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Abstract

We propose the Maximal rAnge-rEturn Divergence (MAED) statistic, defined as the maximal dis-
tance between the price range and the absolute return on a fixed time interval. The statistic can be
easily constructed when high-frequency transaction data is available. The MAED statistic summa-
rizes the inward movement of price paths, which contains substantially different information as the
candlestick data (i.e., high, low, open and close price in an interval) that mainly captures the out-
ward movement of prices. We propose a spot volatility estimator based on the MAED-augmented
candlestick data and establish its asymptotic properties in the fixed-k asymptotic setting with dis-
crete price observations. Our analytical and simulation results show that our MAED-augmented
estimator can reduce the asymptotic variance of the optimal candlestick-based spot volatility esti-
mator by as much as 40%. In the presence of extreme price movements such as a jump or a drift
burst, the MAED statistic has very different behaviour from the candlestick-based statistics. This

allows us to monitor and detect explosive directional price movements in real-time.
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1 Introduction

The recent availability of high-quality tick-by-tick asset transaction data has led to many important
developments in financial econometrics. The abundant intraday observations from asset price trajec-
tories allow us to construct various intraday statistics, which can be used to make inference about the
volatility of the asset, either in the form of the integrated variance over some fixed interval (e.g., 1
trading day), or the spot volatility at a fixed point in time. Most of the existing methods are built
from two fundamental statistics: return — the difference of open and close log-prices of an interval,
and range — the difference between the high and low log-prices of an interval. For example, in terms
of integrated variance estimation, the widely applied realized volatility (RV) estimator popularized
by Andersen et al. (1999, 2003); Barndorfi-Nielsen and Shephard (2002) is constructed by summing
the intraday squared returns sampled over a trading day. The realized range estimator of Christensen
and Podolskij (2007) has the same structure as RV, but sums the squared intraday ranges instead.
Andersen et al. (2008) consider duration-based estimators sampled using return and range. As to
spot volatility estimation, return-based spot volatility estimators include Foster and Nelson (1996),
Kristensen (2010), Zu and Peter Boswijk (2014), and Bollerslev et al. (2021), among others. Recently,
Li et al. (2022) and Bollerslev et al. (2022) develop spot volatility estimators as optimal combinations
of intraday return and ranges, which are shown to have much better accuracy than a return-based

spot volatility estimator.

The statistical advantage of range over return for volatility estimation is well-studied in the
literature. In the simple setting of a Brownian motion with a constant variance!, Parkinson (1980)
and Garman and Klass (1980) point out the statistical superiority of range-based over return-based
variance estimators and demonstrate that an optimal combination of high, low, open and close (HLOC)
prices can further improve the estimation accuracy. Intuitively, while the return summarizes the price
variation from the endpoints of an interval and discards the entire price path within the interval, the
range describes price extrema in the interval which extracts additional information from the price
path and improves the precision of the variance measurements. These results lay the foundation for
the high-frequency range-based estimators in Christensen and Podolskij (2007); Li et al. (2022), as
high-frequency prices are locally Gaussian in short intervals under the standard assumption that asset

prices are semi-martingales.

Despite these theoretical advances on return- and range-based volatility estimators, there are two
major problems with using only return and range. First, both return and range summarize ‘outward’

price movements, which expand the high and low prices in an interval. The ‘inward’ price movements,

!See also Beckers (1983); Rogers and Satchell (1991); Yang and Zhang (2000); Meilijson (2011) for further developments

of the HLOC estimators under more general conditions.



which drive the price trajectory towards the open price from an extremum, are largely ignored? by
return and range. This leads to a substantial information loss, as the inward price path contains
as much information about volatility as the outward price path by a reflection principle argument.
Second, return and range are heavily influenced by the presence of explosive outward price movements
such as jumps and drift bursts®, which are salient features of empirical asset prices that can introduce

substantial bias to the return- and range-based volatility estimates.

To retrieve the information embedded in the inward price movements, we propose the Maximal
rAnge-rEturn Divergence (MAED) statistic, defined as the maximal difference between the running
range and running absolute return of the price path in an interval. The precise definition and additional
ideas are discussed in Section 2. The MAED statistic is simple and fast to construct whenever intraday
price observations are available, and it conveys information about price volatility from the inward price
paths which is not measured by return or range. Moreover, it is by construction highly robust to jumps

and drift bursts as the inward price movements are unaffected by the magnitude of price extrema.

Exploiting these interesting features of the novel MAED statistic discussed above, the paper con-
tributes to the literature by developing two significant MAED-based applications. First, in the fixed-k
asymptotic framework of Bollerslev et al. (2021), we proposed the Optimal MAED-candlesticK (OMK)
spot volatility estimator, which is in essence a variance-optimal and unbiased linear combination of
MAED, range and absolute return. We establish its asymptotic properties using the coupling tech-
nique of Bollerslev et al. (2021) and show that it nests the Optimal candlesticK (OK) estimator of
Li et al. (2022), a state-of-the-art spot volatility estimator. Importantly, the OMK estimator can in
theory reduce the asymptotic variance of the OK estimator by more than 40% with an about 25%
tighter confidence interval. This result clearly reflects the importance of MAED in spot volatility
estimation, which adds substantial information to the linear span of the return and range data and

greatly improves the precision of the OK estimator.

Second, we show that a spot volatility estimator based solely on MAED, referred to as the MAED
estimator, is only slightly worse than the OK estimator in terms of asymptotic variance, but it is
robust to the presence of a jump with unknown size or location, and behaves very differently to the OK
estimator in the presence of drift bursts. Therefore, the MAED estimator provides a simple method
for jump-robust spot volatility estimation. More importantly, this feature allows us to construct a
simple pivotal test for the detection of jumps or drift bursts in real time by directly comparing the OK

estimator with the MAED estimator, which adds a unique method to the literature of local jump and

2For example, the range statistic is invariant to different inward price trajectories after reaching the (global) high and low
prices of an interval. The return statistic becomes smaller when the close price approaches the open price of an interval,

regardless of the size of the inward price movements.
3Jumps in asset prices are discussed in e.g., Barndorff-Nielsen and Shephard (2004); Huang and Tauchen (2005), and

Andersen et al. (2021); Christensen et al. (2022) document drift bursts and the implications to volatility estimation.



drift burst detection (Lee and Mykland, 2007, 2012; Laurent and Shi, 2020; Christensen et al., 2022).

The paper also makes a non-trivial theoretical contribution to the fixed-k asymptotic framework
by analysing the impact of discrete price observations and measurement errors, which are imperfections
in empirical prices that are not fully addressed in Bollerslev et al. (2021); Li et al. (2022); Bollerslev
et al. (2022). Specifically, we quantify the bias of the OMK estimator due to discretely observed prices
and propose a simple bias correction based on a discretely observed Brownian motion. We also show
that the impact of the measurement errors can be mitigated by adopting the pre-averaging method of
Jacod et al. (2009). Our simulation and empirical analyses demonstrate that these modifications are
indeed necessary for valid statistical inference when we observe prices discretely with measurement
errors, instead of a continuous price path.

The remainder of the paper is organized as follows. Section 2 gives the definition of the MAED
statistic and discusses its basic properties. Main theoretical results of the paper are presented in
Section 3. Simulation studies and empirical illustrations of the theoretical results can be found in

Section 4 and Section 5, respectively. Section 6 concludes.

2 The MAED Statistic
We start with the definition of the MAED statistic, which is the main innovation of this paper:

Definition 2.1 (The MAED Statistic). Let P = (P;)>0 denote some stochastic process understood
as the log-price of a financial asset, and consider an arbitrary interval [s,t]. Let v, and wy, denote the
running return and range of P from time s till time h € [s, t]:
ry = Pn— Py, wp:= sup |Pn, — Pp,l- (2.1)
h1,h2€[s,h]
The Mazimal rAnge-rEturn Divergence (MAED) m of P on [s,t] is defined as follows:

m:= sup mp, my = wp — |Tpl. (2.2)
hels,t]

For notational convenience, we shall also use the following notation to denote the full return and
range of P associated with the interval [s, ], which is widely used in the estimation of price variation:
ri=r,=FP—PFP,, w:=w,= sup |Py, — P, (2.3)
h1,h2€(s,t]
By construction, m is the maximal distance between the running range wj, and the running absolute
return || of P on [s,t], hence the name. The following properties of m can be easily proved, which
holds for any P and [s, t]:
Properties of MAED

1. 0 <m < w.



2. m =0 iff P is either non-increasing or non-decreasing on [s, t].

3. m = w iff In* € (¢, ] such that rj= = 0, where t* = argsupp,c(s ¢ [Pn — Fol-

4. Define P’ = i+ o P for some fixed 4 € R and o € R\ {0}, and let m’ denote the MAED of P’
n [s,t]. Then it holds that m’ = |o|m.

By Property 1, we learn that m is dominated by w, so its moments always exist as long as all moments
of w exist. Property 2 is very special, as it suggests that m does not summarize information from
unidirectional price movements, which is otherwise reflected in w and |r|. Property 3 reveals when
m = w holds, that is, when r,» = 0 at some point h* after P} reaches its extremum on [s,t]. Property
4 suggests that m is translation invariant and scales linearly with P, which follows from the linearity
and symmetry of the absolute return and the range functionals. This property is ideal for the purpose

of estimating the scale parameter o, which is exploited throughout this paper.

To provide more intuitions on what information is captured by the MAED, we present a graphical

illustration of the construction of m from a path of P in Fig. 2.1.
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Figure 2.1: Plot of a path of the process P, = 20 + W}, in the upper panel and the associated processes wp, |rp| and my, in the
lower panel for h € [0, 1], where W is a standard Brownian motion. In the upper panel, the blue and red arrows point out outward
and inward price movements, respectively. The price paths are simulated with 10° Euler steps. Prigh and Pjy,, refer to the high

and low price on [0, 1], respectively.

In the upper panel of Fig. 2.1, we present an example price path on the interval [0, 1] and indicate
the times when we obtain the maximum and minimum prices as well as the MAED. Observe that, as
the price moves ‘outward’ relative to Py which is indicated by the two blue arrows, the running range
of P, plotted by wy, in the lower panel of the figure, increases gradually towards the value of w and
remains constant afterwards. Intuitively, the range statistic w only summarizes how much P expands

outwards relative to the starting point Py on [0, 1], while any price movements between Pp;gn, and Py,



afterwards are completely discarded. Similarly,  only summarizes a single outward price movement

from time 0 to time 1 and discards all the information in between.

Crucially, both w and |r| do not capture the ‘inward’ price movements, which are price movements
from the local extrema towards Fy. We point out some large inward price movements by red arrows
in Fig. 2.1. These inward price movements do not alter the extrema of P on [0,1] and are ignored
by w and |r|. The lower panel of Fig. 2.1 shows that m intuitively captures the largest inward price
movement. Intuitively, whenever P}, extends outwards by refreshing its extrema, the increment in wy,
cancels exactly with the increment in |ry|, so my does not increase as P, moves outwards. On the
contrary, when P}, moves inwards from a local extrema, wy, stays constant while |r,| decreases as P,
moves towards Py, driving mj, upwards. As a result, m effectively® captures the largest inward price

movements on the interval [0, 1].

The joint distribution of the MAED, the range, and the absolute return of a standard Brown-
ian motion W on [0,1] plays a central role in the theoretical results of this paper. For notational
convenience, we shall denote:

7:= sup { sup ’Whl - Wh2| - ‘Wt’}a gl = Sup |V~Vt1 - Wm‘, 52 = W~V1|
tel0,1] h1,h2€[0,t] t1,t2€[0,1]

The densities and moments of £; and & are known analytically (see e.g., Feller (1951)), and we can
easily simulate the density of 77 and the associated moments. We plot the density functions of the three
quantities in Fig. 2.2. The figure clearly shows that the mode of the distribution of 7 is approximately

1 with a smaller dispersion when compared with those of &, and &.
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Figure 2.2: Density functions of the MAED (), the range (§1) and the absolute return (£2) of a standard Brownian motion
W on [0,1]. The density function of 7 is simulated based on W with 108 increments. The density functions of £ and & are
fi(z) = 832 1 (—1)*1k2¢(kz) and fa(z) = 2¢(z), respectively, where z € Rt and ¢(z) is the density function of a standard

normal distribution.

To further understand the properties of the three distributions, we present the first two moments

of 7, & and &. The moments related to 7] are computed via the simulation in Section C, while other

“To be precise, the MAED of P on [0, 1] equals | Prigh — Po| A |Piow — Po| plus the largest inward price movement.



moments have closed forms that can be found in Garman and Klass (1980); Meilijson (2011). Define

pr = E[i¥], v :== B[EF], ¢ := E[E5), 10 := Bl&1&], m := E[&1], 72 := E[fi], we have:

g1~ 1.106, vy =+/8/7 ~ 1596, b = /2/7 ~ 0.798,
o~ 1.303, o =4In2~2.773, o =1, (2.4)

Yo =3/2, v ~0.0091, 7~ —0.0755.

The above moments imply the following variances and correlations:

Var[i] ~ 0.0798, Var[¢)] = 0.226, Var[&,] ~ 0.363,

Corr (7], £1) ~ 0.0677, Corr(7, &) ~ —0.443,  Corr(£;, &) ~ 0.791.

We therefore find that: (1) 7 has a significantly smaller variance than & and &; (2) 7 is very weakly
positively correlated with él, and is negatively correlated with 52. These results suggest that 7 measures
the variation of W with higher precision in terms of a more concentrated distribution and smaller
variance when compared to 51 and ég. The correlations among the variables further confirm that the
inward price movements measured by 7 is substantially different from the outward price movements

measured by & and &.

Concluding from above, we see that the MAED measures the inward price movements of P on an
interval, which differs distinctively from the return and the range statistics that only reflect outward
price movements. In this paper, we discuss two important applications of MAED: (1) the inward
price movements can be more informative than the outward price movements on the variation of price.
Therefore, we expect that the precision of volatility estimators based on an optimal combination of w
and r, such as Garman and Klass (1980); Li et al. (2022), can be significantly improved when we add m
to the combination; (2) by construction, w and r capture the full magnitudes of extreme outward price
movements such as jumps or drift bursts (Christensen et al., 2022). On the contrary, m is naturally
much more robust as it measures inward price movements from local extrema, which are less affected
by jumps or drift bursts that generate local extrema. This feature allows us to detect jumps or drift
bursts by comparing the relative magnitudes of m with w or r. Finally, we note that the MAED is
very simple to construct in practice. For example, in MATLAB, with the observations of P on [s,{]
stored in the vector P, the associated MAED m can be computed efficiently by the following single line

of code:

m = max(cummax (P)-cummin(P)-abs(P-P(1)));



3 Theoretical Results

3.1 Econometric Setting

In this section, we formulate the econometric setting of the theoretical results in this paper. We
consider the problem of spot volatility estimation in a fixed-k framework, following Bollerslev et al.
(2021) and Li et al. (2022). On a filtered probability space (2, F, (Ft)t>0,P), we assume that the

log-price of an asset, denoted by P = (F;)¢>0, follows an It6-semimartingale of the following form:
Py =Py + [ybeds + [(osdWy + Ji, (3.1)

where b; and o; are optional processes known as the drift and the spot volatility of P, and W; is
the standard Brownian motion. The J process is a pure jump process driven by a random Poisson
measure. We are mainly interested in estimating the spot volatility oy at an arbitrary time ¢ € [0, 7]

for some fixed T' > 0 representing the time span of the complete dataset.

We require the following mild regularity condition for the fixed-k inference theory:

Assumption 3.1. For P defined in Eq. (3.1), we assume that there exists an increasing and diverging
sequence of stopping times (Tn)m>1 and a sequence of constants (Kp)m>1 such that the following
conditions hold for eachm > 1: (1) for somer € [0,2), |be|+|o¢|+|ot| =2+ [(|z[" A1) Fy(dz) < Koy, for all
t € [0, T,], where Fy is the spot Lévy measure of J; (2) for some constant k > 0, El|owar, —osat,|?] <

K|t — 52" for all t,s € [0,T).

As discussed in Bollerslev et al. (2021) and Li et al. (2022), Assumption 3.1 is highly flexible
and allows for many well-established asset price features, such as the leverage effect, intraday diurnal
patterns and long-memory in volatility, and jumps in prices or volatility. Specifically, condition (1) in
Assumption 3.1 imposes local boundedness to component processes of P, and condition (2) requires

ot to be locally k-Holder continuous under the Lo-norm.

Given a realization of P, an estimator of o, is typically constructed over asymptotically shrinking
blocks around ¢, see for example Foster and Nelson (1996), Kristensen (2010), and Chapter 13 in Jacod
and Protter (2012). For a generic index n — 0o, one can choose a sequence of numbers of blocks ky,, a
vanishing sequence of sampling interval length A,, — 0, and consider the block t € [s, s + k,A,]. An
important insight from Bollerslev et al. (2021) is that one can make valid inference for estimators of oy
by using a fixed k instead of a diverging k,,. In the fixed-k setting, the estimator is inconsistent with a
non-standard limiting distribution (which is usually known or can be easily simulated), allowing us to
construct confidence bounds easily. As the asymptotic analysis is analogous for any fixed k, without

much loss of generality we shall fix £ = 1 in this paper to simplify notations and exposition.



Under the setting above, to construct an estimator of oy, we consider an interval I, = [s, s + A,)]

such that t € I,,. We impose the following assumption about what is observed from I,:

Assumption 3.2. For all intervals of the form I, = [s, s+ A,], we observe the MAED m, the return

r, and the range w of P on I,.

Assumption 3.2 effectively assumes that P is observed continuously on I, so that m and w
associated with P can be computed, which is also adopted by Bollerslev et al. (2021); Li et al. (2022).
In practice, for a fixed interval I,,, the assumption holds approximately true when high quality tick-
by-tick data for P is available on I,,, but is less appropriate when P is observed sparsely with large
measurement errors. We shall firstly establish theoretical results based on the ideal Assumption 3.2

and discuss the implications of these results when Assumption 3.2 is violated.
3.2 The Optimal MAED-Candlestick Estimator of Spot Volatility

In this section, we show that the MAED can be used to obtain more precise volatility measurements
when compared to volatility estimators based on the return and the range statistics. Our benchmark
estimator is the Optimal-candlesticK (OK) estimator of Li et al. (2022), which is the best linear
unbiased estimator (BLUE) of o, based on the optimal linear combination of || and w of P observed
on I,,. By adding m to the combination, we propose the Optimal MAED-candlesticK (OMK) estimator
of o4, which is a natural generalization of the OK estimator when m, w and r are all available. To
this end, we first define the MAED-candlestick vector ¢ := (m,w, |r|)’ and denote the 3-by-3 diagonal
matrix © := diag(u; ", vy, ¥ "), Pick any weight vector X := (A, Aw, Ar) such that X'¢ = 1 where
t:=(1,1,1), the OMK estimator is defined as:

6:(A) = A2\ @c. (3.2)

From the construction of 64(\), it is not immediate that the estimator is even positive for a particular
choice of A, which is an essential property for a spot volatility estimator. The following result shows

that non-negativeness of the OMK estimator can be guaranteed by choosing an appropriate A:

Proposition 3.1. Under Assumptions 3.1 and 3.2, construct 6¢(X) on an arbitrary interval I, then

Prob(6¢+(A) >0) =1 if X € A, where:
A:={XeR3: N =101 > max{0, NOe;, N Oes}}, (3.3)
in which {ey}req1,2,3y is the set of (3-by-1) standard basis vectors of the R3 space.

As negative volatility estimates are undesirable, in this paper we shall restrict ourselves to the
choices of weights A € A to guarantee non-negative spot volatility estimates. We derive the asymptotic

properties of the OMK estimator in Theorem 3.1:



Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold true. For any t € I, = [s,s + A,] and
weight vector A € A, it holds as A, — 0 that:
5t(A)

=XN0Oz +0y(1), (3.4)
ot
where z = (n,&1,&) in which n, &1, & are the MAED, the range, and the absolute return of the scaled

Brownian motion (A;l/QWt)tgn, respectively.

Remark 3.1. Eq. (3.4) is a coupling result in the spirit of Bollerslev et al. (2021); Li et al. (2022), which
exploits the fact that P behaves locally like the scaled Brownian motion o:W on I, as A, — 0. By
the scaling law of Brownian motion, we find (7, &1, &2) 4 (71, €1, &), which implies that E[@z] = ¢ and
hence E[N'©z] = 1. It should be clear now that the matrix © ensures the asymptotic unbiasedness of
6¢(A). Similar to the estimators in Bollerslev et al. (2021) and Li et al. (2022), 64+() is not consistent
as the limiting variable '@z = O,(1). However, Theorem 3.1 provides a simple construction of the
confidence bounds which allows for valid statistical inference. For a significance level a%, define the
(1 — a)% Highest Density Interval (HDI) of a continuous random variable X as the shortest interval

lo(X) := [By-(X), Bo+(X)] that satisfies:
Prob(X '€l (X)) =1-a. (3.5)

Based on Theorem 3.1 and given the estimate 64(\), the (1 — a)% confidence interval of o; can
be constructed as [B,- (N'©z)5t(A), Byt (N'©z)64(N)], whose validity can be seen from a standard

continuous mapping argument:

Alirgo Prob(o; € [By- (N'©2)64(A), Byt (NO2)6:(AN)]) 5

=Prob(N@®z)" ! € £,(NO2)) =1—q,
in which the critical values B,+ (A'©z) can be computed based on the simulated distribution of z. The
width of the (1 — a)% HDI of N'®z, namely B,+(\) — B, (), is a pivotal quantity that determines
the width of the confidence interval of 6,(X). This provides a direct measure for the precision of G4(\)

with different choices of .

Although Theorem 3.1 holds for arbitrary choices of A € A, we are only interested in a few
important special cases. Following the discussion in Li et al. (2022), an optimal choice A* can be
constructed by minimizing Var[A'©z] subject to the asymptotic unbiasedness constraint A'¢ = 1,
which yields the BLUE estimator 6¢(A*) among the class of estimators {G;(A) : N'e = 1}. Define the

variance-covariance matrix of the limiting variable @z as:

2 0.0650 0.0049 —0.0857
Di=Var[@z]=| e % B | -uw'~| o 0088 01781 |, (3.7)
1
e o Uz . . 0.5708
vl

10



which follows from Eq. (2.4), the optimal choice is the solution to the following standard global

minimum variance portfolio (GMVP) problem in the finance literature:

A" = argmin N'¥X = ,E;_lf ~ (0.832,—0.030,0.198)". (3.8)
(AN =1} U
It is interesting to see that the optimal weight assigned to w is almost zero, so that w contributes
little to the optimal linear combination.® The minimized variance factor of the OMK estimator is thus
Var[A¥©z] = (¢/X71¢)7! 2 0.0368. This should be compared to the variance factor for the optimal
OK estimator in Li et al. (2022) which is Var[A”®z] ~ 0.0625, where A° solves the following restricted
GMVP problem®:

A= argmin NI\~ (0,1.294,—0.294)". (3.9)
{A: N e=1,\"e1=0}

One should verify that 64(A°) is identical to the optimal OK estimator in Li et al. (2022). Importantly,
we see that Var[]A¥@z]/ Var[A”©z] ~ 0.592, which implies that the optimal OMK estimator shrinks
the asymptotic variance of the optimal OK estimator by an impressive 40.8%! In fact, even if we
construct the spot volatility estimator based solely on m by choosing A = e;, the corresponding
variance factor is Var[e]®z] ~ 0.065, which is only slightly larger than that of the optimal OK

estimator but is considerably smaller than a spot volatility estimator constructed solely from w or |r|.

In this paper, we shall focus on the three choices of the weight vectors above, which corresponds

to three spot volatility estimators. To simplify the notation, we write:
Gromk = 0¢(X*), Gror = 61(AX°), GrmaED = 6i(er),

which are referred to as the (optimal) OMK estimator, the (optimal) OK estimator, and the MAED
estimator, respectively. One should also verify that all three estimators above are almost surely non-
negative by Proposition 3.1. To further compare the precision of the three estimators, in Fig. 3.1 we
plot their limiting distributions and the widths of the corresponding 90% HDIs. The figure clearly
shows that: (1) the distributions of (A”@z)~! and (€/®z)~! are almost identical, while the width
of the 90% HDI is slightly wider for (e;®z)~!. This is in line with the finding that 64 prapp has a
slightly higher variance than 6;ok; (2) the distribution of (A¥@®z)~! is more concentrated than the

other two statistics with a substantially tighter 90% HDI.

To quantify the precision gain of the OMK estimator in terms of the HDI width, we present
numerical values and the critical values of the HDIs for the three densities in Table 3.1 with various

choices of a below. The table shows that, for all choices of c, the HDI widths for A”’@z and €;©z are

®The optimal weight vector with the constraint A, = 0 is approximately A* ~ (0.813,0,0.137)", with the asymptotic

variance factor Var[A* ®z] & 0.0368 which is virtually the same as the case without the constraint.
5Tt is worth noting that the solution to this problem has a closed from A° = ((4In2 —2)~',1 — (4In2 — 2)™!)’ with the

minimized variance Var[A”@z] = £ + — 1, which can be derived from the analytical moments in Eq. (2.4).

__m
16(1—21n2)
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Figure 3.1: Plot of the simulated densities of (A*¥®z)~!, (A”’©®z)~!, and (€| ®z)~!, and the corresponding critical values of the
90% HDIs. The densities are simulated based on 107 simulated Brownian paths with an Euler step size of 10~8. For each density,

the critical values for the 90% HDI, namely By ; + (N'®z), are plotted as vertical lines that are of the same style as the density line.

very close. For A¥@®z, we observe an about 25% reduction of the HDI widths at every a compared
to that of A”’@®z. Note that although our simulation setting is different to that in Li et al. (2022),
the results of A”’®z in Table 3.1 are consistent with those in Table 1 of Li et al. (2022) up to 2 digits

after the decimal point, which proves the credibility of our simulation results.

X A’Oz AOz €0z

« Lower Upper Width Lower Upper Width Lower Upper Width

0.5 0.791 1.132 0.341 0.856 1.115 0.260 0.793 1.135 0.342
0.4 0.765 1.192 0.427 0.829 1.153 0.324 0.762 1.191 0.429
0.3 0.729 1.256 0.527 0.799 1.199 0.400 0.722 1.254 0.532
0.2 0.687 1.342 0.655 0.762 1.258 0.496 0.679 1.343 0.664
0.1  0.635 1.483 0.848 0.713 1.352 0.640 0.626 1.496 0.870

Table 3.1: Simulated critical values and widths for the highest density intervals of A’ @z, A*'©z and €] ©z with different choices
of . The densities are simulated based on 107 simulated Brownian paths with an Euler step size of 10~8. The Lower and Upper
columns correspond to B, - (X) and B+ (X) as defined in Eq. (3.5) with X defined in the first row of the table, and the Width
columns display the value of B+ (X) — B, (X).

To sum up, the comparisons of variances and HDI widths among 6;omk, 01,0k and G¢ pmAED
provide strong evidence supporting the superiority of 6; oam i over ¢ o, which shows the rich infor-
mation about o; embedded in m. Indeed, 64 app performs almost as good as 6 ok, which suggests
that m alone is almost as informative about oy as w and |r| combined. Importantly, as m mainly
measures the inward price movements which are largely ignored by w and |r|, the addition of m to the
candlestick data leads to a significant precision gain in the estimation of o;. Moreover, in Appendix B,
we show that the MAED statistic can improve the asymptotic variance of an optimal candlestick-based

spot variance estimator’ by about 41%. These results clearly demonstrate the significance of MAED

"Note that candlestick-based spot variance estimator has a slightly smaller (about 3.4%) variance than the classic Garman
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in estimating spot volatility and variance.
3.3 Jump-Robustness of the MAED Estimator and A Spot Test For Jumps

The asymptotic results in Theorem 3.1 hold under Assumption 3.1 which allows for Poisson-type jumps
in P, implying that the OMK estimator is robust to jumps. However, as discussed in footnote 8 of Li
et al. (2022), such jump robustness is purely probabilistic, as it exploits the fact that the probability of
observing one jump in I, is of the order O,(A,,) which vanishes in the limit. Bollerslev et al. (2021) and
Li et al. (2022) suggest both a truncation technique in the spirit of Mancini (2009) or a bipower-type
extension similar to Barndorff-Nielsen and Shephard (2004) to guard against the possible occurrence
of a jump in I,. Both approaches require non-trivial modification to the original estimator, and the

finite sample jump-robustness of the two approaches are not reported.

Instead of pursuing these jump-robust modifications to the OMK estimator, we show that the

MAED estimator, 64 ;s AED, is jump-robust in its original form:

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold true. Consider the jump-augmented process
PP = P+ Jly>r) where T € (s,5+Ay,) is an arbitrary (n-dependent) jump time and J is any random
variable strictly bounded away from zero. Define 5';0[{ and &EMAED as the counterpart of 6,0k and

o1, MAED constructed from P° instead of P on I,,, then it holds that:

6° ox — OLOK op — 6t mMAED| 3
| t,OK t ‘ _ OP(A,;]'/2), ‘ t, MAED t ’ S é + Op(l). (310)
Ot Ot M1

Remark 3.2. Theorem 3.2 shows that the OK estimator explodes in the presence of a jump in the limit,
which formally justifies the necessity of jump-robust modifications for the OK estimator as discussed
in Li et al. (2022). On the contrary, the presence of a jump only introduces a stochastic bias to the
Gt MAED estimator whose size is bounded above by 3&;/p1, which is of order Op(1). This implies
that 6 v app does not explode in the limit, but it has an asymptotic relative absolute bias bounded
above by 3v1/u1 ~ 4.328. We stress that this result holds path-wise and independent of the size,
direction or location of J, so no knowledge about the jump is needed for the result to be applicable.
Consequently, the bias upper bound of 64 »agp is far from sharp. We analyse the actual finite sample
bias of 64 v app via simulation in Fig. 4.3, which suggests that the relative bias of 6 papp is much

smaller than the upper bound suggests.

Remark 3.3. We caution that 6, aapp is not robust to multiple jumps with opposite directions on
I,,. Intuitively, two jumps that (partially) offset each other are inward price movements which are
captured by the MAED and cause 64 a7 4gp to explode in the limit. This could be caused by erroneous
price entries that are quickly corrected in the dataset, which should be eliminated by appropriate

data filtering rules such as Barndorff-Nielsen et al. (2009) before applying the estimator. As jumps are

and Klass (1980) estimator. Detailed analysis is presented in Appendix B.
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found to be infrequent in equity prices (Huang and Tauchen, 2005; Christensen et al., 2014), robustness
to a single jump in a short interval (e.g., up to 10 minutes) should be sufficient for the purpose of

jump-robust spot volatility estimation.

The jump-robustness of 6 74rp leads naturally to a spot jump test. Among many possible

specifications, we consider the following log-ratio statistic:

Corollary 3.1. For some price process P observed on I, construct the following S-test statistic as

the log-ratio of the OK and the MAED estimator:

515 OK )\O/@C
Sy =1 ’ =1 . 3.11
! " Ot, MAED " e/ Oc (3.11)

Under the null hypothesis that P follows Assumptions 3.1 and 3.2, it holds that:
——— +0p(1). (3.12)

Under the alternative hypothesis that P° in Theorem 3.2 is the underlying price process, we have

St£>OO.

Notice that the S-test statistic is pivotal as the limiting distribution is independent of the unknown
spot volatility o;. This is much easier to construct than the local jump tests considered in e.g., Lee
and Mykland (2007, 2012). Despite the fixed-k setting, the S-test has correct asymptotic size under
the null and is consistent under the alternative. For the purpose of jump detection, one can compare
St to the critical values of a right-tailed test, which can be retrieved from the simulated density of z.
The simulated 10%, 5% and 1% critical values are 0.375, 0.535 and 0.847, respectively (see Appendix

C for details of this simulation).

3.4 MAED and Drift Bursts

Recently, Christensen et al. (2022) propose a drift-burst model for P which allows the drift and
spot volatility processes b; and o; to explode locally, violating Assumption 3.1. This model provides
an econometric framework to analyse ‘gradual jumps’ in the observed stock prices, i.e., a gradual
directional movement of stock prices occurring in a very short window. Andersen et al. (2021) show
that the presence of drift bursts can lead to non-trivial finite sample bias when measuring the integrated
variance of P which need to be correct. As the MAED is robust to extreme outward price movements,
it is interesting to study to behaviour of the MAED in the presence of a drift burst, which is the

purpose of this section.

To this end, we introduce a drift-burst alternative price process in the spirit of Christensen et al.

(2022):
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Assumption 3.3. On the interval I, = [s,s + Ay] C [0,T], the drift-burst alternative price process
P% s given by:

P® =P, +b, fi(u —5) %du+ o5 fﬁ,(u —5)PdW,, tels,s+ A,
where bs and o satisfy Assumption 3.1, and the constants o € (1/2,1) and 5 € (0,1/2).

The above assumption states that the starting point of the interval I, is the drift burst time,
Tap, in the terminology of Christensen et al. (2022). Effectively, I,, is a short time window right after
the drift burst at time 74 when the price reverts back to the pre-burst level. This is an important
design as it ensures that P% explodes in a unidirectional manner, which we exploit in this section.
Alternatively, one can also consider the interval [s — A,,, s| where the drift burst occurs at the end of

the interval. If 74, ¢ I,,, then there is no drift burst in the limit and Theorem 3.1 continuous to hold.

Assumption 3.3 implies that as A, — 0, both the drift and the spot volatility of Pgﬁ A, may
explode. The parameters o and S control for the explosion rates of the drift and the volatility on I,,,
respectively. Christensen et al. (2022) show that when 0 < a — 8 < 1/2, there is no local arbitrage
opportunity, while a local arbitrage opportunity exists when o — 3 > 1/2. We shall refer to the case
a>1/2 and § = 0 as the pure drift burst case. Similarly, the case « = 0 and 8 > 0 is called the pure

volatility burst case, and a drift-volatility burst corresponds to the case a > 1/2 and > 0.
The OMK estimator has the following asymptotic properties when constructed from the drift-

burst augmented price process in Assumption 3.3:

Proposition 3.2. Suppose 3.2 holds true and construct the OMK estimators constructed from P% on

I,, as specified in Assumption 3.3. For any XA € A as A, — 0, if 0 < o — 5 < 1/2, then:

Agﬁt()\) d, NoOz ’
O V1-23

where z is defined analogously as z in Theorem 3.1, but is constructed from a Brownian motion (By)ier,

independent of W. If a« — 8 > 1/2, then it holds that:

(3.13)

Ag&t,OK = OP(A,I/Q_OH_B), Aga't,MAED 2. (3.14)

Proposition 3.2 shows that the OMK estimator behaves very differently depending on the presence
of a local arbitrage opportunity. When 0 < a—f < 1/2, 64(A) still converges to a limiting distribution
identical to that in Theorem 3.1 (since z L by construction), but with additional scaling factors
AP and /1 —23 due to the volatility burst. Intuitively, in this case the volatility burst dominates
the drift burst, thus the drift-burst augmented price is equivalent in distribution to a price process
without a drift burst when rescaled by the exploding volatility in the limit, which gives the same

limiting distribution as in Theorem 3.1. However, when a— 3 > 1/2, Eq. (3.14) suggests that 64 paED
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is biased towards zero while 6; o explodes in the limit, after adjusting for the volatility burst. In
this case, the drift burst dominates the volatility burst, and the rescaled price process converges to a

monotonic explosive drift process that drives 64y app towards zero.

Unfortunately, as in practice we do not know the value of 3, none of the results in Proposition 3.2
are informative in practice. Nevertheless, Proposition 3.2 directly implies the following result for the

S-test statistic as the unknown scaling factors cancel in the log-ratio:

A"Oz
Sy % In ,Qf, 0<a—pB<1/2
€19z (3.15)

Notice that in the no arbitrage case (0 < a — 8 < 1/2), the asymptotic distribution of S; is equal in
distribution to the setting without a drift burst in Corollary 3.1. This shows that S; has no power
in the no arbitrage case, but it can consistently detect a drift burst with local arbitrage opportunity
(o — B > 1/2), which is in line with the testing procedure proposed in Christensen et al. (2022).
However, as pointed out by Christensen et al. (2022), drift bursts tend to generate local directional
outward price movements regardless of whether a local arbitrage opportunity exists, which has a
larger impact on the OK estimator than the MAED estimator. Consequently, our simulation results
in Fig. 4.5 show that the S-test still has non-trivial power against the presence of a drift burst in the

non-arbitrage case.
3.5 Discretely Observed Prices

Assumption 3.2 plays a central role in determining the limiting distribution of the OMK estimator
and the S-test statistic. However, empirically we only observe a finite number of price records on
the interval I,,, so Assumption 3.2 is violated. Suppose that the price process is not observed with
measurement error, the discretely observed price records lead to underestimations of the range w and
the MAED m on [,,. This not only biases the candlestick and MAED-based estimators downwards,
but also distorts the asymptotic distributions and the confidence intervals for these estimators. In this
section, we quantify the discretization bias and propose an explicit and easy-to-implement correction

method.

To examine the impact of discrete observations formally, we need to make an assumption about
the price observations in the interval [s,s + A,] as A,, — 0. In particular, we are interested in a
scenario where the number of observations are fixed for any subinterval [s, s+ A,] C [0, 7] in the limit,
which naturally requires an increasing number of observations globally on [0, 7], a setting similar to
the infill asymptotics in the classic realized volatility literature (see e.g. Jacod (1997); Andersen et al.

(2001); Barndorff-Nielsen and Shephard (2002)).

Borrowing ideas from the infill asymptotics literature, we make the following assumption about
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the observation times of P on [0,77:

Assumption 3.4. On (0, F,(F)i>0,P), let « = (o) denote a semimartingale which satisfies the
same conditions as P in Assumption 3.1. For each n, P is observed at a sequence of strictly increasing
stopping times 0 < 70 < Tp1 < ... < TN, < T, where N, is the total number of observations on

[0,T]. We assume that:

(1) For every t < T, we have 1/a < cy— < & for some strictly positive constant &.

(2) If (F}*) is the smallest filtration containing (F;) and w.r.t. which all {1, ;}i=12,.. are stopping
times, then for each i, the variable A7y, ; := Ty ; — Tn,i—1 5, conditionally on fﬁn independent

of Foo := Va0 Ft-

yi—17

(3) In restriction to the set {r,; < Ty}, there exists a strictly positive and decreasing sequence

6n — 0 and some constant £ > 0 such that for each i, |Aty; — 0n /o, | = Op(657F).

Remark 3.4. Assumption 3.4 is a special case of the more general setting in Assumption (O) of Jacod
et al. (2017). In detail, the process oy controls for the ‘spot’ observation arrival rate at time ¢, which
is assumed to be bounded above and away from zero by condition (1). Condition (2) is a conditional
exogeneity assumption of the observation times which ensures that P is still a semimartingale relative to
the filtration (F}*) with the same dynamics. Condition (3) allows the sampling times to be time-varying
and random, but requires the observation times to be locally equidistant in a vanishing window of order
Opn. In the context of the examples given in Jacod et al. (2017), this condition is trivially satisfied by
the regular or the time-changed regular sampling scheme, but is not satisfied by the modulated Poisson
or the predictably-modulated random walk sampling scheme which has |A7,; — 6, /0, ;1| = Op(dn).
In this case, the asymptotic distribution of the OMK estimator depends on the distribution of the
sampling times which can in theory be an arbitrary positive distribution. Therefore, to derive a

feasible asymptotic theory for the OMK estimator in the discrete case, we shall stick with condition

(3)-

Under Assumption 3.4, it suffices to consider the time-deformed process (P(%));=o.n, where P(i) :=

P

Tn,i*

Also, we assume that the interval of interest I, = [s,s + A,] contains the grid of discrete
observations L(lq) = {is,is+1,...i5+ ¢} for some fixed ¢ and iy < N, —q such that I, = [Ty, , Tn,i,+q)-
This design ensures that we observe exactly ¢ + 1 price observations in the limit®. In this case,
the length of the interval A, = 7,4+ — Tns, is implicitly determined by the choice of ¢ and the
(unobserved) sequence d, which represents the ‘average mesh size’. One can show (see Eq. (A.44))

that by Assumption 3.4(3), we have A, = O,(d,) for any fixed ¢, so I,, indeed shrinks as n — oo,

8Clearly, adding leading and trailing intervals without observations to I, does not change the statistics associated with

I,,, thus we can restrict ourselves to consider I,, which both starts and ends with an observation.
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which is similar to the continuous case in the previous section, but with a possibly random interval

length.

For the interval I, and the observed prices (P(z))Ze @) the associated MAED, range and return
statistics reduce to:

m = max {w(j) - [r()l}. w=w(e). r=rlg), (316)

where w(j) := maxi<; #<; |P(is + 1) — P(is +4')| and r(j) := P(is + j) — P(is) for j € {1,...,¢} are
the discrete running range and return of P on the grid of observations, respectively. As two special
cases, when ¢ = 1, Pr(m = 0) = Pr(w = |r|) = 1 as only the return information is available and there
is no ‘inward’ price movement. When ¢ = 2, it is trivial to show that m + |r| = w, so the MAED does

not add any information to the candlestick data.

To construct the OMK estimator in the discrete case (which we refer to as the discrete OMK
estimator), we introduce some further notations related to a discretely observed Brownian motion.
For some fixed ¢ > 1, consider the standard Brownian motion W on [0, 1] observed equidistantly with
q intervals, i.e., (W@ (i));=g.q, where W@ (i) := Wi/q denotes the ith equidistant observation from .
Denote the associated discrete MAED and range statistics of (W (% (1))i=0:q as 7@ and éq), and note
that the absolute return statistic 52 is not affected by the discrete observations. The corresponding
moments of these discrete statistics are defined similarly in Eq. (2.4) with the additional superscript
(q), e.g., ,ugq) = E[ﬁ(q)]. For any ¢ > 1, these moments can be easily simulated from discretely
observed Brownian motions, and the moments presented in Eq. (2.4) can be considered as the limits
of their discrete counterparts as ¢ — oo. In Table C.1 of Appendix C, we present the simulated values
of the discrete moments and a polynomial approximation inspired by the asymptotic expansion in
Proposition 3 of Asmussen et al. (1995). This allows us to compute the discrete moments for any
choice of ¢ without additional simulation. As will be shown, these discrete moments play the same
role as their continuous counterparts in the construction and the asymptotic properties of the OMK

estimator in the continuous case.

We are now ready to construct the discrete OMK estimator. Start with the MAED-candlestick

vector ¢ constructed from (P(z))le ;@ the discrete OMK estimator is defined as:
&ISQ)(A) — A;lﬂ)\/@(q)c, (3.17)

where @@ := diag(( ugm )7L, (V{q))*l, Y1 1) is the discrete counterpart of © that ensures the asymptotic

unbiasedness of the discrete OMK estimator. To guarantee the non-negativity of (TIEQ)(}\), we require

X e A where:
AD = {XeR?: Ne=1, 09 > max{0,NOWe;, NOWe3}}, (3.18)
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which can be proved in the same manner as Proposition 3.1 in the continuous case. The following

result characterizes the asymptotic distribution of &,Eq)()\):

Proposition 3.3. Suppose Assumption 3.1 and Assumption 3.4 hold true. For any fixed integer g > 1,
AeAD gndte I, it holds as d,, — O that:

= NOWzD 14 (1), (3.19)

where 2@ := (77(‘1),5561),52)’, in which n(q) and éq) are the MAED and the range of the scaled equidis-
tantly observed Brownian motion (A;1/2W(q)(i))i:0;q such that W@ (i) := W.

Tn,is

+iln/q S the ith

equidistant observation of W on I,,.

Remark 3.5. Analogous to the discussion in Remark 3.1, it holds by the Brownian scaling law that
(n@, §Q), &) 4 (7D, Ng‘n,fg), which implies that &t(q)()\) is asymptotically unbiased for all A € A9 It
is worth noting that the distribution of the limiting variable z(9) comes from the equidistantly observed
Brownian motion (A, Y2y (a) (4))i=0:¢ which does not depend on the (possibly random) observation
times of P. This coupling result is due to Assumption 3.4 which ensures that the observation times on
I,, converges to a deterministic equidistant grid as A,,. As the distribution of (9 can be simulated for
any fixed ¢ to an arbitrary precision, Proposition 3.3 allows us to construct valid confidence intervals

for &t(q)()\) in the same manner as described in Remark 3.1.

Analogous to Egs. (3.8) and (3.9), we can construct the optimal discrete OMK and OK estimators
by choosing the variance-minimizing weight vectors A* and A° for any fixed ¢ > 1 based on the discrete
variance-covariance matrix 3@, whose inputs can be computed from Table C.1 for any choice of q.
The notation (7157‘]()) MK c“rg())  and &t(?l\)/l app are understood as the discrete counterparts of ¢ ok,
010k and &y pmAED, respectively. It should also be clear that &t(% vk 18 BLUE among the class of
estimators {&,@(z\) : XNt = 1}. We present the optimal OK and OMK weights as a function of ¢ in
Fig. 3.2. The figure shows that both A* and A° converge to their corresponding limiting values when
g — oo as expected, and the speed of convergence for A* appears to be slower than that of A°. For

small ¢ (e.g., ¢ < 50), the optimal weight vectors are very different from their limiting versions based

on the continuous assumption, which reveals the impact of sparsely observed prices.

~(q) (@) (9)

We proceed to examine the precision of 6,5, and 6,1, 4pp relative to 6,5, across various
choices of q. To this end, we compute the simulated asymptotic variances and 90% HDIs of the
limiting variables of the three estimators and benchmark them to the values of &iqo) i for selective

choices of ¢s, which are presented in Table 3.2.

Table 3.2 shows that, as ¢ — oo, both the asymptotic variances and the 90% HDI widths for all
three estimators decrease monotonically and converge to the corresponding value in the continuous

case. Comparing the performance of the OK to the OMK estimator, we find that: (1) both the
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Figure 3.2: Plot of the optimal weight vectors A* = (A%, A%, A%)’ for the discrete OMK estimator and A° = (0, A9, A\2)’ for the
discrete OK estimator with ¢ < 500. The optimal weight vectors are computed based on the simulated/approximated moments in

Table C.1. The y-axis tick labels show the limiting values of the weights as ¢ — oo.

Asymptotic Variance 90% HDI Width

q OMK OK MAED  SMK MAED - OMK OK MAED  9MK MAED
1 0.5 0.5 - 1 - 6.148  6.148 - 1 -

2 0.284 0.284 2.327 1 8.203 2450 2450 0o 1 00

3 0.191 0.206 1.025 0.928 4.977 1744 1.827 00 0.955 00

4 0.148 0.171 0.635 0.863 3.710 1448 1.581 00 0.915 00

5 0.123 0.152 0.458 0.814 3.016 1284 1450 7.317 0.886 5.048
6 0.108 0.139 0.360 0.777 2.589 1180 1.367 3.681 0.863 2.694
7 0.0977 0.130 0.301 0.749 2.306 1108 1.309 2.748 0.847 2.099
8 0.0902 0.124 0.261 0.729 2.109 1056 1.267 2.315 0.834 1.828
9 0.0845 0.119 0.233 0.712 1.967 1016 1233 2.063 0.824 1.673
10 0.0801 0.115 0.213 0.699 1.858 0985  1.206 1.899 0.816 1.574
20 0.0614  0.0953 0.139 0.644 1.461 0.846  1.079 1.385 0.784 1.284
30 0.0553  0.0881 0.119 0.628 1.351 0.798  1.030 1.253 0.775 1.217
40 0.0521  0.0840 0.109 0.620 1.296 0772 1.002 1.186 0.770 1.183
50 0.0500  0.0814 0.103 0.615 1.261 0.755  0.984 1.144 0.768 1.162
60 0.0486  0.0796  0.0985 0.611 1.237 0744 0971 1114 0.766 1.147
70 00475  0.0782  0.0953 0.608 1.219 0735  0.961 1.092 0.764 1.136
80 0.0467  0.0770  0.0929 0.606 1.205 0728 0.954 1.075 0.763 1.127
90 0.0460  0.0761 0.0909 0.605 1.194 0722 0.947 1.061 0.762 1.120
100 0.0455  0.0754  0.0893 0.604 1.185 0717 0.942 1.049 0.762 1.114
500 0.0403  0.0680  0.0747  0.593 1.098 0672 0.889 0.944 0.756 1.062
1000 0.0392  0.0663 00717 0591 1.080 0662  0.877 0.921 0.755 1.051
10000 0.0375  0.0637  0.0670 0.589 1.052 0.647  0.857 0.886 0.754 1.033
100000 0.0370  0.0629  0.0656 0.589 1.043 0642  0.851 0.875 0.754 1.028
oo 0.0368  0.0625  0.0650 0.589 1.039 0.640  0.848 0.870 0.754 1.026

Table 3.2: Simulated asymptotic variances and the 90% HDI widths of the limiting variables of a't(qg)MIO &E%K and &iqlz/IAED7

namely AW (@ X’@D2(9) and e’IQ(Q)z(Q), with various choices of q. The simulation setting is described in Appendix C.

OMK MAED

ox and 5

The columns with heading

present the ratio of the corresponding statistics to those of the OK estimator.
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asymptotic variance and the 90% HDI width of the OMK estimator are superior to those of the OK
estimator, starting from ¢ = 3; (2) with ¢ > 20, the discrete OMK estimator starts to outperform the
continuous OK estimator in terms of both the asymptotic variance and the 90% HDI width; (3) for
any g > 100, the asymptotic variance (resp. 90% HDI width) reduction of the OMK estimator over the
OK estimator is about 40% (resp. 24%) already, which is close to the precision gain in the continuous

case.

For the performance of the MAED estimator, its asymptotic variance and the 90% HDI width
converge slower to the limiting values as ¢ — co. We note that the MAED estimator is undefined for
g =1 since nM =0, and its 90% HDI width for ¢ < 4 is infinite due to the non-trivial probability” of
the event 77(‘1) = 0. In general, the MAED estimator for small ¢ performs rather poorly when compared
to the OK estimator. With ¢ > 100, the performance of the MAED estimator becomes somewhat more

reliable.

Concluding from above, Table 3.2 clearly demonstrates that the OMK estimator dominates the
OK estimator for any choice of ¢, and the precision gain increases with ¢. Therefore, when ultra high-
frequency data is available, the OMK estimator is always preferred over the OK estimator, regardless
of the choice of ¢. With about 100 observations in the interval I,,, the OMK estimator can reduce
the variance of the OK estimator by about 40% and the 90% HDI width by about 24%. The HDI
widths with different confidence levels are also reduced by a similar amount, which can be seen from
Table C.2 in Appendix C. As to the MAED estimator, we do not recommend to use it as a standalone

spot volatility estimator due to its inferior precision relative to the OMK estimator.

However, 0,5?134 App Preserves the jump-robustness as a discrete version of Theorem 3.2 holds under
Assumption 3.4. To see this, we note that for any ¢ > 1, m constructed from (P(i)),_ 1@ is bounded
above by its counterpart constructed from (P;)icr,, which also holds when a jump is present. As
a special case, with ¢ = 2 one can show that m < min(|rq|,|r2|), where r1 and 79 are the returns
over the two subintervals on I, which satisfy r; + ro = r. Hence, the jump-robustness of m in this
case can also be seen from the nearest neighbourhood truncation method of Andersen et al. (2012).
Consequently, o}f?]e/‘, App brovides jump-robust spot volatility estimates in the discrete case at the cost

of a mild precision loss.

The jump-robustness of af}qj\z App leads naturally to a discrete S-test with the statistic St(q) =
ln(fft(?()) %/ &t(,q]\)/f agp)- From a discrete version of Corollary 3.1, the asymptotic distribution of Sﬁq) under
the null is the discrete counterpart of Eq. (3.12) while the test statistic diverges under the alternative.
We provide critical values of the discrete version of the test for any ¢ € N in Table C.2 of Appendix

C. We caution that such critical values are not always available when Prob(n(? = 0) is non-trivial,

9Tt is easy to show that Prob(nm =0) =279, which is the probability that a g step Gaussian random walk is monotonic.
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which can be avoided by choosing some moderately large ¢ (e.g., ¢ > 10). Also, a discrete version'”

of Proposition 3.2 holds in the presence of a drift burst since discrete observations do not change the
asymptotic order of the drift burst. As a result, the test statistic St(Q) is still valid for drift burst

detection in the discrete case.

As to the performance of the continuous OMK estimator in the discrete case, we have 6¢(\) /oy =
Oz 4 op(1) due to Proposition 3.3, which suggests that the continuous OMK estimator is in
general not asymptotically unbiased, since E]N'@z@] = X\, u(9 /pu; + )\wufq) /v1 + A < 1. To quantify
the bias of the continuous OMK estimator and compare its performance against the discrete OMK
estimator, we compute the asymptotic relative bias (ARBias), the asymptotic mean squared relative
error (AMSRE) and the asymptotic 90% coverage rate (ACR90%) of 4() for a wide range of ¢, which

are defined as follows:

E[(NOz@ —1)?]

Var[A'©Wz(9)] (3.20)
ACR90% (@ := Prob(N'©z?)~! € £34(NOz)).

ARBias'? := E[N'©z(?], AMSRE® :=

Note that AMSRE@ compares the asymptotic mean squared relative error of the continuous OMK
estimator against the asymptotic variance factor of the discrete OMK estimator (since the latter is
unbiased), which measures the relative performance of the continuous OMK estimator to its discrete
version in the mean squared sense. We present the above statistics for the continuous optimal OMK,

OK and the MAED estimators in Table 3.3.

Table 3.3 clearly presents the bias induced by discrete observations for the three continuous
estimators, which can be quite substantial for small ¢ (e.g., more than 20% in magnitude for ¢ < 10),
but in general diminishes as ¢ — oo. The MAED estimator is most sensitive to this bias, followed
by the OMK and the OK estimators in descending order. This bias in general inflates the AMSRE
of the continuous estimators relative to their discrete versions when ¢ is small (except for the MAED
estimator with ¢ < 5 where the variance of the discrete MAED estimator explodes), but small AMSRE
reductions are expected for moderate to large ¢ due to a shrinkage effect'!. However, regardless of the
choice of ¢, the coverage rates of the continuous estimators are all distorted from the nominal level
of 90%, and the distortion is sizeable even with ¢ = 100. These results demonstrate the importance
of the correction for discrete observations when constructing the OMK estimators, especially when ¢
is relatively small. For ¢ > 1000 and suppose the measurement errors are negligible, one can safely

ignore the effect of discrete observations and use the simple continuous OMK estimators.

0Note that one needs to alter the asymptotic distribution in Eq. (3.13) to account for discrete observations. However,
this asymptotic distribution is infeasible in practice as it depends on the unknown parameter 8. We therefore omit this

result in the paper.
"This is also known as the Stein effect (Stein, 1956). Intuitively, the continuous estimators are biased towards zero, which

also simultaneously reduce their variances and improve the mean squared error of the unbiased discrete estimators.
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ARBias(® AMSRE®@ ACR90% (@)

q OMK OK MAED OMK OK MAED OMK OK MAED
2 0.305 0.487 0.149 1.816 1.165 0.333 0.030 0.261 0.053
3 0.393 0.559 0.257 2.117 1.257 0.605 0.063 0.346 0.101
4 0.458 0.607 0.337 2.233 1.272 0.806 0.101 0.412 0.148
5 0.508 0.641 0.398 2.253 1.261 0.950 0.142 0.463 0.194
6 0.547 0.667 0.446 2.225 1.241 1.050 0.182 0.505 0.236
7 0.579 0.688 0.485 2.177 1.219 1.118 0.222 0.538 0.275
8 0.605 0.706 0.517 2.120 1.197 1.162 0.260 0.567 0.311
9 0.627 0.721 0.543 2.062 1.178 1.189 0.294 0.590 0.343
10 0.645 0.733 0.566 2.006 1.159 1.205 0.326 0.611 0.373
20 0.747 0.805 0.690 1.611 1.048 1.166 0.532 0.722 0.558
30 0.792 0.838 0.746 1.415 1.001 1.100 0.630 0.768 0.645
40 0.820 0.859 0.779 1.302 0.976 1.055 0.686 0.795 0.695
50 0.839 0.873 0.802 1.229 0.961 1.024 0.723 0.812 0.728
60 0.852 0.883 0.819 1.179 0.952 1.003 0.748 0.823 0.751
70 0.863 0.892 0.833 1.142 0.946 0.987 0.767 0.832 0.768
80 0.872 0.898 0.843 1.114 0.942 0.976 0.782 0.839 0.781
90 0.879 0.904 0.852 1.093 0.939 0.967 0.793 0.845 0.792
100 0.886 0.909 0.860 1.075 0.937 0.959 0.803 0.849 0.801
500 0.949 0.958 0.937 0.966 0.944 0.931 0.877 0.889 0.875
1000 0.964 0.970 0.956 0.963 0.955 0.941 0.889 0.896 0.887
0 1 1 1 1 1 1 0.9 0.9 0.9

Table 3.3: Performances of the continuous optimal OMK (6+ omKi), optimal OK (6¢,0x) and MAED (¢, paED) estimators in
the discrete observation setting. The evaluation metrics ARBias, AMSRE and CR90% are defined in Eq. (3.20) with various choices
of ¢ in the first column of the table, where ¢ + 1 represents the number of observations on the interval I,, used to construct the

estimators.

3.6 Measurement Errors

In practice, we do not observe the efficient prices (P(i))i=0:n,, but rather prices contaminated by
measurement errors due to the presence of bid-ask spread, rounding, and other trading activities,
commonly known as the market microstructure (MMS) noise. The impact of measurement errors on
the realized volatility (RV) estimator or the spot volatility estimator in the infinite-k setting is well-
studied (see e.g., Ait-Sahalia and Jacod (2014); Bandi and Russell (2008); Hansen and Lunde (2006);
Zhang et al. (2005); Zu and Peter Boswijk (2014); Li et al. (2020); Li and Linton (2022) among many
others). The impact of measurement errors on spot volatility estimators in the fixed-k framework,
however, is not yet studied in the literature, as Bollerslev et al. (2021) and Li et al. (2022) implicitly
assume Assumption 3.2 in their analyses, which ignores both discrete observations and measurement
errors. As the MAED exploits the full price path on I,, which can be more sensitive to the range and
the return, in this section we analyse the impact of measurement errors on the OMK estimator and

discuss potential remedies.

We start with the following assumption about the measurement error on some interval I,, with g

intervals:

Assumption 3.5. Suppose Assumptions 3.1 and 3.4 hold true. We assume that the observed price
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process on [0,T], denoted by (P(7))i=o:N,,, takes the following form:
Pe(i) :== P(i) + €(1), V1, (3.21)

where (€(i))icz is a zero-mean time series such that for all i € Z, we have €(i) = Op(1) and:

kn
kit e+ 5) = Op(kT?),  de0,1/2), (3.22)
j=1

as k, — oo.

Remark 3.6. The O,(1) noise assumption is referred to as the ‘fixed noise’ setting in Ait-Sahalia and
Jacod (2014), which is commonly discussed in the context of integrated variance estimation. The
above assumption only requires the noise process to be zero mean and asymptotically negligible when
we average over k, consecutive terms as k, — oo. Apart from these conditions, we do not restrict
the form of heterescedasticity, endogeneity, or dependence of the noise, as these are irrelevant in the
asymptotic analysis below. This is in stark contrast to the study of noise-robust integrated variance
estimation, which normally require intricate assumptions on the structure of the MMS noise process
for identification (e.g., Hansen and Lunde (2006); Bandi and Russell (2008); Barndorff-Nielsen et al.
(2008); Ait-Sahalia et al. (2011); Varneskov (2017); Jacod et al. (2019)). The parameter d controls
for the level of long memory in €(i), similar to the degree of fractional integration as in Granger and
Joyeux (1980); Baillie (1996), and d < 1/2 is required to ensure that the variance of the sample mean
in Eq. (3.22) vanishes in the limit. This assumption is satisfied by almost all existing models for the
MMS noise. For example, any short memory noise specification as in Zhang (2006) and Ait-Sahalia
et al. (2011) trivially satisfies the above assumption with d = 0. It can be shown that the more
complicated noise specifications in Varneskov (2017); Jacod et al. (2019) also satisfy this assumption

for d < 1/2 according to their assumption on the polynomial a- or p-mixing coefficient.

We first show that the coupling result in Proposition 3.3 no longer holds and the discrete OMK

estimator diverges in the presence of MMS noise:

Proposition 3.4. Under Assumptions 3.1 and 3.5, construct 6¢(X) from (P*(i)),_,w on the interval

I, for some fized ¢ > 1 and X € A9 As 5, — 0, it holds that:

6:(A) = AVPNOWED + 0,(1). (3.23)
where €9 ;= (%, &5, £5), in which n°, & and &5 are the MAED, the range and the absolute return of
the process (e(i))iel,(f‘” respectively.

Proposition 3.4 suggests that 6;(A) = Op (5, Y 2), so the OMK estimator explodes towards infinity

in the limit when the noise is present. Intuitively, the observed price process is dominated by the
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noise process in the limit, and the MAED-candlestick vector of the observed price process ¢ converges

2 This result implies that one

to that of the noise process, €9, which diverges when scaled by A,
cannot choose A,, to be as small as possible in practice, as the noise-induced bias completely swamps
the spot volatility estimates when A,, is small. Therefore, the OMK estimator is not robust to the
presence of MMS noise, and empirically one needs to choose a large A,, to ‘sparse sample’ the price
process and dampen the impact of noise. However, for the impact of noise to drop to a tolerable level,

one might require an oversized A, which heavily distorts the finite sample distribution of the OMK

estimator and defeats the purpose of spot volatility estimation.

To mitigate the above problem, we develop a noise-robust OMK estimator using the pre-averaging
method of Jacod et al. (2009, 2010) in the fixed-k framework. We consider an interval I,, = [s, s + A,)]

with g,+1 observations (P¢(7)) ) such that i) = {is,9s+1,...,is+¢,}. Similar to the discussion

; (an
i€ly

in the previous section we shall assume that the first and the last observations are at the edges of
I,. We set g, = O(5,%) for some 6 € (0,1). Under Assumption 3.4 and from our discussion in the
previous section, we have A,, = 0,(617%) = 0,(1), so I,, is a shrinking interval in the limit as desired,

but it contains an increasing (instead of fixed) number of observations in the limit.

On I,,, we pick a pre-averaging window k, = O(057%) strictly bounded above by g, for some
e € (0,0) so that k, — oo while k,, /g, — 0. Construct the following pre-averaged price process:

kn—1
_ 1 fn
P(i) =~ > P(i—j), ieIlm, (3.24)
n =0

where we use at most k, observations prior to time s to compute the first k,, averaged prices. Using
(P(i))ie J(an) as the price observations, we compute the pre-averaged MAED-candlestick vector € :=
(m,w, |7])’, where the bar notation highlights the pre-averaging procedure. The pre-averaged OMK

estimator is defined as:

Gi(A) == A2\ eg, (3.25)
and note that ® is the same as in Theorem 3.1. We deduce the following asymptotic result:

Proposition 3.5. Under Assumption 3.5, choose 6 € (0,1) and ¢ € (0,0) that satisfy (0—¢)/(1—¢) >
1/(2—2d). As 6, — 0, it holds for all t € I, and A € A that:

t(A)

Ot

=XN0Oz +0y(1), (3.26)
where z is defined as in Theorem 3.1.

Remark 3.7. Note that the asymptotic distribution of &4(\) is the same as that of Theorem 3.1 in
the continuous case, which may seem surprising at first. Intuitively, the impact of noise diminishes
as the pre-averaging window k, — oo. However, the condition k, = o(g,) ensures that the pre-

averaged price process is asymptotically equivalent to the efficient price, as the pre-averaging window
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is asymptotically negligible compared to the length of the interval. In the absence of MMS noise, one
can set k, = 1, and 4(\) simply reduces to &gq)(/\) with ¢ = co. This asymptotic setting can thus be
considered as an ‘in-fill’ asymptotic limit on the fixed-k interval I,,. As pre-averaging does not alter
the asymptotic orders of jumps or drift bursts, one can show that &;yagp is jump-robust in view
of Theorem 3.2, and the pre-averaged S-test, denoted as S; := In 3t70K —In 5}7 MAED, has the same

asymptotic distribution as S in the presence of jumps or drift-bursts as discussed in Corollary 3.1 and

Proposition 3.2.

Remark 3.8. It is worth noting that we can consider 6, € and d as nuisance parameters as they do not
play a role in the asymptotic distribution of (). The condition (6§ —&)/(1 —¢) > 1/(2 — 2d) ensures
that the impact of the MMS noise is asymptotically negligible. For example, with short memory noise
so that d =0, we need (0 —¢)/(1 —¢) > 1/2, or 20 — e > 1. There are clearly infinitely many possible
choices of § and ¢, such as § = 3/4 and € = 1/4. In general, we need larger # and ¢ to account for a
larger d, but choices of § and ¢ for any d < 1/2 are always available, which allows Eq. (3.26) to hold
in the presence of long memory noises. For d > 1/2, no choices of § and e could satisfy this condition,

and Eq. (3.26) no longer holds true due to the excess persistence in the noise process.

Proposition 3.5 shows that &;(A) is asymptotically robust to a very flexible specification of the
MMS noise. In practice, o4(A) is very simple to construct as one only needs to choose k, and g, and
construct the continuous OMK estimator on the pre-averaged prices. Although in theory k, and ¢,
should be chosen based on the unknown parameters d,, 6, € and d, they only control for the rate of
explosion for k,, and g, which is required for the asymptotic result, but they are irrelevant in finite
sample as we only pick finite k,, and ¢, to construct 3,5()\). As a result, 64() is still biased in finite

sample due to MMS noise and discretely observed prices.

To provide some guidance on the choices of k,, and ¢,, we note that one should always choose k,,
large enough to fully dampen the impact of MMS noise. Therefore, for the purpose of noise reduction
it is tempting to choose k,, as large as possible. However, we stress that one needs to pick ¢, much
larger relative to ky, (in theory g,/k, — 00) for Eq. (3.26) to hold approximately true. A finite ¢, /k,
introduces a negative finite sample bias (and hence a distortion of the finite sample distribution) to
o¢(\) due to the pre-averaging of price increments. Intuitively, in finite sample, pre-averaging the price
process also smooths the efficient price path, which effectively reduces the corresponding MAED and
range statistics and generates a negative bias. As spot volatility estimators are typically constructed
in intervals of pre-determined lengths (e.g., a 10-minute window used in Bollerslev et al. (2021); Li
et al. (2022)), we recommend to choose the smallest &, which shrinks the impact of the MMS noise to
a negligible level. Therefore, if one believes that the noise is already negligible without pre-averaging

(which may be the case when one chooses a large A,,), then one can simply pick &k, = 1.
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We conclude this section by proposing a plausible finite sample correction to the bias due to

pre-averaging. Via simulation, we discover the following approximated asymptotic distribution of ¢:
~1/25 4 o (@)
AV m 02\ (3.27)

when we fix ¢, /k, = ¢ for any ¢ > 10 and let ¢, — oco. Based on this observation, we propose the

following ‘discrete’ pre-averaged OMK estimator in practice:
5P = a; 2 vels, (3.28)

where § := ¢p/kn, and ©@ is defined as in Eq. (3.17) but with non-integer numbers of obser-
vations, whose values can be obtained using our polynomial approximations'? in Table C.1. For
the estimators 3§%MK and 375%1(, the corresponding optimal weight vectors are computed based
on Egs. (3.8) and (3.9) with the variance-covariance matrix (@ whose elements can also be ob-
tained from Table C.1. For statistical inference of the estimators and the modified S-test denoted as
S't@ =In 375% x—1n 35334 AED> We obtain the related critical values for the confidence intervals and the
S-test based on the polynomial approximations in Table C.2. Note that ¢ plays a similar role as ¢ in
the discrete OMK estimator, so a larger ¢ is preferred as it reduces the asymptotic variance factor of

5@()\), which indicates that the choice of &, is a classic bias-variance trade-off for a fixed g,.

Eq. (3.27) is a surprising observation, as it suggests that the impact of pre-averaging on the MAED
and range statistics is similar to the impact of discrete observations (which is discussed in Table 3.3).
The polynomial approximations are a natural interpolation method to obtain the moments and critical
values for non-integer ¢. We are unable to justify these results theoretically, as it requires a careful
study of the probabilistic nature of Brownian moving averages, which is beyond the scope of this paper.
Nevertheless, our simulation results in Fig. 4.2 show convincingly that 31‘@()\) has much better finite
sampler performance than &;(A) with less bias and better coverage rates, which provides a credible

finite sample correction to the pre-averaged OMK estimator and is thus recommended in practice.

4 Simulation Study

We conduct a comprehensive simulation study to examine the properties of the MAED-related statistics
proposed in this paper. The log-price process P is generated according to a two-factor stochastic
volatility model, following Li et al. (2022):
dPt = O'tth + Jt, 0'752 = Vl,t + ‘/2,t
dVi = 0.0128(0.4068 — V ¢)dt + 0.0954+/ V1 4 (pdWy + /1 — p?d B ;) (4.1)

dVa, = 0.6930(0.4068 — Va ;)dt + 0.7023+/ Vi, (pdW; + /1 — p2dBy,),

12Note that if § € [1,10], we compute the associate moments using cubic interpolation from the simulated moments with

integer ¢ in Table C.1.
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where W, B; and B, are independent standard Brownian motions, and we set p = —0.7 to capture
the leverage effect between financial price and volatility shocks. We simulate 10000 paths of P based
on Eq. (4.1) on the unit interval [0, 1] normalized as a trading day with 390 minutes or 23400 seconds.
The Euler discretization step is set to be 2.34 x 1072, or 10 steps per second. We initialize Py = In 20 so
that the asset is traded at roughly $20 on the trading day, and we fix V; g = V59 = 0.5. To account for
discretely observed prices with different number of observations, we generate equidistant observation
times 7,; = i/N,, with N,, = 46800, which corresponds to 2 observations per second. The efficient

price observed at a discrete grid is therefore {P(i)};—o.n,, -

For the specification of the measurement error, we follow Christensen et al. (2022) and consider

the following model for the observed price:

P(i) = P() +e(i), e(i) ~N(0,w?), (4.2)

where w; = o, ;/v/Nn. The parameter ¢ captures the overall magnitude of the measurement error.
Following Christensen et al. (2022), we set ¢ = 2, which represents a moderate contamination level

(Christensen et al., 2014).

We first examine the performance of the OMK, OK and MAED estimators for the end-of-day
volatility o1 in the absence of jumps and drift bursts. We compute these estimators based on sub-
intervals of the form I, = [1 — A,, 1] with 390 - A,, € {1,5,10,15,---,120}, so the interval length
ranges from one minute to two hours with a step of five minutes. To demonstrate the importance of
correcting for discrete price observations, we consider both the discrete and the continuous versions of
the three estimators. Taking the OMK estimator as an example, we consider both 65?)0 wx With the
correct choice of ¢ and the corresponding optimal A* as shown in Fig. 3.2, as well as its continuous

counterpart 1 omk by treating ¢ = oo with the optimal weight vector given in Eq. (3.8). The

estimators (}g% K 010K 6§q])w app and 61y agp are defined in a similar fashion.

To evaluate the performance of the estimators, we compute the following evaluation measures for

a general estimator 61 € {&g%MK,ﬁLOMK,e%E%K, 01,0K &Y,IJ)\/[AED’ G1,MAED }:
RBias := E[61/01 — 1], MSRE := E[(61/01 — 1)%], CR90% := Prob[o; € Clgy(61)], (4.3)

where RBias, MSRE and CR90% stand for the relative bias, the mean squared relative error and the

113

90% coverage rate of Clggy(61), the 90% confidence interval'” of 61, respectively.

The simulation results for the estimators of o} are presented in Fig. 4.1. Several interesting findings
can be concluded from this figure. First, the results constructed from the efficient price are largely
in line with our results in Table 3.3 by comparing RBias, MSRE and CR090% with their asymptotic

versions defined in Eq. (3.20). In general, as A,, — 0, the discrete estimators appear unbiased with

139ee Remark 3.1 and Table C.2 for the construction of the 90% confidence intervals of the related estimators.
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Figure 4.1: Simulated RBias, MSRE and CR90% of &E?)O MK 6§?é x and 6§?J)\4 app and their continuous versions. All estimators
are constructed on the interval [1 — Ay, 1] with the choice of A, indicated by the x-axis. The results are computed based on 10000
simulated paths of the model in Egs. (4.1) and (4.2) in the absence of jumps and drift bursts. The Efficient (resp. Observed) Price
in the figure headings indicate that the results are computed from {P;} (resp. {Pf}).

correct coverage rates, while the continuous estimators are biased downwards with distorted coverage
rates. The MSREs of the estimators show that the OMK estimator clearly dominates the OK and the
MAED estimators which have similar performances. It also shows that the continuous versions of the
estimators can indeed have smaller MSREs than their discrete counterparts, which is consistent with

Table 3.3.

In the presence of measurement errors, all six estimators are heavily biased upwards, and the size
of the bias explodes as A, — 0. This leads to inflated MSREs and distorted coverage rates, as is
shown in the second row of Fig. 4.1, which is consistent with Proposition 3.4. It is worth pointing
out that the OK estimator is the least biased estimator among the three estimators, followed by the
OMK and the MAED estimators. This is due to the fact that MAED is more sensitive to the presence
of measurement errors, relative to range or return. Also, the continuous versions of the estimators
appear less biased than the discrete versions as the positive noise-induced bias is partially offset by the
negative bias due to discretely observed price process. The MSRE advantage of the OMK estimator is
less pronounced in the presence of measurement errors, and the CR90% of the estimators are visibly

distorted even for a relatively large A,,.

The results in Fig. 4.1 clearly demonstrate the impact of discrete price observations and measure-
ment errors on the estimators considered. In the absence of measurement errors, the bias introduced

by discrete observations can be corrected by using the discrete estimators, which is particularly rele-
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vant when ¢ is small. However, in the presence of measurement errors, all the estimators are biased
upwards, which can have a non-trivial effect on the distribution of the estimators even for a relatively
large choice of A,,. For example, with a window length of 10 minutes which is used in Bollerslev et al.
(2021); Li et al. (2022), all six estimators are biased upwards by about 10% with various degrees of
coverage rate distortions. These results suggest that the aforementioned estimators may be unreliable

in the presence of measurement errors, especially when A,, is small.

We proceed to show that the impact of measurement errors can be greatly alleviated by the
pre-averaging procedure, and the discrete pre-averaged OMK estimator can effectively eliminate the
finite sample bias due to pre-averaging. To simplify the exposition, we consider the 10-minute interval
I, =[1—-10/390,1] with ¢, = 1200. On I,,, we construct the pre-averaged estimators 31?OMK, 01.0K
and 317 MAED, as well as their bias-corrected versions 3@0 M 3&7)0 x and 5—@\4 app using 1 <k, <60,

so that ¢ > 20. We present the results in Fig. 4.2.

RBias, Efficient Price MSRE, Efficient Price CR90%, Efficient Price
0.2 0.2

Ky, kn
—X—01,0MK
RBias, Observed Price MSRE, Observed Price CR90%, Observed Price =% =010k
0.2 0.2 X 01 MAED

Figure 4.2: Simulated RBias, MSRE and CR90% of the pre-averaged spot volatility estimators. All estimators are constructed
on [1 —10/390,1] with ¢, = 1200 and 1 < ky, < 60. The results are computed based on 10000 simulated paths of the model in
Egs. (4.1) and (4.2) in the absence of jumps and drift bursts. The Efficient (resp. Observed) Price in the figure headings indicate
that the results are computed from {P;} (resp. {Pf}).

The first row of Fig. 4.2 presents the performance of the pre-averaged estimators in the absence
of measurement errors. We clearly see that 51,0 MK, 5170 Kk and 51, MAED have a non-trivial negative
bias'* which enlarges as k,, grows, resulting in significantly inflated MSRE and highly distorted CR90%.

On the contrary, the bias of the bias-corrected estimators are much less pronounced (less than 3% in

!4The size of this bias is consistent with those reported in Table 3.3. For example, with k, = 60 so that § = 20, the bias

of the continuous OK estimator is about 20%, which is consistent with Fig. 4.2.
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absolute value) for all values of k, with much lower MSER and reliable coverage rates. The MSREs
of the bias-corrected estimators increases almost linearly as a function of k,, which is consistent with
the numerical values in Table 3.2. For example, with k,, = 30 and ¢ = 40, the simulated MSRE of
3’&% vk is around 0.05, which coincides with the asymptotic variance factor of 6§?é v With ¢ =40

documented in Table 3.2. If the measurement error is absent, then it is optimal to choose k, = 1

which minimizes the MSRE, and the bias-correction is also less important since g, is large.

When measurement error is present, the second row of Fig. 4.2 shows that the bias induced by
the measurement error diminishes as one increases k,. With k, > 20, all estimators have almost
identical performance when compared to the case without measurement error. This is strong evidence
supporting the effectiveness of the pre-averaging procedure in eliminating the impact of measurement
error. More importantly, as one needs to choose an adequate k,, to eliminate the impact of measurement
error, the bias-corrected pre-averaged estimators are clearly superior to their original counterparts for

any k, > 20.

We now examine the behaviour of the MAED estimator and the S-test statistic in the presence
of jumps or drift bursts. We consider a practical setting where the estimators and the S-test are
constructed in a rolling window fashion. Starting with the presence of a jump, we consider the
following simple specification of .J;:

Jy = ll{tZ’TJ}E7 (4.4)

where a fixed jump occurs at time 7; with a fixed size =. We consider Z € {0,0.1,0.5,1} to represent
the no/small/medium/large jump case, and we fix 7; = 330/390 so the jump occurs at 15:30 on the
simulated trading day. The jump process is then added to P; to generated the jump-augmented prices.

To conserve space, we only report the simulation results in the presence of measurement errors.

We construct ét(q())K, 3§%\)4AED, and S't((j) on intervals of the form [t—A,,, ¢] for 390-¢ € {300, ...,360},
which corresponds to the minute-by-minute grid points from 3:00-4:00 in a trading day. To conserve

space, we fix A,, € {5/390,10/390} and k,, = 20 so that § = 6-390A,, and the impact of measurement

error is negligible (as shown in Fig. 4.2). For each t, we report the RBias of 315?0) x and 3]5?]34 AED> @S
5@

well as the rejection rates of S;" under conventional significance levels. The simulation results are

presented in Fig. 4.3.

Focusing on the case = = 0 in Fig. 4.3, we first see that both 5,5%1{ and 35%\)41419]3 are almost

unbiased, and the rejection rates of 5’@ are close to the nominal level for all ¢ and both choices of
A,. When = # 0, both 3&2 x and 3%)4 App are biased whenever a jump is present in I,,, and the bias

in general increases with =. However, we clearly see that cifq()) x 1s always more biased than 515‘1]84 AED-

More importantly, the relative bias of 3%8/[ app is bounded above (by about 0.4) regardless of the size

of the jump, while the relative bias of 3}(% x explodes as = increases. This result is consistent with
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Figure 4.3: Simulated RBias of ét(%K and 3t(q12/1AED and the rejection rates of S',E‘D) in the presence of a jump. For each

t € {300/390,...,360/390}, we compute fri%K, éngz/[AED’ and S'g‘i) on the interval [t — Ap,t]. The results are computed based
on 10000 random draws of the price process according to Eq. (4.1) with N,, = 23400 and the jump specification in Eq. (4.4). The

vertical dashed black line indicates the location of the jump, and = shows the size of the jump.
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Theorem 3.2 which shows that the MAED estimator has a bounded bias in the presence of a jump
regardless of the size and location of the jump, while the bias of the OK estimator explodes as jump
size increases. The discrepancy between qu()) x and Ug 13/[ App generates power for the S-test, which is
clearly higher as the size of the jump becomes larger. The performance of the S-test is largely similar
for both choices of A,, but the power of the test is in general better for smaller choices of A, as

the (fixed) jump becomes larger relative to the (shrinking) MAED and candlestick statistics of the

continuous price path.

Lastly, we examine the impact of a drift burst on the MAED and the OK estimators and the
performance of the S-test. We follow the simulation design of Christensen et al. (2022) and consider

the following alternative drift burst-augmented price process P®:

_ 3sgn(rap — 1)
|7ap — £

vV ‘/i,t+‘/2,t te [077—*) U (7—+71] (4 5)
ot = Vi F oL awy, e[ ) )
T, |8
VWit Vo 2T d W, t € (Tap, 4]

where sgn(z) returns the sign of x, and jumps are assumed absent in the above model. The model

assumes that a drift burst occurs in the interval [7_, 74| with the drift burst time 74, := (7— + 74)/2.
We set [7—, 7] = [320/390, 340/390], so that the drift burst interval is 20 minutes, which occurs at
around 15:30 in a trading day. The specification of 0§’ ensures that it is continuous on [0, 1] with a

possible singularity at 74, if 5 > 0.

Following the suggestions in Christensen et al. (2022), we consider the following four cases of
the drift burst parameters: (1) pure volatility burst, (o, 8) = (0,0.2); (2) pure drift burst, (o, 8) =
(0.55,0); (3) drift-volatility burst without arbitrage, («, 8) = (0.55,0.4); (4) drift-volatility burst with
arbitrage, («, 8) = (0.75,0.2). An example of the simulated price and spot volatility paths for each
case is presented in Fig. 4.4. The figure illustrates the magnitude of the drift burst and volatility
burst with various choices of parameters. In detail, larger o and 5 induce more pronounced drifts and
volatility bursts. In particular, it is very difficult to distinguish drift bursts with different 3, which is
consistent with the observation in Christensen et al. (2022).

We construct at(% K 05% App> and S’t@ using the same simulation setting as Fig. 4.3. As the spot

volatility estimates explode during a drift burst or a volatility burst, we present the average volatility
estimates alongside afb instead of the relative bias of the volatility estimates for a more transparent

visualization. We present the simulation results in Fig. 4.5.

Several interesting findings can be concluded from Fig. 4.5. In the pure volatility burst case,

both 3,5(% x and cigq]e/[ Agp explode as t — 74,. However, the rejection rates of gt@ are only mildly
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distorted from the nominal rates as volatility explodes, suggesting that pure volatility bursts are
unlikely to be detected by the S-test. When the drift burst is present, 315% x always explodes as
t — T4y, while 3;?/[ app first decreases as we enter [7_, 7], but may explode towards infinity together
(@)

with 3’1&10 i if 7gp € I,. This is due to the drift burst reversal after the local price infimum at 74,, which

by construction induces an explosive inward price movement and drives 65%84 App upwards. Also, it is
clear that all the spot volatility estimates are strikingly different from the true spot volatility, especially

when a drift burst is present.

In the presence of drift bursts, the rejection rates of S’f@ clearly demonstrate its usefulness in
monitoring the birth and turning point of drift bursts for different choices of A,,, regardless of whether
arbitrage opportunities are present. For the interval [t— A, t] and as ¢ gradually increases pass 7_, the
unidirectional price movements drive 5’5% x and 3t(,q1\)4 app toward opposite directions, which inflates
S't@ and leads to rejections of the S-test. This result is consistent with our theoretical results in
Proposition 3.2. Importantly, as the MAED estimator has the opposite sign of the bias in the presence

of a jump or a drift burst (see Fig. 4.3), the behaviour of 3%@ App also allows us to identify whether

a rejection of the S-test is likely due to a single jump or a drift burst.

5 Empirical Illustrations

We conduct a small empirical study to demonstrate the usefulness of the OMK estimator and the
S-test in practice. We obtain the tick-by-tick transaction prices for Apple (ticker: AAPL) from the
TAQ dataset in WRDS during the period 2016-2021. The transaction prices are timestamped in
microseconds. We apply the standard data filters!® in Barndorff-Nielsen et al. (2009); Holden and
Jacobsen (2014) to remove possible outliers. We also ignore trading days with early market closure,
namely the day before Independence Day and Christmas Day, and the day after Thanksgiving Day.
The final sample comprises of 1499 trading days.

We split each trading day into 5-minute sampling windows rolling forward every minute, which
gives 386 intervals in total. On each interval, we construct 3t(?o) K 315?0) wx and (AIE?X/[ App> as well as the
qu) test statistic. To determine the choice of k,, required to dampen the impact of measurement error,
we construct a volatility signature plot in the spirit of Andersen et al. (2000) by plotting the mean
and median of the (pre-averaged) OMK estimators evaluated over all intervals against the choices
of ky, which is presented in Fig. 5.1. The volatility signature plots clearly suggest the presence of

measurement error, as the average volatility estimates are higher for k£, = 1 and decay as k, becomes

larger. This pattern is in general consistent with Fig. 4.2 and suggests that a plain OMK estimator

15We use the SAS code from Holden and Jacobsen (2014) to extract transaction data with the prevailing NBBO quotes
from the TAQ dataset. We then apply the filter rules P1-2 and T1-4 in Barndorff-Nielsen et al. (2009) to the transaction

prices to remove potential outliers.
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can be biased upwards due to the presence of measurement errors. As a conservative choice, we pick
ky, = 30 to construct the pre-averaged estimators throughout the empirical analysis, which yields an
average ¢ of approximately 130 across all intervals, so the expected variance reduction of the OMK

estimator to the OK estimator is close to the theoretical limit of 40%.
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Figure 5.1: Volatility signature plots of OMK estimates against choices of k,. The left (resp. right) figure plots the average

(resp. median) of 35% Mk evaluated over all 5-minute intervals in the sample against different choices of ky.

We first show that the OMK estimator can be used to improve the precision of the OK estimator
for spot volatility estimation. To this end, we split the trading days into two subsets: days with
pre-scheduled FOMC announcements and those without announcements. We present the average

spot volatility estimates based on the pre-averaged OMK and the OK estimators alongside with the
averaged 90% HDIs in Fig. 5.2.

0.8 FOMC Days 0.8 non-FOMC Days
—OMK Estimator —OMK Estimator
- - -OK Estimator - - -OK Estimator
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Figure 5.2: Averaged spot volatility estimates for AAPL based on the pre-averaged OMK and the OK estimator on FOMC and
non-FOMC days during 2016-2021. The x-axis represents the right endpoints of a 5-minute interval, starting from 9:00-9:05, rolling

forward every one minute. The blue and grey shaded areas are the average 90% HDIs of the OMK and OK estimators, respectively.

From Fig. 5.2, we clearly see a large volatility spike right after 14:00 on FOMC days, which is
absent on non-FOMC days. This shows that FOMC meetings are associated with big volatility spikes,

which is consistent with the findings in Bollerslev et al. (2021). More importantly, the OMK and
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the OK estimators provide almost identical average spot volatility estimates in both subsets, but the
average 90% HDIs of the OMK estimator are visibly narrower than those of the OK estimator. This
clearly demonstrates the superiority of the OMK estimator to the OK estimator in generating more

precise spot volatility measurements.

To illustrate the usefulness of the S-test, we select some representative cases and present them
in Fig. 5.3. Panel 1 of the figure presents the 5-minute volatility estimates and the S-tests in a 30-
minute window around two FOMC meetings at 14:00. The price paths of both sub-figures in panel
1 react immediately after the FOMC announcement time with a sharp increase in the OK volatility
estimates. However, the S-test results suggest that the two FOMC meetings have fundamentally
different implications to the price paths. In detail, the FOMC meeting on 16th March 2016 leads to
a price increase with nearly monotonic price paths around 14:00. This generates large discrepancy
between the OK and the MAED spot volatility estimates and leads to strong rejections of the S-test.
On the contrary, the FOMC meeting on 21st March 2018 generates oscillatory price paths, which can be
interpreted as a volatility burst that drives up both the OK and the MAED estimators. Consequently,
the S-test is not rejected in this interval.

Panel 1: FOMC announcements with different reactions
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Figure 5.3: Price paths, volatility estimates, and the associated S-tests. In the top panel of the four figures, the observed price
path is plotted against the left y-axis, while the 5-minute pre-averaged OK and MAED estimators are plotted against the right

y-axis. The lower panel of the four figures presents the associated 5-minute S-test statistics and the critical values.
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Panel 2 of Fig. 5.3 presents two different scenarios where the S-test is strongly rejected in the
absence of macroeconomic news announcements. The left sub-figure of Panel 2 depicts a gradual and
roughly monotonic price decrease from 10:00-10:15, whereas the right sub-figure shows a rapid price
increase, or a gradual jump, during 15:00-15:05. In both sub-figures, the local trends are immediately
reflected in the OK volatility estimates but ignored by the MAED volatility estimates, generating a

strong sequence of rejections of the S-test.

Fig. 5.3 provides strong empirical evidence supporting the effectiveness of the S-test in detecting
local price trends. It is worth noting that we are unable to find individual jumps in the tick-by-tick
prices of AAPL which leads to a rejection of the S-test. Instead, the rejections are typically caused
by ‘gradual jumps’ similar to what we have discussed in Fig. 5.3. This finding is consistent with the
finding in Christensen et al. (2014) that price jumps are in fact very rare events, and the empirically

detected price jumps are likely caused by the gradual jumps in the tick-by-tick data.

Average Rejection Rates of the S-test
I I
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Figure 5.4: Average rejection rates of the S-test. The x-axis represents the right endpoints of a 5-minute interval, starting from
9:00-9:05, rolling forward every one minute. Each symbol represents the percentage of rejections in the same time of day averaged

over the sampling period. The significance level of the rejection rates are given in the legend of the figure.

As the S-test can reliably detect drift bursts or flash crashes, it is meaningful to know how frequent
the S-test is rejected in practice, which implies the frequency of drift bursts in practice. We plot the
average rejection rates of the S-test against calendar time in Fig. 5.4. The figure shows that the
rejection rates are fairly close to the nominal level through the trading day, with only minor excess
rejections after 14:00, which is possibly due to the FOMC meetings. This result suggests that observed
prices on average behave like a continuous martingale in a 5-minute interval, and genuine drift bursts
or flash crashes are rare events in the tick-by-tick prices of AAPL that do not substantially increase

the average rejection rates of the S-test.

6 Concluding Remarks

In this paper, we propose the MAED statistic, which is a novel and easy-to-construct statistic based
on high-frequency asset prices. We show that MAED summarizes the inward movements from a price

path, which contains unique information about the price variation that complements the candlestick
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statistics. By combining the MAED statistic with the candlestick statistics, we propose the OMK
estimator for spot volatility estimation which can in theory improve the asymptotic variance of the
OK estimator of Li et al. (2022) by about 40% percent in the fixed-k framework of Bollerslev et al.
(2021). We further show that the MAED estimator can be used to provide jump-robust spot volatility
estimates. This result is used to construct the S-test, a pivotal test for the spot detection of ex-
plosive directional price movements. Pre-averaged versions of the new estimators and the S-test are
constructed to mitigate the impact of measurement errors. Our simulation and empirical illustrations
verify the superiority of the OMK estimator to the OK estimator and demonstrate the effectiveness
of the S-test. Overall, these results highlight the empirical relevance of the MAED statistic. As the
candlestick data for regular trading intervals is widely available from online trading platforms, we
advocate data providers to also provide the MAED statistic, which allows regular investors to obtain
more precise volatility measurements and detect local explosive price movements at a lower cost than

purchasing tick-by-tick data.

We conclude this paper by discussing some unsolved questions for future research. First, although
moments and critical values of the MAED statistic of a Brownian motion can be easily simulated, its
analytical distribution and moments are still unknown and deserve individual investigation. Second,
MAED is not the only functional that summarizes the inward price movements, which can also be
(partially) summarized by, e.g., the maximal drawdown (Magdon-Ismail et al., 2004). It is therefore
important to study whether the inward price movements can be more efficiently summarized by an
alternative statistic. Third, as pointed out by Li et al. (2022); Bollerslev et al. (2022), one can also
construct optimal estimators for of for a general p based on the candlestick data. It is likely that the
performance of these candlestick-based estimators can be substantially improved by also incorporating
the MAED statistic. However, how to optimally combine the MAED statistic with the candlestick

data is a non-trival task, which provides ample room for future research.
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Appendices

A  Proofs

Proof of Proposition 3.1. We begin with the following set of inequalities for m, w and |r| constructed
from (P;)er, , which holds with probability 1 for the three statistics constructed from arbitrary pro-

cesses by construction:

m=>0, w>0, |[r[>0,

(A.1)
w—m=>0, w—|r|>0, m+|r|—w>0.
The first five inequalities should be immediate. For the last one, note that:
m = sup{wp — [rp|} > wsya — [rsial = w —|r|, (A.2)

hel,
which gives the desired result. Therefore, for arbitrary non-negative real numbers {aj}r—1.¢, the
following sum is guaranteed to be positive:

ar(m+r| —w) + az(w —m) + az(w — |r]) + cum + asw + ag|r|

A3
=(a1 —ast+ay)m+ (—a1 + e+ as+as)w+ (a1 —ag + ag) || > 0. (A.3)
—_——

Qam Ay Qp
The non-negativity condition of oy is equivalent to the following set of inequalities, which can be

derived by eliminating the negative terms in o, oy, and «;:
m + 0w >0, apt+oa,>0, o+ ay+a.>0. (A.4)

Therefore, we can conclude that, for any vector a := (ay, u, ), @’¢ > 0 with probability 1 if the

above set of inequality holds. In vector form, the above three inequalities can be rewritten as:
amt oy =a'(e1+e)=ad (t—e3) >0 a't > des,
ay +or=a(ext+e3) =a(t—er) >0 a't > dley, (A.5)
Qm + ay + ap = a't > 0.
We can thus summarize the above three inequalities succinctly by a’t > max{0,a’e;,a’es}. Finally,
the proposition is recovered by setting o = O\, and clearly adding the linear constraint A'¢ = 1

does not violate the set of inequalities above. One can also easily show that there are infinitely many

choices of A € A. This completes the proof. O

Proof of Theorem 3.1. The proof is in the spirit of the proofs of Theorem 1 in Bollerslev et al. (2021)
and Li et al. (2022). Following their proofs, we shall assume that jumps are absent in the interval

such that P is continuous on I, as the probability of observing a jump converges to zero as A, — 0.
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We also use the strengthened version of Assumption 3.1 by assuming that the conditions hold with

T} = oo using a localization procedure (see the discussion in Li et al. (2022)).

We now turn to the proof of the theorem. We start with a fundamental inequality which is used

repeatedly in the proofs:

Lemma A.1. For arbitrary processes X = (X;) and Y = (Y;) defined on some interval I = [s,h]
satisfying Xs = Ys = 0, it holds that:

| sup Xy — sup Yy < sup | Xy =Yy, | inf X;— inf V| < sup |X;— Y| (A.6)
te[s,h] te[s,h] te[s,h] t€[s,h] t€[s,h] te[s,h]

Proof. Since X, = Y; = 0, we must have sup,¢(, ) Xt A supye(s ) Y2 > 0. To prove the first inequality
of the lemma, we first suppose that supc(, ) X¢ > supye(s p) Ye- Then:
| sup Xy — sup Yy| = sup (X; — sup Y;) < sup (X —Y:) < sup |X; — Vi, (A.7)
te(s,h] te(s,h] te(s,h] TE[s,h] te(s,h] tels,h]
And the first inequality of the lemma follows by a symmetry argument. For the second inequality in

the lemma, it suffices to notice that:

| inf Xy — inf Y| =|sup(—Xy) — sup (=Y3)| =] sup Xy — sup Y¢| < sup |X;—Yy, (A.8)
t€[s,h] t€[s,h] tely, te[s,h] te[s,h] te[s,h] te[s,h)

where the last estimate follows from the first inequality of the lemma. This completes the proof. [

Let us define the processes ;5 and {3, as the range and absolute return of the scaled Brownian

motion (A~ 2Wt)t€[s7h]. We shall prove the following estimates:

sup [wy, — v/ Anoséinl = 0p(A,/%), sup [Ira] = V/Anoséan] = 0p(A,/7). (A.9)

hely, hely,

We first look at the second supremum above:

sup [|ral — v/Buosan| = sup || [ bt + [ 0udWe] — 0. Wy — W)
€ln

hely

< sup “ fgbtdt‘ + ‘ fgatth‘ — os|W), — W]
hely,

< sup | [ badt] + sup || [ oedWi| = oW, — W (A.10)
hel, hel,

< [ by dt + sup

f:((ft — O'S)th‘

= Op(An) + Op(A,27) = 0,(A/?),

which follows by repeatedly applying the (reverse) triangle inequality, and the last estimate follows
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from Egs. (A.1) and (A.2) of Li et al. (2022). For the first supremum in Eq. (A.9), we note that:

|wp, —

:) sup {P, — Ps} — inf {P, — Ps} — o5 sup {W; — W} 4+ o0, inf {W; —
te[s,h) t€[s,h te[s,h) t€[s,h)
(A.11)
g) sup {P, — Ps} — o5 sup {W; —
tels,h] t€Tn(h)

inf {P, — P} — o inf {W; —
+] dnt (P = P}~ oy inf (W,

<2 sup ‘(Pt — Ps) — os(Wy — Wy)|,
te(s,h]

where the first inequality follows from the triangle inequality and the second inequality follows from

Lemma A.1. Consequently:

sup |wp, — VAp1p| <2sup sup ‘(Pt — Py) — o(W, — Wy)
hely, heln te(s,h]

<2 sup ‘(Ph — P;) —os(Wp, — W)
heln

(A.12)

<2 sup ‘ fg b dr + fg(aT —0s)
hel,

<9 [HA b |dt + sup ] Mo, = o)d W,

(A%,

where the last estimate is identical to that in Eq. (A.10). As a direct consequence of Eq. (A.9) with

the help of Lemma A.1, we obtain the following estimates for the MAED, range and return of (P;)ser, :

F05n|—|SUP{wh_|Th‘} FUSSUP{glh—§2h}|

e n E n

< Ifup |wh Y, Angsgl,h - |Th| + v A110'552,h|
el,

< Sup lwp =/ An&1n| + Sup lrn] = v/ An&an| = 0p(AY?), (A.13)
Eln

|w —/Apos&i] < :u}) lwp, — v Angl,h| = Op(A}Lm)a
cln

7] — vV Apos&a| < }?ulp l|rn| — v Aol =
cln

An alternative proof of the above result related to w and |r| can be found in Li et al. (2022). Therefore,

(AY2).

by the Slutsky theorem, we conclude the following coupling result for the MAED-candlestick vector:

c=(mw,|r)) = VAnos(n,€1,6) 4 0,(AY?) = / Ao,z + 0,(AY?). (A.14)

where the op(Ayll/ 2) term is understood as a compatible vector with op(1) elements. By a standard

continuous mapping argument, we arrive at:
5:(A) = AV 2N Oc = 0, N0z 4 0,(1). (A.15)

Finally, it suffices to notice that, for any ¢ € I,,, o5/0y 21 by the right continuity and boundedness

of 4. We can therefore divide both sides of the above convergence by o; and obtain:

210\
N _ yes 0p(1), (A.16)
Ot
which is the desired coupling result. This completes the proof. ]
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Proof of Theorem 3.2. We begin by introducing some notations. For a process A constructed from P,
we use the notation A° to denote the corresponding process constructed from P° instead. We shall
also set h < 7 and h® > 7 to denote the time before and after the jump. It should be clear that
wp, — |rh| = wp, — |77
To prove the result related to the OK estimator, one simply needs to realize that as A, — 0, it
holds that:
w® —w| = T+ O0p(A?), [Ir°] = Irl| = T+ Op(AY?), (A.17)

due to the scaling of the Brownian motion. Since J = O,(1), we conclude that:

670k = 6rok| = ATV (w — w®) + AT (|| — |r°)]
< ALVR(N = w4 Ay | = 1)) (A.18)
= AN+ DT + 0p(1) = 0p(A712).
This implies the result related to the OK estimator in Eq. (3.10).

We proceed to prove the result related to the MAED estimator in Eq. (3.10). Consider two
scenarios, J > 0 and J < 0. We use the superscripts + and — to distinguish the signs of the jump,
e.g. P represents the jump-augmented price process at time h° conditioning on that the jump is
positive. We also define the supremum and infimum processes of P on I,,(h) as:

up := sup {P,— Ps}, lp:= inf {P, — P}, (A.19)
teln(h) te€ln(h)

and the jump-augmented versions uZ’i and lZ’i are well understood. Let us first assume J > 0. Since
J is strictly bounded away from zero, in the limit with probability 1, we have P;;+ =Py +J > Py
as the jump dominates the price increments before and after the jump which are of order Op(A,ll/ 2).
Consequently, we see that in the limit with probability 1:

uyt =Py — Ps+J+ sup (Bo—Pr), I =1, |rst| =Py — P+, (A.20)

te[T,h°]

which implies that:

wpst — rt| = Sup (P= Pr) = (Phe = Pr) = b (A-21)
7,h°

Similarly, when J < 0, we have in the limit with probability 1:

uys =up, by =Pr— Po+J+ tei[?go](Pt — P, || = —(Pye — Py + ), (A.22)

which leads to:

w” ™ (h°) = [r" (h°)| = u(r) — tei[f—lﬁo}(Pt — P.) + (P — P;). (A.23)
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As we do not know the direction of the jump, we can bound |m — m°| by the maximum absolute

difference in both cases:

lm —m°| < |m —m®t|V|m—m>~
o o (A.24)
< sup {|wpe — [rpo| — wys" + [rps" = [rhel —wpo + e (1}
he >t
Note that by the triangle inequality:
sup {Jwne — [rpe| —wpi" + |t}
he>T
= sup |upe — sup (P, — Pr) —lpo +1r — |rpe| + (Ppe — Pr)
ho>T te[r,h°] (A 25)
< sup |upe — |rpel| + sup |lho — |+ sup | sup (P, — Pr) — (Ppo — P;)|
ho>T he>7 te[r,he]
<up,+ sup (P,—P;)—2 inf (P, —PF;).
te[r,s+AR] te[r,s+Ap]
Similarly:
sup {|wpe — [rpe| — wys + |y |}
he>T
= sup |upo — Uy — lpo + inf (Pt — PT) — |Th°’ — (Pho — PT)
he>r te[r,h°] (A.26)
< sup |upe — ur| + sup | = |rpe| = lpe| + sup | inf (P, — P;) — (Ppo — P;)|
ho>r ho>r ho>7 tE[rh°]
<2 sup (P,—P;)—lIa,— inf (P, —P;).
te[T,s+AR] te[r,s+AR]
Combining the results from two cases, we arrive at:
sup {[wne — [rne| — wpi" 4 2 ||V [whe — [rpe| = wpe” + [ |1}
ho>T
S(uAn + sup (B—P;)—2 inf (P — PT))\/
tefr,s+An] tElmstan] (A.27)
(2 sup (P~ P.) —la, — inf (P,— PT))
te[T,s+Ay] te[r,s+Ax]

<w+2 sup (PL—PFP;)—2 inf (P —PF;).
te[r,s+AR] tE[T,54+An]

Finally, accounting for the unknown location of the jump, we take supremum over 7 to arrive at:
sup m—m°|<w+2 sup (P—P;)—2 inf (P —P;)=3w. (A.28)
TE(s,5+An) te(s,s+An] t€[s,5+Aq]

—-1/2

Since we have already shown in Theorem 3.1 that A, /' “w = 04{; + 0,(1), the required result follows

by a standard continuous mapping theorem. This completes the proof. O

Proof of Corollary 3.1. The corollary directly follows from Theorems 3.1 and 3.2 by the continuous

mapping theorem. This completes the proof. ]
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Proof of Proposition 3.2. We start with the normalized price process ]5{”’ = PtdbAg_l/ 2, Vvt € I, and
without loss of generality, we shall take by > 0 as the negative case follows by a symmetry argument.
For the case 0 < o — 8 < 1/2, we first prove the following estimate:
sup | " = P = AL 2o, [1F)dW] = o,(1). (A.29)
teln,

1/2

where f(t) = (YZ—;)*B for t € I,, and it is understood that P := P,ALTY2 This is easily seen as

follows:

sup |[P® — pt — A2, fts f(u)dW,| = by sup AB~1/2 fi(u —s) “du
tely, tely

= by ASTY2 [SFAn () du = byO(AY270+F) = o,(1).

(A.30)

Eq. (A.30) directly implies the following results, which can be derived in a similar manner as the proof

of Eq. (A.13):
ATV AR — ogim| = 0,(1), ASY2ABw — o] = 0,(1), ASYAR] — o4F|| = 0,(1), (A.31)

where m, @ and 7 are the MAED, range, and return of ([ ’; f(u)dWy)er,, respectively. Note that
AP725 is the MAED of (P),c; due to the scaling property of MAED, and likewise for A£71/2|7‘\

and Ag_l/ 2. Tt now suffices to notice that:

d 1

tel, — \/ﬁ

where 1 = [ i f(u)?du and W is another standard Brownian motion independent of W and B. The first

(J5 f@dWa)ier, = (Wr,) (Bi)tet, (A.32)

equality above is an application of the Dambis-Dubins-Schwarz theorem (see e.g., Barndorff-Nielsen
and Shiryaev (2015)), which states that every continuous martingale is a time-changed Brownian
motion, with the time change ¢t — 74 given by the integrated variance of the continuous martingale.

The second equality follows by the scaling law of a Brownian motion and the fact that:

s+Ap 2 o An
Lo fu) du = 25 (A.33)

so 1/4/1 — 20 is the correct scaling factor for (By)icr,. Eq. (A.32) directly implies the following joint

equality in distribution by the continuous mapping theorem:

AV
1_25z.

(i, a0, |])" < (A.34)

Finally, by the Slutsky theorem, we can combine the three estimates in Eq. (A.31) to arrive at:

An
1-287

APe = ay(m,w, [F]) + op(1) £ o, (A.35)

which implies Eq. (3.13) by a continuous mapping argument.

49



We now turn to the case o — 3 > 1/2. In this case, we can use the following convenient result of
Christensen et al. (2022):

[P = P = 0p(A274) + 0,(1), (A.36)

where Op(Ayll/ -otp ) is due to a drift that explodes in the limit, and O,(1) is due to a diffusion which

is the same as the previous case. This directly implies that:
A = AT = O,(A>P), (A.3)

as w and |r| are linear in P, which implies the result related to the OK estimator in Eq. (3.14).
Now to prove the result related to m, we shall establish the following result, which states that the
probability for ﬁ’tdb (and hence Pf) to be monotonically non-decreasing on I,, approaches 1 in the
limit:

Jim Pr(P® — PP <0)=1,vt1 <ty € I,. (A.38)

To prove this, we examine the event pﬁb - pt“;b < 0 in detail:

B = B = by ATV [ (u = 5)"du— AT 20, 12 f(u)dW,

(=)' = (t2 —5)' o (ta — 8)1728 — (41 — 3)1_25) (A.39)

A?ﬁfl
1—a Sn s 1-283

SN

which implies that:

(A.40)

_ _ l-a o j—
Pr<ﬁgb—zzibgo>:¢<bsm (=9~ (- 5) )

os(1—a) \/(tg — 5)1=28 — (t; — )1 28
where ®(x) is the cumulative density function of a standard normal distribution. Now consider the

change of variable t; = (t; — s)/An, ta = (t2 — s) /A, such that #; < #3 € [0,1]. The above probability

becomes:
y v bsy/1— 2 by =t
Pr(P - Pl <o)=0 N — b . AM2—atB (t3 ) . (A.41)
os(l —a) 7128 _ 7128
2 1
The above result directly implies that, for any choice of #; < £ € [0,1],
lim Pr(PP — P® <0) - &(K - AY27oHP) =1, (A.42)
Ap—0

for some constant K > 0 by the assumption that b, > 0, while the case t; = #, is trivial since
Pr(fv’gb - pgb < 0) =1 for all n. This proves Eq. (A.38). Also, we note that bs < 0 would imply an
asymptotically non-increasing P in this case. Finally, it suffices to notice that the event m = 0 is
identical to the event that P is monotonically non-increasing or non-decreasing on I,,. Therefore,

Eq. (A.42) imply that, for every fixed € > 0:

Pr(AS=12m > ¢) = Pr(AP~1/2 :UIP {wp = |ral} > €)
el

=Pr(P® — P® > ¢,3t1 < to| P > P® vt € I,,) Pr(P® > P® vt € I,,) (A.43)
+ Pr(AP1 2 > e P < PP 3t e 1) Pr(P® < P® 3t e I,,)

—0-140=0,
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1/2 P
/m

Eq. (A.43) shows that, by definition, Aﬁ‘ — 0, which leads to the result related to the MAED

estimator in Eq. (3.14) by a standard continuous mapping argument. This completes the proof. [

Proof of Proposition 3.3. We shall continue on the premise of the discussion in the beginning of the
proof of Theorem 3.1. We start by showing that A, = O,(d,) for any fixed ¢ under Assumption 3.4.

Indeed, we have:

q—1 q
0 0
‘A" o Z - ‘ = ‘ Z(ATn,is+j Z ‘ATn is+j — — Op((;,lﬂ%), (A.44)
Jj=0 Vst j=1 Tris+i— 1 QT igti—1

by Assumption 3.4(3) and the triangle inequality. This implies that:
B = bn- Op(1) + 0y (35) = Opl61) + 0y(00): (4.45)

by the boundedness of oy, as desired.

We now return to the proof. We start by the precise definitions of the limiting variables of the

OMK estimator in z():

1@ = max {£2() - €9}, 69 =), &Y =¢"(),

1<5<q

g%q)(j) c= A2 | Dax (WD (g + i) — WD (i, 4 1), (A.46)
1,1/ <j

&0(j) s = AW (i + ) — WD (i),

and recall that W@ (i) :== WT(q? is the ith equidistant observation of W on I,, where qu?i) = Tny, +
iAy,/q is the ith equidistant grid on I,,. We shall also define W (i) := W.

Tn,is+i

observations of W, and construct 7, &1, &2, £1(j), £2(j) as in Eq. (A.46) but based on (W(i))iel@

as the non-equidistant

instead of (W (@) (1)), @@ The only difference between (n@, §§Q), éq)) and (1, &1,&2) is the observation
times of W, and the superscript (¢) denotes whether the underlying process is observed equidistantly
or not. However, as we shall show later in this proof, these two versions of the limiting variables are

asymptotically equivalent due to Assumption 3.4(3).

We start with a lemma which shows that the observation times {7, ;}. e and {7'T(L(7IZ-)}Z.E (@) are

asymptotically equivalent:

Lemma A.2. It holds for all 1 < j < g that |7y, ;,+j — 7(”S+]| = 0p(6117).

Proof. Since A,, = Op(d,,), we may deduce that oy contains no jump on I,, with probability 1 in the

limit. Therefore, we can assume that « has the following representation without loss of generality:

ap = an,, + o Vds+ [ oldW, (A.47)

Tn,ig

where t € I,, and the processes b, and o’, satisfy Assumption 3.1. In view of Eq. (A.10), we can further

simplify a; to a continuous martingale with fixed volatility in the limit on I,,:

at - aTn ,is + GTn is ft : dWS + Op(é’rlz/Q) (A48)

Tn,is
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We therefore have o, , .. = as, , +0O (51/2) for all 1 < j < ¢q. By Assumption 3.4(3) and the triangle

inequality, we have:

On

Tnyis+j—1

571 (aTn,iSJrjfl — O, )

Oy gt j—1 X i

On

+ = 0, (01%) +0,(53/%). (A.49)

ATn,is+j - ‘ < ‘ATn,iSJrj -

Tn,is

For k < 1/2 we can ignore the last term and conclude that [A7y,i,4; — 6n/ar,, . | = Op(657F). This

first leads to the estimate:

qon

aTnﬂ's

oo

Z |A7_n is+i on /aTn Jis | = (5711+H) (A50)

= Tnvls+q - TTL,’L'S -

Tn,ig

Note that this implies A, /6, = q/ax, ;. +0,(1). We thus have, for each j:

(9) ‘

‘Tn,is-‘rj T Tnis+jl =

Tnyis+i — Tnyis —

J
S ‘ Z(A7n7i3+i - 5n/a7—n Vi
=1

‘a'rnz

(A.51)
= 0p(6,"") + 0p(8,") = 0p(6,"7),
as desired. This completes the proof. O
Lemma A.2 implies the following result for every 1 < j < g:
(W (is +j) — W(is + j)(q)| = Op(|Tnjis+j — Ty zs+]’1/2) Op(érlz/ern/Q)a (A.52)
since [W; — Ws| = O, (|t — s|'/2), thus we can also conclude that:
max |W(is +j) — W(q)(is + )= op(éi/Q), (A.53)

1<5<q
as ¢ is assumed to be finite and x > 0. We now prove the following estimates, which is the discrete
counterpart of Eq. (A.9):

max [w(j) — v/Anos&? ()] = 0,(51/2), maXHr (D] = VAo ()] = 0p(6Y/2). (A.54)

1<5<q

Starting with the second claim:

max ()] = VA0 6] = max 1))l = VA,0&ali) + VEu0ali) = VB0 ()
< max [Ir(j)] = VAno.&a(j |+\/Anaslgl;»gq|§2(j)—féq)<j>|

- 1sisa (A.55)

< sup [lrs] = VA, 0uan| + 02 max [W(j) = WO ()

hel,

< 017(5711/2) + Op((srl/Q) = Op(5711/2),
where in the second inequality, the first term is due to the fact that the supremum of a continuous

process is not smaller than the maximum of the discrete version of the same process. The estimates in

the third line of the above equation therefore follow from Eq. (A.10) and Eq. (A.52). The first claim
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in Eq. (A.54) can be proven in a similar manner:

max |w(j) \/70'551‘1) = max |[w(j) — VAn0&1(J) + VARoE (S \/Aina.sétﬂ(])

1<5<q 1<5<q
< max [w(j) = vAn0:&1 ()] + vVAnos max [&1(5) ~ 67 ()
=I=a 1=g=a (A.56)
< sup |wp — V/Anos&in| + 205 max [W(j) - W (j)]
hel, jeryd
< 0p(8,/%) + 0p(6)/%) = 0,(5)/%),
where the second inequality follows since:
W)
jnax v/ A& ()]
= max | max |[W(is+i) — W(is+i)| — max |[WD (i, +i)— WD (i, +4)
1<j<q |1 1<4,¢' <3 1<4,i'<j
< max Wiy +) = Wiy + )| = WD G, +3) - WD (i, + 1)
s (A.57)
< max (\W(is +i) — WD iy +10) — W(is +1i') + WD (ig + )|
0,149

< i (W (i) = WO )] + max [W(is +7) + WO 7))
<i'<q

1<i<q

=2 max [W(j) — WD 34)| = 0,(51/?).
JEI(‘Z)

In the same vein as the derivation of Eq. (A.13), Eq. (A.54) directly leads to the following result:

= v/ Bnogn ] < max fw(j) = VAnoEt” ()] + max [1r()] = VArou& (7)
< 0p(04/%) + 0p(51/%) = 0 (51/2)

0= VAnti”| < max [w(j) = VAuout” ()] = 0p(5/%),

Il = VAol < max |Ir(j >|—mas£§q><j>\=op<éz/2>.

Following the same procedure as in Egs. (A.14) and (A.15), the above results leads to the desired

(A.58)

coupling result in Eq. (3.19) via the Slutsky theorem and the continuous mapping theorem, which

completes the proof. O

Proof of Proposition 3.4. Following the notation in Eq. (3.16), we write m¢, w®, and |r¢| (resp. m, w,
and r) as the MAED, range, and absolute return of (Pe(i))ielﬁﬂ) (resp. (P@))iGL@)’ respectively. We
also define the processes w®(j) and 7¢(j) as the running range and return up to the jth observation,
where 1 < j < ¢. Similarly, define £{(j) and &5(j) as the running range and absolute return up to the

jth observation constructed from (€());—i,.i,+;j. The key to the proof is the following result:

Lemma A.3. It holds for all 1 < j < q that: we(j) = &(j) + (5;1/2), Ir(7)| = &5(5) + Op (5_1/2)
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Proof. For the first claim, we have:

€/ / _ . _ . /
()~ )] = || [Pt h) = P )] = | o [elia 4 h) = elis + )]
< €[ _ €[ / _ - _ - ! ‘
< 1§I}I}%ﬁ:§§j |P(is + h) — P(is + h")| — |e(is + h) — e(is + h')|
(A.59)
< Jnax |[P(is+h) = e(is +h) = (P(is + ) — €(is + 1))

= ) —_ ) = ] = 71/2
(Jnax |P(is 4+ 1) = Pis + h)| = w(j) = 0p(6,"7).

where the first inequality follows from Lemma A.1, the second inequality is the reverse triangle in-

equality, and the last estimate follows from the proof of Proposition 3.3. Similarly:

17 ()] = &) < () — e(is + 5) + €(is))| = |r(i)] = Op(6,?). (A.60)

The two results above directly imply the lemma, and the proof is complete. O

As a direct consequence of Lemma A.3 with an application of Lemma A.1, we see that:

m = | = | max {w(7) — PG} — max (£107) - &)
< max [w(7) = &) — ()] - &)
< max [u(j) = &0)| + max [Ir()] = &) = 0p(5; %), (A.61)

' = &f] = [w(q) — & (@)] = Op(6,1/2),
1] = €51 = [Ir*(a)] — &5(a)| = Op(8,1/?).

By the Slutsky theorem, we have the following result in vector form:

(m ws, [r]) = (1, €1, 5) + Op(6,?), (A.62)
which can be written in the vector form ¢ = €@ 4 0,(5, 1/2), where ¢ := (m,we, |r¢|)’. It now
suffices to notice that, by a continuous mapping argument:

NOW@ee
FEA) = 2o = A2 1 0,(5;,1/2)) = A 2PNOWE 1 0,(1), (A.63)
VA,
as desired. This completes the proof. ]

Proof of Proposition 3.5. We shall continue on the premise of the discussion in the beginning of the
proof of Theorem 3.2. Following the reasoning in Eq. (A.44), we can conclude that A, = 0,(5)7%) =
op(1). We first show that the pre-averaging procedure can ‘recover’ the efficient price from noisy

observations in the following sense:

max | P(i) = P(i)] = Op(6;/*77%) + Op(3)7~71/2), (A.64)
ie[ﬂ‘l'n

To see this, note that we have:

kn—1
1 & 1
max |P < max |— Pi—'—Pi‘+maX— 7 — ’
s [P() — P < i kn;u ) = P+ e | §:j j e

= 0p(VEnbp) + Op(kE1/2) = 0,(61F5=0/2) 4 0, (5= 0d=1/2)y,
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where the second estimate is a direct result of Assumption 3.5. For the first estimate:

kn—1 kn—1 .
max | 3" (P(i—j) = P)| = max | Y =2—L(P(i—j) = Pli—j+1))
ielnqn) -0 ie[ﬁlqn) =1 n
J J (A.66)
= max f:“ g(s)bsds—kf:"’f 9(8)osdWs| = Op(/kndn),
’L'EI»,(an) n,i—kp+1 n,i—kp+1

where g(t) =1—j/ky, for t € [7,,i—j, Tn,i—j+1) which summarizes the impact of the pre-averaging, and
the last estimate is due to the boundedness of b, and o, and the estimate 7, ; — 7, i—k,+1 = O(kndn)
(in view of Eq. (A.44)). Note that g(¢) does not change the asymptotic order of the estimates as it
is bounded above by 1. Let ¢ = (m,w,|r|) denote the MAED-candlestick vector constructed from
(P(i))iel,(f”)’ then Eq. (A.64) directly implies that:

€ — el = 0, (8577"7%) + Oy (67~ M11/2), (A.67)

To conserve space, we shall only prove the above estimate for the range statistic, and the corresponding

results for the MAED and the return follow by a similar argument. We have:

[ —w| < max [|P(i) - P(i')| = |P(i) - P({)||

iiIEIT(Lq")
’ (A.68)
<2 max [P(i) = P(3)] = O,(3701%) + 0, (64112,
ey

which is the desired asymptotic order, where the first inequality is due to Lemma A.1. We thus see
that:

AV NOE — NOc| = 0,(55/%) + 0,5~ @-1/2-01-0)/2) — ; (1), (A.69)
where the last estimate holds iff ¢ > 0 and (¢ — 0)(d—1/2) — (1 —6)/2 > 0. One should verify that the
latter condition is equivalent to (0 —¢)/(1 —¢e) > 1/(2 — 2d), which gives the require range of 6 and ¢.

We proceed to show that [A,, /2N @c — 0, @z| = 0p(1) in the limit, which implies Eq. (3.26) in
view of Eq. (A.69). Note that this result is very similar to Proposition 3.3 except that the number of

observations ¢, in I,, diverges instead of being constant. By modifying the asymptotic order of A, in

Lemma A.2, it follows that:

Tty — T8 = Op(B,~4%) + 0, (050072), 1< j <q,, (A.70)
where TT(L?;L) i= Tn,i, +10n/qy is the ith equidistant grid on I, as in Lemma A.2. This implies that:
121%}( W (is+7) — W(qn)(is + )| = Op(év(zl_9+ﬁ)/2) + Op(‘sg(l_e)M) = Op(‘sle_e)ﬂ)» (A.71)
SJ)3dn

where (I/V(q")(i))ie () 18 the (g + 1)-times equidistant observations of W on I,. Let us also write
(Wt(q"))te 1, as the right continuous version of (W(q”)(i))ie ;(an)» Which is understood as a discretized
version of W on I,,. Proposition 1 of Asmussen et al. (1995) gives an estimate of the asymptotic order

of the discretization error:

sup [V, - W | = 0,(v/(Bn/gn)| I gnl) = Op(64/2+/| T 5,]). (A.72)
eln
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for any o > 0. This result and Eq. (A.71) further imply that |¢ — JSAy22| = op(égl_e)ﬂ). We note
that this can be proven using similar arguments as for the proof of Eq. (A.58), and for brevity we only

show the result for the range statistic. We have:
w — 0 A28 | < jw — o A2 4 g ALl g

< op(VAn) + 20,0,/ tséllp (Wi — Wt(qn)’ (A.73)

< 0p(619/2) 1 0, (817972, /[Indy]) = 0,(50=0/2),

where éqn) is understood as the range statistic of (W) (3)) The first estimate in the first

ierian)-

inequality is due to Eq. (A.13), and the final estimate follows since O(1/0y|Iné,|) = o(1). Finally, it

suffices to notice that:
16:(A) — 0 N Oz < ATV NOE — N Oc| + |A; 2N Oc — 0, N Oz
(A.74)
< 0p(1) + 0p(1) = 0p(1),
which implies 64(A) = 0sA’@z + 0,(1). We can thus obtain Eq. (3.26) by dividing oy on both sides of

this relation following the same logic as Eq. (A.16), and the proof is complete. O

B The OMK Estimator for Spot Variance

Follow the setting in Section 3.2, we start by defining an OMK estimator for o7. Let the vector
co := (m?, mw, m|r|,w?, |r|?,w|r|)’ collects all second order statistics computed from MAED, range
and absolute return, and let @ := diag(uy L v L Yo L Vo L )y L Y 1)’ denote the corresponding matrix

of normalizing factors. The OMK estimator of spot variance is defined as:
G2(A) = ATV2 N @y¢,, (B.1)

for some weight vector A = (A, Amaw, Ay Adwws Arry Awr)” that adds up to one. Using a similar

argument as Theorem 3.1, one can prove the following coupling result:

=N0Oyz9 +0p(1), (B.2)

of
where 2z := (n?,né1,né, €3, €3, £162) . Following the discussion after Remark 3.1, we can pick optimal
weight vectors by minimizing Var[A'@sz2] subject to A'c = 1 where the variance-covariance matrix

Var[®,2z3] can be easily simulated. We find the optimal OMK weights and the corresponding minimized

variance to be approximately:
A5~ (0.523,0.683, —0.004, —0.816, —0.170,0.784)",  Var[A}@szs] ~ 0.153. (B.3)

Restricting Amm = Amw = Ame = 0, the optimal OK weight and the corresponding minimized variance

are (which can be derived in closed form):
AJ = (0,0,0,1.7103,0.0544, —0.7647)",  Var[A§@yz4] ~ 0.2594. (B.4)
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Therefore, the optimal OMK estimator has an asymptotic variance factor that is about 41% smaller
than that of the optimal OK estimator for o2, so that the variance reduction is almost the same as

the OMK estimator for oy.

It is worth noting that the ‘practical version’ of the Garman-Klass estimator can be obtained by

6 6205 ~ An?(0.5031w? —

further restricting Amm = Amw = Amr = Awr = 0, which takes the form!
0.3949r%). We find that avar(&gGK/af) ~ 0.2686, which is worse than our OK estimator here due to
the restriction on the weight vector. In fact, we have Var[e;®222] ~ 0.270, so the MAED estimator of
o? has almost identical performance to the Garman-Klass estimator in the continuous case. Finally, we
note that the optimal OK variance factor of 0.2594 can be improved slightly to 0.2587 if we decompose
w and |r| further into high, low and close returns based on the method of Meilijson (2011) (see also
the discussion in Bollerslev et al. (2022)). As the improvement is empirically insignificant, we do not

pursue this approach further in this paper.

C Simulated Moments and Critical Values of the MAED-Based
Statistics

This section provides a comprehensive guidance on the choice of various moments and critical values
for the OMK estimator and the S-test in the discrete case under Assumption 3.4. We note that the

results in the continuous case are obtained by letting ¢ — oo.

We start by simulating the vector (ﬁ(Q),é(I),ég)’ with various choices of ¢, which can be easily
constructed from a standard Brownian motion equidistantly observed with ¢+ 1 observations on [0, 1].
As ¢ can take any natural number, we consider the following simulation scheme to make full use of

our computational resources:

1. For g € {2,3,4,...10}, we draw 10° replications of (77(‘1>,£§‘”,§2)’.
2. For g € {11,12,...,200}, we draw 10® replications of (7%, N@,EQ)’.

3. For q € {201,202,...,2000,2005, 2010, ...,5000,5010, 5020, ...,10% 105,105,107, 108}, we draw
107 replications of (7(9), ~§Q), &)

First, in Table C.1 we present the simulation results related to the first two moments of (ﬁ(‘Z), éQ), 52)’ ,

) (@) (9)

(@) (Q), 1/@, I/éq v Yo 'y@ and 7,". We compute these moments by their corresponding

namely pi”),

Monte Carlo averages for each ¢q. For ¢ < 10, we directly use the simulated values, which has the
highest precision in our simulation schemes. The standard error of the simulated moments are also

presented in Panel 2 of that table to assess the precision of the simulated moments. For ¢ > 11, we

'®Note that the original definition in Garman and Klass (1980) is 67 ¢ x =~ A;1/2(0.5w — (In2 —1)|r]), which has a slightly

larger variance than the variance-optimal version given here.
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propose to use the following polynomial approximation for the aforementioned moments:

k
y@ — Z Big~ % + ulD, (C.1)
i=0

where Y@ ¢ {ugq), uéq), qu), qu), éq),'yfq),'yéq)} are the simulated moments to be approximated and
u(? is a nearly zero-mean residual term. The specification of the regression is inspired by Proposition
3 of Asmussen et al. (1995), which derive an asymptotic expansion for moments of reflected Brownian

—-1/2

motion up to the ¢ term. In fact, the analytical coefficient 51 in Panel 3 of Table C.1 is due to

Asmussen et al. (1995), which is also used in Andersen et al. (2008). We find that a cubic approximation

(9)

(a) I/SI) and 7", while a

works very well across all ¢ > 11 for the candlestick-based moments, i.e., 1",
quartic approximation is needed for the MAED-based moments with 11 < ¢ < 200. The regression
standard error and the R? are presented in the table to evaluate the precision of the polynomial
approximation. It should be clear that one can view Sgs in Panel 4 as the simulated moments in the

continuous case by letting ¢ — oo.

The simulation precision in Table C.1 is worth discussing. As the Monte Carlo means are asymp-
totically normal by a standard central limit theorem, one can interpret a simulated moment +2xSE as

its 95% confidence bounds. Panel 1 thus shows that, for ¢ < 10, the simulated ,ugq), ugq), 7@, véq) and

) are precise up to the 4th digits after the decimal point, as the width of the 95% confidence bounds

and fy(()q) are slightly less accurate, but the 95% confidence bounds indicate

Z
are narrower than 104, yéq)
that the simulated error is likely to be smaller than £0.0001. Turning to Panels 2 and 3, all the R?s of
the regressions are virtually 1, which suggests an almost perfect fit of the polynomials to the simulated
moments for the range of g considered. The fitted values are more precise for 11 < ¢ < 200 due to the
larger Monte Carlo size, and one can observe that the relative size of the SEs among different panels
roughly correspond to the Monte Carlo size. Importantly, assuming that the regression specification
is correct, one can use the fitted value +2xregression SE to gauge the precision of approximated mo-
ments for any choice of q. The table thus shows that the largest approximation error of the moments
is likely to be within £0.001 for I/éq) and 'y(()q). In particular, ,ug(I) and V%q), which determine the bias
of the OMK estimator, can be approximated accurately up to the third digit after the decimal point.

This result demonstrates the quality of the simulated moments and the validity of our polynomial

approximation.

Based on the simulated values of (ﬁ(q), éq), §~2)’ , we also provide approximated critical values for
&IS,qO) 5 &taqo) MK &75:113/[ app and St(Q) with o € {10%, 5%, 1%}. Critical values for non-conventional choices
of v are available upon request, but they are omitted here for conciseness. Taking the critical values for
the a% HDI of 6&% vk asan example. For each g and the associated Monte Carlo size, we first compute

20 = (ﬁ(q)’éq),é)/ and ©@ = diag((,ugq))*l, (V%q))*l,wl_l), where ,ugq) and 1/§q) can be found in
Table C.1. This allows us to compute Var[@@2(@], and hence A*, from the Monte Carlo draws based
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& ng) Ngq) 7itz) ,Yéq) V{a) Véq) 7((]tz)

Panel 1: Simulated Moments
2 0.165 0.0908 0.159 0.0683 0.963 1.228 1.068
3 0.284 0.164 0.294 0.143 1.052 1.382 1.117
4 0.373 0.227 0.406 0.207 1.111 1.496 1.152
5 0.440 0.283 0.500 0.259 1.153 1.584 1.178
6 0.494 0.331 0.578 0.302 1.186 1.655 1.199
7 0.536 0.374 0.643 0.337 1.212 1.714 1.216
8 0.571 0.412 0.699 0.367 1.233 1.764 1.231
9 0.601 0.445 0.747 0.391 1.251 1.807 1.243
10 0.626 0.475 0.789 0.412 1.267 1.845 1.254

Panel 2: Simulated SE of the Simulated Momentsx10%
2 0.0797 0.1732 0.0998 0.0423 0.0696 0.4427 0.4442
3 0.0911 0.1658 0.1224 0.0603 0.0865 0.4486 0.4470
4 0.0939 0.1619 0.1345 0.0704 0.0986 0.4547 0.4502
5 0.0942 0.1595 0.1421 0.0771 0.1080 0.4602 0.4532
6 0.0937 0.1579 0.1474 0.0822 0.1154 0.4650 0.4559
7 0.0930 0.1568 0.1515 0.0864 0.1215 0.4691 0.4583
8 0.0923 0.1560 0.1549 0.0902 0.1265 0.4728 0.4604
9 0.0918 0.1553 0.1579 0.0935 0.1308 0.4760 0.4623
10 0.0914 0.1548 0.1606 0.0965 0.1345 0.4788 0.4639

Panel 3: Quartic Approximation for 11 < ¢ < 200
Bo 1.107 1.306 1.776 0.807 8/ 4In2 3/2
b1 -1.568 -3.483 -3.860 -1.310 V2/m¢(1/2) 8¢(1/2)/x 2¢(1/2) /=
B2 2.756 2.532 0.116 0.400 2.745 0.501
B3 1.005 1.002 -0.0128 0.841 -0.0694
Ba -1.689 -0.479 -1.924 -2.438

Reg SEx10* 0.2838 0.5826 0.6532 0.4039 0.4419 1.5430 1.3476

R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel 4: Cubic Approximation for 201 < ¢
Bo 1.106 1.303 1.774 0.807 Same as 11 < ¢ < 200
81 -1.533 -3.368 -3.791 -1.302 Same as 11 < g < 200
B2 -0.541 1.067 1.596 0.127 Same as 11 < g < 200
B3 3.994 9.344 4.727 Same as 11 < ¢ < 200

Reg SEx10* 0.8799 2.0336 2.2531 1.6825 1.5086 5.5544 5.0471

R2 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9981

Table C.1: Simulated and approximated values for the moments of (ﬁ(‘1>,§§‘” s £~2)’. In Panel 1, we present the simulated moments
for each 2 < ¢ < 10, and the corresponding standard errors (SE) are presented in Panel 2. Panels 3 and 4 present the estimated
coefficients of the polynomial regression Y (9) = E?:o Biq~ 2 4+ u(® based on different ranges of q, with the regression SE and R2.

Note that {(z) is the Riemann Zeta function.
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on Eq. (3.8). Consequently, we obtain the simulated distribution of A* ©@Wz@ which coincides with
the asymptotic distribution of the OMK estimator according to Proposition 3.3. With a significance
level of (1 — a)%, we construct £o(A¥OWz@) = [B,-(A'0OWz@)) B . (A*O@2(9)] such that the
number of observations in £,(A¥@@Wz@) is exactly (1 — )% times the Monte Carlo size, where the
critical values B+ (A¥@®@z@) are chosen by minimizing B+ (AY@@W @) — B _(A¥@@Wz@)) over
the grid of simulated values of (A¥©@z(@)~1  Similar to Table C.1, we suggest to use the exact
simulated critical values for ¢ < 10 and provide polynomial approximations for ¢ > 10. We present

the values and their associated SEs of the simulated/approximated critical values in Table C.2.

We summarize some key results in Table C.2. First, we focus on the results in Panel la. By
comparing critical values of OMK and OK estimators for 3 < g < 10, we find that the HDI widths of
the OMK estimator is always narrower than that of the OK estimator, regardless of the choices of ¢
or . This is in line with our conclusion in Table 3.2 that the OMK estimator outperforms the OK
estimator for any choices of ¢ > 2. The critical values of the MAED estimator and the associated test
statistic is not available for various choices of ¢ due to the non-negligible probability of 7(? = 0 when
q is small. In Panel 1b, the simulated standard errors are computed from the asymptotic variance
of an order statistic, as all the critical values presented here are in essence an order statistic of the
simulated distribution. Panel 1b thus shows that the simulated critical values for small g is reasonably
precise for the OMK and the OK estimators, with SEs below 0.0001 for most choices of q. The SEs
of the simulated critical values for the MAED estimator and the test statistic is noisier, especially for
small ¢ and «, but as ¢ increases, the SEs shrinks to a similar scale relative to those of the OK and

OMK estimators.

Polynomial approximation coefficients of the critical values for different ranges of ¢ are presented
in Panels 2 and 3 of Table C.2. For each regression, the order of the polynomial approximation is chosen
such that the coefficient of an additional term is statistically insignificant. By comparing Panel 2 with
Panel 3, we see that the polynomial approximation is somewhat more complicated for 11 < ¢ < 200
and for the MAED-related critical values, with a maximum of 8 polynomial terms for the MAED
estimator with o = 1%. However, all the regressions have R? ~ 1 and similar levels of regression SEs
around 0.001. These results suggest a very accurate fit to the simulated critical values, which are used
in our simulation and empirical analyses. It is worth noting that in Panel 3, 5y can be regarded as
the critical values for the limiting case when the continuous price path is observed. MATLAB codes
to compute the critical values according to Table C.2 are provided in the supplementary material of

the paper.
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