it

14Recall that the estimated vector a is a ridge estimator of the asset-specific risk premia (see the formula
given in expression (A5) in Appendix A.6). For this exercise, we undo the shrinkage by multiplying each
element of the estimated vector a by 1 plus the estimated value of the Karush-Kuhn-Tucker multiplier s in
equation (11). The estimated value of x is 19.16.
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Figure 4: Time series behavior of the SDF and its components
This figure has three panels. The top, middle, and bottom panels show the dynamics of the SDF
Mexp,t+1, its asset-specific component M, , ; .1, and its systematic component Mgp’t 41, respectively.
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is the SDF-U component that generates a spike in the volatility of the SDF. Thus both

common and asset-specific shocks contribute to explaining asset valuations.

We find that, of the total variation of the SDF, the SDF-S component contributes only
44%, while the SDF-U component contributes 56%, which highlights the importance of ac-
counting for asset-specific risk in factor models of asset returns. These results are consistent
with Daniel and Titman (1997) and Chaieb, Langlois, and Scaillet (2021), among others,
who document that a substantial portion of expected excess returns is left unexplained by
factor risk premia. Our finding also speaks to the puzzling evidence reported in Herskovic,
Moreira, and Muir (2019) and Lopez-Lira and Roussanov (2022), who document that the
portfolios of stock returns that hedge factor risk exposure exhibit high positive expected

returns. These high expected returns could reflect compensation for unsystematic risk.

Furthermore, regression results (see Figure IA.1 of the Internet Appendix) indicate that

~ ~

Mg, 141 is acyclical: log(Mg, ;. ) does not significantly correlate with any business-cycle

~

indicator.!® In contrast to log(]\Z/gXp’t +1), the systematic component log(MeﬁXp ¢+1) has a

significant correlation with the NBER recession indicators (see Figure IA.2 of the Internet

15In regressions, we use the log SDF because it is linear in common risk factors and asset-specific shocks.
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Appendix). Given that Meﬁxw 41 and ngp,t 41 reflect the composition of the systematic and
asset-specific components of the SDF, our approach provides a procedure for constructing

trading strategies with and without exposures to systematic risk.

Having established the quantitative importance of the SDF-U component, ngw 11, We
examine which trading strategies reflect exposures to this component of the SDF. As a first

~

step, we run individual regressions of log(MgXW +1) on the excess returns of 457 strategies.
We find 27 strategies with an R? larger than 30%. As a second step, we compute the
risk premia associated with the exposures of these 457 trading strategies to the SDF-U

component as the negative covariance of the return on the strategy and ngm It

~

a — a
RPstrategy - COV(Rstrategy,tJrl, Mexp,t—f—l) X Rf.

~

As expected, we find that many of the strategies that are highly correlated with log(MgXp,t 1)
are associated with large risk premia. However, there are also some strategies that are not
highly correlated with log(ngm +1) but that still command sizable risk premia; for exam-
ple, momentum strategies. Table 1 lists strategies that have high correlations with and high

compensation for exposure to the SDF-U component.

Examining the strategies from Table 1 closely, we find that there is large overlap across
these strategies and that, adopting the classification of Jensen, Kelly, and Pedersen (2021),
they fall into the following clusters: Investment, Leverage, Low Risk, Profitability, and
Value. In the literature, some of these strategies have been interpreted as being behavioral—
for example, the management factor of Stambaugh and Yuan (2017) and the long-horizon
financial factor of Daniel, Hirshleifer, and Sun (2020))—while others as reflecting market
frictions—for example, the betting-against-beta factor of Frazzini and Pedersen (2014) and

constraints return relation among high R&D firms in Li (2011).

Examining the composition of ngp,t 41, we identify a substantial contribution of small

stocks. Specifically, of the 34 basis assets with the highest contribution to the variation of
ngrxt 11, fifteen represent various portfolios of small stocks, such as small stocks with low
and high book-to-market, small stocks with high accruals, and small stocks with high prior
returns. In addition, sixteen basis assets represent a range of portfolios of stocks sorted
by size and market beta or size and variance. Finally, seven of these 34 basis assets are

portfolios of stocks with extremely high or low values of net issuances.

The special role of small stocks in the SDF-U component is an estimation result, not

an assumption hardwired into the corrected candidate model. Proposition 4 shows that the
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Table 1: Strategies highly correlated with log(Mg, ;. ;) and with high asset-
specific risk premium RP?

This table reports trading strategies that are highly correlated with log(Mg,, ;1) and that have a
large asset-specific risk premium. The first column, using the classification scheme in Jensen, Kelly,
and Pedersen (2021), gives the name of the cluster to which the strategy belongs. If a strategy is
not in the list of Jensen, Kelly, and Pedersen (2021), we assign it to the cluster Unclassified. The
second column gives the source. The third column gives the name of the variable, as in Chen and
Zimmermann (2021) or Jensen, Kelly, and Pedersen (2021). The penultimate column reports the
R? of the univariate regressions of log(Meaxw +1) on the return of each individual strategy. The last
column reports the risk premium. The clusters, and within each cluster the sources, are listed in
alphabetical order.

Cluster name Source Variable name R*%) RP*(%)
Investment Daniel, Hirshleifer, and Sun (2019) beh_fin 44.85 5.33
Fama and French (2015) cma 30.21 2.08
Hou, Xue, and Zhang (2015) ria 30.48 2.04
Ortiz-Molina and Phillips (2014) aliq_at 3221  —-3.89
Ritter (1991) ageipo 29.31 5.83
Stambaugh and Yuan (2016) mgmt 33.59 3.22
Xing (2008) inveap 39.26 6.06
Leverage Bhandari (1988) leverage 43.21 5.54
Fama and French (1992) am 38.42 5.16
Fama and French (1992) bookleverage 39.58 —4.25
Palazzo (2012) cash 3226  —5.98
Palazzo (2012) cash_at 36.66  —3.72
Penman Richardson and Tuna (2007) netdebt_me 34.61 3.84
Low risk Ali, Hwang, and Trombley (2003) idiovolaht 15.68 5.88
Ang Chen and Xing (2006) betadown_252d 3211  —-5.03
Ang, Hodrick, Xing, Zhang (2006) rvol_21d 25.92 —5.25
Ang, Hodrick, Xing, Zhang (2006) ivol 18.14 6.14
Bali, Cakici, and Whitelaw (2010) maxret 20.67 6.73
Bradshaw, Richardson, Sloan (2006) netequityfinance 37.50 5.24
Bradshaw, Richardson, Sloan (2006) xfin 39.68 6.54
Fama and MacBeth (1973) beta 17.37 —6.05
Frazzini and Pedersen (2014) betafp 17.60  —6.93
Frazzini and Pedersen (2014) bab 46.65 4.48
Pontiff and Woodgate (2008) shareissly 37.48 2.90
Momentum Jegadeesh and Titman (1993) mom12m 9.78 5.36
Jegadeesh and Titman (1993) mom6m 11.98 5.51
Profitability ~ Chen, Novy-Marx, Zhang (2011) rome 25.22 5.11
Diether, Malloy and Scherbina (2002) forecastdispersion 26.83 5.05
Frankel and Lee (1998) predictedfe 39.73 5.46
Frankel and Lee (1998) analystvalue 38.00 4.86
La Porta (1996) fgrbyrlag 50.71 8.19
Value Barbee, Mukherji and Raines (1996) sp 33.09 4.46
Basu (1977) ep 32.65 5.33
Boudoukh, Michaely, Richardson, Roberts (2007) eqnpo_me 34.34 4.74
Daniel and Titman (2006) eqnpo_12m 30.31 3.39
Dechow, Sloan and Soliman (2004) equityduration 40.83 5.11
Fama and French (1992) hml 37.32 3.30
Litzenberger and Ramaswamy (1979) divl2m_me 31.50 4.61
Unclassified ~ Cen, Wei, and Zhang (2006) feps 24.87 6.15
Cooper, Gulen, Schill (2008) betaarb 24.90 6.19
Datar, Naik, Radcliffe (1998) shvol 25.10 5.88
Easley, Hvidkjaer and O’Hara (2002) probinformedtrading  21.36 6.20
Elgers, Lo and Pfeiffer (2001) sfe 29.24 7.00
Li (2011) rdcap 33.24  —4.47
Ritter (1991) indipo 3642 4.30
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relative weight of a basis asset in Mg, ,,; depends on the ratio of the asset’s compensation
for asset-specific risk, represented by the corresponding element of the vector a, and asset-
specific volatility. While it is natural to expect that small stocks have larger firm-specific
components of expected returns, it is also known that they have higher volatility. Therefore,

ex-ante, it is not clear if small stocks will feature prominently in the SDF-U component.

Our finding regarding the role of small stocks in the SDF-U component complements the
literature on granular origins of aggregate fluctuations (Gabaix, 2011). In this literature,
idiosyncratic shocks to fundamentals of large firms can lead to nontrivial aggregate effects,
that is, these shocks explain a substantial part of variation in aggregate fundamentals, or

equivalently, in M In contrast, our empirical finding is about the importance of

exp,t+1°

idiosyncratic shocks to the returns of small companies that drive the acyclical component

of the SDF, Mg, .

We now turn our attention to the component of the SDF related to systematic risk

factors, Meﬁxp’t 41~ We find that the market factor of Sharpe (1964) exhibits the highest

explanatory power for log(M Bxp,t +1), with an R? = 0.95. It is remarkable that, despite

€

all the criticism of the market model, when we consider only the systematic component
of the SDF, the market factor explains such a large proportion of its variation. Besides
the market factor, we find that there are 23 trading strategies and 3 nontraded factors

(shocks in VIX, intermediary capital (He, Kelly, and Manela, 2017), and dividend yield)

that each individually explain more than 30% of variation in log(M, s

exp.t+1). DBecause the

~

market factor already explains a large proportion of the variation in log(M, A

exp,t-i—l)? the

other factors explain only a small proportion of the variation not explained by the market

factor. A combination of nineteen trading strategies is needed to explain 99% of variation

in log(Mg(WH

(2020) and Bryzgalova, Huang, and Julliard (2020) about the nonsparsity of the SDF in

).16 These results are in line with the findings of Kozak, Nagel, and Santosh

characteristics and the existence of several combinations of trading strategies that deliver a

similar cross-sectional fit.

6These strategies include: market, size, betting-against-beta, sales-to-market (Barbee Jr, Mukherji, and
Raines, 1996), change in current operating working capital and change in noncurrent operating liabilities
(Richardson, Sloan, Soliman, and Tuna, 2005), Kaplan-Zingales index (Lamont, Polk, and Saa-Requejo,
2001), cash-to-assets (Palazzo, 2012), dollar trading volume Brennan, Chordia, and Subrahmanyam (1998),
highest 5 days of return scaled by volatility (Asness, Frazzini, Gormsen, and Pedersen, 2020), quality-minus-
junk growth (Asness, Frazzini, Israel, Moskowitz, and Pedersen, 2018), and short interest (Dechow, Hutton,
Meulbroek, and Sloan, 2001).
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Figure 5: Correction of the CAPM model using the HJ distance

This figure illustrates how the HJ distance changes with K™ and d,p¢, when the candidate model
includes only the market factor. The two panels show the estimation results based on cross validation.
The panel on the left plots the HJ distance for a given choice of K™ as one varies d,p¢. The panels
on the right display the optimal values of the HJ distance for a given choice of K™,
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5.2 Candidate Factor Models and Principal-Component-Based Models

To illustrate how our method brings new insights about the SDF corresponding to exist-
ing factor models for returns, we now consider three traditional candidate models—those
implied by the CAPM of Sharpe (1964), the Consumption-CAPM (C-CAPM) of Breeden
(1979), and the three-factor model of Fama and French (1993). For the SDF Mg(’;?ﬁrl im-
plied by each of these candidate factor models, we estimate the required correction terms

~

Mg, 41 and Meﬁxrr)n ¥ 1, which allows us to identify what is missing in each of these models.

5.2.1 The CAPM

We consider a candidate model with the market return as its sole factor (K" = 1) and the
vector a®" = O, which we refer to as the CAPM. Figure 5 shows that when the candidate
model is the CAPM, then the estimation procedure selects K™ = 1 and dapt = 0.0016.
Thus, the CAPM suffers from both sources of misspecification: K" is less than the true
number of factors K and the vector a # On. The obtained number of missing factors to
correct the market model is in line with our earlier finding that two latent factors summarize

the common variation in asset returns, with one factor being a proxy for the market factor.
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Table 2: Analysis of models before and after correction for misspecification
The first column of the table lists the models considered. Then, the table reports three sets of
quantities: (1) The HJ distances of alternative models, relative to the HJ distance of the APT
model, (HJmOdel / HJAPT — 1) x 100%, before and after the model is corrected for misspecification;
(2) The Sharpe ratio of the corrected SDF for each of the models along with its components; and,
(3) The variance decomposition of the SDF components.

Relative HJ (%) Sharpe ratio (p.a.) Variance decomp. (%)

Before After ) . ) o . . ) o
Model  correction correction My Mo, MEF™ MEE™ Mg M&, MEF™ NMI™
APT — — 084 0.59 0.55 — 100.00 56.21 43.79 —
CAPM 14.72 0.77 081 0.63 0.44 0.28 100.00 57.60 31.37 11.03
CCAPM 14.83 -0.16 091 0.72 0.36 0.44 100.00 58.69 21.45 19.85
FF3 15.45 -3.37 098 0.69 0.70 0.00 100.00 42.16 57.84 0.00

The importance of the SDF-U component for correcting the CAPM is evident from
Table 2. The second and third columns of this table show that after we correct the CAPM
for misspecification, the HJ distance drops by a statistically significant 14%. Analyzing the
pricing errors before and after correcting the CAPM, we find that the largest improvement
in pricing is for the portfolios formed by sorting stocks by size and value, size and beta,
size and net issuance, and size and variance. The last set of columns of this table and
Figure 6 illustrate that the SDF-U component explains most of the variation in the corrected
SDF. Specifically, 57.6% of the variation in 10g(]\2fexp7t+1) is due to the SDF-U component,
while only 11.03% is due to missing systematic risk in the CAPM. Thus, we conclude that
the improvement in the pricing performance of the corrected CAPM is mainly due to the

inclusion of the SDF-U component.

We now characterize the variation in log(MeXp7t+1) that is due to systematic risk factors.
The remaining 42% of the variation in the log SDF not explained by the SDF-U component
is due to the combination of M. | and M2, , with 31.37/(31.37 + 11.03) ~ 73.99%
of this variation attributable to the market factor. Recall that for the APT model, we find

that the market factor explains 95% of the systematic component of the admissible SDF.7

In contrast to the case of the APT model, we find that the systematic component,

log(Mg(’gl ;il) is uncorrelated with nontraded factors. The reason for this zero correlation

is that the candidate SDF log(MfX’;iril) based on the market model subsumes the explana-

"The quantitative difference in the role of the observable market factor is because the market factor is
only a proxy for the latent risk factor recovered when considering the APT model. Specifically, the ratio of
the standard deviations of the systematic component of the SDF explained by the first systematic component
in the case of the APT model to that explained by the market factor in the case of the CAPM candidate
model is 1.2.
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Figure 6: Time series of SDF and its components for CAPM candidate model
This figure has four panels, which show the dynamics of the admissible SDF, Mcyp 141 and its three
components: the asset-specific component Mg, .4, the component Meigatn 41 corresponding to the

candidate model with the market factor, and the missing systematic component fogl ;SH
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Table 3: Correlation matrix of corrected SDF's
This table reports the correlation matrix of admissible SDFs obtained after correcting different

candidate models: APT, CAPM, C-CAPM, and FF3.

APT CAPM C-CAPM FF3
corrected corrected corrected

APT 1.00

CAPM corrected 0.99 1.00

C-CAPM corrected 0.94 0.94 1.00

FF3 corrected 0.94 0.94 0.89 1.00
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tory power of innovations in VIX, intermediary capital, and dividend yield. We find 27

~r3,mis )

trading strategies that individually explain more than 30% of variation in log( exp ti1

The size factor (Fama and French, 1993) is one of the most prominent among them with
an explanatory power of about 89%, which explains the success of the models developed in

Fama and French (1993, 2015).

We conclude by highlighting that our approach is successful in correcting the CAPM to
obtain an admissible SDF, which, we see from Table 3, is almost perfectly correlated with

the SDF previously obtained from the APT model.

5.2.2 The C-CAPM

We now consider a candidate model with the return on a consumption-mimicking portfolio
as its sole factor and the vector a®®® = O, which we refer to as the C-CAPM. We fol-
low the standard approach of Breeden, Gibbons, and Litzenberger (1989) to construct the

consumption-mimicking portfolio.'®

Figure 7 shows that if one starts from the C-CAPM, then the estimation procedure
selects K™ = 2 and dapt = 0.0025. The consumption-mimicking portfolio is not highly
correlated with either of the latent factors estimated when correcting the APT model—the
correlations are 0.3 and O—and therefore, we still require two additional factors to capture
the common variation in asset returns. The value of d,,; = 0.0025 implies an annual Sharpe

ratio associated with pure asset-specific risk being of (0.0025 - 12)'/2 = 0.17.

Table 2 shows that augmenting the consumption-mimicking-portfolio factor by two la-
tent factors and the vector of the asset-specific components in expected returns, a, leads
to a substantial and statistically significant drop in the HJ distance by 14.99%. Most of
this drop is accounted for by the SDF-U component, which contributes 58.69% of the time-
variation in log(]\ZfeXWH). On the other hand, examining the pricing errors of the candidate
model (see Figure IA.4 in the Internet Appendix), we see that they are centered around
0.06, whereas they are centered around zero in the corrected model. This observation indi-

cates that a missing level factor in the candidate C-CAPM is also a substantial source of

misspecification. However, the variance decomposition in Table 2 shows that the missing

18 As outlined in Giglio and Xiu (2021), construction of factor mimicking portfolios can be sensitive to
the choice of basis assets. They propose a three-stage procedure, which is insensitive to the choice of basis
assets. However, their procedure does not allow for asset-specific risk, which we document plays a major
role in the risk-return trade-off.
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Figure 7: Correction of the C-CAPM model using the HJ distance

This figure illustrates how the HJ distance changes with K™ and d,p¢, when the candidate model
includes only the consumption-mimicking portfolio of Breeden, Gibbons, and Litzenberger (1989).
The two panels show the estimation results based on cross validation. The panel on the left plots
the HJ distance for a given choice of K™ as one varies dape. The panel on the right displays the
optimal values of the HJ distance for a given choice of K™,
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systematic risk factor explains a much smaller proportion of the variation in the admissible

SDF, compared to the SDF-U component.'?

5.2.3 The Three-Factor Model of Fama and French (1993)

We consider a candidate model with the three factors of Fama and French (1993), market,
size, and value, and the vector a®® = Op, and we refer to this model as FF3. Figure 8
shows that if we start with FF3 as the candidate model for asset returns, our method selects
zero missing sources of systematic risk and an optimal d,p¢ = 0.0036. At first glance, it may
seem surprising that this candidate factor model incorporates all systematic variation in
asset returns, given that about 19 strategies are necessary to capture the systematic SDF,
as explained in the case of the APT model in Section 5.1. However, the FF3 model already
includes the market and size factors that jointly explain more than 96% of the variation in

the systematic component of the SDF.

Furthermore, we find that the value factor correlates more strongly with the SDF-U

component (the correlation is —0.61) than with the systematic component of the SDF (the

9Figure TA.3 in the Internet Appendix shows the estimated time series of the admissible SDF and its
components obtained after correcting the candidate C-CAPM.
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Figure 8: Correction of FF3 model using HJ distance

This figure illustrates how the HJ distance changes with K™ and §,p, when the candidate model is
the three-factor model (Fama and French, 1993). The two panels show the estimation results based
on cross validation. The panel on the left plots the HJ distance for a given choice of K™ as one
varies G,pt. The panel on the right displays the optimal values of the HJ distance for a given K™,

TollS / . Kmis= 0 72
J / o« KMS= q ©
) ; . Km|s: 2 1©
ol . 0.0196 0.04 [N _
g4 // sl oo B
N ] . /. . Km!s: 4 . |«
) \:.\\ : / o KMs= g N QO
8 e/ 3
s A 0.0016 N 8
o | T e L T S = 0
S| e 27 o 2
T abd, =P T
0.0036 .
< 0.0036 1%
— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.00 0.01 0.02 0.03 0.04 0 1 2 3 4 5
6apt Kmis

correlation is 0.14). Thus, FF3 implicitly incorporates some asset-specific risk and/or weak

factors.

Table 2 shows that augmenting the FF3 model with the vector of asset-specific compo-
nents in expected returns, a, leads to a substantial and statistically significant improvement
in pricing performance: the HJ distance drops by 18.82%. The large drop in the HJ dis-
tance indicates the quantitative importance of unsystematic risk for pricing. Thus, similar
to Stambaugh and Yuan (2017), Bryzgalova, Huang, and Julliard (2020), and Clarke (2020)
among others, we document sizable misspecification in the FF3 model, but in contrast to
these papers, we attribute the misspecification to compensation for unsystematic risk, i.e.,
a # On. Analyzing the pricing errors before and after correcting the FF3 model, we find
the largest improvement in pricing is for the portfolios formed by sorting stocks by size and

momentum and size and variance.20

Table 3 shows that our approach for correcting misspecification in the original FF3
model leads to an admissible SDF that is highly correlated with that implied by the APT

model and those obtained after correcting the other candidate factor models.

20The time-series behavior of the admissible SDF obtained from correcting the original FF3 model is
displayed in Figure IA.5 in the Internet Appendix.
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5.3 Robustness of estimation results

To illustrate the robustness of our estimation approach, we undertake two exercises. First,
we show that if one were to estimate K and d,p¢ in sample, instead of estimating them
using cross-validation (as described in Section 3.2 and shown in Section 5.1), the pricing
errors would have been much larger. Second, we examine the pricing performance of the

SDF estimated on one set of return data but evaluated on two other datasets.

In Figure 9, we display the results from estimating the APT model in sample. The two
panels show that a naive in-sample analysis leads to a choice of K = 10 and dap; = 0.04.
These estimated parameters are substantially larger than the K = 2 and dapc = 0.0016
obtained from estimating the APT model using cross-validation. The larger number of in-
sample factors, K, is to fit as best as possible the covariance matrix for returns, while the
larger value of dapy is to fit as best as possible the cross-sectional variation in expected excess
returns. However, the right-hand panel of Figure 1 (on page 20) shows that the in-sample
combination of K = 10 and d,p¢ = 0.04 performs extremely poorly in the cross-validation

exercise because of overfitting.

The second exercise we undertake to illustrate the robustness of our approach is to
run an out-of-sample analysis: we evaluate how the candidate and corrected CAPM, C-
CAPM, and FF3 models estimated from the first dataset (described in Section 4.1) price
two different cross-sections of stock returns. The second dataset we consider, also used in
Korsaye, Quaini, and Trojani (2021), includes 100 portfolios sorted by size and book-to-
market, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted by size and
short-term reversal, and 49 industry portfolios.?! The third dataset we consider includes
100 portfolios sorted by size and book-to-market, 100 portfolios sorted by size and operating
profitability, 100 portfolios sorted by size and investment, and 49 industry portfolios.

The two alternative datasets we consider include portfolios formed by sorting stocks on
the same or similar characteristics as those used to form the set of basis assets, but the sort
has a different level of granularity or different order. For example, the set of basis assets in
our first dataset includes portfolios formed by sorting stocks by size and momentum, whereas
the second dataset, used also by Korsaye, Quaini, and Trojani (2021), includes portfolios
formed by sorting on size and long- or short-term reversal. Also, while the set of basis assets

includes portfolios formed by sorting stocks on operating profitability and investment, the

21The dataset of Korsaye, Quaini, and Trojani (2021) also includes twenty five momentum portfolios that
we exclude because they are present in our 202 basis assets.
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Figure 9: Model selection using the HJ distance in sample

This figure illustrates how the HJ distance changes with K™ and d,,; when these parameters are
estimated in sample. The panel on the left plots the HJ distance for a given choice of K™ as one
varies dapi. The panel on the right displays dap (numbers inside the box) that minimizes the HJ
distance for a given choice of K™,
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third dataset includes portfolios formed by sorting stocks by size and investment and size
and operating profitability. Similarly, the compositions of industry portfolios in the two

out-of-sample datasets differ from those in the first dataset.

This choice of test assets for our out-of-sample analysis is reasonable because the esti-
mated admissible SDF represents not the marginal utility but a projection of the marginal
utility on a set of basis assets. Thus, by construction, the estimated SDF would not price
test assets whose returns are orthogonal to those of the basis assets (Cochrane, 2005), and
hence, we use test assets that are not orthogonal to the basis assets. Our choice of test assets
allows us to evaluate if the estimated SDF is subject to overfitting or captures successfully

the risks associated with selected characteristics.

Table 4 reports results for the three datasets. For the first dataset, we have already
discussed the two key insights: (a) the APT model exhibits much better pricing perfor-
mance than the three candidate factor models (see column (1)) and (b) after correction,
the candidate factor models perform as well as the APT model (see column (2)). From
the second and third datasets there are three main insights: (a) the pricing performance
of the APT model continues to be significantly better than that of the candidate factor
models (see columns (3) and (5)); (b) the relative edge in pricing performance of the APT

model declines out-of-sample (compare columns (1) and (3) and columns (1) and (5)); and
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Table 4: Cross-sectional Out-of-Sample Pricing Performance
This table reports the HJ distances of alternative models, relative to the HJ distance of the APT
model, (HJ™4°! /HJAPT _ 1) x 100%, before a candidate model is corrected for misspecification, and
after it has been corrected. All the models are estimated on our first dataset, the set of 202 basis
assets described in Section 4.1. The performance of these models is then evaluated for the set of 202
basis assets (“First dataset”) and for two additional datasets not used at the estimation (“Second
dataset” and “Third dataset”).

First dataset Second dataset Third dataset
(1) (2) (3) (4) (5) (6)
Before After Before After Before After
correction correction correction correction correction correction
CAPM 14.72 0.77 9.68 0.34 8.92 0.42
C-CAPM 14.83 —-0.16 10.07 1.06 8.57 0.60
FF3 15.45 -3.37 11.57 —1.81 11.03 —1.65

(c) the corrected candidate factor models continue to perform as well as the APT model

(see columns (4) and (6)).

6 Microfoundations for Priced Unsystematic Risk

In the previous section, we have shown empirically the need to include an SDF-U component
in the SDF. We could repeat our empirical analysis for other candidate factor models.
However, our main conclusion is not going to change—the SDF-U component accounts for
the lion’s share of pricing of the cross-section of asset returns.?? This is consistent with the
empirical finding in Bryzgalova, Huang, and Julliard (2020), who undertake a large-scale
search for a factor model that prices a cross-section of asset returns but find none. We
have also shown that, given a candidate asset-pricing model, adding extra common risk
factors to this model cannot proxy for the SDF-U component. The SDF-U component is
a weak factor in the cross-section of asset returns, and therefore, its risk premia cannot be

estimated accurately. We show this result explicitly in Appendix A.2.

At this point, one may wonder in what kind of economic environment unsystematic
risk will be priced. Below we present an example of an equilibrium model that provides

microfoundations for the notion that unsystematic risk is priced. Our example relies on the

22If by chance a candidate factor model contains a factor that is correlated with the SDF-U component,
then one may find that the role of missing unsystematic risk is biased down, as we saw in the case of the
corrected FF3 model.
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well-known static model of Merton (1987). We show that the equilibrium asset returns and

SDF in this model have the same functional forms as those we have for our APT model.

In Merton (1987), investors are aware about only a subset of the available securities.
This type of “incomplete information” then implies that not only common risk factor but
also shocks specific to each security are priced. While this kind of incomplete information
may not be the only reason why the SDF-U component plays a dominant role in the pricing
assets, it is an appealing argument given the large empirical evidence documenting that
both retail (Polkovnichenko, 2005; Campbell, 2006; Goetzmann and Kumar, 2008) and
institutional investors (Koijen and Yogo, 2019, table 2) invest in only a small number of

available stocks.??

Below we summarize the main assumptions of the model and then analyze its equilibrium

implications for the SDF. For details of the model, we refer the reader to Merton (1987).

Assume that there are N firms in the economy whose end-of-period cash flows are

technologically given by??:

Ci = I [ + Y + siei],

where, for simplicity, it is assumed that there is a single random common factor Y with
E(Y)=0and E(Y?) =1, with E(¢;) = E(&; | €1,.-.,6i-1,8i41,---,6N,Y) = 0, for i =
{1,..., N}, where ¢; are asset-specific shocks. Here, I; is the amount of physical investment

in firm ¢ and p;, 1;, and s; represent parameters of firm ¢ ’s production technology.

Let V; denote the equilibrium value of firm ¢ at the beginning of the period. If R; is the

equilibrium return per dollar from investing in firm ¢ over the period, then R; = C;/V;, and

where b; and o; are functions of the parameters of firm ¢’s production technology.

There are two additional securities in the economy, both in zero net supply: a security
that is risk-free with return Ry and the (IV + 1)st risky security, which combines the risk-

free security and a forward contract with cash settlements on the factor Y. Without loss

230Other mechanisms, such as market segmentation, institutional restrictions, transaction costs, illiquidity,
imperfect divisibility of securities, may lead to the same observable behavior. That is, the modeling frame-
work of Merton (1987) can be viewed as a reduced-form representation of all these microfoundations leading
investors to invest in only a subset of available securities.

2*We have made the following changes to the notation used in Merton (1987) so that it is consistent
with the notation in our paper. We denote an investor’s risk aversion by 7 instead of §; we denote the
total number of assets by N instead of n; we index individual assets by i instead of k; and we denote the
unsystematic risk premium by a; instead of Ax.
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of generality, the forward price of the contract is assumed to be such that the standard

deviation of the equilibrium returns on the security is unity. As a result, its return is

Ryi1 =E(Ryt1) +Y. (13)

There is a sufficiently large number of investors with a sufficiently disperse distribution
of wealth so that each investor acts as a price taker. Each investor is risk averse and exhibits

mean-variance preferences over the end-of-period wealth:

Ul = B(RPW7) — var(R'W7),

’y
2Wi
where W/ denotes the value of the initial endowment of investor j evaluated at equilibrium

prices, R? denotes the return per dollar on investor j’s optimal portfolio, and «7/ > 0 is the

risk-aversion of investor j.

Investors differ in their information sets. The common part of investors’ information
sets includes: (i) the return on the risk-free security, (ii) the structure of securities’ return
given in expression (12), and (iii) the expected return and variance of the forward-contract
security given in (13). However, different investors have knowledge about the parameters
b; and o; for different subsets of securities. The investors who know about security ¢ agree
on its characteristics. To simplify the analysis, investors are assumed to have identical risk

aversion 77/ = 7 and identical initial wealth W7 = W,

The optimal solution of the each investor’s portfolio problem allows us to obtain the
aggregate demand for each security. Equating this to the aggregate supply for each security
leads to the equilibrium expected return for asset i (Merton, 1987, eq. (16)):

E(R;) = Ry +vb;b +’yasi0§/qi, for i={1,...,N}, (14)

where x; is the fraction of the market portfolio invested in asset i, b = Zfi 1 Tib;, and ¢; is

the fraction of investors who know about security 3.

Denoting the return on the market as R,, = sz\il x; R;, Merton (1987, eq. (24)) obtains

the equilibrium expected excess return on the market:

E(Rm) — Ry = yvar(Ry,) + am, (15)

where a,, = Zf\il TiQi,
a; = (1 —¢q)A;,
A; =E(R;) — Ry — by(E(Rn+1) — Ry).
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Equations (12) and (15) then imply
R; — Rf = ﬂl(E(Rm) — Rf) + a; — Biam + b)Y + o€, (16)

where 3; denotes the covariance of the return on security ¢ with the return on the market
portfolio, divided by the variance of the market return. Equation (16) contains Y on the
right-hand side. We substitute out Y by using the definition of the market portfolio return
along with equations (12) and (14), to obtain

b
R; — Ry = a; — Biam + Bi(E(Rn) — Ryf) + E(Rm —E(Rn)) + 0i€;.

We now derive the SDF in this economy. In particular, we consider the case where the
number of available assets is large, that is, N — oco. In this case, as we show in the proof
for Proposition 7: (i) 8; — b;/b, (ii) am — 0, and (iii) the market return is asymptotically
orthogonal to all asset-specific shocks, ¢;. The proposition below then shows that this leads
to equilibrium asset returns and an SDF that have the same functional form as those for

the APT model, as specified in equations (1) and (6), respectively.

Proposition 7. When the number of assets is large, N — 00, equilibrium asset returns are
R, — Rf =a; + ﬂZ(E(Rm) — Rf) + ,BZ(Rm — E(Rm)) + 0;€;, (17)

= a; + Bi(Rm — Ry) + o€,

and the equilibrium SDF is

N
L~ )L BB =Ry
M=—— 3" Ze ) o = (R — B (R)). 8
Ry <Ui ) Ry Rf-var(Rm)( (Bm)) (18)
J\}r‘l J\}rg

The SDF in (18) consists of two components representing adjustments for risk: the
first one for unsystematic risk, M?, and the second for systematic risk, M?, exactly as
prescribed by the SDF under the APT. Note that a; in (17) represents the compensation
for unsystematic risk, because

1 N a;
a; = — cov (Ri — Ry, —R—f Z (—‘ei)) X Ry,

g,
i=1

which coincides with the elements of the vector a in the APT. Naturally, the other part of
the risk premium in (17), B;(Ry — Ry), is compensation for exposure to systematic risk,

represented by market risk because of the assumption of a single common factor:

E(R,) — Ry

BiB(Ro) = Ry) = —cov (R = Ry, = 5

(R — E(Rm))) x Ry.
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If all investors were fully informed about all IV assets, that is, ¢; = 1, then a; = 0, and
the results in (17) and (18) simplify to the expressions for security returns and the SDF
under the CAPM, respectively. Thus, in Merton (1987), the no-arbitrage APT restriction
is equivalent to stating that there are only a handful of assets that do not belong to the

common information set of investors.

Thus, the above discussion shows that there are equilibrium models that support the
notion that unsystematic risk is priced. Moreover, Proposition 7 shows that the result that

unsystematic risk is priced is not limited to an economy with a finite number of assets.?

7 Conclusion

A fundamental challenge in finance is to price the cross section of assets. The main diffi-
culty when pricing assets is to determine how exactly to adjust their returns for risk. The
literature has proposed a large number of alternative factor models to accomplish this task.
Despite the proliferation of systematic risk factors, referred to as the factor zoo (Cochrane,
2011), there is still a sizable pricing error, called alpha. This leads one to the question posed

in the title of this paper: “What is missing in asset-pricing factor models?”

We challenge the conventional wisdom that only systematic sources of risk receive com-
pensation in financial markets by showing that unsystematic risk is also compensated. That
is, the pricing error alpha implied by factor models includes compensation not only for miss-
ing common risk factors but also for unsystematic risk. Theoretically, we demonstrate this
key insight through the lens of the SDF under the assumptions of the APT and support
it by demonstrating that an equilibrium model such as Merton (1987) is consistent with
our insight. Empirically, we show that the component of the admissible SDF reflecting
unsystematic risk, which is represented by a linear combination of unsystematic shocks,
accounts for more than half (56%) of the variation in the admissible SDF. What is missing

in virtually all factor models is compensation for this unsystematic risk.

#5Often, relying on the expression in Merton (1987)

1 Vi
=1 —gq)Ai=noi [ ——1 -,
ai = (1—aq) yo (qi )Vm

where V,,, is the value of the market, the empirical literature has implicitly assumed that a; is cross-sectionally
perfectly correlated with o?. However, the above expression shows that a; depends not just on o2 but also
on ¢; and V;.
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The approach we develop in this paper applies widely—to reduced-form factor models,
but also to partial- and general-equilibrium asset pricing models—without needing to iden-
tify which factors (strong or weak) are missing. In terms of estimation, the approach is
designed and feasible for a large number of assets; in fact, its performance improves with
the number of assets considered. Our novel insight, which establishes the importance of
compensation for unsystematic risk, is crucial both for empiricists wanting to resolve the

factor zoo and for theorists wishing to develop microfounded models of asset pricing.
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A Appendix

A.1 Notation

The following notation is adopted in the manuscript and appendix. E(-) denotes the ex-
pectation operator and X denotes the sample average of the variable X. Capital letters
denote matrices, while lowercase letters denote scalars or vectors. A matrix A > 0 denotes a
positive-definite matrix A and ||A|| denotes the matrix norm ||A| = (tr(A’A))%, where tr(-)
is the trace operator. For deterministic sequences {ay} and {by}, the notation ay = O(by)
means that |ay|/by < 0, where 6 > 0 is some finite number, and ay = o(by) means that
lan|/bny — 0 as N — oo. The notation Ay = O(by) and Ay = o(by) for a sequence of
matrices { Ay} of constant dimensions a; X az means that the previous statements hold for
every element of Ay. Finally, the notation any = Op(bn),an = op(bn), An = O,(bn), and

AN = 0,(bn) means that the previous statements hold in probability.

A.2 Can one recover M/ ; using observable variables?

In this appendix, we show that M{, ; is a weak factor in the cross-section of asset returns.
Therefore, even if it were possible to add to a candidate factor model an observable variable
that was perfectly correlated with My, |, it would not lead to an admissible SDF. The
risk premia associated with a weak factor cannot be estimated accurately (Anatolyev and

Mikusheva, 2021), which leads to the problem of recovering the admissible SDF.
Proposition Al. Under Assumptions 1 and 2, assume, without loss of generality, that
K =1, and there are no missing systematic risk factors, that is, K™ = 0, implying

Rip1 — Ry = a+ B fil] + et41,  where

T
7! Z(et —e)(eg—e) LV, and
t=1
T — —
Tfl Z( tcan _ fcan)(ftcan _ fcan)/ i} V;}an > O, as T — oo,

ﬁ
Il
i

If an observable variable ftiiif 18 such that fg‘ff — E(ftiiif) =a'V ey, then ftiiif must

be a weak factor.

Proof: Without loss of generality, given that the vector e; is uncorrelated with ff*", con-

sider that ff" and f}4° are uncorrelated.
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In a time-series regression

Rt+1 o th BO + ﬁcanfcan 61d10f1§._110 + Uy,

the parameter 84° in population is

E [(fi"° — E(f{"°))(Rit — E(Rut))]
E [(fif° — E(f{%°))?]
E [(ftidio _ E(ftidio))(ﬁcan( can __ E( Can)) + ezt)]
E [(/1% — BV

B E [(ftidio o E( 1d10))6can(fcan o (ftcan))] N E [(fidio _ (fidio)) . ]

E [( idio __ (fldlo)) ] E [( idio __ (fldlo)) ]
E [(a’Ve_let)eit]
E [(a’V{let)Q]

a/v'efl‘/ebi

aVe 'V Vi la
a"Zila

a;

ﬁzi_dio _

)
5apt

where ¢; is the ith row/column of the matrix Iy, and assume, without loss of generality,
that the APT constraint binds, i.e., @'V, 'a = 0,p. Given that gidio gidio 5 « ¢ for any
N, fidio satisfies the definition of a weak factor (Lettau and Pelger, 2020). O

Estimation of the price of risk associated with the factor f4° is problematic, as is
the case for any weak factor; for a formal analysis see Anatolyev and Mikusheva (2021).
Thus, the traditional two-pass regression approach does not permit one to estimate M{,
accurately. In contrast, the method described in this paper explains how to construct an
accurate estimate of My, |, which does not rely on the existence of an observable fldlo that

is perfectly correlated with M, ;.

Proposition Al extends to the multivariate case, that is, when f}{i® is a vector. It also

extends to the case in which f‘dlo spans unsystematic risk imperfectly, that is,

flle _ (flle) ’yalveilet—&-l + Net1,

where E(111) = 0, corr(a'V, ey 1, met1) = 0, var(n41) = % Var(fldlo)(l - p?idio,Ma)'
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A.3 Robustness to omitted sources of time-variation in risk premia

In this section, we show that our approach delivers an admissible SDF even if the true data-
generating process for asset returns features time-variation in risk premia. One qualification
applies: our method is not designed to capture conditional cross-sectional differences in
excess returns but it is to capture unconditional differences in excess returns. And it does
so, even if the misspecification of the candidate model is about omitted sources of time-
variation in risk premia. In turn, we consider two different sources of time-variation in risk

premia: (i) time-varying risk exposures and (ii) time-varying prices of risk.

A.3.1 A model with time-varying risk exposures

Without loss of generality, assume that the true model for asset returns is a conditional

one-factor model without compensation for unsystematic risk (a = 0):

Riy1 — Ei(Riy1) = Befer1 + esya,

where f;11 is an observable factor with unconditional risk premium A, E;(fi+1) = 0, 5 is
an N x 1 vector of risk exposures of asset returns R;11 to the factor fiy1, and e;41 is an

N x 1 vector of unsystematic shocks with a diagonal covariance matrix V..
Case 1: Common source of variation in risk erposures

Furthermore, assume that

Bt = Bo + P1gt,

where ¢; is a common source of time-variation in assets’ exposures ; to the risk factor fi41.
Without loss of generality, assume that E(g;) = 0. Given these assumptions, the true data

generating process for asset returns is

Rii1 — Ry = (Bo + B1g)A + (Bo + B1gt) fr1 + erya

If a candidate model is a one-factor model with the risk factor fif} = f;11 and constant

risk exposures 5", our method recognizes that there are two extra common sources of
risk g and g¢f;+1 that are omitted in the candidate model. The component Mf ﬁﬁs of
the admissible SDF M, captures the pricing impact of these omitted factors. Relatedly,
our method recovers the pricing implications of these omitted factors via the component
fMis \mis of the unconditional risk premia. As a result, a one-factor model with time-

variation in risk premia driven by one common variable is observationally equivalent to a
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model with one observable and two unobservable common factors and constant risk premia.

This equivalence holds with respect to capturing the unconditional risk premia.
Case 2: Asset-specific source of variation in risk erposures

Now, assume that
Bt = Bo + B1 0 G,

where Gy = (g1, gat, -+, gnt)' 18 a vector of asset-specific sources of time-variation in risk
exposures [3; to the risk factor f;11 and a symbol o denotes the Hadamard product. Without
loss of generality, assume that E(g;;) = 0 for each 1 < i < N. Given these assumptions, the

true data-generating process for asset returns is
Ripr — Ry = (Bo + 1o G A+ (Bo + P10 Gy) frv1 + etq1.

If a candidate model is a one-factor model with the risk factor fi#] = f;11 and constant

risk exposures ", then our method recognizes that there are N unsystematic shocks
m+1 = GiA + Gy fir1, which if being priced, are captured by the component M{, ; of the
admissible SDF M;,1. The pricing implications of these shocks are reflected in a vector a.
Thus, a one-factor model with time-variation in risk premia driven by asset-specific variables
is equivalent to a model with one observable common risk factor, in which unsystematic
shocks are priced. This equivalence holds with respect to capturing the unconditional risk

premia.

A.3.2 A model with time-varying prices of risk

Now assume that the true data-generating process for asset returns features constant risk
exposures but time-varying prices of risk. Without loss of generality, we assume that there

is only one risk factor fi11 and that unsystematic risk is not priced (i.e., a = 0):

Rit1— Ry = B(Xo + Mge) + Bfegr + et

where Et(ft—i—l) = 07 E(gt) =0.

If a candidate model is a one-factor model with the risk factor ff} = f;11 and constant

prices of and exposures to risk, then our method recognizes that there is an extra common
source of risk g; that is omitted in the candidate model. The component Mf ffis of the ad-
missible SDF M, captures the pricing impact of this omitted common source of variation

in asset returns. Relatedly, our method recovers the pricing implications of this extra factor
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via the component S™$\™S of the unconditional risk premia. Thus, a one-factor model
with time-varying price of risk driven by one variable is equivalent to a model with one
observable and one unobservable common risk factor. This equivalence holds with respect

to capturing the unconditional risk premia.

A.4 Assumptions

In this section, we provide a set of assumptions that we use in the lemmas and propositions
of Sections A.5 and A.6, respectively. Whereas the assumptions about 5" are unique

(Assumptions A1 and A2), the assumptions about 3™ differ, depending on whether missing

mis

factors fiI'} are strong (Assumptions A3 and A4) or weak (Assumptions A5 and A6).

Assumption A1 (Strong candidate factors). We assume that a candidate model contains
only strong factors ff*", that s, %Bc‘m'%_lﬁcan — D, where D > 0 is some K" x K"

positive-definite matriz.
Assumption A2. We assume that 'V, ta = 0(1\7%).26

Assumption A3 (Strong missing factors). We assume that a candidate factor model misses
only strong factors fi™S, that is, %5“5/‘/@_%@5 — E, where E > 0 is some K™ x K™

positive-definite matriz.
Assumption A4. We assume that ™'V, ta = o(N%).27

Assumption A5 (Weak missing factors). We assume that a candidate factor model misses
only weak factors f™S, that is, ™'V, "1™ — E where E > 0 is some K™ x K™

positive-definite matriz.

Assumption A6. We assume that f™8'V, 7150 = O(N%).28

Note that Assumptions 1 and 2 imply that a/V,"ta = O(1).

A.5 Lemmas

We now provide a set of lemmas that will be useful for proving our propositions.

26 Assumption Al and asymptotic no arbitrage, along with the Cauchy-Schwarz inequality, imply that
BV, ta = O(N%), but we need a slightly faster convergence rate.

27 Assumption A3 and asymptotic no arbitrage, along with the Cauchy-Schwarz inequality, imply that
LMY, "lg = O(N%), but we need a slightly faster convergence rate.

28 Assumptions A1 and A5, along with the Cauchy-Schwarz inequality, imply that g™is/V, =1 gcan = O(N% ),
but we need a slightly faster rate.
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Lemma A.1. For a random vector z ~ N(u,, %), and any constant vector d:

E(ze?%) = (res WIS T ) here 1 = (1 + 3.d).

Proof: Denote by n, the dimension of the vector z. Then, using the definition of the

expectation,

U 1 o0 / 1 r5—1
E(zedz) = / zetZea(ampa)'S2 (mps) g
(V2m)n= |22 J-oo

Note that
ol2o5(z—1) S5 (zpz) _ d =52/ S e gl B e+l B0 2
_ e—%Z’Zglz—%u’zﬁlzluz—f—(ilzd—&-,uz)’E;lz
— o375 e T ST

_ 67%N;Z;1NZ+%/'L*IE;1“*eiézlzzlz“rﬂ*,zzlzf%/‘L*lzzlu*

e BHEES e g S = G (2 B ()

implying that
[o.¢]
E(ze??) = o BHAEE et g S 1 . / s 3= ) gy |
(V2m)"= |5, ]2 J—oo
Note that by the definition of the expectation, the component in brackets is equal to pu*. [J

Lemma A.2. Under Assumptions A1 and AS3:
Bmislve—llgcan —_ O(N)

Proof: Applying Cauchy-Schwarz inequality for matrices we get
0 S HﬂmislveflﬁcanH S Hﬁmislveflﬂmis”% . ||ﬁcanl‘/€flﬂcan‘|% — O(N) O

Lemma A.3. Under Assumptions A1 and AS3:
Bcan/‘/s—lﬁcan —_ O(N)

Proof: Applying the Sherman-Morrison-Woodbury formula to V. ! and using Lemma A.2
gives
geantyy —1gean _ gean/y; —1gean _ /Bcanlvé—llgmis(vf;}is | gmis’y,~1 gmisy—1gmis/y; —1 gean
= O(N) +O(N)-[0(1) + O(N)] ! - O(N)

= O(N).
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Lemma A.4. Under Assumptions A1, A5 and A6:

Bcanlvs—lﬁcan — O(N)

Proof: Follow the same steps as those in the proof of Lemma A.3. [l

Lemma A.5. Under Assumption A3:

UV = 0(1) and  BUSVTIATS = Vi as N = oo

Proof: Applying the Sherman-Morrison-Woodbury formula to V. ~! leads to

Bmis/ngl/Bmis — ﬁmis/‘/eflﬁmis _ ﬁmislvéflﬂmiS(v—l +Bmis/VeflﬁmiS)flﬁmis/‘/eflﬁmis

frnis
— V—f—mlm(va—mllb + Bmis/‘/e—lﬁmis)—lﬁmis/vve—lﬁmis
= Vi - [0(1) + O(N)] ' - O(N)
= Vi

Lemma A.6. Under Assumptions A1 and AS3:

5mis/V€—1ﬂcan — O(l)

Proof: Applying the Sherman-Morrison-Woodbury formula to V.~! and using Lemma A.2

leads to

ﬁmis/%—lﬁcan — ﬁmis/‘/e—lﬁcan . ﬁmis/‘/e—lﬂmiS(Vfl + Bmis/‘/e—lﬁmiS)—lﬁmis /‘/e—lﬁcan

fmis
= Vi (Vi + B0V g 7 sy~ e
= 0(1)-[0(1) + O(N)] ™" - O(N)
= 0(1).

Lemma A.7. Under Assumptions A1, A5 and AG:

Bmis/%—lﬁcan — O(N%)

Proof: Follow the same steps as those in the proof of Lemma A.6. U

Lemma A.8. Under Assumptions A2, A8 and A4:

a'VE_la — a'Ve_la —0 as N — oc.
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Proof: Applying the Sherman-Morrison-Woodbury formula to V.~ leads to
CL,VZ.;_ICL _ alvve—la . a/‘/e—lﬁmiS(Vf;lis + ﬁmis/‘/e—lﬂmiS)—lﬁmislee—la
=a'V."la+0o(N%) - [0(1) + O(N)| ™ o(N'2)

=ad'V, a4+ o(1)
where o'V, ta = O(1). O

Lemma A.9. Under Assumptions A1, A2, A8 and Aj:

ﬁcan/VE—la — O(N%)

Proof: Applying the Sherman-Morrison-Woodbury formula to V. ™! and using Lemma A.2

leads to

ﬁcan/‘/afla — ﬁcanlvefla _ BcanlveflﬁmiS(Vf—mlis 4 ﬂmis/‘éflﬁmiS)flﬁmis/VEfla

) +0(1) - [O(1) + O(N)] ™! - o(N3)

N|=

=o(N

= o(N2). O

Lemma A.10. Under Assumptions A1, A2, A5 and AG:

ﬁcan/‘/s—la — O(N%)

Proof: Follow the same steps as those in the proof of Lemma A.9. U

Lemma A.11. Under Assumptions A3 and Aj:

BmiS,‘/s_la — O(N_%)

Proof: Applying the Sherman-Morrison-Woodbury formula to V.~ leads to
gmisty 1, — gmisiy =1, _ IBmis/‘/eflﬁmiS(Vf;lis - gmisty, 1 gmis)=1gmisy; —1,
= Ve (Vi + B Ve 71 B008) 7L gm0y, g
= 0(1)-[0(1) + O(N)] ™" - o(N'2)
= o(N"2). O
Lemma A.12. Let e be a N x 1 random vector with zero mean and covariance matriz V.

Under Assumptions A1l and A3:

[NIE

Bcan/%fle — Op<N )
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Proof: For any random variable X with a finite second moment, we have that X =

0,((E(X?2))2). If X = 81V, e, then

E(ﬁcanlvrefleelv'eflﬁcan) — Bcanlv;flﬂcan — O(N),

and therefore, 4V, "le = Op(N%). Similarly, we can show that g™V, ~le = Op(N%).

Applying the Sherman-Morrison-Woodbury formula to V. ! and using Lemma A.2 gives

ﬁcan/‘/s—le — lgcan/‘/e—le _ Bcan/‘/e—lﬁmis(vf;}is + 5mi5/%_lﬁmis)_16mi5/%_1€

)+ O(N) - [O(1) + O(N)] ™' - O,(N3)

[N

= Op(N

[NIE

— 0,(N2). O

Lemma A.13. Under Assumption A3:

6mis/‘/671€ — Op(Nfé)

Proof: From the proof of Lemma A.12, ™'V, " le = Op(N%).
Applying the Sherman-Morrison-Woodbury formula to V. ! and using Lemma A.2 gives

BmiS/‘/s_le — BmiS/‘/e_le _ Bmis/‘/e—lﬁmib‘(vf—mlis + ﬁmiS/%_lﬁmis)_lﬁmiS/%_le

—_ VanIm (Vf;}ls + BmiS/‘/e_lﬁmis)_lﬁmiS/‘/e_le
)
1

= Op(N72). O

[N

=0(1)-[0(1) + O(N)] 7! - Op(N

A.6 Proofs of Propositions

In this section, we provide the proofs for the propositions in the manuscript.

Proof of Proposition 2

Note that Rit1 — Rppdly — B (fE2 + A — E(ff)) = a + €41. By Chamberlain and
Rothschild (1983, thm. 4) the covariance matrix of £,11 has an approximate factor structure,
and satisfies

var(e) =V, = BmiszmisﬂmiS, + Ve,
where V., > 0 with uniformly bounded eigenvalues, and by Chamberlain and Rothschild
(1983, cor. 2) there exists a vector A™* such that (o — SRSAWIS)V~1(q — gmispmis) jg
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bounded for any N, where ™ is the N x K™ matrix consisting of the K™ dominant
eigenvectors of V. (the eigenvectors associated with the largest K™ eigenvalues of the
matrix V), each multiplied by the square-root of the corresponding eigenvalues. We set

a=q— ﬂmiS)\mis_
We need to show that o/V."'a = O(1) under Assumptions 1, 2, A1, and A3. We use
the definition of a to express o/V. la as
O/Vva—la — (CL + BmisAmiS)lee—l(a + 6m13)\m15)

_ a’Vgla + )\mis /leisl‘/EflﬂmiS)\mis + Qa/‘/eflﬁmiS)\mis‘
The result then follows from Lemmas A.5, A.8, and A.11. ([l

Note that Proposition 2 assumes the presence of at least one omitted systematic risk
factor, that is, K™ > 0. If instead K™ = 0, that is, all eigenvalues of V. are bounded,
then the data-generating process of asset returns with K" factors given in expression (3)

satisfies the assumptions of the classical APT.

Proof of Proposition 3

We use a guess-and-verify method to derive the SDF. We guess that the SDF has the

following functional form
Mgy = B(Mopr) + 5 (fE33 = B(SED) + 07/ (35 — B(S)) + Ceusa,

where b is a K" x 1 vector , b™9 is a K™ x 1 vector, and ¢ is an N x 1 vector. We
identify the unknown vectors b, ™S and c by using the Law of One Price. Specifically,
because we assume the existence of the risk-free asset, to determine the mean of the SDF

we use the condition:

1
E(Mt+1) - Rif-

Next, because \“*" represents a vector of prices of risk of f], we have that

—cov(Myy1, f{) - Rp = A

These K" conditions identify 5°":

1
can/ __ can/y,—1
b - Rf A Vfcan .
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Similarly, A™ is the price of risk associated with factors Iilf, or equivalently,

—cov(Myy1, f115) - Ry = \™.
These K™ conditions identify b™i:

mis/ __ mis/ 1
b Rf )\ meli

Finally, it must be the case that the SDF prices the N assets

E (M1 (Rey1 — Rpdln)) = On.

These N equations identify c:

Taken together

Mt+1 Mﬁ can Mﬁ mlS t+17

t+1 t+1
where
,B,can o 1 can/ can can
MES Rf Rf)\ Vieh (f2% — B(/ED).
B,mis __ mis/ mls mls
1 _
i1 = —ﬁfa/% ferpr.
Pairwise uncorrelatedness (and independence by Gaussianity) of ff", tmis, and e; implies
that the pairwise covariances between M} o Mf M and Mg are all zero. O

Proof of Proposition 4

We use a guess and verify method to derive a nonnegative SDF. We guess that the SDF

has the following functional form:

Mexp,t+1 = exp [M+ + bgran/(fcan (fcan)) + brms/(fmls (fmls)) + C/Jret+1]7

bcan mis

with unknown vectors 1%, and ¢y, as well as an unknown scalar j .

To identify the unknowns and verify our guess we use the following K" 4 K™ + N 41

equations, which are implications of the Law of One Price:

—cov(Mexp,t+1, [if1) - By = A%,
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_COV(Mexp,t+17 ftrflf—li) ’ Rf = )\mis7
E(Mexp,tJrl(RtJrl - thlN)) =0,

E(Mexp,tJrl) = Rfla

The first K" equations imply that
—E(Mexp,t+1(fit1 — E(fi11))) = E(Mexp,t41) - A™,

which, along with Lemma A.1, give:

bc+an _ _Vfcan can

Similarly, the next K™ equations imply that
—E(Mexp, 41 (f115 — E(ff3}))) = E(Mexp 1) - A™,

which, along with Lemma A.1, lead to:

br_]'r_ns _ _mels )\mls

Using the next N equations and Lemma A.1 gives:
On = E(Mexp,i+1(Riy1 — Rpedln))
= E(Mexp,e41(a + FmISAmis | gean yean | gean( goan _ [ poan))
+ B (fET — () + ern))
= (a+ B™SA™S 4 BN E(Mexpt+1) + E(Mexptt1€41)
+ E(Mexpa41 8" (fE3 — E(FE))) + E(Mexp,e1 8™ (f5 — E(f51)))
= (a+ B™EN™S 4 BUNANE(Mexp 1) + Veer E(Mexpi41)
— BOPNME(Mexp,+1) — B AN E(Mexp,t41)
= (a+ Ve )E(Mexp,t+1)-

As a result,

cr = -V, .

Finally, the last identifying condition implies

E(Mexp,t41) = Ry

= Eexplus + bF" (fE1] — E(F2)) + 07 (f3F — E(f1) + cersl)

= eXp [/J,+ + bi_an,Vfcan bi_an/Q + b:l_ﬁS/meis leS/Q + C/_'_‘/ec+/2] .
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Thus,

exp (:U'-I—) — R;l - exp [ _ Acanlvf—m}nAcan/2 _ )\mislvf—mlis)\mis/2 . a/‘/e—la/ﬂ )

Collecting all these results, we obtain

o [,can 3, mis a
MQXP,t+1 - Mexp,tJrl ’ Mexp,t+1 T Mexp,t+1

where

Mgt = By exp [-A™ Vi (F525 — B(UED) = X'Vih A /2)],

M = oxp [N VL (F5 = E(fF)) — AV A" /2)],

M 141 = €xp [—a'V,  eppr —d'V,  a)2).

Pairwise uncorrelatedness (and independence by Gaussianity) of f£3, f and e; implies

. . . 3,can [3,mis a
that the pairwise covariances between M. %y, Moo 'y, and Mg, are all zero. U

Proof of Proposition 5

We start by analyzing the exponent of ngp,t 41- Our goal is to show that
1y —1 1 -1 1y —1 1 Iy —1
—a Vg (Br1 = E[Reqa]) = 5a'Vi"a = —a Ve e — ga'Ve™ a+0p(1).

First, we note that
—d' Vi (Rig1 — E[Rit1]) — %GIVR_IG = —a' Vi ' B (521 — E(£721))
— 'V ' B (T - E(fD))
—a'Vi; 'ern
— %a"/}gla.

We analyze the four right-hand-side terms one-by-one. Applying the Sherman-Morrison-
Woodbury formula to VR_1 and using Lemmas A.3, A.6, A.8, A.9, A.11, and A.12 gives

QIVR—lﬁcan —a'V,"lpgean _ a/%fll@can(vf—cin 4 peantyy 1 geany~1 geansy; —1 gean
_ a/‘/e—lﬁcan(vf;}n +Bcan/‘/€—1ﬁcan)—1vf;in
= o(N%)-[0(1) + O(N)] 7L - O(1)
= o(N"V/?),

a/VR—IﬁmiS — o'V, "lgmis _ a"éflﬂcan(vf?}n + gean’y, —1 gean)—1 gean/y; 1 gmis
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= 0o(N"2)+0o(N2)-[O(1) + O(N)]"L-0(1) =
= o(N'1?),
a'VgletH = d'Vi ey — a/‘/;—lﬁcan(vfzz}n 4 geanty —1geany—lgeanty —lo,
= a'Volepyr +0o(N2) - [O(1) + O(N)] 7L - Op(N?)
= a'Velery1 + 0p(1),
alvR—la —dV, e — aI%flﬂcan(Vf—CE}n 4 geanty 1 geany =1 geanry; —1,

)

N

= @V, Ya+0(1)) + o(N2) - [O(1) + O(N)] L - o(N

=d' V. la+o(1).

We use these results to show that

1 1
— a,V}gl(Rt+1 — E[Rt+1]) — ia'Vlgla = —a/Ve_let+1 — §a'Vé_1a + Op(l),

and subsequently obtain

M2 250 as N — oo

ra
exp,t+1 — ‘exp,t+1

Next, we analyze the exponent of M eﬁxgl ii_l:
i i — 1 mis y mis —1 pmis y mis
_ (/Bmls)\mls)IVRl(RtJ,-l —E(Rt+1)) . 5(,8 A )/VR 1,8 A
— (AT V8 (fE ~ B(fER)
o (,BmiSAmiS)/Vgl,BmiS(fg_if o E(fﬁ-li))
_ (5miSAmiS),Vglet+1
1 mis y mis —1 pmis y mis
— (8™ ) Vi g™,

We apply the Sherman-Morrison-Woodbury formula and Lemmas A.3, A.5, A.6, A.12, and

A.13 to each of the four terms above.
Bmis/VR—lﬁcan — ﬁmis /‘/aflﬁcan o ﬂmis/%flﬁcan(vf—c;n + IBcan/%flﬁcan)flﬁcan/vaflﬁcan
— 6mis I‘/-Eflﬁcan(vf—cin + ﬂcanl‘éflﬁcan>flvf—ca}n
=0(1)-[0(1) + O(N)]7! - 0(1)

=O0(N7Y),

BmiS/VR_l/Bmis — Bmis/‘/a—lﬂmis _ /BmiS/‘/s_lﬁcan(Vf_caln 4 l@(‘/an/‘/e—lﬁcan)—lﬁcanl‘/-s—lﬂmis
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= (Viie +0(1)) +0(1) - [0(1) + O(N)]7H- O(1)

= Vf_mlls + 0(1)7

6miS/VR_16t+1 — 6mis/‘/€—1€t+1 o 5mi5/%_1ﬁcan(vf_cz}n + ﬁcan/%—lﬁcan)—lﬂcanl‘/a—leH_I

= 0,(N"2) +0(1) - [0(1) + O(N)] 7! - O, (N'?)

1

= OP(N_§)7

/Bmis/VR—lﬁmis — IBmisleflﬁmis _ Bmis/‘/aflﬁcan(vf—cin 4 Bcan/%flﬂcan)flﬂcan%flﬁmis

= (Vimic +0(1)) +0(1) - [0(1) + O(N)]T'O(1)

_ 11
- meis + 0(1)

We use these results to show that

is is — 1 mis \ mi —1 Qmis y mi
_(5m15)\mls)/VR1(Rt+1_E(Rt+1))_§(ﬁ S)\ S)/VRIIB S)\ s

. . . 1 . .
_ _)\mls/fomlis (ftrilf o E(fﬁ_lf)) . 5)\m1s/‘/f:nlis>\rms + Op(l)

and subsequently obtain

~rB3,mis [, mis p
Mexp,t+1 — ]\46XP¢+1 — 0 as N — oo.

Pairwise uncorrelatedness (and independence by Gaussianity) of ff2", ff™*, and e; im-

. . . B,can B, mis a
plies that the pairwise covariances between M/ 5\ 1, M7y, and Mg, are all zero.

The same remains true for the projected versions, MZ

epir1 and MP™s - thanks to the

exp,t+1-

asymptotic-in-IN equivalences proven above. [l

Proof of Proposition 6

Define g; as the vector of some observable variables representing missing factors in the
candidate model and collect its values for each t in a matrix G = (g1 ---gr)’. Likewise,

define F™is = (fmis... fIis)’ For each ¢, collect the values of the systematic component

IOg(Mi’g;L) of the admissible SDF in a vector log(Man"s) = (log(M(i’g?if) e log(Mi’gli;))’.

Then, the R? of the regression of log(Mg(’g? ;S) on an intercept and the vector g,

log(MOY) = o + 71g¢ + ur,
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is

R WG (I =10/ TG
T log(Meip™) (In — 1717/ T) log(Mig™)

where 41 = (G'(Ir = 1713/T)G) ™' G/ (Ir — 1717/T) log(Mezp™).
In Proposition 5, we showed that

NP ) ) . 1 . ,
log( ML) > —A™ Vol (5 — (D) — oA Vah A

For simplicity, we set My, = It — 171,./T and, given that M;, 11 = Opxr, we obtain

1 (G M G) T G Mg (F™ — 17E(fE5 )V, i A

— _(QFmiS/MlTFmiSQ/)ilQFmis/MlTFmiSVf_mliS )\mis
_ N—1y,/—1 ymis

The limiting behavior of the numerator of R; is as follows

’Yi(G/MlTG)’Yl L )\mislvf—mlisQle(FmisIMITFmiS)Q/(Q/)fl Vf_rnlls )\mis

= NSV L (FS My FPS)V G A™E, when N — oo,

The limiting behavior of the denominator of RS is as follows

log(ME™Y (I — 1017 /T) log (M)

exp exp
L} )\mis/V—f—mlis (Fmis _ 1TE(ftriif/))/MlT (Fmis _ ]‘TE(ftril]S_/)>Vanlls )\mis

= ATV L (FS My FRS)V G N™S, - when N — oo,

Given that the limit of the numerator equals the limit of the denominator, Rg 25 1. The
proof of the case of G being orthogonal to F™&, that is, when G'(Ir — 1p15/T)F™s =

0 gemis o gemis, 18 straightforward, and therefore, omitted. O

Proof of Proposition 7

The equilibrium process for asset returns, given by (2) and (24) is

Ri — Rf = ,BZ(E(Rm) — Rf) + a; — B,-am + biY + ;€.

o6



We posit that the SDF M has the following form,

N
M=¢+xY +) G,

=1

where &, x, and (;, i = {1,..., N}, are determined using the NV + 2 equations for the Law

of One Price:

E[M(Bn1—Ry)] =0
E[M(R; — Rf)] =0, for i={1,...,N},

where, from (3) and (11) in the manuscript,

RN_H:Rf—l—’yb—l—Y.

From expression (Al), we get

1
£=—.
f
From expression (A2), we get
L
=%
From expression (A3), for each i = {1,..., N} we have

EBi(E(Rm) — Ry) + &(a; — Biam) + xBi + oy = 0.

As a result,

1 Bi(E(Rm) — Ry) + a; — Biam — biyb
¢= T ) :
f 0

Recalling that
N
Rm = Z l’iRi
i=1

and using (2) and (16) from the manuscript, we obtain

N N N
R, — Rf = Z xz(’yblb + ’yxia?/qi) + Z z;0;Y + Z €X;0;€;
=1 =1 =1

N N
= yb% 4~ Z x707 g + bY + Z Ti0G€j.
i=1 i=1

o7



From the last expression, we obtain
N N
bY = (R, — Ry) — vb? — 'yZm?J?/ql- — inaiei.
As a result, the SDF is

1 y 2
M= — ——— | (Rn— Rp) =0’y =7 _ai0}/qi— ) wioi€;
Ry Rf< ; Z

1 ZNJBZ — Ry) + ai — fiay —binb_
o; v
Grouping together similar terms, we obtain
1 i 2y aiota oy
M=— = ——(Rn—R
By < Rf Ry Rf( 2
1 al Bi(E(Ry) — Ry) + a; — Biam — biyb — ’Y%Ufe'
Rf i—1 ag; A

Finally, we use expressions (22) and (24) in Merton (1987) to simplify the loading of M

on ¢; and obtain

1 (@(E(Rm—Rﬂm
Ry =

— Biam — biyb — wm?) 1 N o

op)

Ry o

Using demeaned returns on the market portfolio as a factor in the SDF, along with
expressions (15), (19), and (24), we obtain
N
1 a; 1 (E(Rm)— Ry)
=—— — ————— (R, —E(Rn)).
Z( 6>+Rf Ry var(Rm) ( (Fim))

Ma M5B

As the number of available assets increases, that is, N — oo, then
bib+ 0 bib b

ﬁi b2+Zzl zio %ﬁ:37

N N
(1-gq
am:inai:Z:ci(l i)A; = Z’me 2 Z) — 0,
=1 =1

N N
Ccov ( E (lZZ‘O'Z'Ez‘,Gi) = E z;o; — 0.
i=1 =1

Thus, given N — oo, we have: (i) 8; — b;/b, (i) an, — 0, and (iii) the market return is
asymptotically orthogonal to all unsystematic shocks, ¢;. Making these substitutions gives

the results in (17) and (18). O
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A.7 Estimation

We start this section, by listing a number of identifying restrictions that we use to fix the
rotation of latent factors ftrilf omitted in an arbitrary candidate model. Next, we show how

to estimate the model of asset returns.

A.7.1 Identification conditions

The identification of the loadings of asset returns on the missing factors in a candidate model
is unique up to a rotation. Thus, at the estimation stage, we need to impose identifying
restrictions. Denote f€" (f™) a matrix T x K (T x K™B9) that collects candidate
(missing) factors column by column. Combine these matrices in a T x (K + K™$) matrix
f = [f, f™s]. Note that the rotation of this matrix is defined by a squared invertible
matrix of a dimension (K¢ 4 K™) x (K0 4 K™) and therefore, the rotation is pinned

down by (K" 4+ K™$)2 parameters.

At the estimation stage, we impose the following (K 4+ K™i$)2 identifying restrictions

to fix the rotation:

e The first K" columns of the rotation matrix are fixed because " includes factors
that are observable. This is equivalent to K ¢ (K" 4 ™) restrictions being imposed

already.

® Vimis = Igmis introduces K™S(K™S 4 1)/2 restrictions. We also assume that the
latent factors ftrff have positive means to identify the latent factors uniquely rather

than up to a sign.

e [MiS/BMis i 4 diagonal matrix that is equivalent to imposing (K™ — 1) K™ /2 restric-
tions. We also introduce an order restriction that requires that the diagonal elements

of the matrix S™S/3™S are in decreasing order.

e Candidate factors ff®} are pairwise uncorrelated with missing factors f/%%, which is

equivalent to imposing K" K™ additional restrictions.

A.7.2 Parameter estimates

Proposition A2 (Parameter estimates). Suppose that the vector of asset returns Ryiq

satisfies the data-generating process in equations (1) and (10). Without loss of generality,
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assume that f1 are tradable factors in the form of excess returns on investment strate-
gies (if any candidate factor is not tradable, we use its factor-mimicking portfolio, as in
Breeden, Gibbons, and Litzenberger (1989)). Assume that the number of missing factors in
the candidate model, K™, and the no-arbitrage bound Oapt are known, and that the sam-
ple covariance matriz of candidate factors Vfcan =M fean — fean fean’ s nonsingular, where

Myean = T7E 0] fean fean!and foon = T=1S°0 | f840. Then:

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier & is greater than zero, the

estimators of B, \™S and a are
VeC(BCan) = (Mfcan ® INxN — fcanfcan/ ® é)—l . vec (MRfcan — G(R — Rle)fCan/)7
(A4)

3 mi Amis’ 77 1 Amisy—1 pmis'yr ~1 [ B D Acan § can
\mis (IBmlsV; 5m18) 16 ‘/;: (R—Rle—,B b )7 and

1 _ _ ~ ~ A A
no— . 1y — [geanican _ rnls/\mls)7
“ k+1 (R Fyly = B
where
R 1 K N Ay A ] A oA —1]
G = I mis / Qmis V. mis\—1 Qmis V.
RSB A A A I A

‘}E _ BmisBmis’ + ‘}67

T
R 1 .
Mpgean = § (Re — Rpr—11n) fi™,
t=1

1< 1 <&
R=-S"R d Rr==S Ry
g2 e and Ry =g R

The estimators \°*® and V]?an coincide with the sample mean and sample covariance

of the factors ff*". The estimators Bmis gnd V. do not admit a closed-form solution.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies & = 0, it is possible
to estimate only vector o = S™SA™S 4 g but not its components, a and TSNS,

separately. The estimator of « is

G = R—Ryly — feniem, (A5)

The estimator of vec(B") is given by expression (A4) with & = 0. As in case (i),
the estimators X" and Vfcan coincide with the sample mean and covariance of the

factors ff*, while the estimators Bmis and V. do not admit closed-form expressions.

60



Proof. We consider the two cases, k > 0 and k = 0, separately. First, suppose that x > 0.

Differentiating the penalized (scaled) log-likelihood function,

K _ 1 1
log L,(©) = — 5 (a'V:""a = Gupe) — 5 log(|Vel) — 3 log([Vyen)

1 T-1 1 T-1
- gp D etV e — g DU~ EURY Vb Gt - B
t=0

where €41 = Ryy1 — Rpply — a — fmiSAmIS — geanycan _ gean( gean _ [ f£1)). For ™IS and
a, we obtain the following K™ 4+ N equations:

mis/ 17 —1 o mis’{/—1 gmis  gmis’y—1 {mi
(7 (A= R —penae) = (PR U5 )

From the APT no-arbitrage restriction, AmiS and @ are identified separately (given that
k > 0). In fact, the above system of linear equations can be solved because the matrix
premultiplying the vector (A™#’, ')’ is nonsingular for every & > 0, leading to the closed-

form solutions:

Xmis _ (5mis/%—lﬂmi5)—15mi5/%—l (R _ Rle o BcanAcan>’ (AG)
A 1 B, D canycan _ omisymis
a_,%+1(R_Rf1N—5 A GInATE). (A7)

Recall that the candidate factors ff*" represent excess returns on tradable investment
strategies, that is, E(ff*") = X®". Thus, taking the first derivative of the log-likelihood

with respect to A" results in

1 T
can _ f Z ftcan-
t=1

Similarly, the first derivative of the log-likelihood with respect to Vfcan gives

T
. 1 .

can can )\can can Acan /.
Lf -7 ;1 (f )

Next, we take the derivative of the penalized (scaled) log-likelihood function with respect

to k and obtain:

D _ D 1y — [@canycan _ mis)\mis/ —1(p _ D 1N — [Bcan)can _ mis)\mis 1/2

R =
5apt

Note that when x > 0, the first-order condition implies that a’'V."'a = Oapt-
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Finally, we consider the first-order condition with respect to the generic (a, b)th element

of g1, denoted by %" with 1 <a < N, 1 < b < K" and obtain

1
T

_op=" can) —0,

can /1
0 ab

S (Re— Rypoaly = pmisams — a — feon pean) v

t=1

which can be rearranged by stacking together the first-order conditions as

MRfcan _ (a + /BmiS)\miS)](_‘C&H/ B Bcaancan = Op x fcan. (AQ)
Next, define
1 R is / pmis —1 pmis\—1 pmi —
G = . IN+ Bmlb(ﬁ 5/‘/8 16 S) lﬁ S/‘/e 1’

(R+1) (k+1)
and use the formulas (A6), and (A7) to rewrite equation (A9) as follows

Bcaancan o GBcanfcanchan/ — MRfcan _ G(R - Rle)fcan/'

Then, we take the vec operator and solve for Bcan to obtain

vee(Bm) = (W pem © Iy — 0 Fo/ 0 G) " ovec (Mg pem — G(R — Rely) f) (A10)

It is important to note that the solution for Bcan exists because the matrix

Mfcan ® IN _ fcan fcanl RG = (Mfcan _ fcan f_canl) ® IN 4 f_can f_can/ ® (IN _ G)

is nonsingular. The nonsingularity follows because the matrix (M fean — fean fean’y @ [ is
positive semi-definite, given that M pean — fean fean’ ig the covariance matrix of f**, while
the matrix " fean/ @ (I — G) is positive semi-definite, because Iy — G is semi-definite

as shown below. Specifically,

_ _ _ 1 o R mis/ pmis/y—1 omis\—1 omis/y,—1
In=G=Iy = gy = () BV )

_ R mis/ gmis/ys—1 pmis\—1 pmis/y,—1

= (75 Uy — (st gy~ gmisry )

_ R —1 _ y/—1pmis/ pmis/y,—1 pmis\—1 pmis/y,—1

= (g Vvt = Ve s (g g T gy

_ R 71% o 71% mis/ pmis/y,—1 pmis\—1 pmis/ 71% 71%
= (g VRV )3 (I = (VB (8 v By i (V) 3) (V)

is the product of the positive-definite matrices IN—(VE_I)%ﬁmis(ﬁmis’%_lﬁmis)_lﬁmis "(voh 2

Ve, and (Vs_l)% The first matrix is positive semi-definite because it is a projection matrix.
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Next, we plug expression (A10) for 3% into expressions (A6), (A7), and (A8) for Amis

a, and &, respectively, and obtain
Xmis — XmiS(/Bmis?‘/e)’ d:&(ﬁmis,‘/e)? and & = R(ﬂmis7‘/€).

We substitute these expressions together with Bean = Bcan(ﬁmis, Ve), into L,(©) to obtain
the concentrated log-likelihood function, which is a function of only A™S and V,. We
maximize the concentrated log-likelihood numerically, thereby obtaining Bmis and V., which

also imply the optimal values of the other parameters.

Now consider the case in which the Karush-Kuhn-Tucker multiplier is zero: x = 0. In

this case, a feasible solution to the optimization problem satisfies a'V. la < Dapt-

The first-order conditions with respect to A™° and a imply the following system of
K™s + N equations

(Y (- - o) (U

Iy s Iy a

The matrix
( /Bmis/‘/g—.lﬁmis Bmis"/s—l )
i I
is of dimension (N + K™) x (N + K™) but of rank N, and therefore it is noninvertible.
As a result, we cannot separately identify a and A™#, implying that if K = 0, we can only
identify the sum: a + B™S\™S. All the other parameters of the vector © are identified
separately, and their expressions follow from differentiating the log likelihood and solving

the resulting first-order conditions. For instance, the formula for Bean follows by setting

G = Iy into (A4).

When both cases, k > 0 and k = 0, are feasible, we choose the one under which the

log-likelihood L, (©) is larger. O
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Internet Appendix

This appendix generalizes a number of the results reported in the main text. It also provides

detailed information about the data used in our empirical analysis.

IA.1 The SDF with Nonorthogonal Components

In the main text of the manuscript, we assume that the candidate risk factors fi] are
orthogonal to the missing sources of systematic risk fm1S and unsystematic shocks ez .
This assumption is without loss of generality because if the (observable) systematic risk
factors f%% that the candidate model omits are in fact correlated with f{2%, there exists
an observationally equivalent representation of the SDF M1, such that factors fii] are
orthogonal to some latent sources of systematic risk (residuals from an orthogonal projection

of omitted observable risk factors onto the candidate factors).

In particular,

1 can can can mlS mls mis
Mg = Ff F O (FE = E(FE) 4+ 0™ (IS — E(ITE)) + e

];‘f + bcanl(fcan (fcan)) bmls/(fmls (fl’nls)) + C/et-i-l (IAl)

where @ = cov(f, fmls’ ) is a K" x K™ matrix of covariances and
- . .
bCaﬂ — bCaH + VfcanQbInIS’

fmls (fmls) _ (fmls (fmls)) . Q/VfCaﬂ (fCal'l (fcan))

Notice that by construction cov(f, fmls’ ) = Opcany grmis, because fmls represent the
linear-projection residual from projecting fmls E( fmls) n fe —E(f£). For some appli-
cations, the representatlon (IA1) of the SDF M4 that is based on correlated systematic
factors fi1 and f}1'} is more useful. For example, this would be the case in an exercise of

quantifying prices of risk associated with non-tradable risk factors.

We now show how all our results can be generalized to allow for the case of correlated

observed and missing factors.

Proposition IA.1 (SDF: Correlated case). Under Assumptions 1 and 2 of the APT, there
exists an admissible SDF of the form

1 n n n mi mi mi
Myyy = R O (R — E(fE)) + 0™ (S — E(fY)) + Cer,  where

1 -1
can/ _ [ _ _— ycan/y/—1 mis / o
peens = < 7 Vi Ly QY ) (I = QVELQVEL)
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-1
mis/ __ mis - can/ -1 -1 . . _ 01 -1
b - ( Rf A Vfrms + R )\ fean QV mis) <IKH“5 Q Vfcan QV lTllS) )

1 _
CI = —?fa% 1.

Proof. We guess that the SDF has the following functional form

Mt—|—1 — Et(Mt+1) bcan /<fCaIl (fcan)) bmlsl(fmls (fmls)) _"_ C/et_i'_l’

where b°" is a K" x 1 vector, b™8 is a K™ x 1 vector, and ¢ is an N x 1 vector. We
identify the unknown vectors b°®®, b™ and ¢ by using the Law of One Price. Specifically,
because we assume the existence of the risk-free asset, to determine the mean of the SDF

we use the condition
1

E(Mt+1) — Ri‘f

Next, because \°*" represents a vector of prices of risk of ff} we have that
—cov(Myy1, f11) - Ry = X
These K" conditions identify 5°":

bcan / /\C&n /V—

mis/
Rf fcan - b Q fcan (IA2)

Similarly, A™ is the price of risk associated with factors erlf, or equivalently,
—cov(My41, ftmﬁ) "Ry = s
These K™ conditions identify b™:

mis/ __ mis/y,— can/
b = Rf/\ Ve = 0 QV L. (1A3)

Putting together expressions (IA2) and (IA3), we obtain

-1
can/ __ can/ = mis/ _
b — < Rf )\ Vfcan + Rf )\ mem Q Vfcan) <IKCan Q fnni Q Vfcan) ,

mis/ __ mis _©— ycan/y,/—1 -1 . -1 -1 B
b — < Rf )\ mel“. + Rf )\ Vfcan QV mis) (IKH“S Q Vfcan QV mls)
Finally, it must be the case that the SDF prices the N basis assets:
E(Miy1(Riy1 — Rpdln)) = On.

These N equations identify c:

/:_7 V 1
Cc Rfa

To derive ¢, we used expressions (IA2) and (IA3). O

Next, we provide a non-negative SDF.
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Proposition TA.2 (Nonnegative SDF: Correlated case). Under Assumptions 1 and 2 of
the APT and the assumption that returns Rirq1 are Gaussian, there exists an admissible
SDF Mexp,t—l—l

B,can B,mis
Mexp,i+1 = My 11 ¥ MXp 41 X My where

1 1 1 ~
ngc)?tlll Rf exp <bcan(fcan (fcan)) _ §bc+anlvfcan bgran/ _ 5bim /QleS)
1 . ; 1 :
Mig};il = exp <brnls(frnls (fmls)) _ §b$IS/meistIS/ _ 2bi&l’l/le’j}lS>
a -1 1 1y —1
Mep 41 =e€xp | —a'Vo ey — Ea V. ba |, where
pean’ _ (_Acan/‘/fCan + )\mlslvfmlsQ Vv Can) (IKcan -Q fmlSQ V Can)

bI_fiS/ == (_AmiS/meis + )\C&n,szanQV:ﬂlis) . (IKmis - Q Vf?anQV?nlls)_l

Proof. We use a guess and verify method to derive a nonnegative SDF. We guess that the

SDF has the following functional form:
Mexp 1 = exp [y + bE (I — E(FR) + 03 (FET — E(fE)) + cpern],

with unknown vectors b$*", bﬂfis, and ¢4, as well as an unknown scalar p,. To identify the
unknowns and verify our guess, we use the following K" + K™ + N 4 1 equations, which

are implications of the Law of One Price:
— cov(Maxpern, ) - Ry = X0,
— coV(Mexp i1, f113) - Ry = A™S,
E(Mexp,t+1(Ri+1-Rp1y)) = 0
E(Mexp,t—i-l) = Rfl-

The first K" equations imply that
—E(Mexp,t+1(fifh — E(fi1))) = E(Mexp,t41) - A",

which along with Lemma A.1, give
Viean (bE™ + Viean QUE®) = — A", (IA4)
Similarly, the next K™ equations imply that
~E(Mexp,t41(f57 —E(f131))) = E(Mexp+1) - A™,
which, along with Lemma A.1, lead to:

Vimis (1" + Vo QDTS) = =A™, (IA5)

fmls
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Taken together expressions (IA4) and (IA5), we obtain
bi_an/ = (—Acan/VfCan + /\mIS,melsQ Vfcan) (IKC&H Q fmlsQ Vfcan) )
D™ = (=A™ Vs + AV QVk) - (Igmis — Q'Vieha QV i) ™
Next, because the SDF prices the N basis assets, which, given Lemma A.1, leads to
C/ - _ a/Ve_l.

Finally, the last identifying condition implies
E(MeXp,tJrl) = Rf_l
= E(explus + b3 (I — E(f31) + 037 (F5 — E(FIED)) + pern))

= exp (ig + (b + Vieda QUS) Vican (b5 + Vieka QUTS) /2 + bV yis b5 /2 + ¢ Ve /2)

= exp(fig + b Vycan b /2 4 U Vs U5 /2 + 'V, a /2 + b7 QUY™S).

In the last equation, we use Vimis = Q'Vf;}nQ + Vimis, where fi] and f % are orthogonal,
and ¢ = —a'V;71. As a result,

exp(py) = Ry - exp[—b5" VieanbT" /2 — b7 Vymisb™ /2 — o'V, a /2 — 69 QOYS). O

Next, let us introduce the projection version of the SDF Meyp, ¢41. First, notice that we

can express this SDF as

1 1 1 . . 1 .1
Mexp,t+1 = R exp (M1 — §m) R, cexp (m "+ m T 4 mi - imﬁ’can - imﬁ’mls —5m"),

where

mtﬁ_:Ian bcan/(fcan (fcan)),

e — pmis( pmis _ g ( pisy),

mé, = —ad'V, ey,
m A = b VyeanbP" + BEM QUL
m/PS = RSV DS 4 b QDT
m® = d'V, ta.

Second, set X1 = (Riy1 — Rely — p) with pp = E(Ri11 — Reln), fir = ( can/ - fmis/y! - and
B = (B2, B™i8) and notice that Vi = SV + V, with V = ( Vchj‘“ mes )
Finally, define the projected non-negative SDF as

~

1 R 1.
Mexpt+1 = Ef - exp <mt+1 — 2m> ,  where
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A / ;-1 . Bean | . Bmis |
i1 = E(me1 Xy ) (B(Xe1 Xypq) ™ Xepr =y +mpy +myyy,  where

M = B [Viean 850 + Q™S Vi Xypy = b8 (Viean, Q)B'Vg' Xy,
mtﬁirr?is — br_lr—lis/[Qlﬁcan/ + meisﬁmis/]vR—lXHl — br—ir—liS/(Q/’ V;nis)ﬁlvR_lXt—s-l
iy = VeV ' Xey1,  and
i = P S
> = b (Viean, Q) B'Vig ' B(Viean, Q)'BF™ + bF™ (Vipean, Q)B'Vig ' B(Q', Vymie ) U,
P = B (@) V)V QL V) B 4 B2 (Vi QUBVi B(Q. V) ™
m® = V.Vy 'Veey.
Under the assumptions of Proposition 5, we have
Vo Vitern 2 e,
VeV ' B = Ocan y pemiss
B'Vitern 2 0pceany gomis,
B’VR_I,B Lyvl as N — .
Given these results, we show that
gt = [bF (Vyean, Q) + 1/ (Q', Vimis)|B' Vi ' B(frr1 — E(fig1))
+ b (Viean, Q) + b7 (Q', Vimis) |8’V ers1 + < VoVE ' B(fra1 — E(fir1)) + ¢, VeV terin

> b (Vyean, Q) + 05(Q', Vimin) [V (fre1 — E(fo1)) + pevia

can mis Vean — can mis
= (b, ) ( é/ ngs ) V7 (fir = E(fir1) + e = OF™,07) (frr1 — E(fi41))

= B (f — BSED) + V(S — B(E) — 'V levn = g, as N oo

Similarly, ﬂ'Vglﬁ Ly v1las N = implies 7n/f-can SN mpBean  ppBmis SN mPmis
and me - m®, as N — oo; thus, yielding m SN m, as N — oco. Taken together that

Mit1 N mi41 and m SN m, as N — 0o, we obtain Mexp 141 LN Mexp i1, as N — o0.

Note that because fi} are observable factors, in empirical work we may use the exact

component mfff "+ mPea rather than its projected counterpart mfffm + mPcan,

IA.2 Estimation of the APT: The General Case

We now explain how to estimate the APT allowing for both tradable and nontradable

factors, and for both asset-specific pricing errors and pricing errors arising from omitted
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systematic risk factors. Assume that
Rigs — Rpgly = a+ B7SA™ 4 B 4 fm, — E(fE0)) + G5 f5 + 2, with

a=a-+ BmiS)\mis’ €41 = ﬁmls(fmls (fm1S)) + ettt

where 5" = (67", B5*"), Vi = var(fi+1), fi+1 = (fleers foi41)s with fie41 denoting the set
of K{*" nontradable observed factors and f5,,; the set of K§*" tradable observed factors,
expressed as excess returns, with K" = K" + K5*". We assume that the missing factors
are uncorrelated with the observed factors.?? Given that f5i™ are excess returns on tradable
assets, their risk premia satisfy A§*" = E(f§") and, to avoid confusion with the risk premia

of the nontradable assets A\{*", we will use the expectation formulation for A§*".

The joint log-likelihood function takes the following form:

~ 1 ~ 0~ ~

L(Q) — _5 log(det(ﬂmlsﬁmls/ + V;a)) (IAI)
T

o i <R — Reln — 5ﬁﬁsj\mis — - can()\can + fcan o ( can)) _ pcan Can)l

o 2 t — Lyl 1t 2 J2

TN 7\ — mis ) mis ~ can/ycan can can Qcan pcan
% (ﬁmlsﬁmls + Ve) 1 <Rt — thlN — [mis )\ — ﬁ ()\ + f ( )) 2 2t >
1 & so1,, -
- = log(det Vi) ~ 97 Z Vi (fe — E(f)-
t=1

Without loss of generality, one can assume that the missing factors have unit variance, that

is, var(ff%) = Ijmis, achieving identification of ™.

Proposition IA.1 (Parameter estimation of APT: General Case). Suppose that the vector

of asset returns, Ry, satisfies Assumption 1 and that M fgan — fan fean’ s nonsingular, where

]\4]02Can — 1215 1fcan can/ and fé:an — 1Zt 1 Can' Then

0 = argmax L(é) subject to EL’VE_IEL < Japt,
0

where L(0) is defined in (IA1), and § = (d/, )\ﬁlisl, Noan/ o fean)y [ feany/  yec(Bmis),
vec(3<n)', vech(V.)', vech(V})')'.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies k > 0, then setting
D= (IBmis’ 5fan)’ A= ()\mis/’ )\ian/)/
and using ® to denote the Kronecker product,

~ ~ _ _ ~\—1 ~ A =
vec(Bgan) = <(Mf2can & IN) — (fé:anfé:an/ & G)) vec (thgan — thzcan/)7 (IAQ)

2The estimator can be extended to the case of correlated observed and omitted risk factors; details are
available upon request.
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X:(D’V;lf))’lﬁ’ﬁg (h IBcan can)7

G = (h ﬁcan Fcan ﬁj\)
kR+1 ’
where v — Igfnisﬁr;ljs/ + V;’ thgan _ -1 Zt h can/ h=T1"1 23:1 hy with hy = Ry —
Rfl]v Bcan( can __ _fan) and flcan —_ -1 Zt . ff?n;
A 1 I3 DDV L1
G=—In+——DDV.  D)'DV. .
e a2t ) :

Note that D = (Bﬁ‘is, B and V, do not admit closed-form solutions, and, as before, E(f;)

and Vf coincide with the sample mean and sample covariance of the observed factors, fi.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies k = 0 one can

estimate only ay = a + DX but not the two components separately, and one obtains

Lgcan, r£can

anmrc=R— Rply —

9

in which the expression for vec( Ag"m) can be obtained by setting & = 0 in the terms that

appear in (IA2). The expressions for ]E(ft) and Vf are unchanged, and, as before, the

expressions for the estimators ofD and V, do not admit a closed-form solution.

Proof. Within this proof, for simplicity, we do not use the - notation to denote feasible

parameter values.

Defining by 6 the MLC corresponding to 4 = 0, this is unfeasible whenever we have that

a Vg_ld > Oapt- Similarly, case & > 0 is unfeasible whenever,
_ N Y .

(R — Rply — 5™ fsm — D A) V.o (R Rely — B5 fen — D A) < Bupt,

[R_Rle_Bgan b x} v [R—Rle—Bgan fen—b x}

6apt
feasible, the optimal value for the Karush-Kuhn-Tucker multiplier will be greater than zero

because (1+&)% = . When both cases are

or equal to zero, depending on which case maximizes the log-likelihood, namely depending

on whether L(f) or L() is largest, respectively. Note that when & > 0 then &’Vg_ld = Oapt

by construction.

We now derive the expressions for the estimators. Assume for now that case # > 0 holds.
Differentiating the penalized log-likelihood with respect to A, a, and s, the first K* + N
equations, setting K* = K™ + K2 (after some algebra) are:

(70 )rmmn ) = (700 P

Q> >
N—
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where, recall that V. = Bmisﬁmisl + Ve, and noting that all the expressions above and below
are left as function of the feasible values for V. and D (as opposed to their MLC values).
Because of the APT restriction, A and a can be identified separately, as long as £ > 0. In
fact, the above system of linear equations can be solved because the matrix pre-multiplying

X and @ is nonsingular for every & > 0, leading to the closed-form solution:

A= (D'V."lD)" LDy (R Rely — pg Can), (1A3)
~ 1 can can 3
i= (R Rely — 65 DA). (TA4)

Turning now to the first-order condition with respect to the generic (a, b)th element of
BanmLc, denoted by Bagp with 1 <a < N, 1 <b < K§2", one obtains
1 T

. . /
T Z (Rt _ thlN _ /BmIS)\mIS —a— can()\can + fcan _ can) ;an é:tan) ‘/E—l(
t=1

aﬁcan
8-BZab

5" = 0.

Inserting (IA3) and (IA4) into the above expression, setting M feanpean = 1/T Zt | fipn fsand

1 i
=—— Ivn+——DDV. 'D)y"'D'Vv.!
G (;%+1)N+(;%+1) (DVe""D) €

and rearranging terms, yields

B;aancan _ Gﬁgan é:an rcan/ MRfQCan _ G(R Rfl ) rfcan/ Can(Mfcanfcan _ {:an Canl)’

which can be rewritten more succinctly as
ca; /
Z f3£"9¢ = Oganxn,

with ¢ = (ht — Gh— 353“ gan 4 Gﬁgan Can) Taking the vec operator and solving for Bga“

gives the desired expression in (IA2).

We need to show that a solution for ﬁcan exists. This requires one to establish that the

matrix <(Mf§‘"‘“ ® In) — (f5 fs' @ G)) is invertible. This matrix can be written as

(g @ Iy) = (5 5™ @ G) ) = (Mg 5™ J5™) @ In) + (f5™ F5™' @ (In = @) )

Given the assumptions made, the first matrix on the right hand side is nonsingular. One
then just needs to show that the second matrix is positive semi-definitive, which follows

from the proof of Theorem A2.
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can

Therefore, plugging 35" = 5$(D, V,) into A and &, and then X into @, one obtains that
3san = Bsan(D, V), A = M(D,V.), a=a(D,V.) and &= #&(D,V,).

Substituting them into L(0) — r(a’Vz " a — Sapt), gives the concentrated log-likelihood func-
tion, which is a function of only D and V. and it will be maximized numerically to obtain
D and V.. Observe that the penalization term vanishes for the concentrated log likelihood

function for both £ =0 and & > 0.

Q>
N———
I

(ii) Suppose now that # = 0. One can clearly obtain a unique solution for (D, Iy) (

DX + a. However, to solve for X and @ separately, one needs to invert the matrix

D/‘/E_l _ D/‘/;-_lD D/‘/;-_l
( Iy >(D’IN)_( D Iy )

which is not possible because it is of dimension (N + K*) x (N + K*) but of rank N, because
the left-hand side shows that it is obtained from the product of two matrices of dimension
(N + K*) x N. Thus, only the sum DX + @ can be estimated. However, all the other
parameters are identified and their expressions follow from differentiating L(6) and solving
the resulting first-order conditions. For instance, the formula for Bgan follows from setting
G = Iy into (IA2). O

IA.3 Data description

To examine which economic variables may explain variation in the SDF, we collect a set of

457 traded variables and 103 nontraded variables.

The set of traded variables contains:

e 205 factors from Chen and Zimmermann (2021).

e 153 factors in the Global Factor Dataset from Jensen, Kelly, and Pedersen (2021).

e 55 factors from Kozak, Nagel, and Santosh (2020).

e 35 factors from Bryzgalova, Huang, and Julliard (2020), and the sources of these
factors are specified in their Internet Appendix. Their dataset contains a list of 51
variables, 34 of which are traded. We have one additional factor because we consider

two versions of SMB, one from FF3 and the other from FF5.
e We add the following 9 factors:

— Industry-adjusted value, momentum, and profitability factors; intra-industry
value, momentum, and profitability factors; profitable-minus-unprofitable factor

from Novy-Marx (2013), available from http://rnm.simon.rochester.edu.
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Expected-growth factor of Hou, Mo, Xue, and Zhang (2021), available from
https://global-q.org/index.html.
Up-minus-down (UMD) factor from the AQR data library, available from https:
//www.aqr.com/Insights/Datasets.

The set of nontraded variables contains:

e 53 factors from Bryzgalova, Huang, and Julliard (2020), and the sources of these are

given in their Internet Appendix. Their dataset contains a list of 51 variables, 17 of

which are nontraded. Below we explain how we get to 53 variables.

For indices of financial uncertainty, real uncertainty and macroeconomic uncer-
tainty, we consider time horizons of 1, 3 and 12 months. We use these variables
in levels and also consider the AR(1) innovations of these variables, for a total
of 18 variables.

For the investor-sentiment measures of Baker and Wurgler (2006) and Huang,
Jiang, Tu, and Zhou (2015), labeled as BW_INV_SENT and HJTZ_INV_SENT,
respectively. We consider both the orthogonalized and non-orthogonalized ver-
sions. We use these variables in levels and also consider AR(1) innovations of
these variables, for a total of 8 variables.

For other persistent variables, such as the term spread (TERM), change in the
difference between a 10-year Treasury bond yield and a 3-month Treasury bill
yield (DELTA_SLOPE), credit spread (CREDIT), dividend yield (DIV), price-
earnings ratio (PE), unemployment rate (UNRATE), growth rate of industrial
production (IND_PROD), monthly growth rate of the Producer Price Index for
Crude Petroleum (OIL), we look at both levels and first order differences, for a
total of 16 variables.

Real per capita consumption growth on nondurable goods and services both sep-
arately and jointly. We also include the 3-year consumption growth (nondurable
goods and services) together with its AR(1) innovations, for a total of 5 variables.
Inflation, computed as the log-difference in the price index corresponding to
both nondurable goods and services, and its AR(1) innovations, for a total of 2
variables.

The level of the intermediary capital ratio and its innovations, for a total of 2

variables.

The level of the aggregate liquidity factor and its innovations.

e The first 3 principal components and their VAR(1) innovations for the 279 macroeco-

nomic variables from Jurado, Ludvigson, and Ng (2015), for a total of 6 variables.
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The first 8 principal components and their VAR(1) innovations for the 128 macroe-
conomic variables from the FRED-MD dataset of McCracken and Ng (2015), gives a
total of 16 variables. We obtain these macro variables from https://research.
stlouisfed.org/econ/mccracken/fred-databases and use the data vintage for
February 2021. We exclude four variables, ACOGNO, ANDENOx, TWEXAFEGSMTHx,
UMCSENT, which have missing observations at the start of the sample.

Consumer sentiment and its first-order differences.

Market-dislocation index of Pasquariello (2014), its first-order differences, and AR(1)

innovations.
The disagreement index of Huang, Li, and Wang (2021) and its first-order differences.

The Chicago Board Options Exchange (CBOE) volatility index (VIX) available on
the website of the CBOE, its first order differences, and AR(1) innovations.

The U.S. economic policy uncertainty index (EPU) of Baker, Bloom, and Davis (2016)
and the equity market volatility (EMV) tracker of Baker, Bloom, Davis, and Kost
(2019), which are available from www.policyuncertainty.com. For both indices, we

also consider their first-order differences and AR(1) innovations.

The U.S. business-confidence index, the U.S. consumer-confidence index, and the U.S.

composite leading indicator from the OECD library.

The coincident economic-activity index and its first-order differences, downloaded

from https://fred.stlouisfed.org/series/USPHCI.

The NBER recession index, downloaded from https://fred.stlouisfed.org/series/
USREC.

The TED spread, downloaded from https://fred.stlouisfed.org/series/TEDRATE.

The effective federal funds rate and the real federal funds rate, downloaded from

https://fred.stlouisfed.org/series/FEDFUNDS.

The credit-spread index of Gilchrist and Zakrajsek (2012) and its first order differ-

ences.

The Chicago Fed National Financial Condition Index, downloaded from https://
fred.stlouisfed.org/series/NFCI.
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IA.4 Additional Figures

Figure TA.1: Individual regressions of log ngp’t 41 on excess returns of trading
strategies and nontradable (macroeconomic) variables

This figure shows the R? of individual regressions of log ngp,t 1 on excess returns of trading
strategies and nontradable (macroeconomic) factors. We see from the figure that while M®
has a high R? with the excess returns of several trading strategies, the R? for nontradable

(macroeconomic) factors is low.
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Figure IA.2: Individual regressions of log Méi;n fjrl on excess returns of trading
strategies and nontradable (macroeconomic) variables

This figure shows the R? of individual regressions of log M, eﬁxgl ;11 on excess returns of trading
strategies and nontradable (macroeconomic) factors. The (top-left corner of the) figure
shows that MP™ has a very high R? (95%) with one strategy, which is the market factor.

It also has a high R? with some of the nontradable (macroeconomic) factors.
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Figure IA.3: Time series of SDF and its components for the corrected C-CAPM

candidate model
This figure has four panels, which show the dynamics of the SDF Mcyp, +41 and its three components:

the SDF-U, the component Meﬁx’;?trﬂrl corresponding to the candidate model with a consumption-

mimicking portfolio, and the missing systematic component Mi;ﬂ ;11
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Figure TA.4: Pricing performance of the model with a consumption-mimicking
portfolio with and without correction
This figure compares the pricing performance of the APT model to the model with a consumption-

mimicking portfolio, where a = 0 and the only systematic risk factor is the consumption-mimicking
portfolio of Breeden, Gibbons, and Litzenberger (1989).
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Figure IA.5: Time series of the SDF and its components for the corrected FF3

candidate model
This figure has four panels, which show the dynamics of the SDF Mcyp, +41 and its three components:

the SDF-S Mg, ;. 4, the component Miga&l corresponding to the candidate FF3 model, and the

missing systematic component Meﬂx;n -
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