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Abstract

We propose computationally inexpensive and efficient estimators for multivariate stochastic volatility
(MSV) models with cross dependence, Granger causality, and higher-order persistence in latent volatilities.
The proposed class of estimators is based on a few moment equations derived from the VARMA representa-
tions of MSV models. Except for cross dependence parameters, closed-form expressions for the other param-
eters are derived where no numerical optimization procedure or choice of initial parameter values is required.
To increase the stability and efficiency of volatility persistence parameter estimates, we suggest shrinkage type
VARMA estimators where averaging or matrix-variate regression (MVR) is employed. We derive the asymptotic
distribution of these estimators. Due to their computational simplicity, the VARMA estimators allow one to
make reliable – even exact – simulation-based inference by applying Monte Carlo test techniques. In empiri-
cally realistic setups, simulation results show that the proposed shrinkage estimator based on MVR is superior
to Bayesian and QML estimators in terms of bias and root mean square error. We examine the precision of
the shrinkage estimator using large-scale simulated data where models up to 1,500 dimensions and 4,503,000
parameters are fitted and studied. The proposed estimators are applied to stock return data, and the effec-
tiveness of the proposed estimators is assessed in two ways. First, we show the usefulness of the proposed
models and methods in estimating high-frequency returns with many assets and observations. Second, in the
context of dynamic minimum variance portfolio strategy, we find that unrestricted higher-order MSV models
outperform existing alternatives, including multivariate GARCH-type models.
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1 Introduction

The dynamic conditional covariance matrices play a pivotal role in many areas of financial decision mak-

ing, such as asset pricing, portfolio selection, option pricing, and risk management. For example, asset al-

location depends on the covariance of the assets in a portfolio. Furthermore, multivariate volatility models

have also been used to investigate volatility and correlation transmission and spillover effects across finan-

cial market contagion. The financial literature on modelling and forecasting the covariation among finan-

cial returns with parametric models are divided into two classes: (1) multivariate GARCH (MGARCH) class

of models where volatility is modelled as a determinstic process given past observations [Engle (1982),

Bollerslev (1986)] and (2) multivariate stochastic volatility (MSV) models where volatility is modelled as a

latent stochastic process [Taylor (1982)].

The advantages of stochastic volatility models compared to GARCH-type models include: (1) SV mod-

els are directly connected to diffusion processes used in option pricing [Shephard and Andersen (2009)];

(2) SV models do not appear to require various ad hoc adjustments, like the addition of a random jump

component or non-Gaussian innovations. These modifications improve the performance of the standard

GARCH, but these are evidently unnecessary for SV models; (3) SV models provide more accurate fore-

casts than those offered by GARCH models [Kim, Shephard and Chib (1998); Koopman, Jungbacker and

Hol (2005); Poon and Granger (2003); Yu (2002)]. However, in MSV models, the return variation dynam-

ics is modeled as a latent autocorrelated stochastic process and the marginal likelihood of the model is

given by a high dimensional integral which makes the estimation by conventional maximum likelihood

infeasible.1 Thus, estimating a multivariate stochastic volatility model is a challenging task and several

alternative models and methods have developed.

Three broad classes of multivariate stochastic volatility models have emerged:

1. Multivariate extension of the univariate class of SV model; see Harvey et al. (1994), Danielsson

(1998), Smith and Pitts (2006), Chan et al. (2006), and many others.

2. Multivariate factor stochastic volatility (MFSV); see Harvey et al. (1994), Jungbacker and Koopman

1This is a general feature of most nonlinear latent variable models because the latent variables must be integrated out of the
joint density for the observed and latent processes, leading to an integral of high dimensionality. As a result, a variety of alterna-
tive methods have been proposed to estimate univariate SV models. Major references include: the Quasi-Maximum Likelihood
(QML) [Harvey et al. (1994); Ruiz (1994)], the Generalized Method of Moments (GMM) [Melino and Turnbull (1990); Andersen
and Sørensen (1996)], the Efficient Method of Moments (EMM) [Gallant and Tauchen (1996); Andersen et al. (1999)], the Maxi-
mum Likelihood Monte Carlo (MLMC) [Sandmann and Koopman (1998)], the Simulated Maximum Likelihood (SML) [Danielsson
and Richard (1993); Danielsson (1994); Durham (2006); Richard and Zhang (2007)], method base on linear-representation (LiR)
[Francq and Zakoïan (2006)], the closed-form moment-based estimator (DV) [Dufour and Valéry (2006)], the ARMA-based win-
sorized estimator (W-ARMA-SV) [Ahsan and Dufour (2019, 2021)] and Bayesian methods based on Markov Chain Monte Carlo
(MCMC) methods [Jacquier et al. (1994), Kim et al. (1998), Chib et al. (2002), Flury and Shephard (2011)]. For a review of the SV
literature, see Ghysels et al. (1996), Broto and Ruiz (2004), Ahsan and Dufour (2019, 2021).
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(2006), Pitt and Shephard (1999), Aguilar and West (2000), So and Choi (2009), Chib et al. (2006),

Han (2006), and many others.

3. Direct modeling of dynamic correlation matrices via matrix exponential transformations, Wishart

processes, Cholesky decompositions and other means; see Uhlig (1997), Asai and McAleer (2009),

Philipov and Glickman (2006a, 2006b), Gourieroux (2006), Gourieroux et al. (2009), and many others.

Despite recent advances, the estimation and forecasting of high-dimensional stochastic volatility mod-

els remain challenging problems. Major limitations of existing methods and models are:

• Curse of dimensionality: Portfolio management strategies often involve a large number of assets re-

quiring the use of multivariate specifications. Most methods [QML, SML, MCL, SMM, and Bayesian

MCMC], if not all, suffer from a common problem, the well-known curse of dimensionality, whereby

methods become empirically infeasible if fitted to a number of series of moderate size (in some

cases, the methods may become computationally intractable for even 5 or 6 assets). This also holds

true when the sample size increased.

• Simplified restricted models: In order to match the need of introducing time-varying variances with

practical computational problems, several restricted models are generally used. The introduction

of strong restrictions can affect the interpretation and flexibility of the models, with a possibly im-

pact on the purportedly improved performance they may provide and/or the appropriateness of

the analysis based on their results. For example, many studies use multivariate AR(1) generaliza-

tion for latent log volatilities, or multivariate log volatilities is a multivariate random walk. These

models failed to capture the lead-lag (causal) relationship between time series and hence a non-

diagonal VAR coefficient ϕ should be useful in studying these relationships in variances. So and

Choi (2009) observed that off-diagonal elements of ϕ are statistically significant. Notable exam-

ples of restricted and inflexible models are the common stochastic volatility models [Carriero et al.

(2016, 2018), Chan (2020)], and the Cholesky stochastic volatility models [Cogley and Sargent (2005),

Carriero et al. (2019)].

• Inflexible estimation methods: Several estimation methods are inflexible across models, i.e., not

easy to generalize. For example, QML requires extremely tedious algebra to be involved in order to

derive the analytical expression for the asymptotic variance-covariance matrix. Further, in the case

of MCL method, when the cross-section size is large, it is not that obvious to write the analytical

derivatives, and if instead one considers numerical derivatives in this case, then the derivatives cal-

culated with respect to large state vectors could be very time consuming and numerically unstable;
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see Jungbacker and Koopman (2006).

• Robustness of Bayes methods: Bayesian methods based on MCMC techniques are inherently less

robust than analytic econometric methods and heavily depend on prior distributions. Further, when

we consider a data set with many assets and observations, Bayes methods become extremely time

consuming and empirically infeasible.

Practitioners may encounter several issues with the former classes of models, including modelling in-

flexibility, speed of estimation, and the lack of causal inferences (e.g., spillover effects). In this paper, we

study and propose computationally simple and statistically efficient estimators for large-scale multivari-

ate stochastic volatility models with cross dependence, multi-period Granger causality, and higher-order

persistence in latent volatilities by exploiting the VARMA representation. Proposed estimators (denoted

as VARMA estimators) are analytically tractable, computationally simple, and remarkably accurate. These

estimators can readily be implemented without using numerical optimization methods (except for cross

dependence parameters) and do not require choosing arbitrary initial values for the parameters or auxil-

iary models.

Our proposed high-dimensional modelling framework is also important in macroeconomic research,

especially it can accommodate more sectors, parameters, endogenous variables, exogenous shocks, and

observables than other small to medium scale models; recent studies have shown that stochastic covari-

ances are more realistic in macroeconomic modelling [e.g., density forecasting in dynamic stochastic gen-

eral equilibrium (DSGE) models (Diebold et al. (2017)) and measurements of uncertainty (Jurado et al.

(2015))], can provide better statistical fits [see Primiceri (2005), Koop and Korobilis (2013), and many oth-

ers], and vitally important for large macroeconomic VAR systems [see Clark (2011), D’Agostino et al. (2013),

Koop and Korobilis (2013), Clark and Ravazzolo (2015), Cross et al. (2020) and Chan and Eisenstat (2018)].

The proposed simple moment-based VARMA estimator may violate stationarity conditions and fails to

produce a positive semi-definite covariance matrix of the volatility innovations in the presence of outliers

or in small samples. To circumvent this problem, we suggest restricted estimation where the estimates are

restrained on the space of acceptable parameter solutions of ϕ by adjusting the eigenvalues that lie on

or outside the unit circle. Further, one can apply the modified Cholesky algorithm of Cheng and Higham

(1998) to obtain the desired positive definite matrix.

We also suggest winsorized versions (shrinkage type) of the VARMA estimator (W-VARMA estimators),

which substantially increases the probability of getting acceptable values and also improves efficiency. In

proposing winsorized methods, autoregressive parameters of the latent volatility process [these parame-

ters capture the volatility clustering of a financial time series] are estimated using a combination of sev-
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eral ratios of sample autocovariance matrices, including weighted averages, or a matrix variate regression

(MVR) based weighting. This computationally simple adjustment improves the stability and accuracy of

the estimators. Indeed, we show in simulations that W-VARMA estimators improve the precision and pos-

itive definiteness. Especially, the MVR-based W-VARMA estimator outperforms the Bayesian estimator in

terms of bias and RMSE.

The proposed computationally inexpensive W-VARMA-MVR estimator can be useful in several contexts:

• Since MSV models are parametric models involving only a finite number of unknown parameters,

using these estimators, one can construct simulation-based tests [even exact tests as opposed to

procedures based on establishing asymptotic distributions] and/or prediction intervals based on the

Monte Carlo test (MCT) technique [see Dufour (2006)]. In particular, exact tests obtained in this way

do not depend on stationarity assumptions, and consequently are useful when the latent volatility

process has a unit root (or is close to this structure).

• Due to computational simplicity, these estimators are helpful for estimation schemes which require

repeated estimation based on a rolling window method, for example, out-of-sample forecasting or

backtesting of risk measures (such as Value-at-Risk or Expected Shortfall) in the context of risk man-

agement.

We derive the asymptotic properties of the proposed simple estimator under standard regularity as-

sumptions, showing consistency and asymptotic normality when the fourth moment of the latent volatil-

ity process exists. Due to the
p

T -consistency, our simple estimators can be effortlessly applied to very

large samples, which are not rare in empirical finance. In these situations, estimators based on simulation

technique and/or numerical optimization often require substantial computational effort to achieve con-

vergence. So instead of using computationally costly or intractable estimators, one may prefer to use the

W-VARMA-MVR estimator that are available in analytical form.

We study the statistical properties of our estimators and compare them with Bayesian and QML estima-

tors. The simulation results confirm that the W-VARMA-MVR estimator has excellent statistical properties

in terms of bias and RMSE. It outperforms all other estimators, including the Bayesian estimator, regarding

bias and RMSE. This result holds across different simulation designs. Furthermore, the simple estimators

are highly efficient in terms of computation time, compared to other estimators. We also simulate models

upto 1,500 dimensions with 4,503,500 parameters and find that the W-VARMA-MVR estimator is extremely

reliable in both small and large samples.

The proposed estimators are applied to stock return data, and the effectiveness of the proposed esti-

mators is assessed in two ways. First, we show the usefulness of the proposed models and methods in
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estimating high-frequency returns with many assets and observations. Second, in the context of dynamic

minimum variance portfolio strategy, we find that unrestricted higher-order MSV models outperform ex-

isting alternatives, including multivariate GARCH-type models.

The paper proceeds as follows. Section 2 specifies the model and its assumptions. Section 3 proposes

simple estimators. Section 4 develops asymptotic theories for simple estimators. Section 5 discusses

the simulation-based inference procedures, and Section 6 presents the simulation study, and Section 8

presents the empirical applications. We conclude in Section 9. The mathematical proofs, other discus-

sions, figures and tables are given in the Technical Appendix.

2 Framework

We consider a discrete-time multivariate SV process, which is described below following Harvey, Ruiz and

Shephard (1994). N0 refers to the non-negative integers.

Assumption 2.1. MULTIVARIATE STOCHASTIC VOLATILITY MODEL OF ORDER p. Let yt := (y1t , . . . , ymt )′ be

a set of observations at time t on m financial variables and ht := (h1t , . . . ,hmt )′ be the corresponding vector

of log volatilities. Then the process
{
yt : t ∈N0

}
follows a MSV(p) model of the type:

yt =V 1/2
t ut , (2.1)

ht =µ+
p∑

j=1
ϕ j (ht− j −µ)+vt , (2.2)

where

h0, . . . ,h−(p−1) ∼Nm(µ ,Σ0),

ut

vt

 |ht ∼N2m(0,Σ), Σ =
Σu 0

0 Σv


and V 1/2

t = diag[exp(h1t /2), . . . ,exp(hmt /2)], ht = (h1t , . . . ,hmt )′, ut = (u1t , . . . ,umt )′, vt = (v1t , . . . , vmt )′, µ=
(µ1, . . . ,µm)′.

Remark 1. Features of the MSV(p) model.

1. In this model, the return shocks are allowed to be correlated; so are the volatility shocks. Consequently,

both returns and volatilities are cross-dependent.

2. Composition of ϕ j ’s are as follows:

• Non-zero off-diagonal elements of ϕ j capture multilateral Granger causalities in volatility be-

tween assets — this also generates cross-dependence in asset return volatilities (cross leverage in

asset volatilities). Which specification is more appropriate is an interesting empirical question.
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• For j > 1, non-zero off-diagonal elements of ϕ j capture multi-horizon causalities in volatility

between assets.

• Non-zero diagonal elements of ϕ j capture persistence in log volatilities of returns.

• For j > 1, non-zero diagonal elements of ϕ j capture higher-order persistence in log volatilities of

returns.

3. For identification purposes, the diagonal elements of Σu must be 1, which means that the matrix

Σu = (
ρ
)

i j is a correlation matrix.

4. For the VAR(p) model in (2.2), if Σu is not a diagonal matrix, then log volatilities ht ’s are instanta-

neously correlated (or contemporaneously correlated). In this case, ht ’s have instantaneous causality,

which goes in both ways.

To reduce the computational load, especially when m is large, the log volatilities can be assumed to

be conditionally independent. In that case, ϕ = diag[ϕ1, . . . ,ϕm] and Σv = diag[σ2
1,v , . . . ,σ2

m,v ] are both

diagonal matrices. Analyses of these restricted models are given by Harvey et al. (1994), Danielsson (1998),

Smith and Pitts (2006) and Chan et al. (2006).

Assumption 2.2. STATIONARITY. All eigenvalues of the companion matrix A of (2.2) have modulus

smaller than one. The matrix A is given below:

A :=



ϕ1 ϕ2 . . . ϕp−1 ϕp

Im 0 . . . 0 0

0 Im . . . 0 0
...

. . .
...

0 0 . . . Im 0


.

Remark 2. Number of parameters. For first-order : 2m2 +m For higher-order : (p +1)m2 +m

Now transforming yt by taking logarithms of the squares and using E(log◦(u2
t )) = (−1.27)ι , we can write

the measurement equation of the model as

log◦(y2
t ) = ht + log◦(u2

t ) (2.3)

= E(log◦(u2
t ))+ht + [log◦(u2

t )−E(log◦(u2
t ))] (2.4)

= (−1.27)ι+ht +ϵt , (2.5)
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where ◦ is the element-wise product and on setting

Xt = log◦(y2
t )+ (1.27)ι , ϵt = [log◦(u2

t )−E(log◦(u2
t ))] , (2.6)

we have:

Xt = ht +ϵt . (2.7)

Under the standard normality assumption of ut , the transformed error, ϵt , is a m-variate mean zero ran-

dom variable with the covariance matrix Σϵ. Harvey et al. (1994) showed that the (i , j )th element of the

covariance matrix of ϵt = (ϵ1t , . . . ,ϵmt )′ is given by (π2/2)ρ∗
i j , where ρ∗

i i = 1 and

ρ∗
i j =

2

π2

∞∑
n=1

(n −1)![∏n
k=1(1/2+k −1)

]
n
ρ2n

i j . (2.8)

Note that the absolute values of the unknown parameters in Σu namely the ρi j ’s, the cross-correlations

between different ui t ’s, may be estimated, but their signs may not, because the relevant information is

lost when the observations are squared. However, as suggested by Harvey et al. (1994), the signs of these

estimates may be obtained by returning to the untransformed observations and noting that the sign of

each of the pairs ui u j , i , j = 1, . . . ,T , will be the same as the corresponding pair of observed values yi y j .

So the sign of ρi j is estimated as positive if more than one-half of the pairs yi y j are positive.

Combining (2.2) and (2.7), the MSV(p) model can be written as a linear state space model of the type:

ht =µ+
p∑

j=1
ϕ j (ht− j −µ)+vt , (State Transition Equation) (2.9)

Xt = ht +ϵt , (Measurement Equation) (2.10)

where ht is the logarithm of latent daily volatilities, Xt is the logarithm of the daily squared return cor-

rected by its mean, (−1.27)ι . The vt is the structural error given in Assumption 2.1 and ϵt is the trans-

formed error that we explain above.2

3 Simple estimation methods

In this section, we propose simple estimators for MSV(p) models, including the corresponding recursive

procedures. Besides, we also suggest alternative methods to improve the performance of these simple

estimators.

2Note that several methods have been proposed in the literature that exploits the state space form of SV models; see Harvey,
Ruiz and Shephard (1994), Ruiz (1994), Shephard (1994), Breidt and Carriquiry (1996), Harvey and Shephard (1996), Kim, Shep-
hard and Chib (1998), Sandmann and Koopman (1998), Steel (1998), Chib, Nardari and Shephard (2002), Knight, Satchell and Yu
(2002), Francq and Zakoïan (2006), Omori, Chib, Shephard and Nakajima (2007).
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3.1 VARMA-based estimation

In this section, we propose a simple closed-form estimator for MSV(p) model, where we exploited the

V ARM A representation of the observed process Xt . The V ARM A representation and the autocovariance

structure of Xt are given in the following Lemmas.

Proposition 3.1. VARMA REPRESENTATION OF MSV(P) MODELS. Under the Assumptions 2.1 – 2.2, the

process Xt defined in (2.6) has the following VARMA(p, p) representation:

Xt =µ+
p∑

j=1
ϕ j (Xt− j −µ)+ηt −

p∑
j=1

θ jηt− j , (3.1)

where ηt −
∑p

j=1θ jηt−1 = vt + ϵt −∑p
j=1ϕ j ϵt−1 admits a VMA(p) process, and the error processes vt and ϵt

are independent random vectors with covariance matrices Σv and Σϵ, respectively.

From the above proposition, we have simple expressions for the autocovariances and parameters of the

MSV(p) model, and these are given in following corollaries.

Corollary 3.2. AUTOCOVARIANCES OF THE OBSERVED PROCESS. Under the assumptions of Proposition 3.1,

the autocovariances of the observed process Xt defined in (2.6) satisfy the following equations:

Cov
(
(Xt −µ)(Xt−k −µ)′

)
:=Γk =


ϕ1Γk−1 +·· ·+ϕpΓk−p +Σv +Σϵ; if k = 0,

ϕ1Γk−1 +·· ·+ϕpΓk−p −ϕkΣϵ; if 1 ≤ k ≤ p,

ϕ1Γk−1 +·· ·+ϕpΓk−p ; if k > p.

(3.2)

Corollary 3.3. CLOSED-FORM EXPRESSIONS FOR MSV(P) PARAMETERS. Under the assumptions of Propo-

sition 3.1, we have:

ϕ(p) =Γ(p+ j )Γ
−1

[p+ j−1] j ≥ 1,

Σϵ =Γ0 +ϕ−1
1

p−1∑
j=1

ϕ j+1Γ
′
j −ϕ−1

1 Γ1 ,

Σv =ϕ−1
1 Γ1 −ϕ−1

1

p−1∑
j=1

ϕ j+1Γ
′
j −

p∑
j=1

ϕ jΓ
′
j ,

µ= E(Xt ) (3.3)

where

ϕ(p)
m×pm

:=
[

ϕ1
m×m

ϕ2
m×m

· · · ϕp
m×m

]
, Γ(p+ j )

m×pm
:=

[
Γp+ j
m×m

Γp+ j+1
m×m

· · · Γ2p+ j−1
m×m

]
,
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Γ[p+ j−1]
pm×pm

:=



Γ(p+ j−1)
m×pm

Γ(p+ j−2)
m×pm

...

Γ( j )
m×pm


=



Γp+ j−1
m×m

Γp+ j
m×m

· · · Γ2p+ j−2
m×m

Γp+ j−2
m×m

Γp+ j−1
m×m

· · · Γ2p+ j−3
m×m

...
...

...

Γ j
m×m

Γ j+1
m×m

· · · Γp+ j−1
m×m


.

and p is the MSV order with Γk = Cov
(
(Xt −µ)(Xt−k −µ)′

)
.

Given the data, it is natural to estimate Γk , and µ by the corresponding empirical moments:

Γ̂k = 1

T −k

T−k∑
t=1

[(Xt+k − µ̂)(Xt − µ̂)′] , µ̂= 1

T

T∑
t=1

Xt (3.4)

Setting j = 1 in (3.3) and replacing theoretical moments by the corresponding empirical moments yields

the following closed-form VARMA estimator of MSV(p) coefficients:

ϕ̂(p) = Γ̂(p+1)Γ̂
−1

[p] , (3.5)

Σ̂ϵ = Γ̂0 + ϕ̂
−1
1

p−1∑
j=1

ϕ̂ j+1Γ̂
′
j − ϕ̂

−1
1 Γ̂1 , Σ̂v = ϕ̂

−1
1 Γ̂1 − ϕ̂

−1
1

p−1∑
j=1

ϕ̂ j+1Γ̂
′
j −

p∑
j=1

ϕ̂ j Γ̂ j
′
, µ̂= E(Xt ) . (3.6)

Note that, given Σ̂ϵ, we compute cross dependence parameters using the method proposed by Harvey

et al. (1994).

In small samples, the estimate of ϕ̂(p) may yield a solution outside the admissible area, i.e., some of the

eigenvalues of the latent volatility process [it is a VAR(p) process] may lie outside the unit circle or equal

to unity. This issue can arise especially in small samples or in the presence of outliers. Further, the values

ϕ̂(p) computed by choosing different sets of Yule-Walker equations will in general be different. When this

happens, a simple fix is projecting the estimate on the space of acceptable parameter solutions by altering

the eigenvalues that lie on or outside the unit circle. Further, the estimate Σ̂v may yield a non-positive

definite matrix. In this case, we can apply modified Cholesky algorithm of Cheng and Higham (1998) to

Σ̂v and obtain a positive definite matrix.

3.2 VARMA-based winsorized estimation

We can achieve better stability and efficiency of VARMA estimator by using “winsorization” which exploits

(3.3). Winsorization (censoring) substantially increases the probability of getting admissible values. From

(3.3), it is easy to see that:

ϕ(p) =
∞∑

j=1
ω jΓ(p+ j )Γ

−1
[p+ j−1] (3.7)
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for any ω j sequence of scalers with
∑∞

j=1ω j = 1 (convex combination). Using (3.7), we can define a more

general class of estimators for ϕ(p) by taking a weighted average of several sample analogs of the ratio

Γ(p+ j )Γ
−1

[p+ j−1]:

ϕ̃(p) =
J∑

j=1
ω j Γ̂(p+ j )Γ̂

−1
[p+ j−1], (3.8)

where 1 ≤ J ≤ T −p with
∑J

j=1ω j = 1 and T is the length of time series. We can expect that a sufficiently

general class of weights may improve the efficiency of the VARMA estimators.

Using (3.8), we can propose alternative estimators of ϕ(p) and we call these estimators winsorized

VARMA estimators (or W-VARMA estimators). Other (possibly nonlinear) averaging methods, such as the

median, may also be used.

In the simulation section, we consider two types of winsorized estimators based on the expression given

by (3.8):

• An arithmetic mean of sample ratios (equal weights), denoted by ϕ̂
AM
(p) , where we set

ω j = 1/J , j = 1, . . . , J , (3.9)

• A matrix-variate regression (MVR) using the following system of equations with equal weights:

Γ̂(p+ j ) = ϕ̂(p) · Γ̂[p+ j−1] , j = 1, · · · , J . (3.10)

The solution of the above system is given by

ϕ̂
MV R
(p,J ) = Γ̂(p+1,J)Γ̂

′
[p,J]

(
Γ̂[p,J]Γ̂

′
[p,J]

)−1
, (3.11)

where

Γ̂(p+1,J)
m×pm J

:=
[
Γ̂(p+1)
m×pm

Γ̂(p+2)
m×pm

· · · Γ̂(p+J )
m×pm

]
, Γ̂[p,J]

pm×pm J

:=
[

Γ̂[p]
pm×pm

Γ̂[p+1]
pm×pm

· · · Γ̂[p+J−1]
pm×pm

]
,

and J is the winsorize truncation parameter.

These type of estimators are also considered by Ahsan and Dufour (2021) in the context of univariate

estimation of SV models. All these estimators depend on J and for J = 1, they are equivalent to the simple

VARMA estimator which is given in (3.5).
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4 Asymptotic distributional theory

We will now study the asymptotic distribution of the simple VARMA estimator under the following set of

assumptions.

Assumption 4.1. DISTRIBUTION OF THE ERROR PROCESSES. The error processes ut and vt are mutually

independent and {ut } is a sequence of i.i.d. real-valued random variables, independent of h0. The proba-

bility distribution of ut has a continuous density with respect to Lebesgue measure on the real line, and its

density is positive on (−∞,+∞). The transformed error ϵt satisfies E(|ϵt |s) <∞, where s is an integer such

that s ≥ 1.

Assumption 4.2. STATIONARITY AND MIXING. The process yt is ergodic, β-mixing and strictly stationary.

Assumption 4.3. EXISTENCE OF MOMENTS AND POSITIVE DEFINITENESS.

A. Vt is positive definite almost surely for each t .

B. The s-th moments of the observed process yt exist and are finite, i.e., E|yt |s <∞, where s is a positive

integer.

Under Assumptions 4.1 – 4.3 with s = 4, the process {Xt } is strictly stationarity and geometrically ergodic

with exponential β-mixing with finite second moments, i.e., E
[
(Xt )2

]<∞. In the following lemma, using

ergodicity, we prove the consistency of the empirical moments in (3.4).

Lemma 4.1. CONSISTENCY OF EMPIRICAL MOMENTS. Under the Assumptions 4.1 – 4.3 with s = 4 and for

any p ≥ 0, the estimators of

Λ(p) :=
[
µ, vecΓ0, vec Γ1, . . . , vec Γp+1

]′
,

defined by (3.4) satisfy:

Λ̂(p)
p−→Λ(p). (4.1)

Assumptions 4.1 – 4.3 with s = 8 are sufficient for the MSV model to have a strictly stationary solution

with a finite fourth moment of Xt , i.e., E
[
X4

t

]<∞. Note that the fourth moment of Xt translates into the

eighth moment of yt . This solution will be β-mixing with geometrically decreasing mixing coefficients.

In the following lemma, using a Central Limit Theorem for stationary ergodic processes (Lindeberg-Levy

theorem for dependent processes), we give the asymptotic distribution of the empirical moments in (3.4).

Lemma 4.2. ASYMPTOTIC DISTRIBUTION OF EMPIRICAL MOMENTS. Under Assumptions 4.1 – 4.3 with s = 8,

the estimators Λ̂(p) defined by (3.4) satisfy:

p
T

(
Λ̂(p)−Λ(p)

) d−→ N (0,V), (4.2)
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where V=Cov[Λ(p)].

This in turn yields the asymptotic distribution of the simple VARMA-type estimator.

Theorem 4.3. ASYMPTOTIC DISTRIBUTION OF SIMPLE VARMA ESTIMATOR. Under Assumptions 4.1 – 4.3

with s = 4, the estimator θ̂ := (µ̂, vec(ϕ̂), vec(Σ̂v ), vec(Σ̂ϵ)) = F(Λ) is consistent, i.e. θ̂
p−→ θ.

In addition, if Assumptions 4.1 – 4.3 with s = 8 hold, we have

p
T (θ̂−θ)

d−→ N (0,Vθ),

with Vθ = F1(Λ)VF1(Λ)′, where F1(Λ) = ∂F(Λ)/∂Λ .

Theorem 4.3 covers the simplest VARMA estimator. The asymptotic distribution of more general win-

sorized estimators can be derived in the same way upon using Lemmas 4.1 – 4.2.

5 Simulation-based Inference

In this section, we discuss simulation-based inference procedures for MSV models. The simulation-based

methods are more attainable in the context of this study for two reasons: (1) the MSV model is a paramet-

ric model, and we can easily simulate this model; (2) we can simulate the test statistic of MSV parameters

that based on a computationally inexpensive estimator. However, if the estimator is computationally ex-

pensive, then we cannot simulate the test statistic easily, and the simulation will run forever. Using our

proposed computationally simple estimator, one can construct more reliable finite sample inference.

5.1 Monte Carlo tests

We now examine the usefulness of our simple estimator in the context of simulation-based inference, i.e.,

Monte Carlo tests. The technique of Monte Carlo tests was originally been proposed by Dwass (1957)

for implementing permutation tests and did not involve nuisance parameters. This technique was also

independently proposed by Barnard (1963); for a review, see Dufour and Khalaf (2001) and for a general

discussion and proofs, see Dufour (2006). It has the great attraction of providing exact (randomized) tests

based on any statistic whose finite-sample distribution may be intractable but can be simulated. One can

replace the unknown or intractable theoretical distribution F (S|θ) by its sample analogue based on the

statistics S1(θ), . . . ,SN (θ) simulated under the null hypothesis.

Let us first consider the pivotal statistics case, i.e. the case where the distribution of the test statistic

under the null hypothesis does not depend on nuisance parameters. We can then proceed as follows to

obtain an exact critical region.
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1. Let S0 be the observed test statistic (based on data).

2. By Monte Carlo methods, draw N i .i .d . replications of S, denoted by S(N ) = (S1, . . . ,SN ) under H0,

independently of S0, i.e., S0,S1, . . . ,SN be exchangeable.

3. From the simulated samples compute the MC p-value p̂N [S] ≡ pN [S0;S(N )], where

pN [x,S(N )] ≡ NGN [x;S(N )]+1

N +1
(5.1)

GN [x;S(N )] ≡ 1

N

N∑
i=1

I[0,∞)(Si −x), I[0,∞)(x) =


1 if x ∈ [0,∞),

0 if x ∉ [0,∞).
(5.2)

In other words, pN [S0;S(N )] = (NGN [S0;S(N )]+ 1)/(N + 1) where NGN [S0;S(N )] is the number of

simulated values which are greater than or equal to S0 . When S0,S1, . . . ,SN are all distinct [an

event with probability one when the vector (S0,S1, . . . ,SN )
′

has an absolutely continuous distribu-

tion], R̂N (S0) = N +1−NGN [S0;S(N )] is the rank of S0 in the series S0,S1, . . . ,SN .

4. The MC critical region is: p̂N [S] ≤α, 0 <α< 1 . If α(N +1) is an integer and the distribution of S is

continuous under the null hypothesis, then under null,

P [p̂N [S] ≤α] =α; (5.3)

see Dufour (2006).

We will now study the case where the distribution of the test statistic depends on nuisance parameters.

In other words, we consider a model {(Ξ,AΞ,Pθ) : θ ∈ Ω} where we assume that the distribution of S is

determined by Pθ̄, where θ̄ represents the true parameter vector. To deal with this complication, the MC

test procedure can be modified as follows.

1. To test the null hypothesis

H0 : θ̄ ∈Ω0,

where Ω0 ⊂Ω, we calculate the relevant test statisticS0 based on data.

2. For each θ ∈ θ0, by Monte Carlo methods, we generate N i.i.d. replications of S : S(N ,θ) =
[(S1(θ), . . . ,SN (θ)].

3. Using these simulated test statistics, we compute the MC p-value p̂N [S|θ] ≡ pN [S0;S(N ,θ)], where
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pN [x;S(N ,θ)] ≡ NGN [x;S(N ,θ)]+1

N +1
. (5.4)

4. The p-value function p̂N [S|θ] as a function of θ is maximized over the parameter values compatible

with the Ω0, i.e., the null hypothesis, and H0 is rejected if

sup
θ∈Ω0

p̂N [S|θ] ≤α. (5.5)

If the number of simulated statistics N is chosen so that α(N +1) is an integer, then we have under

H0:

P [sup
θ∈Ω0

{p̂N [S|θ]} ≤α] ≤α, (5.6)

The test defined by p̂N [S|θ] ≤α has size α for known θ . Treating θ as a nuisance parameter and Ω0

is a nuisance parameter set consistent with null, the test is exact at level α; for a proof, see Dufour

(2006).

Because of the maximization in the critical region of (5.5), the test is called a maximized Monte Carlo

(MMC) test. MMC tests provide valid inference under general regularity conditions such as almost-

unidentified models or time series processes involving unit roots. In particular, even though the moment

conditions defining the estimator are derived under the stationarity assumption, this does not question

in any way the validity of maximized MC tests, unlike the parametric bootstrap whose distributional the-

ory is based on strong regularity conditions. Only the power of MMC tests may be affected. However,

the simulated p-value function is not continuous, so standard gradient based methods cannot be used to

maximize it. But search methods applicable to non-differentiable functions are applicable, e.g. simulated

annealing [see Goffe, Ferrier and Rogers (1994)].

A simplified approximate version of the MMC procedure can alleviate its computational load whenever

a consistent point or set estimate of θ is available. To do this, we reformulate the setup in order to allow

for an increasing sample size, i.e., now the test statistic depends on a sample of size T , S = ST .

1. Let ST 0 be the observed test statistic (based on data) and the distribution of S involves nuisance

parameters under the null and θ̄ ∈Ω0 with Ω0 ⊂Ω and Ω0 ̸= ;.

2. we have a consistent set estimator CT of θ (under H0) such that

lim
T→∞

P [θ̄ ∈CT ] = 1 under H0. (5.7)
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3. For each θ ∈ CT , by Monte Carlo methods, we generate N i.i.d. replications of S : ST (N ,θ) =
[(ST 1(θ), . . . ,ST N (θ)].

4. Using these simulations we compute the MC p-value p̂T N [ST |θ] ≡ pT N [ST 0;ST (N ,θ)], where

pT N [x;ST (N ,θ)] ≡ NGT N [x;ST (N ,θ)]+1

N +1
. (5.8)

5. The p-value function p̂T N [ST |θ] as a function of θ is maximized with respect to θ in CT , and H0 is

rejected if

sup{p̂T N [ST |θ] : θ ∈CT } ≤α. (5.9)

If the number of simulated statistics N is chosen so that α(N +1) is an integer, then we have under

H0:

lim
T→∞

P [sup{p̂T N [ST |θ] : θ ∈CT } ≤α] ≤α, (5.10)

i .e., we control for the level asymptotically.

In practice, it is easy to find a consistent set estimate of θ̄, whenever a consistent point estimate θ̂T of θ̄

available (e.g. a GMM estimator).

For instance, any set of the form

CT = {θ ∈ :
∥∥θ̂T −θ

∥∥< d} (5.11)

with d a fixed positive constant independent of T , satisfies (5.7). The consistent set estimate MMC

(CSEMMC) method is especially useful when the distribution of the test statistic is highly sensitive to

nuisance parameters. Here, possible discontinuities in the asymptotic distribution are automatically over-

come through a numerical maximization over a set that contains the true value of the nuisance parameter

with probability one asymptotically (while there is no guarantee for the point estimate to converge suffi-

ciently fast to overcome the discontinuity). It is worth noting that there is no need to maximize the p-value

function with respect to unidentified parameters under the null hypothesis. Thus, parameters which are

unidentified under the null hypothesis can be set to any fixed value and the maximization be performed

only over the remaining identified nuisance parameters. When there are several nuisance parameters, one

can use simulated annealing, an optimization algorithm which does not require differentiability. Indeed

the simulated p-value function is not continuous, so standard gradient based methods cannot be used to

maximize it. For an example where this is done on a VAR model involving a large number of nuisance

parameters, see Dufour and Jouini (2006).
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In Dufour and Khalaf (2002) call the test based on simulations using a point nuisance parameter esti-

mate a local MC (LMC) test. The term local reflects the fact that the underlying MC p-value is based on a

specific choice for the nuisance parameter. Here if the set CT in (5.9) is reduced to a single point estimate

θ̂T , i .e. CT = {θ̂T }, we get a LMC test

p̂T N [ST |θ̂T ] ≤α, (5.12)

which can be interpreted as a parametric bootstrap test. Note that no asymptotic argument on the number

N of MC replications is required to obtain this result; this is the fundamental difference between the latter

procedure and the parametric bootstrap method.

Even if θ̂T is a consistent estimate of θ (under the null hypothesis), the condition (5.7) is not usually sat-

isfied in this case, so additional assumptions are needed to show that the parametric bootstrap procedure

yields an asymptotically valid test. It is computationally less costly but clearly less robust to violations of

regularity conditions than the MMC procedure; for further discussion, see Dufour (2006). Furthermore,

the LMC non-rejections are exactly conclusive in the following sense: if p̂N [S|θ̂0] >α, then the exact Max-

imized Monte Carlo (MMC) test is clearly not significant at level α.

5.2 Implicit standard error

In this section, we propose the implicit standard error (ISE) of θ that can be derived from simulation-

based confidence interval. The asymptotic standard error can be markedly different and may be quite

unreliable in finite samples. To construct more reliable standard error, we derive the ISE in the following

way:

1. Calculate θ̂0 based on observed data (Y0).

2. By Monte Carlo methods, draw N i .i .d . replications of Y, denoted by Y(N ) = (Y1, . . . ,YN ) under H0,

independently of Y0, i.e., Y0,Y1, . . . ,YN be exchangeable.

3. Calculate θ̂(N ) = θ̂1, . . . , θ̂N from Y(N ) = (Y1, . . . ,YN ).

4. The confidence interval [CαL ,CαH ], with coverage 1−α [=αH −αL] is constructed using the empirical

αL quantile and the empirical αH quantile of θ̂(0; N ) = θ̂0, θ̂1, . . . , θ̂N . Furthermore, if θ̂0, θ̂1, . . . , θ̂N are

ordered from smallest to largest such that θ̂
∗
1 , . . . , θ̂

∗
N+1, and αL(N+1) and αH (N+1) are integers, then

the confidence interval is [
θ̂
∗
αL (N+1), θ̂

∗
αL (N+1)

]
.

5. Since our simple estimator is normally distributed, one can easily compute the ISE in the following
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way: [
I SEL , I SEH

]
=

[
θ̂0−CαL

Zα/2
,

CαH −θ̂0

Zα/2

]
.

6. Finally, a conservative ISE is

I SE = min{I SEL , I SEH }.

6 Simulation study

This section examines the properties of the proposed estimators in terms of bias and root mean square

error (RMSE) through simulation.

6.1 Comparison of different VARMA estimators

We first study the finite-sample properties of the winsorized VARMA estimators, which are discussed in

Section 3.2. For this comparison, the true DGP is given by (2.1)-(2.2) with m = 2, thus we have 10 param-

eters in the system (ϕ11,ϕ12,ϕ21,ϕ22,µ1,µ2,σ2
v,1,σ2

v,2,σv,12,ρ) = (0.95,−0.2,0.1, 0.95,−2,2,1,1,0.9,0.9). We

generate 1000 replications and consider different sample sizes T = (500,1000,2000). Both shrinkage esti-

mators depend on the truncation parameter J , so we set J = 10. Table A1 reports simulation results and

illustrates a number of findings:

First, the MVR estimator is highly robust and outperforms the other estimators (mean, CF, where CF

stands for the uncensored VARMA estimator) in terms of bias and RMSE, across different sample sizes

particularly in small samples.

Second, The CF estimator performs very poorly and produces a large number of inadmissible values

(NIV) for the parameter estimates. Its inferior performance may be due to the high variability of estimated

ACF. However, it should be emphasized that the CF estimator did not produce any unbound solutions in

this parameter setting with larger samples. This fact implies that the variability of estimated ACF goes

down as the sample size increases.

6.2 Comparison with the QML Method

We compare the proposed estimators to QML [Harvey et al. (1994)] where the true DGP is given by (2.1)-

(2.2) with m = 2, p = 1, diagonal ϕ1, and no constant term in the volatility equation. Thus we have 6

parameters in the system (ϕ11, , ϕ22, σ2
v,1, σ2

v,2, σv,12, ρ) = (0.98, 0.98, 0.5, 0.5, 0.5, −0.8). We generate

100 replications and consider different sample sizes T = (500,2000,5000). These restrictions are also con-

sidered by Harvey et al. (1994). Table A2 reports the results. From the results, we find that W-VARMA-MVR

17



estimators uniformly outperform the QML method. The QML estimates of ρ is severely biased. In most

cases , MVR with J = 10 has the superior performance.

6.3 Comparison with the Bayes Method

Globally, there is no uniform ranking between the different estimators, but the Bayesian estimator’s per-

formance remains superior among the competing methods in the context of MSV models. As a result, we

compare our proposed VARMA estimators (CF, MVR) to the Bayes estimator [Kim et al. (1998), Omori et

al. (2007), Kastner and Frühwirth-Schnatter (2014), Kastner (2019)].

6.3.1 Simulated DGPs

For this comparison, the true DGP is given by (2.1)-(2.2) with m = (2,5,10), p = 1. We set Σu = Im , Σv =
0.4Im , µ=−0.51, and stationary ϕ1 has the following formations:

1. For m = 2, ϕ1 is non-diagonal with (ϕ11, ϕ12, ϕ21, ϕ22) = (0.98, −0.1, 0.12, 0.99).

2. For m = 5, ϕ1 is non-diagonal where diagonal elements are (0.98,0.985,0.8,0.985,0.98)′ and upper

off-diagonal elements are set to -0.15 and lower off-diagonal elements are set to 0.1.

3. For m = 10, ϕ1 is non-diagonal where diagonal elements are (0.95, 0.98, 0.98, 0.99, 0.8, 0.8, 0.99, 0.98,

0.98,0.95)′ and upper off-diagonal elements are set to -0.11 and lower off-diagonal elements are set

to 0.055.

The number of parameters (NP) in these models are m2+2m. We simulate 100 samples from each sim-

ulated model. The parameters in the system above are assumed to be unknown and need to be estimated.

Following a Bayesian perspective, we assume that the parameters are not completely unknown, but they

follow some prior distributions. Then, using the prior distributions and the information provided by the

data, we can make inferences about the parameters from their posterior distributions.

6.3.2 Priors and MCMC algorithm

We specify prior distributions for the set of parameters θ = (µ, ϕ, Σv) of the MSV model. The mean vector

µ follows a flat multivariate normal distribution µ ∼ MVN (0, 1000Im) . Each entry of the persistence

matrix ϕi j ∈ (−1,1) is assumed to follow a beta distribution, (ϕi j + 1)/2 ∼ Bet a(20,1.5) [see Kim et al.

(1998)]. The beta prior distribution ensures that the entries of the persistent matrix are between −1 and 1,

which guarantees the stationarity of the volatility process. For the scale parameter of volatility innovation,

we utilize a flat gamma prior, σi ,v ∼ Γ(1/2,1/2× 10) [see Kastner and Frühwirth-Schnatter (2014)]. We
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choose hyperparameters which provide relatively flat prior distributions. In addition, the choice of the

hyperparameters has little effect on the posterior estimates of the parameters in large samples.

We estimated the latent volatility processes and the parameters of the MSV model using a Metropolis-

within-Gibbs sampler [Kim et al. (1998), Omori et al. (2007), Kastner and Frühwirth-Schnatter (2014)].

We derive an MCMC algorithm, which consists of Metropolis-Hastings steps within a Gibbs sampler, for

estimating the latent volatility process and its parameters. As before, let yt denote the latent multivariate

volatility time-series and θ = (µ, ϕ, Σv) the parameters of the MSV model. Following Kim et al. (1998)

and Omori et al. (2007), the log-squared transformation of (2.1) is given by:

log(y2
i ,t ) = hi ,t + log(u2

i ,t ), (6.1)

Note that (6.1) is linear but non-Gaussian. To ameliorate the non-Gaussianity problem, we approximate

the log-transformed error term log(u2
i ,t ) ∼ log(χ2

1) by a mixture of 10 normal distributions as in Omori et

al. (2007):

log(χ2
1) ∼

10∑
k=1

pkN (mk , v2
k ) .

The values of pk ,mk and vk are tabulated in Omori et al. (2007). As a result, we introduce a latent mixture

component indicator variable, di ,t , for yi ,t at time t such that log(u2
i ,t )|(di ,t = k) ∼ N (mk , v2

k ) . The indi-

cator variable is also estimated in the MCMC sampler. Given the mixture indicator dt and the vector pa-

rameter θ, the latent volatility series ht can be sampled using a forward-filtering and backward-sampling

(FFBS) procedure, Carter and Kohn (1994), Frühwirth-Schnatter (1994). The mixture indicator dt can be

sampled from a multinomial distribution

p(di ,t = k|ht , θ) ∝ p(di ,t = k)
1

vk
exp

{
− (ỹi ,t −hi ,t −mk )2

2v2
k

}
, (6.2)

where ỹi ,t is defined to be log(y2
i ,t + c) with a fixed offset constant c = 10−4 to avoid values equal to 0.

Finally, the vector parameter θ can be sampled using an ancillarity-sufficiency interweaving strategy

(ASIS) Yu and Meng (2011); Kastner and Frühwirth-Schnatter (2014) which involves sampling the vector

parameter θ given the unstandardized volatility series hi ,t via a Metropolis-Hasting step (non-centered

step) and then sampling θ again given the standardized volatility series h̃ j ,t = hi ,t−µi
σi ,v

(centered step). Yu

and Meng (2011) argued that by alternating between the non-centered and centered steps, we obtain a

more efficient MCMC sampler that has a better mixing rate and converges faster. In addition, Kastner and

Frühwirth-Schnatter (2014) showed that the ASIS can accurately sample latent volatility time-series that

have low persistences.

We apply the above Bayesian method to the simulated datasets and draw 40,000 observations from the
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posterior distributions. The Bayes estimator is approximated by the average of the last 20,000 draws. For

maximal computational effectiveness, all sampling algorithms are implemented in the compiled language

C++ with the help of the R package Rcpp; see Eddelbuettel and François (2011). Matrix computations

make use of the efficient C++ template library Armadillo [Sanderson and Curtin (2016)] through the R

package RcppArmadillo [Eddelbuettel and Sanderson (2014)].

6.3.3 Simulation results: Bayes vs W-VARMA-MVR

Table A3 reports bias and RMSE for each parameter separately when m = 2 and Table A4 reports the aver-

age bias and RMSE for ϕ, diag[ϕ], µ, Σv when m = (2,5,10). The number of inadmissible values of ϕ and

non-positive definiteness (NPD) of Σv are also reported, these are out of 100. Several conclusions emerge

from these tables:

First, MVR estimators outperform the Bayes estimator in terms of bias and RMSE in all setups. From

Table A3, for each parameter, MVR estimators produce either the smallest or second smallest bias and

RMSE. However, the CF estimator gives several inadmissible values of ϕ’s in small samples and NPDs,

whereas MVR estimators yield acceptable parameter solutions in almost every estimation. When m = 2,

the MVR estimator produces 0 NIV and 2 NPDs out of 1,500 estimations across samples. These results

show that MVR estimator not only improves stability but also increases efficiency. We also find that Bayes

estimates are heavily biased in all setups.

Second, for the larger samples (T = 2000,5000) and higher dimensions (m = 5,10), we have almost iden-

tical results for all the parameter estimates as with T = 1000 and m = 2. Again MVR estimators outperform

the Bayes in terms of bias and RMSE. RMSEs of MVR estimates decrease as the sample size increases that

show the consistency of these estimators.

Third, the simulation results show that the Bayes method is extremely unreliable when the volatility

process is close to the unit root. Whereas, on the contrary, the MVR method produces accurate parameter

estimates. We find that the Bayes estimator leads to non-convergence and yields a substantial bias for µ

and Σv parameter estimates, indicating this sampling scheme’s vulnerability. Note that we use the best

available prior and sampling scheme for the Bayes method with maximal computational efficiency. An-

other prior and/or sampler may not provide better performance in terms of bias and RMSE. Further, the

choice of prior for a higher-order model (p > 1) gets complicated as the order of model changes, which is a

challenging task and requires an extensive Monte Carlo study. Note that the computational cost increases

as well with p.

Finally, the simple estimators are highly time-efficient, and the margin of time efficiency is enormous
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compared to the Bayes method.

6.4 High-dimensional simulation study

Now we study the finite-sample properties of the W-VARMA-MVR (J = 10,100) estimators in high-

dimensional (HD) setups. For this comparison, the true DGP is given by (2.1)-(2.2) with Σu = Im , Σv = Im ,

µ=−1, and stationary ϕ’s are both diagonal and non-diagonal.

Four DGPs are considered based on volatility persistences:

1. HD1: We consider first-order persistence in latent volatilities and stationary ϕ1 is diagonal where

the diagonal elements are equal to 0.95. NP = 3m is the number of parameters in the simulated

model.

2. HD2: We consider first-order persistence in latent volatilities and stationary ϕ1 is non-diagonal

where for ϕ1, diagonal elements are equal to 0.9 and off-diagonal elements are set between

(−0.01,0.01). NP = m2 +2m is the the number of parameters in the simulated model.

3. HD3: We consider second-order persistence in latent volatilities and stationary ϕ1 and ϕ2 are non-

diagonal where for ϕ1, diagonal elements are equal to 0.9 and off-diagonal elements are set between

(−0.01,0.01), and for ϕ2, diagonal elements are equal to −0.85 and off-diagonal elements are set

between (−0.01,0.01). NP = 2m2 +2m is the the number of parameters in the simulated model.

4. Ultra high-dimensional setup (U HD): We consider P = 2, and stationary ϕ1 and ϕ2 are non-

diagonal where for ϕ1, diagonal elements are equal to 0.9 and off-diagonal elements are set be-

tween (−0.001,0.001), and for ϕ2, diagonal elements are equal to −0.8 and off-diagonal elements

are set between (−0.001,0.001). NP = 2m2 +2m is the the number of parameters in the simulated

model.

We set m ∈ (2 : 250) for HD1-HD3 models and m ∈ (500 : 1500) for the U HD model. We simulate 100

samples from each simulated model with different sample sizes. Tables A5-A8 report the multivariate bias

and RMSE of the corresponding matrices (ϕ,µ,Σv ). Several conclusions emerge from these tables:

First, MVR estimators perform extremely well in large scale setups and produce accurate estimates.

From Table A8, we can see that the MVR method is extremely reliable even with a model that has 1,500

dimensions and 4,503,000 parameters. This holds even with a moderate sample size T = 10,000.

Second, we find that the winsorize parameter J plays several key roles for high-dimensional models:

• A higher level of J (e.g., 100) reduces the number of non-positive definiteness of Σv matrix.
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• A higher level of J reduces the RMSE, especially in small samples; compare column of J = 10 to

J = 100 in Tables A5-A7.

• For high-dimensional setups, when m = 100,250, the RMSEs (biases) go down significantly, implies

that the MVR method improves the precession of all parameters.

Third, in small samples, RMSEs of high-dimensional models (m = 25,50,100,250) are slightly larger

compared to low-dimensional models (m = 2,5,10). This dispersion goes down as the sample size in-

creases. We find that T = 1000 is not an adequate sample size for high-dimensional models. The same

conclusion also holds for the U HD model.

Fourth, we find that the W-VARMA-MVR estimator is not only statistically efficient but also extremely

time-efficient. For a large sample T = 10,000, MVR (J = 10) can compute a model with 250 dimensions

and 125,500 parameters in just 2.717 seconds on a 2.8 GHz Intel Core i7 processor (with 16 GB 2133 MHz

DDR3 memory); see Table A7.

7 Forecasting with MSV(p) models

As discussed earlier, MSV(p) models can be written as a linear state-space model without losing any in-

formation. The state-space representation of MSV(p) models is given by

Xt −µ= ht −µ+ϵt ,

ht −µ=
p∑

j=1
ϕ j (ht− j −µ)+vt ,

(7.1)

where the distribution ϵt , is approximated by a m-variate normal distribution with mean zero and covari-

ance matrix Σϵ. The model defined in (7.1) can be rewritten as following:

X̃t = C h̃t +ϵt ,

h̃t+1 = Ah̃t + ṽt+1 ,
(7.2)

where

X̃t :=Xt −µ

h̃t+1
pm×1

:=



ht+1 −µ
m×1

ht −µ
m×1

...

ht−p+2 −µ
m×1


, ṽt+1

pm×m
:=



vt+1
m×m

0
m×m

0
m×m

...

0
m×m


, A

pm×pm
=



ϕ1 ϕ2 . . . ϕp−1 ϕp

Im 0 . . . 0 0

0 Im . . . 0 0
...

. . .
...

0 0 . . . Im 0


,
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B
pm×pm

:= E(ṽt+1ṽ
′
t+1) =



Σv 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0


, C

m×pm
:=

(
Im 0m . . . 0m

)
, D

m×m
:= E(ϵtϵ

′
t ) =Σϵ

Now using (7.2), the Kalman filter can be applied as follows:

• Initialization:

ˆ̃h1|0 = E(h̃1) = 0(pm×1) ,

P1|0 = E([(h̃1 −E(h̃1)][(h̃1 −E(h̃1)]′) = diag[Σv , . . . , Σv ](pm×pm) ,
(7.3)

where P1|0 is the MSE associated with ˆ̃h1|0.

• Sequential updating:

ˆ̃ht |t = ˆ̃ht |t−1 +Pt |t−1C ′(C Pt |t−1C ′+D)−1 × (X̃t −C ˆ̃ht |t−1) ,

Pt |t = Pt |t−1 −Pt |t−1C ′(C Pt |t−1C ′+D)−1C Pt |t−1 .
(7.4)

• In-sample prediction:

ˆ̃ht+1|t = A ˆ̃ht |t−1 + APt |t−1C ′(C Pt |t−1C ′+D)−1 × (X̃t −C ˆ̃ht |t−1) ,

Pt+1|t = APt |t A′+B .
(7.5)

Given (7.5), the forecast of X̃t+1 and the MSE of forecast error are given by

ˆ̃Xt+1|t =C ˆ̃ht+1|t ,

E([X̃t+1 − ˆ̃Xt+1|t ][X̃t+1 − ˆ̃Xt+1|t ]′) =C Pt+1|tC ′+D .
(7.6)

• Out-of-sample s-step-ahead forecasting:

ˆ̃ht+s|t = As ˆ̃ht |t ,

ˆ̃Xt+s|t =C ˆ̃ht+s|t =C As ˆ̃ht |t = As ˆ̃ht |t .
(7.7)

The h-step-ahead forecast is computed by (7.7) with the parameter estimates plugged in.
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8 Application to stock returns

In this section, we apply our models and methods to daily and high-frequency stock returns. First, we in-

vestigate the estimation of our proposed specification with high-frequency data. Second, using daily data,

we investigate the effect of shrinkage control parameter. Third, we compare the forecasting performance

of our specifications with alternative stochastic covariance models, including multivariate GARCH models.

8.1 Estimation with high-frequency data

We use the estimated five-minute high-frequency stock returns constructed using the price data from the

TAQ millisecond database for the period 2004 to 2016. We construct the log prices for five-minute sam-

pling, which gives us on average 250 days per year with 77 daily increments. The first observation is the

volume-weighted trading price in the exact second of 9:30:00. For the remaining 78 observations, the

volume-weighted trading prices are calculated for each second, and the last observations in each 300-

second interval are taken. For a significant portion of the stocks, there is no trade in the first seconds of

the day, and thus we start sampling at 9:35 am. We use the price of the trade at or immediately preced-

ing each five-minute mark. For each year, we take the intersection of the stocks traded each day and the

stocks in the S&P 500 index over the period 1993 to 2012 based on the Bloomberg terminal. This gives us

a cross-section of around 500-600 firms for each year. Based on stocks still present in S&P 500 index in

the period 2020, we have an intersection of 228 stocks for all 13 years. The standard data-cleaning proce-

dures are applied where we delete all entries with a time stamp outside 9:30 am to 4 pm and entries with

a transaction price equal to zero, retain entries originating from a single exchange and delete entries with

corrected trades and abnormal sale condition.

In our balanced panel, we have 228 stocks and 252,021 observations. Using this dataset, we estimate

unrestricted MSV(1) and MSV(2) models. The W-VARMA-MVR(J = 10) method can estimate an MSV(1)

[MSV(2)] model with this dataset in just 19.22 [48.05] seconds on a 2.8 GHz Intel Core i7 processor with 16

GB 2133 MHz DDR3 memory. The MSV(1) model has 52,440 parameters, while MSV(2) model has 104,424

parameters.

Figures A1-A4 show the high-dimensional heatmap plots of the estimated volatility persistent matrix

with different values of shrinkage control parameter. Several conclusions emerge from these heatmaps.

First, when J = 1, we find that both ϕ̂1 and ϕ̂2 matrices are unstable, i.e., some of the eigenvalues of the

companion matrix have a modulus greater or equal to one. However, with higher values of the shrink-

age control parameter (J = 10,50,100), the W-VARMA-MVR produces stable solutions. Second, we find

that many of the off-diagonal values of ϕ̂1 and ϕ̂2 are significantly different from zero. The non-zero off-
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diagonal elements of ϕ̂1 imply that there are volatility spillover effects (or multilateral Granger causalities

in volatility) between assets at a higher frequency. In addition to that, the non-zero off-diagonal elements

of ϕ̂2 show that we have multi-horizon volatility spillover effects (or multi-horizon causalities in volatility)

between assets at a higher frequency. Third, the non-zero diagonal elements of ϕ̂1 and ϕ̂2 capture first-

order and second-order persistence in log volatilities of returns. Finally, from Figures A2 and A4, it is easy

to see that the above patterns hold true even in small samples when T = 126,011.

8.2 Effect of shrinkage control parameter

The choice of shrinkage control parameter J plays a crucial role in W-VARMA-MVR estimation; therefore,

we scrutinize the possible choices of J with a small sample with many assets. The data set in this estima-

tion contains daily observations from 2008/01/02 to 2020/12/31 of all stocks listed in NYSE. After filtering

and balancing, the NYSE dataset includes 1,184 stocks with 3,247 time series observations.

For this sample, we consider MSV(p) models with p = (1, 2) and plot the estimated (by W-VARMA-MVR)

modulus of the max eigenvalue of the companion matrix of the volatility persistence parameters estimated

with different number of assets [m = (2,10,50,100,250,500,1000,1184)] and for J = (1, . . . , 100).

We present plots in Figures A5-A6. From the evolution of the modulus of the maximum eigenvalue of

the companion matrix as a function of J and m, we find that both MSV(p) models with p = (1, 2) provide

stable solutions when J > 5. Furthermore, we get stable solutions with many assets, even with m = 1184.

It should be noted that the truncation parameter J plays a smoothing role, and our results (simulation

and empirical) suggest that there is a bias-variance trade-off for ϕ estimators as J increases. Therefore, a

moderate level of winsorizing is sufficient.

8.3 Forecasting performance and comparison to other models

In this section, we evaluate the out-of-sample performance of MSV(p) models in the context of asset al-

location strategies. The competitors are: the Risk Metrics 2006 methodology [Zumbach (2007)] denoted

as RM, the dynamic conditional correlation with composite likelihood [Engle (2002), Pakel et al. (2021)]

denoted as cDCC, the conditional covariance estimation using the dynamic factor model approach with

finite-dimensional space [Alessi et al. (2009), Aramonte et al. (2013)] denoted as fDCC, the generalized

orthogonal GARCH model of van der Weide (2002) denoted as GO-GARCH with three different specifica-

tion [standard GARCH with multivariate normal distribution (GO-GARCH-S) and multivariate affine nor-

mal inverse Gaussian distribution (GO-GARCH-S-MANIG), and GJR with multivariate normal distribution

(GO-GARCH-GJR)], unrestricted MSV(p) models (U-MSV(p)) and restricted MSV(p) models (R-MSV(p))
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where we consider uncorrelated SV(p) structure. While this choice is not exhaustive, it includes many of

the most widely used approaches in practice.

For comparison, we consider the global minimum variance (GMV) portfolio where the one step ahead

conditional forecast of the covariance matrix Σt+1|t uniquely defines the optimal portfolio weights:

ŵt+1 =
Σ̂−1

t+1|t ιm
ι′mΣ̂−1

t+1|t ιm
,

where ιm denotes an m-variate vector of ones. The key issue is to forecast Σt+1|t , and it is estimated at

time t using each of the conditional volatility models described above.

We computed out-of-sample forecasts of Σt+1|t using rolling (moving) window method and computed

for a forecast horizon equal to 1-day. In this rolling forecasts setup, an initial sample using data from

t = 1, . . . , T is used to determine a window width T , to estimate the models, and to form 1−step ahead

out-of-sample forecasts starting at time T . Then the window is moved ahead one time period, the models

are re-estimated using data from t = 2, . . . , T +1, and 1−step ahead out-of-sample forecasts are produced

starting at time T +1. This process is repeated until no more 1−step ahead forecasts can be computed.

Using the forecast of Σt+1|t , we compute GMV weights and using these weights, we compute the corre-

sponding realized portfolio returns of a given portfolio p, denoted by rp,t+1, is derived as rp,t+1 = ŵ′
t+1rt+1,

where rt+1 = (r1,t+1, r2,t+1, . . . , rm,t+1) and ri ,t+1 gives the return of asset i between day t and day t +1.

The evaluation of the portfolio’s performance based on the one-step-ahead excess portfolio returns over

the equal weighted portfolio is denoted by r̂p,t+1.3 Following Gasbarro et al. (2007), DeMiguel and Nogales

(2009), DeMiguel et al. (2009), Zakamouline and Koekebakker (2009), Behr et al. (2013) and Hautsch and

Voigt (2019), to measure the performance of the GMV asset-allocation strategy by adjusting it for its risk,

we use the well-known Sharpe ratio (SR) index defined as the ratio between the sample mean of the out-

of-sample excess returns over those obtained from the equal weight portfolio and their sample standard

deviation:

SR=
1

T−1

∑T−1
t=1 r̂p,t+1√

1
T−2

∑T−1
t=1

(
r̂p,t+1 − 1

T−1

∑T−1
t=1 r̂p,t+1

)2
. (8.1)

A superior covariance forecasting model should provide portfolios with higher SR.

The data set in the estimation contains daily observations from 2009/01/02 to 2020/12/31 of all stocks

formed the S&P 500 index. Two portfolios are considered: one with 20 stocks and the other with 50 stocks;

see the composition of these portfolios in Section A.2. We select stocks that have larger weights in the

S&P index. The data are in a log difference form, adjusted for dividends, and obtained from CRSP through

3We compute the equal weighted portfolio with rebalancing to maintain the naive 1/m or strategic weight for each asset over
time.
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Wharton Research Data Services. In the out-of-sample forecast experiment, we consider an initial in-

sample period from 2009/01/02 to 2018/12/31, and the out-of-sample is from 2019/01/02 to 2020/12/31.

Thus, the out-of-sample includes a highly volatile period, i.e., the Covid-19 pandemic. The forecasts of

MSV(p) models are based on the W-VARMA-MVR estimator with J = 50.

Table A9 reports the annualized SR of excess minimum-variance portfolio returns, which have been

computed over the out-of-sample period after daily rebalancing. Our findings can be summarized as fol-

lows.

First, the results reported in A9 show that the SR for the portfolios constructed using the U-MSV(p) es-

timates of the covariances consistently provides the highest SRs, regardless of the number of assets and

different sub-samples. These findings indicate that higher-order persistence in volatilities and higher-

order volatility spillover effects are crucial for asset allocation; compare SRs of U-MSV(p) and R-MSV(p)

models. Most of the high-dimensional (or moderate-dimensional) conditional covariance matrix estima-

tors proposed recently do not consider these features. Our findings suggest that the consequences of

neglecting these features in the covariance estimation process may be detrimental.

Second, we find that the U-MSV(p) models provide larger SR than those provided by multivariate

GARCH models. This suggests that modelling volatility as a latent stochastic VAR(p) process is vital for

forecasting covariance matrix. In addition to that, we also find numerical instability with GO-GARCH

models [GO-GARCH-S, GO-GARCH-GJR] when m = 50.

Third, in both of our out-of-sample experiments, higher-order U-MSV models also outperform the first-

order U-MSV model. This finding suggests that additional lag terms in the latent volatility equation are

essential for forecasting volatility. This result is consistent with findings of Ahsan and Dufour (2020).

Finally, when we forecast a highly volatile period, i.e., the Covid-19 pandemic, the performance of U-

MSV(p) models are better than other competing models (this holds across a different number of assets).

The U-MSV(3) model produces the superior forecast in terms of SR criteria in both experiments. On

the other hand, performances of RM, GARCH and R-MSV models are poor, and these models failed to

outperform the equal-weighted portfolio; SRs of these models are negative.

9 Conclusion

We have examined the problem of estimating unrestricted higher-order MSV models and proposed sev-

eral computationally simple estimators. We also study the asymptotic distribution of these simple esti-

mators. We show that simple estimators are especially convenient for use in simulation-based inference

techniques, i.e., Bootstrap or Monte Carlo tests. The W-VARMA-MVR method that we have proposed out-
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performs all other estimators, including an extremely optimized Bayesian estimator, in terms of bias and

statistical efficiency. This conclusion holds across different simulation designs. Furthermore, proposed

simple estimators are highly time-efficient compared to other estimators. In the context of dynamic min-

imum variance portfolio strategy, we find that unrestricted higher-order MSV models outperform existing

alternatives, including multivariate GARCH-type models.

One can exploit the W-VARMA-MVR in the context of measuring multivariate macroeconomic uncer-

tainty. Other potential extensions of interest include: MSV models with non-Gaussian innovations, al-

lowance for leverage effects, and incorporating factor structure in the mean equation. In cases of leverage

and heavy-tailed distributions, we can develop estimation methods similar to Ahsan (2021). These are the

objects of ongoing research.
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Technical Appendix

This Technical Appendix contains: (i) Mathematical proofs. (ii) Composition of portfolios. (iii) Figures. (iv)
Tables.

A.1 Mathematical proofs

PROOF OF PROPOSITION 3.1 From (2.9-2.10), we have

ϕ(B)ht =ϕ(B)µ+vt , and Xt = ht +ϵt ,

where ϕ(B) = (Im −∑p
j=1ϕ j B j ). Furthermore, Assumption 2.1 implies that vt ’s and ϵt ’s are independent.

Now, applying ϕ(B) to both sides of (2.10) yields

ϕ(B)Xt = ϕ(B)ht +ϕ(B)ϵt =ϕ(B)µ+vt +ϕ(B)ϵt .

ϕ(B)(Xt −µ) = vt +ϕ(B)ϵt . (A.1)

Consider the right hand side of (A.1). This is clearly a covariance stationary process. By the Wold decom-

position theorem it must have a vector moving average representation. Since the autocovariance function

cuts off for lags k > p it must be a VMA(p) process, say θ(B)ηt = (Im −∑p
j=1θ j B j )ηt . Hence, Xt must be

an VARMA(p, p) process (for univariate case, see Granger and Morris (1976)). The moving average param-

eters (θ1,θ2, . . . ,θp ) and the noise variance Ση of this VARMA(p, p) process can be found by equating the

autocovariance function of the right hand side of (A.1) with that of θ(B)ηt for lags k = 0,1, . . . , p and solving

the p +1 following non-linear equations

Ση+θ1Σηθ
′
1 +θ2Σηθ

′
2 +·· ·+θpΣηθ

′
p =Σv +Σϵ+ϕ1Σϵϕ

′
1 +ϕ2Σϵϕ

′
2 +·· ·+ϕpΣϵϕ

′
p

−θ1Ση+θ1Σηθ
′
2 +·· ·+θp−1Σηθ

′
p =−ϕ1Σϵ+ϕ1Σϵϕ

′
2 +·· ·+ϕp−1Σϵϕ

′
p

...

−θp−1Ση+θ1Σηθ
′
p =−ϕp−1Σϵ+ϕ1Σϵϕ

′
p

−θpΣη =−ϕpΣϵ.
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Note that there may be multiple solutions, only some of which result in an invertible process.

PROOF OF COROLLARY 3.2 From Proposition 3.1, the observed process {Xt } satisfies the following equa-

tion:

Xt −µ=
p∑

j=1
ϕ j (Xt− j −µ)+ηt −

p∑
j=1

θ jηt− j , (A.2)

or

Xt −µ=
p∑

j=1
ϕ j (Xt− j −µ)+vt +ϵt −

p∑
j=1

ϕ j ϵt− j . (A.3)

Multiply both sides of (A.3) by (Xt−k −µ)′ and taking expectation we get:

Γk =ϕ1Γk−1 +·· ·+ϕpΓk−p +E[vt (Xt−k −µ)′]+E[ϵt (Xt−k −µ)′]−
p∑

j=1
ϕ jE[ϵt− j (Xt−k −µ)′].

Setting k = 0, we get

Γ0 =ϕ1Γ1 +·· ·+ϕpΓp +E[vt (Xt −µ)′]+E[ϵt (Xt −µ)′]−
p∑

j=1
ϕ jE[ϵt− j (Xt −µ)′]

=ϕ1Γ1 +·· ·+ϕpΓp +Σv +Σϵ−
p∑

j=1
ϕ jE[ϵt− j ((Xt− j −µ)′−ϵ′t− j )]ϕ′

j

=ϕ1Γ1 +·· ·+ϕpΓp +Σv +Σϵ+
p∑

j=1
ϕ j [Σϵ−Σϵ]ϕ′

j

=ϕ1Γ1 +·· ·+ϕpΓp +Σv +Σϵ.

(A.4)

Setting 1 ≤ k ≤ p, we get

Γk =ϕ1Γk−1 +·· ·+ϕpΓk−p +E[vt (Xt−k −µ)′]+E[ϵt (Xt−k −µ)′]−
p∑

j=1
ϕ jE[ϵt− j (Xt−k −µ)′]

=ϕ1Γk−1 +·· ·+ϕpΓk−p +0+0−ϕkΣϵ.

=ϕ1Γk−1 +·· ·+ϕpΓk−p −ϕkΣϵ.

(A.5)

Setting k > p, we get

Γk =ϕ1Γk−1 +·· ·+ϕpΓk−p +E[vt (Xt−k −µ)′]+E[ϵt (Xt−k −µ)′]−
p∑

j=1
ϕ jE[ϵt− j (Xt−k −µ)′]

=ϕ1Γk−1 +·· ·+ϕpΓk−p +0+0−0

=ϕ1Γk−1 +·· ·+ϕpΓk−p .

(A.6)

Combining (A.4-A.6), we get the autocovariance structure of the observed process stated in Corol-

lary 3.2.

PROOF OF COROLLARY 3.3 The estimator of ϕ(p) is based on the autocovariance structure of the process

A–2



Xt . This is the solution of p-system of equations from (3.2) with k = p +1, . . . , 2p. So

[
Γp+1 Γp+2 · · · Γ2p

]
=

[
ϕ1 ϕ2 · · · ϕp

]
.


Γp Γp+1 · · · Γ2p−1

Γp−1 Γp · · · Γ2p−2
...

...
...

Γ1 Γ2 · · · Γp

 ,

or

[
ϕ1 ϕ2 · · · ϕp

]
=

[
Γp+1 Γp+2 · · · Γ2p

]
.


Γp Γp+1 · · · Γ2p−1

Γp−1 Γp · · · Γ2p−2
...

...
...

Γ1 Γ2 · · · Γp



−1

,

or

ϕ(p) =Γ(p+1)Γ
−1

[p] , (A.7)

where

ϕ(p) =
[
ϕ1 ϕ2 · · · ϕp

]
, Γ(p+1) =

[
Γp+1 Γp+2 · · · Γ2p

]
,

Γ[p] =


Γp Γp+1 · · · Γ2p−1

Γp−1 Γp · · · Γ2p−2
...

...
...

Γ1 Γ2 · · · Γp

 .

Note that (A.7) is also valid for any j ≥ 1 such that

ϕ(p) =Γ(p+ j )Γ
−1

[p+ j−1] , (A.8)

where

Γ(p+ j ) =
[
Γp+ j Γp+ j+1 · · · Γ2p+ j−1

]
, Γ[p+ j−1] =


Γp+ j−1 Γp+ j · · · Γ2p+ j−2

Γp+ j−2 Γp+ j−1 · · · Γ2p+ j−3
...

...
...

Γ j Γ j+1 · · · Γp+ j−1

 .

Now from (3.2) with k = 1 we have:

Γ1 =ϕ1Γ0 +ϕ2Γ−1 +·· ·+ϕpΓ1−p −ϕ1Σϵ =ϕ1Γ0 +ϕ2Γ
′

1 +·· ·+ϕpΓ
′
p−1 −ϕ1Σϵ .

Hence,

Σϵ =Γ0 +ϕ−1
1

p−1∑
j=1

ϕ j+1Γ
′
j −ϕ−1

1 Γ1 , (A.9)

and substitute the above expression of Σϵ into (3.2) with k = 0, we have

Γ0 =ϕ1Γ−1 +·· ·+ϕpΓ−p +Σv +Γ0 +ϕ−1
1

p−1∑
j=1

ϕ j+1Γ
′
j −ϕ−1

1 Γ1
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=
p∑

j=1
ϕ jΓ− j +Σv +Γ0 +ϕ−1

1

p−1∑
j=1

ϕ j+1Γ
′
j −ϕ−1

1 Γ1

=
p∑

j=1
ϕ jΓ

′
j +Σv +Γ0 +ϕ−1

1

p−1∑
j=1

ϕ j+1Γ
′
j −ϕ−1

1 Γ1 .

(A.10)

Hence

Σv =ϕ−1
1 Γ1 −ϕ−1

1

p−1∑
j=1

ϕ j+1Γ
′
j −

p∑
j=1

ϕ jΓ
′
j . (A.11)

Finally,

µ= E(Xt ). (A.12)

PROOF OF LEMMA 4.1 Under the Assumptions 4.1 – 4.3 with s = 4, the observed process {Xt } is strictly

stationarity and geometrically ergodic with E[Xt ] <∞ and E[XtXt+k ] <∞. So the consistency is a simple

application of the Law of Large Numbers for stationary and ergodic processes, i.e., the Ergodic theorem;

see Theorem 13.12 and Corollary 13.14 of Davidson (1994).

PROOF OF LEMMA 4.2 Under the Assumptions 4.1 – 4.3 with s = 8, Λ(p) is finite and consistent given

the law of large numbers for stationary and ergodic processes. Finally, the joint distribution converges

to a normal distribution by the central limit theory for strongly mixing sequences (see Davidson (1994),

Theorem 24.5, p. 385).

PROOF OF THEOREM 4.3 The first part of the theorem follows from the continuous mapping theorem

and the later part follows from the standard result for differentiable transformations of asymptotically

normally distributed variables together with the application of the multivariate delta method. Further, it

is easy to see that F(Λ) is a continuously differentiable mapping of Λ; see Ahsan and Dufour (2021) for a

similar proof.

A.2 Composition of portfolios

• Ticker symbols for 20 assets portfolio: AAPL, ABT, ADBE, AMZN, CMCSA, CSCO, CVX, HD, JNJ,

JPM, MSFT, NFLX, NVDA, PEP, PFE, PG, TMO, UNH, VZ, XOM.

• Ticker symbols for 50 assets portfolio: AAPL, ABT, ADBE, AMD, AMT, AMZN, BLK, BMY, C, CMCSA,

CMS, COST, CSCO, CVX, DHR, GE, GS, HD, HON, INTC, INTU, ISRG, JNJ, JPM, KO, LLY, LOW, MCD,

MDT, MSFT, NFLX, NKE, NVDA, ORCL, PEP, PFE, PG, QCOM, SBUX, T, TGT, TMO, UNH, UNP, UPS,

VRTX, VZ, WFC, WMT, XOM.
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A.3 Figures
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Figure A1
High-dimensional heatmap plots of the estimated first-order volatility persistent matrix with different

values of shrinkage control parameter
Number of asset m = 228 and number of high-frequency observations T = 252,021

Figure A1 shows the heatmap plots of ϕ̂(1) with different values of winsorizing truncation / shrinkage control parameter (J = 1,10,50,100). The
sample period is from January 01, 2004 to December 31, 2016 and the number of five minute high-frequency observations is T = 252,021. The
balanced panel includes 228 S&P 500 ticker components which are selected based on their market capitalization. We consider first-order persis-
tence in latent volatilities with non-diagonal ϕ1 and diagonal Σv . The model has m = 228 number of time series and the number of parameters
(NP) are (= m2 +2m = 52,440) and ϕ(1) is a m ×m matrix, which has 51,984 parameters.
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(a) ϕ̂(1) with J = 1 (unstable)
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(b) ϕ̂(1) with J = 10 (stable)
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(c) ϕ̂(1) with J = 50 (stable)
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(d) ϕ̂(1) with J = 100 (stable)
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Figure A2
High-dimensional heatmap plots of the estimated first-order volatility persistent matrix with different

values of shrinkage control parameter
Number of asset m = 228 and number of high-frequency observations T = 126,011

Figure A2 shows the heatmap plots of ϕ̂(1) with different values of winsorizing truncation / shrinkage control parameter (J = 1,10,50,100). The
sample period is from July 01, 2009 to December 31, 2016 and the number of five minute high-frequency observations is T = 126,011. The bal-
anced panel includes 228 S&P 500 ticker components which are selected based on their market capitalization. We consider first-order persistence
in latent volatilities with non-diagonal ϕ1 and diagonal Σv . The model has m = 228 number of time series and the number of parameters (NP)
are (= m2 +2m = 52,440) and ϕ(1) is a m ×m matrix, which has 51,984 parameters.
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(a) ϕ̂(1) with J = 1 (unstable)
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(b) ϕ̂(1) with J = 10 (stable)
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(c) ϕ̂(1) with J = 50 (stable)
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Figure A3
High-dimensional heatmap plots of the estimated second-order volatility persistent matrix with different

values of shrinkage control parameter
Number of asset m = 228 and number of high-frequency observations T = 252,021

Figure A3 shows the heatmap plots of ϕ̂(2) with different values of winsorizing truncation / shrinkage control parameter (J = 1,10,50,100).The
sample period is from July 01, 2009 to December 31, 2016 and the number of five minute high-frequency observations is T = 252,021. The
balanced panel includes 228 S&P 500 ticker components which are selected based on their market capitalization. We consider second-order
persistence in latent volatilities with non-diagonal ϕ1 and ϕ2, and diagonal Σv . The model has m = 228 number of time series and the number
of parameters (NP) are (= 2m2 +2m = 104,424) and ϕ(2) is a m ×2m matrix, which has 103,968 parameters.
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(a) ϕ̂(2) with J = 1 (unstable)
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(b) ϕ̂(2) with J = 10 (stable)
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(c) ϕ̂(2) with J = 50 (stable)
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Figure A4
High-dimensional heatmap plots of the estimated second-order volatility persistent matrix with different

values of shrinkage control parameter
Number of asset m = 228 and number of high-frequency observations T = 126,011

Figure A4 shows the heatmap plots of ϕ̂(2) with different values of winsorizing truncation / shrinkage control parameter (J = 1,10,50,100). The
sample period is from July 01, 2009 to December 31, 2016 and the number of five minute high-frequency observations is T = 126,011. The
balanced panel includes 228 S&P 500 ticker components which are selected based on their market capitalization. We consider second-order
persistence in latent volatilities with non-diagonal ϕ1 and ϕ2, and diagonal Σv . The model has m = 228 number of time series and the number
of parameters (NP) are (= 2m2 +2m = 104,424) and ϕ(2) is a m ×2m matrix, which has 103,968 parameters.
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(a) ϕ̂(2) with J = 1 (unstable)

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

220

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) ϕ̂(2) with J = 10 (stable)

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

220

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c) ϕ̂(2) with J = 50 (stable)

50 100 150 200 250 300 350 400 450

20

40

60

80

100

120

140

160

180

200

220

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(d) ϕ̂(2) with J = 100 (stable)

A–9



F
ig

u
re

A
5

M
o

d
u

lu
s

o
f

th
e

m
ax

im
u

m
ei

ge
n

va
lu

e
o

f
th

e
co

m
p

an
io

n
m

at
ri

x
as

so
ci

at
ed

w
it

h
a

fi
rs

t-
o

rd
er

u
n

re
st

ri
ct

ed
M

SV
m

o
d

el
T

h
e

d
at

as
et

in
cl

u
d

es
1,

18
4

N
Y

SE
st

o
ck

s
w

it
h

3,
24

7
d

ai
ly

ti
m

e
se

ri
es

o
b

se
rv

at
io

n
s

F
ig

u
re

A
5

sh
ow

s
th

e
ev

o
lu

ti
o

n
o

f
th

e
m

o
d

u
lu

s
o

f
th

e
m

ax
im

u
m

ei
ge

n
va

lu
e

o
f

th
e

co
m

p
an

io
n

m
at

ri
x

as
so

ci
at

ed
w

it
h

a
fi

rs
t-

o
rd

er
u

n
re

st
ri

ct
ed

M
SV

m
o

d
el

w
it

h
d

if
fe

re
n

t
n

u
m

b
er

o
f

as
se

ts
m

=
(2

,1
0,

50
,1

00
,2

50
,5

00
,1

00
0,

11
84

)
an

d
d

if
fe

re
n

t
va

lu
es

o
f

th
e

sh
ri

n
ka

ge
co

n
tr

o
lp

ar
am

et
er

J
=

(1
,.

..
,1

00
).

01234
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=2
, n

p
 =

4)

0
10

20
30

40
50

60
70

80
90

10
0

01234
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
0,

 n
p

 =
10

0)

0
10

20
30

40
50

60
70

80
90

10
0

012345
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=5
0,

 n
p

 =
25

00
)

0
10

20
30

40
50

60
70

80
90

10
0

0246
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
00

, n
p

 =
10

00
0)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=2
50

, n
p

 =
62

50
0)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=5
00

, n
p

 =
25

00
00

)

0
10

20
30

40
50

60
70

80
90

10
0

02468

M
o

d
u

lu
s 

o
f 

th
e 

m
ax

 e
ig

en
va

lu
e 

o
f 

th
e 

co
m

p
an

io
n

 m
at

ri
x 

(m
=1

00
0,

 n
p

 =
10

00
00

0)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
18

4,
 n

p
 =

14
01

85
6)

0
10

20
30

40
50

60
70

80
90

10
0

A–10



F
ig

u
re

A
6

M
o

d
u

lu
s

o
f

th
e

m
ax

im
u

m
ei

ge
n

va
lu

e
o

f
th

e
co

m
p

an
io

n
m

at
ri

x
as

so
ci

at
ed

w
it

h
a

se
co

n
d

-o
rd

er
u

n
re

st
ri

ct
ed

M
SV

m
o

d
el

T
h

e
d

at
as

et
in

cl
u

d
es

1,
18

4
N

Y
SE

st
o

ck
s

w
it

h
3,

24
7

d
ai

ly
ti

m
e

se
ri

es
o

b
se

rv
at

io
n

s

F
ig

u
re

A
6

sh
ow

s
th

e
ev

o
lu

ti
o

n
o

f
th

e
m

o
d

u
lu

s
o

f
th

e
m

ax
im

u
m

ei
ge

n
va

lu
e

o
f

th
e

co
m

p
an

io
n

m
at

ri
x

as
so

ci
at

ed
w

it
h

a
se

co
n

d
-o

rd
er

u
n

re
st

ri
ct

ed
M

SV
m

o
d

el
w

it
h

d
if

fe
re

n
t

n
u

m
b

er
o

f
as

se
ts

m
=

(2
,1

0,
50

,1
00

,2
50

,5
00

,1
00

0,
11

84
)

an
d

d
if

fe
re

n
t

va
lu

es
o

f
th

e
sh

ri
n

ka
ge

co
n

tr
o

lp
ar

am
et

er
J
=

(1
,.

..
,1

00
).

01234
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=2
, n

p
 =

8)

0
10

20
30

40
50

60
70

80
90

10
0

01234
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
0,

 n
p

 =
20

0)

0
10

20
30

40
50

60
70

80
90

10
0

012345
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=5
0,

 n
p

 =
50

00
)

0
10

20
30

40
50

60
70

80
90

10
0

0246
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
00

, n
p

 =
20

00
0)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=2
50

, n
p

 =
12

50
00

)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=5
00

, n
p

 =
50

00
00

)

0
10

20
30

40
50

60
70

80
90

10
0

02468

M
o

d
u

lu
s 

o
f 

th
e 

m
ax

 e
ig

en
va

lu
e 

o
f 

th
e 

co
m

p
an

io
n

 m
at

ri
x 

(m
=1

00
0,

 n
p

 =
20

00
00

0)

0
10

20
30

40
50

60
70

80
90

10
0

02468
M

o
d

u
lu

s 
o

f 
th

e 
m

ax
 e

ig
en

va
lu

e 
o

f 
th

e 
co

m
p

an
io

n
 m

at
ri

x 
(m

=1
18

4,
 n

p
 =

28
03

71
2)

0
10

20
30

40
50

60
70

80
90

10
0

A–11



A.4 Tables

A–12



Table A1.
Comparison of different winsorized VARMA estimators (W-VARMA)

Table A1 reports the performance of different winsorized estimators. The estimators compared are the uncensored (CF) and

winsorized estimators with (J = 10) defined in Section 3. For J = 1, both the winsorized estimators reduce to the CF estimator.

RMSE is the estimated root mean square error based on the simulation. NIV stands for the number of inadmissible parameter

values produced by the estimators (over 1000).

Parameter ϕ1 ϕ2 ϕ12 ϕ21 µ1 µ2 σv,11 σv,22 σv,12 ρ

True value 0.95 0.95 -0.2 0.1 -2 2 1 1 0.9 0.9

Estimators T NIV Bias

CF-VARMA 500 39 -0.0007 -0.0052 -0.0052 0.0002 0.0175 -0.0219 0.0192 0.0410 0.0237 -0.0104

2000 0 -0.0009 -0.0012 -0.0018 0.0000 0.0000 0.0038 0.0211 0.0082 0.0123 -0.0035
5000 0 0.0002 0.0002 0.0000 0.0004 -0.0003 -0.0012 -0.0044 -0.0089 -0.0074 -0.0006

VARMA-MEAN 500 0 0.0007 -0.0003 -0.0024 0.0012 0.0175 -0.0219 -0.0325 -0.0740 -0.0292 -0.0022

2000 0 -0.0001 -0.0002 -0.0006 0.0002 0.0000 0.0038 -0.0044 -0.0178 -0.0094 -0.0010
5000 0 0.0002 -0.0001 -0.0003 0.0003 -0.0003 -0.0012 -0.0046 -0.0034 -0.0019 -0.0004

W-VARMA-MVR 500 0 -0.0004 -0.0037 -0.0034 0.0003 0.0175 -0.0219 -0.0047 -0.0046 -0.0081 -0.0035

2000 0 -0.0004 -0.0008 -0.0009 0.0000 0.0000 0.0038 0.0027 -0.0035 -0.0034 -0.0014
5000 0 0.0001 -0.0003 -0.0003 0.0002 -0.0003 -0.0012 -0.0022 0.0005 -0.0009 -0.0005

Estimators T NIV RMSE

CF-VARMA 500 39 0.0294 0.0380 0.0378 0.0299 0.3277 0.3133 0.7037 0.7385 0.5804 0.0535

2000 0 0.0127 0.0187 0.0173 0.0136 0.1667 0.1588 0.3394 0.3911 0.2886 0.0260
5000 0 0.0082 0.0111 0.0106 0.0086 0.1037 0.0959 0.2169 0.2400 0.1834 0.0159

VARMA-MEAN 500 0 0.0171 0.0209 0.0234 0.0147 0.3282 0.3141 0.2780 0.3454 0.2776 0.0350

2000 0 0.0075 0.0104 0.0109 0.0070 0.1667 0.1588 0.1365 0.1614 0.1331 0.0177
5000 0 0.0048 0.0060 0.0065 0.0045 0.1037 0.0959 0.0897 0.0989 0.0836 0.0111

W-VARMA-MVR 500 0 0.0174 0.0202 0.0213 0.0150 0.3282 0.3141 0.2737 0.2839 0.2482 0.0348

2000 0 0.0075 0.0097 0.0102 0.0070 0.1667 0.1588 0.1342 0.1381 0.1236 0.0178
5000 0 0.0048 0.0057 0.0062 0.0045 0.1037 0.0959 0.0881 0.0870 0.0790 0.0111
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Table A4
Simulation results for estimated MSV processes: Bayes vs W-VARMA-MVR estimator

True value: (ϕ11, ϕ12, ϕ21, ϕ22, µ1, µ2, σ2
v,1, σ2

v,2) = (0.98, −0.1, 0.12, 0.98, −0.5, −0.5, 0.4, 0.4)

Table A4 reports the performance of Bayes and W-VARMA-MVR estimators in bi-variate setups. VARMA-type estimator are proposed in Section 3.
Bayes estimator is based on a Metropolis-within-Gibbs sampler [Kim et al. (1998), Omori et al. (2007), Kastner and Frühwirth-Schnatter (2014)].
Prior distributions, MCMC algorithm and effective computations are discussed in Section 6.3.2. The posteriors are based on 20000 draws of
the sampler, after discarding 20000 draws. We consider first-order persistence in latent volatilities. The true DGP is given by (2.1)-(2.2) with
m = (2,5,10), p = 1. We set Σu = Im , Σv = 0.4Im , µ=−0.51, and stationary ϕ1 has the following formations: (1) for m = 2, ϕ1 is non-diagonal
with (ϕ11, ϕ12, ϕ21, ϕ22) = (0.98, −0.1, 0.12, 0.99), (2) for m = 5, ϕ1 is non-diagonal where diagonal elements are (0.98,0.985,0.8,0.985,0.98)′
and upper off-diagonal elements are set to -0.15 and lower off-diagonal elements are set to 0.1, and (3) for m = 10, ϕ1 is non-diagonal where
diagonal elements are (0.95, 0.98, 0.98, 0.99, 0.8, 0.8, 0.99, 0.98, 0.98,0.95)′ and upper off-diagonal elements are set to -0.11 and lower off-diagonal
elements are set to 0.055. We simulate 100 samples from each simulated model. RCT stands for the relative computational time w.r.t. the CF-
VARMA estimator. The simulated model has m = 2 number of time series and the number of parameters (NP) are (= m2 +2m = 8). The number
of inadmissible values (NIV) of ϕ and non-positive definiteness (NPD) of Σv are also reported, these are out of 100. Boldface font highlights the
smallest bias and RMSE with no NIV/NC. Boldface font also highlights the estimator, which has the best overall performance.

m = 2, p = 1, N P = 8 Bias RMSE

T Estimators RCT NIV NPD ϕ diag[ϕ] µ Σv ϕ diag[ϕ] µ Σv

1000

Bayes 461089.9 0 0 -0.0037 0.0004 0.7559 1.0624 0.0092 0.0052 0.9059 1.2668
CF-VARMA 1.0 9 35 -0.0005 -0.0008 0.0002 0.0059 0.0117 0.0116 0.2025 0.3352
W-VARMA-MVR(J = 10) 1.1 0 0 -0.0009 -0.0014 0.0002 -0.0275 0.0050 0.0048 0.2025 0.0965
W-VARMA-MVR(J = 100) 1.9 0 2 -0.0009 -0.0004 0.0002 -0.0713 0.0059 0.0058 0.2025 0.1637

2000

Bayes 528485.7 0 0 -0.0032 -0.0001 0.3641 0.5964 0.0084 0.0055 0.4384 0.7244
CF-VARMA 1.0 2 13 -0.0017 -0.0018 0.0078 0.0065 0.0085 0.0089 0.1463 0.2633
W-VARMA-MVR(J = 10) 1.1 0 0 -0.0011 -0.0014 0.0078 -0.0212 0.0040 0.0042 0.1463 0.0635
W-VARMA-MVR(J = 100) 1.8 0 0 -0.0009 -0.0005 0.0078 -0.0587 0.0046 0.0047 0.1463 0.1136

5000

Bayes 556495.7 0 0 -0.0022 -0.0002 0.1403 0.2681 0.0062 0.0047 0.1857 0.3326
CF-VARMA 1.0 0 2 -0.0012 -0.0011 -0.0057 -0.0033 0.0049 0.0048 0.0871 0.1775
W-VARMA-MVR(J = 10) 1.2 0 0 -0.0009 -0.0012 -0.0057 -0.0133 0.0024 0.0023 0.0871 0.0424
W-VARMA-MVR(J = 100) 1.9 0 0 -0.0009 -0.0002 -0.0057 -0.0524 0.0029 0.0027 0.0871 0.0861

m = 5, p = 1, N P = 35 Bias RMSE

T Estimators RCT NIV NPD ϕ diag[ϕ] µ Σv ϕ diag[ϕ] µ Σv

1000

Bayes 824292.8 0 0 0.0002 -0.0237 0.2157 0.9016 0.0466 0.0477 0.4360 1.0496
CF-VARMA 1.0 36 48 0.0004 -0.0025 0.0063 0.0593 0.0373 0.0380 0.3185 0.3604
W-VARMA-MVR(J = 10) 1.1 0 0 0.0002 -0.0086 0.0063 0.0083 0.0167 0.0185 0.3185 0.1241
W-VARMA-MVR(J = 100) 1.9 0 20 0.0003 -0.0081 0.0063 -0.0047 0.0201 0.0233 0.3185 0.2124

2000

Bayes 1421792.2 0 0 0.0004 -0.0169 0.0992 0.5548 0.0312 0.0330 0.2694 0.6438
CF-VARMA 1.0 16 23 0.0000 -0.0044 0.0085 0.0573 0.0270 0.0265 0.2426 0.2809
W-VARMA-MVR(J = 10) 1.1 0 0 0.0002 -0.0054 0.0085 -0.0001 0.0114 0.0123 0.2426 0.0955
W-VARMA-MVR(J = 100) 2.0 0 5 0.0003 -0.0056 0.0085 -0.0118 0.0146 0.0167 0.2426 0.1680

5000

Bayes 1472299.8 0 0 0.0003 -0.0094 0.0232 0.2818 0.0167 0.0191 0.1505 0.3261
CF-VARMA 1.0 3 2 -0.0001 -0.0037 -0.0026 0.0535 0.0156 0.0158 0.1476 0.1793
W-VARMA-MVR(J = 10) 1.2 0 0 0.0003 -0.0022 -0.0026 -0.0117 0.0071 0.0066 0.1476 0.0525
W-VARMA-MVR(J = 100) 1.9 0 0 0.0003 -0.0025 -0.0026 -0.0256 0.0093 0.0094 0.1476 0.1026

m = 10, p = 1, N P = 120 Bias RMSE

T Estimators RCT NIV NPD ϕ diag[ϕ] µ Σv ϕ diag[ϕ] µ Σv

1000

Bayes 1211101.1 0 0 0.0015 -0.0226 0.2297 0.5322 0.0838 0.0648 0.8050 0.7140
CF-VARMA 1.0 71 74 0.0012 -0.0042 -0.0066 0.1232 0.0556 0.0557 0.6828 0.3932
W-VARMA-MVR(J = 10) 1.1 0 0 0.0011 -0.0355 -0.0066 0.1105 0.0285 0.0455 0.6828 0.2227
W-VARMA-MVR(J = 100) 2.0 0 30 0.0016 -0.0097 -0.0066 0.0065 0.0238 0.0264 0.6828 0.2181

2000

Bayes 1458465.7 0 0 0.0014 -0.0093 0.1394 0.2849 0.0618 0.0420 0.5597 0.3976
CF-VARMA 1.0 42 36 0.0013 -0.0076 -0.0046 0.0905 0.0353 0.0362 0.4862 0.2971
W-VARMA-MVR(J = 10) 1.1 0 0 0.0012 -0.0187 -0.0046 0.0508 0.0183 0.0260 0.4862 0.1290
W-VARMA-MVR(J = 100) 2.1 0 14 0.0016 -0.0068 -0.0046 -0.0040 0.0198 0.0218 0.4862 0.1759

5000

Bayes 1607087.0 0 0 0.0007 -0.0041 0.0708 0.1734 0.0388 0.0249 0.3291 0.2350
CF-VARMA 1.0 14 4 0.0013 -0.0026 -0.0036 0.0790 0.0215 0.0216 0.3137 0.2021
W-VARMA-MVR(J = 10) 1.1 0 0 0.0011 -0.0087 -0.0036 0.0228 0.0115 0.0132 0.3137 0.0731
W-VARMA-MVR(J = 100) 1.9 0 0 0.0013 -0.0039 -0.0036 -0.0127 0.0151 0.0161 0.3137 0.1192
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Table A8
Large scale simulation with W-VARMA-MVR estimator: Bias and RMSE

Model: U HD

Table A8 reports the performance of W-VARMA-MVR (J = 10,100) estimators in ultra high-dimensional setups. This method is proposed in Section
3. We consider upto 100 dimensions and second-order persistence in latent volatilities. The true DGP is given by (2.1)-(2.2) with Σu = Im ,
Σv = Im , µ = −1, and stationary ϕ1 and ϕ2 are non-diagonal where for ϕ1, diagonal elements are equal to 0.9 and off-diagonal elements
are set between (−0.001,0.001), and for ϕ2, diagonal elements are equal to −0.8 and off-diagonal elements are set between (−0.001,0.001). We
simulate 100 samples from each simulated model. Computational time per replication is given in seconds. NP (= 2m2 +2m) is the the number
of parameters in the simulated model and m denotes the number of time series. The number of inadmissible values (NIV) of ϕ and non-positive
definiteness (NPD) of Σv are also reported, these are out of 100.

J = 10

Bias RMSE

T m NP Time NIV NPD ϕ µ Σv ϕ µ Σv

5000

500 501000 4.69 0 14 0.0000 -0.0001 -0.0062 0.0235 0.0387 0.1689
750 1126500 9.37 0 100 0.0000 0.0001 0.1230 0.0231 0.0386 1.8448

1000 2002000 21.41 0 100 0.0000 0.0002 0.0061 0.0236 0.0387 1.6758
1250 3127500 35.99 0 100 0.0000 0.0001 0.1610 0.0246 0.0386 2.6293
1500 4503000 60.83 0 100 0.0000 0.0002 -0.1271 0.0264 0.0386 1.3389

10000

500 501000 42.11 0 0 0.0000 0.0003 0.1610 0.0180 0.0274 0.1717
750 1126500 77.61 0 0 0.0000 0.0002 0.0851 0.0170 0.0274 0.1109

1000 2002000 71.74 0 4 0.0000 0.0001 -0.0017 0.0164 0.0274 0.1136
1250 3127500 124.14 0 100 0.0000 0.0001 -0.0659 0.0162 0.0273 1.0176
1500 4503000 138.32 0 100 0.0000 0.0000 0.0167 0.0162 0.0273 1.4972

15000

500 501000 132.06 0 0 0.0000 0.0002 0.1903 0.0152 0.0223 0.1956
750 1126500 162.46 0 0 0.0000 0.0001 0.1612 0.0146 0.0222 0.1683

1000 2002000 172.26 0 0 0.0000 0.0000 0.1122 0.0140 0.0221 0.1244
1250 3127500 224.94 0 0 0.0000 0.0000 0.0571 0.0136 0.0222 0.0853
1500 4503000 261.58 0 0 0.0000 0.0000 -0.0006 0.0134 0.0222 0.0886

J = 100

Bias RMSE

T m NP Time NIV NPD ϕ µ Σv ϕ µ Σv

5000

500 501000 10.69 0 0 0.0000 -0.0001 -0.2145 0.0192 0.0387 0.2253
750 1126500 20.69 0 100 0.0000 0.0001 -0.3619 0.0205 0.0386 0.6218

1000 2002000 45.60 0 100 0.0000 0.0002 0.2923 0.0216 0.0387 3.3618
1250 3127500 74.80 0 100 0.0000 0.0001 -0.0405 0.0230 0.0386 1.3195
1500 4503000 124.82 0 100 0.0000 0.0002 -0.0930 0.0250 0.0386 1.3094

10000

500 501000 92.57 0 0 0.0000 0.0003 -0.0195 0.0115 0.0274 0.0401
750 1126500 161.02 0 0 0.0000 0.0002 -0.1207 0.0127 0.0274 0.1271

1000 2002000 153.56 0 0 0.0000 0.0001 -0.2160 0.0135 0.0274 0.2214
1250 3127500 253.47 0 0 0.0000 0.0001 -0.2897 0.0140 0.0273 0.2970
1500 4503000 287.77 0 93 0.0000 0.0000 -0.3654 0.0144 0.0273 0.5451

15000

500 501000 278.95 0 0 0.0000 0.0002 0.0372 0.0086 0.0223 0.0462
750 1126500 339.46 0 0 0.0000 0.0001 -0.0201 0.0094 0.0222 0.0349

1000 2002000 365.87 0 0 0.0000 0.0000 -0.0874 0.0100 0.0221 0.0927
1250 3127500 471.17 0 0 0.0000 0.0000 -0.1554 0.0105 0.0222 0.1592
1500 4503000 554.78 0 0 0.0000 0.0000 -0.2171 0.0109 0.0222 0.2207
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Table A9
Portfolio performance under different conditional volatility models

Annualized Sharpe Ratio

Table A9 reports the performance of conditional volatility models, i.e., the annualized Sharpe Ratio, in the context of asset alloca-

tion. We consider the global minimum variance (GMV) portfolio where the one step ahead conditional forecast of the covariance

matrix Σt+1|t uniquely defines the optimal portfolio weights ŵt+1 = Σ̂−1
t+1|t ιm /ι′mΣ̂−1

t+1|t ιm , where ιm denotes an m-variate vector

of ones. The competing models are: the Risk Metrics 2006 methodology [Zumbach (2007)] denoted as RM, the dynamic con-

ditional correlation with composite likelihood [Engle (2002), Pakel et al. (2021)] denoted as cDCC, the conditional covariance

estimation using the dynamic factor model approach with finite-dimensional space [Alessi et al. (2009), Aramonte et al. (2013)]

denoted as fDCC, the generalized orthogonal GARCH model of van der Weide (2002) denoted as GO-GARCH with three differ-

ent specification [standard GARCH with multivariate normal distribution (GO-GARCH-S) and multivariate affine normal inverse

Gaussian distribution (GO-GARCH-S-MANIG), and GJR with multivariate normal distribution (GO-GARCH-GJR)], unrestricted

MSV(p) models (U-MSV(p)) and restricted MSV(p) models (R-MSV(p)) where we consider uncorrelated SV(p) structure. The ini-

tial in-sample period from 2009/01/02 to 2018/12/31 and the out-of-sample is from 2019/01/02 to 2020/12/31. The out-of-sample

includes a highly volatile period, i.e., the Covid-19 pandemic. The forecasts of MSV(p) models are based on the W-VARMA-MVR

estimator with J = 50. Boldface font highlights the models which has higher annualized Sharpe Ratio over the equal weight

portfolio and Boldface color font highlights the best model.

20 Asset 50 Asset

2019-2020 2019 2020 2019-2020 2019 2020

RM -1.00 -1.27 -1.04 -0.49 -2.04 -0.04
cDCC -1.40 -0.60 -2.02 -1.10 -1.05 -1.23
fDCC -1.10 -1.44 -1.04 -1.01 -1.54 -0.83
GOGARCH-S -0.87 -1.19 -0.87 - - -
GOGARCH-GJR -1.09 -1.12 -1.23 - - -
GOGARCH-S-MANIG -0.97 -1.17 -1.02 -1.10 -0.93 -1.31
U-MSV(1) -0.64 -0.91 0.07 0.80 1.02 0.48
U-MSV(2) -0.18 -0.14 -1.10 0.25 -0.37 0.68
U-MSV(3) 0.67 -0.16 1.04 0.48 1.36 -0.49
U-MSV(4) -0.71 -0.84 -0.86 0.19 0.58 -0.12
U-MSV(5) 1.41 1.50 1.52 0.14 -1.00 1.23
R-MSV(1) -1.26 -1.08 -1.41 -1.17 -1.38 -1.09
R-MSV(2) -1.29 -1.10 -1.46 -1.20 -1.36 -1.13
R-MSV(3) -1.26 -1.11 -1.41 -1.22 -1.35 -1.16
R-MSV(4) -1.32 -1.02 -1.57 -1.14 -1.31 -1.06
R-MSV(5) -1.33 -1.06 -1.56 -0.95 -1.23 -0.81
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