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Abstract

We introduce a novel multiple hypothesis testing method named the functional False Discovery

Rate “plus” (fFDR+). The method incorporates informative covariates (and new information

they carry) in estimating the False Discovery Rate (FDR) of predictive models’ “conditional”

performance. In our simulation based on mutual fund returns, the fFDR+ controls well the

FDR and gains considerable power over prior methods that do not account for extra infor-

mation. Its advantage remains under different alpha distributions, balanced and unbalanced

data structure, and cross-sectional dependent and independent error terms. It is also robust

to estimation errors in the covariates. In further empirical analyses, we construct portfolios

based on several covariates (five well-known and four new ones) and show that they enhance

the performance of mutual fund portfolios, highlighting the value of extra information in the

multiple hypothesis testing framework.
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1. Introduction

Aiming to identify models with genuine predictive power from a large set of potential can-

didates, researchers have to resort to a multiple hypothesis testing framework to appropriately

address the “data-snooping” or “p-hacking” bias that is a major challenge to social science

(Sullivan et al., 1999, 2001; White, 2000; Hansen, 2005). To address this challenge, researchers

propose the concept of the False Discovery Rate (FDR) of Benjamini and Hochberg (1995),

Storey (2002), Storey (2003), and Romano and Wolf (2005), i.e., the ratio of models that are

mistakenly identified as having predictive power. Testing methods based on FDR has gained

considerable attention in the literature and has been successfully applied to many areas of social

science.1

One common feature of the methodologies in this framework is that the rejection crite-

rion only depends on information of raw data and predictive models’ performance metrics.

However, in economics and finance research, the economic agents use all available information

in assessing models’ performance. Extra information sources can assist researchers to more

accurately estimate FDR. Recently, Chen et al. (2021) introduced the functional FDR method

that embeds the role of informative covariates (i.e., variables that carry extra information) in

forming null hypotheses. This advancement is important in the sense that it enables us to test

the “conditional” performance of predictive models, which is more consistent with the rational

expectation hypothesis. To illustrate the importance of extra information in multiple testing

problems, we can use mutual fund performance assessment as an example. If we use prior

testing methods that do not account for extra information, we are testing an unconditional

zero hypothesis, which corresponds to investors not updating their information in assessing mu-

tual fund performance. This approach appears inappropriate because mutual funds and their

managers are routinely reviewed by investors based on updated information. In other words,

a more suitable null hypothesis for a mutual fund’s performance should be zero conditional on

the updated information set.

Our main contribution is the introduction of the functional False Discovery Rate “plus”

(fFDR+). Compared to the work of Chen et al. (2021), it has two distinguishing features. First,

it allows us to focus on the right or left tail of the distribution and detect the significant out-

performers/under-performers, which is important for decision makers (see Barras et al., 2010,

1For instance, Fan and Fan (2011) employ FDR in testing and detecting jumps; Lan et al. (2016) utilize such
a framework to control FDR in testing coefficients in high-dimensional linear models; see also Lan and Du (2019)
for extensions and applications in mutual fund selection; or Barbaglia et al. (2022) for applications in detecting
significant sentiment variables in forecasting with economic news.
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hereafter BSW). Second, it is robust to cross-sectional dependencies among predictive models,

which is common for most problems in economics and finance. For example, in mutual funds,

the alphas are likely dependent due to herding and correlated trading behaviour (Wermers,

1999).

Compared to all earlier methods in the economics literature on control of the FDR, our

fFDR+ method incorporates extra information, has higher power, and controls for noise. It

is easy to implement, does not rely on any strong assumption and can handle any continuous

informative covariate. In examining our method, we use simulated mutual fund performance

similarly to BSW and Andrikogiannopoulou and Papakonstantinou (2019) (AP henceforth).

We show that, when an informative covariate is available, our fFDR+ approach detects more

true positive alpha funds under different alpha distributions, balanced and unbalanced data,

and both cross-sectional independence and dependence in the error terms. The gap in power

between fFDR+ and prior FDR methods, depending on the distribution of the fund alpha

population, can be up to about 30%. Our approach is also robust to estimation errors in the

covariates.

We then apply our method and construct portfolios in order to evaluate it empirically in

selecting outperforming mutual funds. In particular, we explore nine informative covariates:

the first set contains five covariates that have been shown in prior studies to convey information

on mutual fund performance, and the second set contains four new covariates that are inspired

by asset pricing models. The first set includes the R-square of the asset pricing model (e.g.,

Carhart four-factor model) as suggested by Amihud and Goyenko (2013), the Return Gap of

Kacperczyk et al. (2008), the Active Weight of Doshi et al. (2015), the Fund Size of Harvey and

Liu (2017), and the Fund Flow suggested by Zheng (1999). The second set includes the Sharpe

ratio, the Beta and Treynor ratio based on the Capital Asset Pricing Model (CAPM), and the

idiosyncratic volatility of the Carhart four-factor model (Sigma).

We find that the set of mutual funds selected as out-performers by fFDR+ is usually larger

and different from the one obtained by prior FDR methods. As already discussed, earlier studies

do not account for information other than mutual funds’ returns and performance metrics; thus,

their null hypotheses are unconditional and neglect investors’ time-varying expectation. The

fact that our fFDR+ discovers more outperforming funds suggests that, with more information

updating, there may exist more profitable mutual funds than researchers would have expected.

Based on the funds selected by fFDR+, we build portfolios that consistently outperform the

one generated by prior methods. Our results highlight the economic value of extra information.
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In particular, the fFDR+ portfolios with the R-square and Beta covariates are found to be

the best with annualized alphas of 1.7%, followed by the fFDR+ portfolios with the Active

Weight, Fund Flow, Sigma, Treynor ratio, Fund Size, Sharpe Ratio and Return Gap covariates,

separately achieving annualized alphas of at least 0.77%. We note that this profitability is

persistent in our sample and is even strengthened over the recent period, a finding that disagrees

with part of the recent literature which suggests otherwise (see Jones and Mo, 2021). All our

fFDR+ portfolios outperform the one generated by prior FDR methods and a set of portfolios

created by single- and double-sorting the covariates under study.

In additional analysis, we also consider the fFDR+ portfolio based on various ways of

combining the nine covariates, such as the first principal component of the nine covariates

(PC 1), the ordinary least squares (OLS), the least absolute shrinkage and selection operator

(LASSO) of Tibshirani (1996), the ridge regression and the elastic net of Zou et al. (2005). We

find that the elastic net delivers the best performance with an annualized alpha of 1.25%. The

investors may also benefit from such combinations as they result in lower volatility in portfolio

performance. This is advantageous as, in reality, investors do not know ex-ante what covariate

is the best.

The rest of the paper is organized as follows. In Section 2, we introduce and explain our

methodology. In Section 3, we provide a description of our data. Section 4 is devoted to our

simulation experiment descriptions, whereas in Section 5 we present in detail our simulation

results. Section 6 focuses on the empirical part of our analysis. Section 7 concludes the paper.

2. Methods for Controlling of Luck with Informative Covariate

2.1. Functional False Discovery Rate (fFDR)

Throughout this paper, we use mutual funds to represent predictive models. We define funds’

performance based on their net return, that is, the return net of trading cost, fees and other

expenses except loads and taxes. A fund is deemed out-performing if it distributes to investors

a net return that generates a positive alpha (i.e., a part of a return series that is unexplained

by systematic risk). If the alpha is negative (zero), the fund is said to be under-performing

(zero-alpha). These definitions of out-performing and under-performing funds coincide with

skilled and unskilled funds in BSW, respectively, and reflect the interest of investors.

Suppose that we are assessing m funds and each of them has a net return time series. We

also assume that there exists a covariate X, with observed values (x1, . . . , xm), that conveys

information about the alpha of each fund. Associated with X, we define Z whose observed

value for fund i is zi = rank(xi)/m, where rank(xi) is the ranking of xi in the set of observed
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values (x1, . . . , xm). As X to Z is an one-one mapping and we work based on Z, we call that

the covariate from now on. We introduce our notation by means of a single test, conditional on

Z, for the alpha of a mutual fund:

H0 : α = 0, H1 : α ̸= 0. (1)

We denote by h the status of the null hypothesis, that is, h = 0 if the hypothesis α = 0 is true

and h = 1 if otherwise. In addition, P is the random variable representation of the p-value of

the test, Z, as mentioned above, is the covariate which is uniformly distributed on [0, 1], and

T = (P,Z). We suppose that (h|Z = z) ∼ Bernoulli(1 − π0(z)), that is, conditional on Z = z,

the fund possesses a zero alpha with probability π0(z); this can be constant if Z does not convey

any information about the probability of the fund’s alpha being zero. The estimation procedure

for π0(z) will be discussed later on. We require that under the true null, (P |h = 0, Z = z) is

uniformly distributed on [0, 1] regardless of the value of z; when the null hypothesis is false, the

conditional density function of (P |h = 1, Z = z) is f1(.|z).

To assess the performance of m funds in terms of α within our framework, we consider m

conditional hypothesis tests like (1):

H0,i : αi = 0, H1,i : αi ̸= 0, i = 1, . . . ,m, (2)

where αi is the alpha of fund i. For each i we have Ti = (Pi, Zi), and we assume that all the

pairs are independent and each of them has the same distribution as (T, h).2 Finally, we denote

by f(p, z) the joint density function of (P,Z). We have that

P(h = 0|T = (p, z)) =
π0(z)

f(p, z)
=: r(p, z) (3)

is the posterior probability of the null hypothesis being true given that we observe T = (p, z).3

To control the type I error, Storey (2003) introduces the “positive false discovery rate”

pFDR = E
(
V

R

∣∣∣∣R > 0

)
, (4)

where R is the number of rejected hypotheses in m tests and V the wrongly rejected ones. Chen

et al. (2021), CRS henceforth, show that, with a fixed set Γ in [0, 1]2, if we reject hypothesis

2In Section IB of the Internet Appendix, we show that this requirement can be eased for a typically cross-
sectional dependence in mutual fund data.

3For more details about the role of Z ∼ Uniform(0, 1) and the derivation of (3), see Chen et al. (2021).
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H0,i whenever Ti ∈ Γ, then

pFDR(Γ) = P(h = 0|T ∈ Γ) =

∫
Γ
r(p, z)dpdz. (5)

To maximize the number of rejections, we reject the hypotheses with the smallest statistic

r(p, z). Thus, the significance region {Γθ : θ ∈ [0, 1]} is defined as

Γθ = {(p, z) ∈ [0, 1]2 : r(p, z) ≤ θ}, (6)

where a larger θ implies more rejected hypotheses. Finally, we recall from Storey (2003) and

CRS the definition of the q-value for the observed (p, z):

q(p, z) = inf
{Γτ |(p,z)∈Γτ}

pFDR(Γτ ) = pFDR(Γr(p,z)). (7)

Given a target τ ∈ [0, 1], a procedure that rejects a hypothesis if and only if its q-value ≤ τ

guarantees that pFDR is controlled at τ .

Empirically, let π̂0(z) and f̂(p, z) be the estimated functions π0(z) and f(p, z), respectively.4

We calculate r̂(p, z) = π̂0(z)/f̂(p, z) and estimate the q-value function as

q̂(pi, zi) =
1

Si

∑
k∈Si

r̂(pk, zk), (8)

where Si = {j|r̂(pj , zj) ≤ r̂(pi, zi)} and pi is the p-value of test i. Then, given a target pFDR

level τ ∈ [0, 1], the null hypothesis H0,i is rejected if and only if q̂(pi, zi) ≤ τ . CRS call this

procedure Functional False Discovery Rate (fFDR).

2.2. The fFDR+: application in selecting out-performing funds

By applying the fFDR methodology to mutual funds at a given target pFDR level τ , we

obtain a set that includes both significantly out-performing and under-performing funds. To

further improve mutual fund selection, we propose a fFDR-based method that selects a group

of significantly out-performing funds with control of luck. In the following section, we introduce

our fFDR+ and discuss its application in a mutual fund context.

Consider a selection of R+ out-performing funds including V + wrongly selected zero-alpha

or under-performing funds. We define the positive false discovery rate in those significantly

out-performing funds as

pFDR+ = E
(
V +

R+

∣∣∣∣R+ > 0

)
. (9)

For m tests, let A+ be the set of hypotheses with positive estimated alpha, i.e., A+ = {i|α̂i > 0},

4See Appendix A for more details.
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where α̂i is the estimated alpha of fund i. At a given target τ of pFDR+, by implementing

the fFDR procedure to control pFDR at the target τ on the funds in set A+, we obtain all

the funds with positive estimated alphas (referred to as significant alphas).5 Hence, the fFDR

selects positive-alpha funds with control of pFDR at the given target; we call this procedure

the functional FDR “plus” (fFDR+).

Next, we highlight the differences between our and BSW’s approaches. The starting point

of both is the control of the type I error as in Benjamini and Hochberg (1995):

FDR = E
(

V

max{R, 1}

)
= E

(
V

R

∣∣∣∣R > 0

)
P(R > 0) = pFDR · P(R > 0), (10)

where the last equality follows from (4). This implies that controlling for pFDR at a given

target τ , also controls for FDR at the same target. Furthermore, for a large number of tests,

controlling for pFDR and FDR is equivalent (see Storey, 2002, 2003).

Consider them tests (2) in the absence of the covariate Z and let ti be the test statistic of test

i. Storey (2002) assumes that t1, . . . , tm are independent and the statuses of the null hypotheses

h1, . . . , hm are independent Bernoulli random variables with P(hi = 0) = π0. Additionally,

across i, (ti|hi = 0) and (ti|hi = 1) are identically distributed. When we reject based on the

p-values, for some λ ∈ [0, 1), π0 can be estimated by

π̂0(λ) =
#{pi|pi > λ, i = 1, . . . ,m}

(1− λ)m
(11)

where # returns the number of elements in the set; this estimate is conservative biased.6 BSW

choose λ = λ∗ on the grid {0.3, 0.35, . . . , 0.7} such that the mean square error (MSE) of π̂0(λ)

is minimal.7 We set π̂0 = π̂0(λ
∗).

To select out-performing funds with controlling for the FDR, BSW define the concept FDR+

to measure the FDR in a group of funds selected as significant and positive estimated alphas as

FDR+ = E
(

V +

max{R+, 1}

)
. (12)

With a significant threshold γ and a procedure which selects a fund with a positive estimated

5In doing so, we assume that the number of funds that are out-performing but exhibit a negative estimated
alpha is negligible. This is sensible as in practice we will not select those funds anyway. In BSW, as discussed
next, having a positive estimated alpha is a necessary condition for a fund to be selected as out-performer.

6To have the estimate of π0, first, under independence, there are mπ0 funds with truly zero alpha and their
p-values have a uniform distribution in [0, 1]. Hence, we expect mπ0(1 − λ) p-values in the set to fall in [λ, 1].
Second, this number can be conservatively approximated by #{pi|pi > λ}, thus we have (11). With a larger λ,
the estimate π̂0 is less conservative, as there are fewer p-values under the alternative belonging to [λ, 1], but its
variance is higher.

7In MSE = E(π̂0(λ)− π0)
2, the unknown π0 is replaced by minλ π̂0(λ) over the λ grid.
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alpha whenever its p-value ≤ γ, BSW estimate FDR+ by

F̂DR
+

γ =
π̂0γ/2

R̂+/m
, (13)

where R̂+ is the empirical number of funds selected as out-performers, i.e., R̂+ = #{i|pi ≤

γ, α̂i > 0}. When using this approach to determine out-performing funds with controlling for

FDR+ at a given target τ , the threshold γ is raised gradually until the F̂DR
+
estimate in (13)

reaches the target τ . We refer to this procedure as FDR+.

To illustrate the differences between our and BSW’s procedures, we opt for a sub-period of

five years from 2001 to 2004 and implement the FDR+ and fFDR+ to detect positive alpha

funds, with the alphas determined by the four-factor model of Carhart (1997). In this case, the

R-square of the model is used as the covariate for fFDR+.8 In Figure 1, we demonstrate how

the two procedures work. Based on the p-values of all the considered funds, the FDR+ estimates

the proportion of zero-alpha funds in the whole sample, as a first step, giving π̂0 ≈ 0.83. It then

selects the positive estimated alpha funds with smallest p-values until the estimated F̂DR
+

γ

reaches a given FDR target. For illustration, we choose the FDR target τ = 35%, so that both

methods select a substantial number of funds.9 Here, all the funds with p-values less than or

equal to γ = 0.0086 are selected by the FDR+. The threshold γ is depicted by the green dashed

line in Panel C and all the funds corresponding to the points on the left of the vertical line are

selected. By contrast, the fFDR+ considers only the set of positive estimated alpha funds and

estimates the proportion of zero-alpha funds in this set as a step function of z (the quantiles of

R-square).

In this experiment, we split the sample into five bins based on the ranking of the covariate

z; thus, π̂0(z) is a function with five “steps”. The procedure continues with the estimation of

the density function f(p, z) and of the functional q-value q(p, z). The fFDR+ selects all the

funds with estimated q-value less than or equal to 0.35: those funds correspond to the points

below the red dashed line (the q-value = 0.35 line) in Panel C. This clearly shows that, for the

same target, the fFDR+ selects significantly more funds than FDR+ (170 versus 19). More

importantly, the funds selected by the FDR+ are not merely a subset of those selected by

fFDR+. Panel D displays the distribution of the selected funds with respect to the p-value

and z. We observe that the fFDR+ assigns more weight to some funds with smaller z (thus,

8The details of the funds and the calculation of the p-values are deferred to Section 6. Here, we focus only
on illustrating the differences.

9If we choose any target τ ≤ 30%, the FDR+ selects no funds.
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Figure 1: Comparison of FDR+ and fFDR+. The graphs show the differences between the two procedures
with respect to their null proportion estimations and their rejection rules. Panels A and B show that π0 is
estimated as a fixed number in FDR+ procedure (see (11)) but as a step function in fFDR+ procedure (see
Appendix A). Panel C shows the rejection rules of the FDR+ and fFDR+: the former selects all the funds
corresponding to the points on the left of the vertical green dashed line which consists of all funds with positive
estimated alphas and p-values less than 0.0086, whereas the latter all the funds corresponding to the points below
the horizontal red dashed line which consists of all funds with estimated q-value (see (8)) less than 0.35. Panel D
shows the distribution of the selected funds in Panel C with respect to the p-value and the covariate z. In Panels
C and D, only funds with positive estimated alpha are shown as ultimately both methods select funds from this
set. The solid green points represent funds selected by the FDR+, whereas the red circles the funds selected by
the fFDR+; the green points with a red ring are the commonly selected funds.

smaller R-square), but the weight is not equally distributed across the funds with the same

level of z. As the rejection rule of fFDR+ is based on the functional q-value, which is based

on the estimates of π0(z) and f(p, z), it is not possible to explain this merely by the ranking of

the p-value and the covariate z, as evidenced in Panel D: the fFDR+ selects some funds with

p-values around 0.6 while skipping many funds with a smaller p-value at roughly the same level
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of z.

As shown in AP, the FDR+ relies on an over-conservative estimate of the null proportion

and utilizes only p-values and the estimated alphas. On the other hand, the fFDR+ addition-

ally uses an informative covariate about the performance of the funds and expresses the null

proportion as a function of it, while accounting for the joint distribution of the p-value and the

covariate. This results in a more accurately estimated FDR and, therefore, an increased power

in detecting out-performing funds. We are illustrating the prominent power of the fFDR+ via

a set of simulation studies in the next sections. In the empirical section, we will show the actual

profitability that the five covariates can bring to investors while controlling for luck.

3. Data

We use monthly mutual fund data from January 1975 to December 2019 collected from

the CRSP database.10 As CRSP reports funds at the share class level, we use MFLINKS to

acquire fund data at the portfolio level. For a fund at a given point in time with multiple share

classes, we average the share classes’ net return weighted by the total net asset (TNA) value

at the beginning of the month.11 The TNA at the fund level is estimated by the sum of the

share classes’ TNA. We omit the following month return after a missed return observation as

CRSP fills this with the accumulated returns since the last non-missing month. To obtain the

holdings data of the funds, which will be used to calculate our covariates, we merge the CRSP

and Thomson/CDA databases by utilizing MFLINKS. The holdings database provides us with

stock identifiers, which we use to link the funds’ position with the CRSP equity files. From this

equity database, we obtain information such as the price and number of shares outstanding of

the stocks that the funds hold on their reported portfolio date. We use these to calculate the

return gap and the active weight, which are described in more detail later.

We consider only funds with an investment objective belonging to the categories Growth,

Aggressive Growth and Growth & Income. Both CRSP and CDA provide this information;

CDA is more consistent over time, hence we choose that. As the funds’ investment objective

can change, we collect first all the funds in these categories. If at some point a fund misses

its investment objective, we fill this in by its prior non-missing objective. If a fund’s objective

changes, we remove those return observations corresponding to periods when its objective does

10We are aware of the possible biases in the CRSP mutual fund data before 1984 (Fama and French, 2010)
and thus conduct a robustness check using a sample from 1984 to 2019 in Section IC of the Internet Appendix.

11Since 1991, we use the monthly TNA of the fund’s share classes. Before 1991, most of the funds report their
TNA on a quarterly basis. For this, we follow Amihud and Goyenko (2013) to fill in the missing TNA of each
fund (at the share class level) by its most recently available one.
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not belong to the three aforementioned categories. To obtain a precise four-factor alpha esti-

mate, we select only funds with at least 60 monthly observations. Overall, we gather a sample

of 2,224 funds which provides the empirical metrics for our simulation study.

In the empirical part, when calculating the related covariates, we additionally require each

fund to hold at least 10 stocks; this is consistent with Kacperczyk et al. (2008) and Doshi et al.

(2015) and is needed here as we use the return gap and active weight from their studies as two

of our covariates. The number of funds used when constructing our covariate-based portfolios

varies over years and will be reported in detail in the empirical section.

4. Simulation Setup

In this section, we present the details of our simulation design consisting of the choice of the

model, the distributions of the alpha population, the data-generating process and the metrics

that we will use to gauge the performance of the methods.

4.1. The model

Following the majority of the existing literature on mutual fund performance, we use the

four-factor model of Carhart (1997) to compute the fund performance:

ri,t = αi + birm,t + sirsmb,t + hirhml,t +mirmom,t + εi,t, i = 1, . . . ,m, (14)

where ri,t is the excess net return of fund i over the risk-free rate (i.e., the one-month Treasury

bill rate), rm,t the market’s excess return on the CRSP NYSE/Amex/NASDAQ value-weighted

market portfolio, rsmb,t the Fama–French small minus big factor, rhml,t the high minus low

factor, rmom,t the momentum factor and εi,t the noise of fund i at time t. All factors and the

one-month Treasury bill rate are obtained from French’s website.

Our simulations are designed similarly to BSW and AP in terms of the data-generating

process accounting, in addition, for an informative covariate and considering more distribution

types of the fund alpha population. Whereas BSW and AP focus on the estimated proportions of

the out-performing, under-performing and zero-alpha funds, we consider the performance of the

FDR+ and fFDR+. More specifically, for a given fund alpha distribution, we first generate

in each iteration the true fund alpha population and a covariate that conveys information

about the alpha of each fund. Second, we simulate the Fama–French factors (factors loadings)

by drawing from a normal distribution with parameters equal to their sample counterparts

(obtained from estimations of model (14)). Next, the noise is generated under both cross-

sectional independence and dependence. In the first case, the noise is drawn cross-sectionally
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independent from a normal distribution, that is, εit ∼ N (0, σ2
ε) where, as in Barras et al. (2020),

σε is is set equal to the median of its real-data counterpart, that is, approximately 0.0183 for our

sample. The results under this assumption are reported in the next section. In the dependent

case, the noise is generated as in BSW and the simulation results are deferred to Section IB

of the Internet Appendix. The simulated data are then used to generate the net return for

each fund. Subsequently, by carrying out regression (14) of the generated net return on the

simulated Fama–French factors, we estimate the alpha and calculate the related p-values for the

tests (2). Finally, based on these estimated alphas, p-values and the covariate, we implement

the fFDR+ and FDR+, for a given FDR target, to obtain the significantly out-performing

funds. We estimate the actual false discoveries rate of the fFDR+ and check if it meets the

given target. We then compare the two methods in terms of power, defined as the expected

ratio of the number of true positive alpha funds detected to the total number of true positive

alpha funds in the population.

4.2. The distribution of fund alphas

We consider three different types for the distribution of fund alphas: a discrete, a discrete-

continuous mixture and a continuous. A covariate Z conveys information about the alpha of

each fund in the population; more specifically, a fund with Z = z has a probability π0(z) of

being zero-alpha. Also, without loss of generality, we assume that, for non-zero alpha funds,

their covariates and alphas are positively correlated.12

First, in the discrete type, we draw alphas from three mass points −α∗ < 0, 0 and α∗ > 0

with probabilities π−, π0 and π+. Thus,

α ∼ π−δα=−α∗ + π0δα=0 + π+δα=α∗ . (15)

We consider five values for α∗ ∈ {1.5, 2, 2.5, 3, 3.5} (the values are annualized and in %) together

with six combinations of the proportions (π+, π0, π
−) based on π+ ∈ {0.1, 0.13}, π−/π+ ∈

{1.5, 3, 6} and π0 = 1− π− − π+, i.e., a total of thirty cases.13

In the mixed discrete-continuous distribution, we draw alphas from two components in-

cluding the mass point 0 and the normal distribution N (0, σ2) with, respectively, probabilities

12If the correlation is negative, we use instead −Z.
13The chosen π+ values are close to those used in the recent literature: π+ = 10.6% (see Harvey and Liu,

2018) and π+ = 13% (see Andrikogiannopoulou and Papakonstantinou, 2016). The ratio π−/π+ = 6 is studied
in AP. Aiming to extend the range of our study, we consider also the ratios 1.5 and 3.
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π0 ∈ (0, 1) and 1− π0. We have, therefore, that

α ∼ π0δα=0 + (1− π0)N (0, σ2). (16)

We consider five values for σ ∈ {1, 2, 3, 4, 5} (the values are annualized and in %) and the same

six π0 values as in the discrete distribution earlier.

Finally, in the continuous case, we draw alphas from a mixture of two normal distributions

N (µ1, σ
2
1) and N (µ2, σ

2
2) with, respectively, probabilities π1 ∈ [0, 1] and π2 = 1− π1, i.e.,

α ∼ π1N (µ1, σ
2
1) + π2N (µ2, σ

2
2). (17)

When π1 and π2 are positive, we have indeed a mixture; we adopt from Harvey and Liu (2018)

π1 = 0.3 and π2 = 0.7 and, to point up the performance of our method, we consider fifteen

combinations based on (µ1, µ2) ∈ {(−2.3,−0.7), (−2,−0.5), (−2.5, 0)} and (σ1, σ2) ∈ {(1, 0.5),

(1.5, 0.6), (2, 1), (2.5, 1.25), (3, 1.5)} (the values of the pairs are annualized and in %).14

In (17) π0 = 0, whereas in (15) and (16) π0 > 0. When π0 > 0, we study an up-and-

down shape of π0(z). Specifically, to guarantee π0(z) ∈ [0, 1] for all z, we choose π0(z) =

min{1,max(f(z), 0)} ∈ [0, 1], where

f(z) = 3.5(z − 0.5)3 − 0.5(z − 0.5) + c (18)

and c is chosen to satisfy
∫ 1
0 π0(z)dz = π0. This way we are able to investigate the effect of π0 on

the power of the methods by varying c while keeping the shape of π0(z) roughly unchanged.15

Suppose the distribution of alpha and the form of π0(z) are determined. We generate the

covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform distribution [0, 1]

and assign them to the funds satisfying the descriptions mentioned at the beginning of this

section. The noise in equation (14) is generated cross-sectionally independent or dependent.

In the former case it is drawn from a normal distribution N (0, σ2
ε), where, as in Barras et al.

(2020), σε is set equal to the median of its real-data counterpart, that is, approximately 0.0183

for our sample. For each replication, we implement the fFDR+ and FDR+ and compute the

rate of falsely selected funds among those classified as out-performers and the rate of truly out-

performing funds detected. The two metrics are averaged across 1,000 replications to obtain

14Our choices are intended to be wide enough to encompass the cases of Harvey and Liu (2018): (π1, π2) =
(0.283, 0.717), (µ1, µ2) = (−2.277,−0.685) and (σ1, σ2) = (1.513, 0.586). In Section IB of the Internet Appendix,
we additionally present results of the case π2 = 0, i.e., when the mixture becomes a single normal distribution.

15The alternative choices of a decreasing function π0(z) with f(z) = −1.5(z− 0.5)3 + c, an increasing function
π0(z) with f(z) = 1.5(z−0.5)3+c or a constant function π0(z) = c result in some discrepancies, without affecting,
though, our main conclusions.
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estimates for the actual FDR and the power of each procedure.16

5. Analysis of fFDR+ and power

We set the number of funds for simulations at 2,000 which is close to our sample of 2,224

funds. We demonstrate the ability of the fFDR+ to control the FDR for balanced panel data,

where the number of observations per fund is equal to 274, under cross-sectional independence.

In the interest of space, we refer to Section IB of the Internet Appendix for the results under

cross-sectional dependence as well as the unbalanced panel data cases. We then compare the

powers of the fFDR+ and the FDR+ in controlling the FDR at the 10% level; we extend to

higher levels and highlight the differences between the two procedures. In each simulation study,

we analyze the relationship between the powers of the two methods and: i) the proportion of

zero-alpha funds in the sample; ii) the magnitude and proportion of positive alpha funds in the

sample. We also study the impact of the number of funds in the sample and the number of

observations per fund on the power. Finally, we examine the impact of estimation errors in the

covariates, in the power of our procedure.

In general, the results show that the fFDR+ controls well the FDR at any given targets.

When the FDR target is set at 10%, the fFDR+ detects more positive alpha funds than

the FDR+ with a difference in power up to 30%, depending on cases and parameters of the

distributions. When we raise the FDR target to higher levels, the difference is even higher

in favour of the fFDR+. The results are consistent regardless of the number of funds in the

sample, the structure of the panel data and the dependence of the cross-sectional error terms.

In an empirical setting, the informative covariates are estimated quantities. This is trans-

lated to an estimation noise that may affect the power of our procedure. Our simulations reveal

that our method is robust in terms of power up to moderate to high estimation noise.

5.1. False discovery rate control of fFDR+

For varying targets of FDR ∈ {5%, 10%, . . . , 90%}, we implement the simulation procedure

in Section 4 with balanced panel data. Figures 2, 3 and 4 exhibit our results for the generated

data under cross-sectional independence.

In Figure 2, we show our results for the discrete distribution (15) for varying α∗. The upper

three subplots correspond to π+ = 0.1, whereas the lower three subplots to π+ = 0.13. From

left to right, the ratio π−/π+ increases from 1.5 to 6 (with the null proportion π0 decreasing

accordingly). For example, the top-left subplot exhibits the actual FDR (vertical axis) and the

16We refer to Section IA of the Internet Appendix a detailed description of the simulation procedure.
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given targets of FDR (horizontal axis) with the alphas drawn from a discrete population of

which 75%, 10% and 15% are, respectively, zero-, positive- and negative-alpha funds. A point

on or below the 45◦-line indicates that the fFDR+ controls FDR well for the given level; this

is the case for α∗ = 1.5 at all the FDR targets. For α∗ = 3.5, the FDR is slightly not met

for targets in the interval (0.1, 0.8). In general, we witness slight failure of the fFDR+ to

control for FDR when α∗ is abnormally high. In the last case with smallest π0, the FDR is

controlled well. In Figure 3, we study the case of the fund alpha population described by the

mixed discrete-continuous distribution (16). We organize our results based on the same null

proportions π0 as in Figure 2 and present these for varying σ. We observe that the FDR target

is slightly unmet only for extreme values of σ when the null proportion is very high and this

effect is also milder compared to the discrete distribution cases. Finally, in Figure 4, we report

the results for the continuous distribution (17) for varying µ or (µ1, µ2) and σ or (σ1, σ2). We

find that the fFDR+ controls FDR well at all targets.

Figure 2: Performance of fFDR+ for discrete distribution of α. The graphs show the performance of
the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution. The simulated data
are balanced panels with cross-sectional independence.
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Figure 3: Performance of fFDR+ for discrete and normal distribution mixture of α. The graphs
show the performance of the fFDR+ in terms of FDR control when alphas are drawn from a mixture of discrete
and normal distributions. The simulated data are balanced panels with cross-sectional independence.

Figure 4: Performance of fFDR+ for continuous distribution of α. The graphs show the performance
of the fFDR+ in terms of FDR control when alphas are drawn from a continuous distribution which is a mixture
of two normals. The simulated data are balanced panels with cross-sectional independence.

In summary, our simulations are based on proposed fund alpha distributions from the recent

literature, from the least realistic cases, with all the out-performing and under-performing

funds assumed to have the same mass alpha value, to the more realistic ones, where the alpha

is drawn from a continuous distribution, in which no fund has exact zero but rather mostly

negative alpha. Our results suggest that, for the continuous distribution, the proposed fFDR+

approach controls well for FDR at any given target.

In Section IB of the Internet Appendix we repeat the exercise for balanced data under

cross-sectional dependence and unbalanced data under both cross-sectional independence and

15



dependence. Our findings remain robust.

5.2. Power analysis

Next, we study the power of our fFDR+ approach in detecting truly positive alpha funds,

calculated as described in Section 4, and compare it with the FDR+ of BSW for FDR control

at 10%. Although the magnitude of our results varies with different targets of FDR, our main

conclusion of the power superiority of the fFDR+ remains.

In Panel A of Table 1, we report for the discrete distribution (15). For (π+, π0, π
−) =

(10, 75, 15)% with highest π0 and smallest α∗ = 1.5, both the fFDR+ and FDR+ achieve

similar powers, i.e., 0.3% and 0.4%, respectively. This is expected in this particular case as the

number and magnitude of the true positive alphas are small, while we are controlling for FDR

at 10%.17 The superiority of the fFDR+ is more perceptible and stabler for larger α∗. This

discrepancy depends not only on the magnitude and proportion of positive alphas, but also on

the proportion of zero alphas. This is because both procedures use the null proportion (π0 in

FDR+ and π0(z) in fFDR+) to estimate the FDR. With the same magnitude and proportion

of positive alphas, the small proportion of zero alphas implies the higher power of both the

fFDR+ and FDR+. The effect of the null proportion on the gap of fFDR+ over FDR+ is

stronger when the magnitude of positive alphas is not too high. The gap varies by case and

may even exceed 30% (when π+ = 10%, π0 = 30% and α∗ = 2.5).18

Panel B exhibits the power upshots for the case of the fund alpha population described by

the distribution mixture (16). This implies the dependence of the proportion and magnitude of

positive alphas on the proportion of the zero-alpha funds and the σ value for non-zero alphas.

We expect a higher power for both methods for a smaller zero-alpha proportion and/or a higher

value of σ. We find that the fFDR+ is more powerful than FDR+. More specifically, for the

balanced data under cross-sectional independence and π0 = 75%, the power of the fFDR+

(FDR+) increases from 0.3% to 60.8% (0.2% to 52.2%) with increasing σ from 1 to 5. For

given, say, σ = 2, the power of the fFDR+ (FDR+) increases from 15.4% to 38% (8.2% and

22%) with reducing π0. The gap is generally evident for σ > 1 with power differences around

10% but which can also reach up to 16%.

17As will be shown later, with a higher FDR target (such as 30%), the power of the fFDR+ exceeds that
of FDR+ by 6%. Considering a higher target than 10% is sensible for trading and diversification purposes as
otherwise very few or no out-performing funds are selected. In the study of BSW, the estimated FDR in the
empirical application is at least 41.5% on average (depending on portfolio).

18As shown in Section IB of the Internet Appendix, the relevant reports vary slightly when the simulated
data are generated with alternative forms of π0(z) mentioned in footnote 15, with unbalanced panel or with
cross-sectional dependence, however the overall picture remains the same.
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Table 1: Performance comparison in terms of power (%). The table compares the power of the fFDR+

and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a discrete distribution, i.e.
α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ (Panel A), a discrete-normal distribution mixture, i.e. α ∼ π0δα=0 + (1 −
π0)N (0, σ2) (Panel B), and a mixture of two normal distributions, i.e. α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) (Panel

C) with various setting of parameters. The simulated data are a balanced panel with 274 observations per fund
and are generated with cross-sectional independence.

Panel A: discrete distribution.
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.3 5.1 21.8 45.7 67.3
FDR+ 0.4 2.1 12.1 32.3 53.5

(10, 60, 30)%
fFDR+ 1.1 10.3 33.1 58.5 77.5
FDR+ 0.4 2.3 13.8 35.9 57.4

(10, 30, 60)%
fFDR+ 3.5 22.9 52.9 76.6 89.7
FDR+ 0.4 3.3 21.4 47.8 69.6

(13, 67.5, 19.5)%
fFDR+ 0.8 8.8 30.1 55.1 75.1
FDR+ 0.4 3.1 17.6 39.7 60.9

(13, 48, 39)%
fFDR+ 2.3 16.4 43 68.1 84.3
FDR+ 0.5 4 21.8 46.1 66.8

(13, 9, 78)%
fFDR+ 6.4 34 67.6 89.2 97.5
FDR+ 0.5 6.9 37.2 69.2 88

Panel B: discrete-normal distribution mixture.
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.3 15.4 36.1 51.1 60.8
FDR+ 0.2 8.2 26.7 41.7 52.4

60%
fFDR+ 1.2 21.6 42.8 57.1 66.1
FDR+ 0.2 11.4 31.5 46.6 56.9

30%
fFDR+ 4 31.6 54 67.2 74.8
FDR+ 0.4 17.5 40.5 55.6 65.4

67.5%
fFDR+ 0.8 18.9 40 54.5 63.7
FDR+ 0.2 9.9 29.6 44.5 55

48%
fFDR+ 2.3 25.9 47.8 61.6 70.4
FDR+ 0.3 13.9 35.4 50.5 60.5

9%
fFDR+ 6 37.9 60.6 73.6 80.9
FDR+ 0.5 22 47.1 62.7 72.2

Panel C: mixture of two normal distributions.
(σ1, σ2)

(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0 0.3 4.5 12.9 22.5
FDR+ 0 0 0.3 1.9 7.1

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0 0.4 5.9 15.1 24.8
FDR+ 0 0.1 0.4 2.9 9

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0.1 0.6 8.3 17.8 27.6
FDR+ 0 0 0.6 4.2 11.4

Finally, in Panel C, we study the outcome from using the mixture of normals (17) with

π1 = 0.3, π2 = 0.7 and non-positive means (µ1, µ2) to limit the likelihood of a positive alpha.

The proportion of positive alphas ranges from 6% to 41.1%. For small (σ1, σ2) values, the

positive alphas are also small in magnitude and, consequently, the power is negligible. When
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(σ1, σ2) are higher than (2, 1), the power of both methods as well as their discrepancy increase

significantly and favourably for fFDR+ reaching up to 16%.

Our analysis has shown that, when controlling for FDR at an as low level as 10%, both the

fFDR+ and FDR+ have good power for large (in magnitude) alphas. When this happens, the

gain in power of the fFDR+ over FDR+ can vary depending on the underlying fund alpha

distribution: 10% to 16% (continuous distribution) and 20% to 30% (discrete distribution). On

the other hand, when the zero-alpha proportion is high and the proportion and magnitude of

positive alphas is small, the power of both methods reduces.

Finally, as we demonstrate in Section IB of the Internet Appendix that our conclusions are

not affected by the data structure (balanced versus unbalanced panel) or dependencies.

5.3. Power and FDR trade-off

In what follows, we study the impact on power when controlling for FDR at different (higher

than 10% level) targets. Our results show clear differences between the fFDR+ and FDR+

and, in support of the former, even for cases of negligible power for a 10% target. Constructing

mutual fund portfolios at higher FDR levels is sensible as otherwise we may end up with empty

portfolios. Investors have to face a trade-off between the power in detecting out-performing

funds and the FDR threshold, which we discuss next.

Table 2: Power comparison (in %) for varying FDR targets (%). The table presents some selected
cases of low powers of the fFDR+ and FDR+ at FDR target of 10%. We consider a discrete distribution:
α ∼ 0.75δα=0 + 0.1δα=1.5 + 0.15δα=−1.5; a discrete-normal mixture: α ∼ 0.75δα=0 + 0.2N (0, 1.52); and a two-
normal mixture: α ∼ 0.3N (−2.3, 12) + 0.7N (−0.7, 0.52). The simulated data are balanced panels with cross-
sectional independence.

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.3 2.5 8 18.1 32.3 48.5 64.3 76.3 85
FDR+ 0.4 0.9 2 3.9 7.4 14 24.7 41.5 65.1

Mixture of discrete fFDR+ 0.3 1.3 3.2 6.5 11.8 19.8 31.3 46.3 64.1
and normal FDR+ 0.2 0.4 0.7 1.1 1.7 2.7 4.9 10.4 26.5

Mixture of normals
fFDR+ 0 0.1 0.4 1.2 2.7 5.9 11.7 21.3 35.3
FDR+ 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1

We focus on cases of very low power when the FDR is controlled at 10%. For brevity,

we present in Table 2 our results for only balanced data under cross-sectional independence

and FDR targets up to 90%, noting that these are largely unchanged for unbalanced data. In

particular, for the underlying discrete fund alpha distribution, the fFDR+ gains rapidly power

with increasing FDR targets, peaking at 40% in excess of the FDR+ when the target is set

at 70%. For the continuous distribution, the power of the FDR+ changes very slowly and is

persistently negligible (mixture of normals) even for FDR controlled at 90%. On the other
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hand, the fFDR+ detects abundant positive alpha funds with a power that can reach up to

46% in excess of the FDR+ (mixture of two normal distributions with 90% target).

5.4. Varying the number of observations and funds

Hitherto, we have assumed a sample with m = 2,000 funds, which reflects our actual dataset

for the whole period from 1975 to 2019. When constructing a portfolio, we usually use sub-

periods of five years and the number of alive funds in these sub-periods naturally varies. In

this section, we investigate the impact of varying number of observations T per fund and the

number of funds m on the power.

In Table 3, we present the outcomes for different underlying distributions of fund alphas,

when we control FDR at a 10% target and use balanced panel data with cross-sectional inde-

pendence. We vary m from 500 to 3,000 and T from 120 months (i.e., 10 years) to 420 months

Table 3: Power comparison (in %) for varying sample size and observation length. The table
compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of observations
per fund (T ) and number of funds (m). We present three cases where alphas of m funds are drawn from i) discrete
distribution: α ∼ 0.1δα=2+0.3δα=0+0.6δα=−2 (Panel A); ii) discrete-normal mixture: α ∼ 0.3δα=0+0.7N (0, 22)
(Panel B); and mixture of two normal distributions: α ∼ 0.3N (−2, 22)+0.7N (−0.5, 1) (Panel C). The simulated
data are balanced panels with cross-sectional independence.

Number of observations per fund
m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 2.7 8.5 19.6 31.8 44.6 54.8
FDR+ 0.6 1.4 3 5.3 10.6 18.4

1000
fFDR+ 1.5 6 16.3 29.4 42.4 52.9
FDR+ 0.4 0.8 2.1 4.9 10.6 19.1

2000
fFDR+ 1.2 5.7 15.4 28 40.6 51.4
FDR+ 0.2 0.6 1.5 4.8 11.2 20.4

3000
fFDR+ 1.1 5.4 15 27.6 39.3 50.8
FDR+ 0.2 0.5 1.6 4.9 11.8 20.7

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 12.4 21.3 29.1 35.2 40.5 44.9
FDR+ 2.4 7.5 14.1 20 25.3 29.8

1000
fFDR+ 11.7 21 28.1 34.7 40 44.5
FDR+ 2.1 7.8 14.1 20.1 25.2 29.7

2000
fFDR+ 11.4 20.5 28.1 34.1 39.3 43.7
FDR+ 2.2 7.9 14.2 19.9 25.1 29.7

3000
fFDR+ 11.2 20.4 27.8 33.9 39 43.6
FDR+ 2.3 8 14.1 20 25.2 29.7

Panel C: Mixture of Normal distributions

500
fFDR+ 1.3 3 5.3 8 10.9 13.4
FDR+ 0.2 0.3 0.5 0.8 1.3 1.8

1000
fFDR+ 0.9 2.4 4.8 7.6 10.1 12.8
FDR+ 0.1 0.2 0.4 0.6 1.1 1.6

2000
fFDR+ 0.7 2.2 4.5 6.9 9.6 12
FDR+ 0.1 0.1 0.3 0.5 1 1.6

3000
fFDR+ 0.7 2.2 4.3 6.8 9.3 11.9
FDR+ 0 0.1 0.2 0.4 0.9 1.5
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(i.e., 35 years). It is evident from the reports that the power of the fFDR+ increases at a much

faster pace with increasing T . With rising m, the power of the fFDR+ slightly decreases,

whereas such is observed for the FDR+ mainly in Panel C. This is not a substantial concern

though, as in reality we do not have a very large number of alive funds in a given sub-period.

Overall, the power of the fFDR+ in excess of the FDR+ can reach 30%.

Apparently for T = 120, both procedures have low power. Empirically, when constructing

a portfolio of mutual funds, we usually use in-sample sub-periods of 5 years. In these cases,

the investors may have to raise the FDR target to a higher level as explained in the previous

section.19 In Table 4, we focus the spotlight on (small) m = 500 and T = 60 (i.e., 5 years).

It is shown there that both methods yield even lower power at the FDR target of 10%. By

increasing the target, the power of the fFDR+ in detecting out-performing funds rises faster

than that of the FDR+, especially for the discrete and mixed normal distributions.

Table 4: Power comparison (in %) for varying FDR targets for sample with small size and small
number of observations. In this table, we consider three distributions as in Table 3 for samples consisting of
m = 500 funds (balanced panels with cross-sectional independence) with T = 60 observations per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.5 2.2 5.8 12.2 20.9 30.8 41.5 53.5 66.3
FDR+ 0.2 0.5 0.7 0.9 1.3 1.7 2.1 2.6 3.6

Mixture of discrete fFDR+ 2.4 7.4 14.4 23 32.7 42.9 53.2 63.5 68.4
and normal FDR+ 0.4 0.9 1.6 3 5.6 10.4 18.9 32.2 47.3

Mixture of normals
fFDR+ 0.2 1 2.9 6.2 11.1 18 26.7 37.5 51
FDR+ 0.1 0.1 0.2 0.3 0.4 0.5 0.8 1 1.5

5.5. Estimation errors in the covariate

In the main settings of simulations, we consider a simple covariate where in the set of non-

zero alpha funds, the ranking of funds’ alpha is the same as that of funds’ covariate. This does

not hold in the whole population. Put differently, one cannot simply rank the funds based on a

covariate to distinguish the out-performing ones from the zero-alpha and the under-performing

ones. In this section, we further study the behaviour of our fFDR+ approach by adding to

the original covariate a noise reflecting potential estimation biases, as all covariates in the real

data are calculated based on a certain sample period. More specifically, instead of using the

covariate Z as in our previous simulations, we use Z ′ = (z′1, . . . , z
′
m) given by

z′i = zi + ηi, (19)

19In fact, in order to construct non-empty FDR+ portfolios based on five-year in-samples, BSW introduce a
procedure where they allow the estimate of FDR+ to be above 70% for several years.
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where ηi denotes the noise and is generated independently from a normal distribution N(0, σ2
η).

Alternatively Z ′ can be viewed as a realization of some informative covariate which aims to

capture Z. Depending on the scale of the estimation error, the realized covariate could have

different levels of information. We do not know actual estimation errors in covariates in reality.

Thus, we simulate low to high noise in our covariates. More specifically, we consider three

different values of ση including σ1 = 0.5/
√
12 and σ2 = 1/

√
12. These values are based on the

fact that the covariate Z ∼ U [0, 1], which has a standard deviation of 1/
√
12. We confirm that

the fFDR+ controls well for the FDR in this setting and the figures are virtually the same

as those presented in the previous sections in the original setting. This is the most important

characteristic of fFDR+ we should expect, that is, ability to control well for the risk even when

the new information contains noise.

In Table 5 we provide further information by presenting the power (at FDR target of 10%)

of the fFDR+. Comparing with Table 1, the power is lower but still remarkably higher than

that of the FDR+ with a varying gap across cases of the alpha distribution and the choice

of ση.As will be shown in our empirical analysis, the fFDR+ with use of each covariate gains

significant power over the FDR+. Therefore, we could assume that covariates in our application

Table 5: Power (in %) of fFDR+ under noised covariate. The data are generated as in tables 1–3 except
the use of a new covariate containing a noise: Z′ = Z + η instead of Z. The noise is drawn independently form
normal distribution η ∼ N(0, σ2

η) where ση taking value in {σ1 = 0.5/
√
12, σ2 = 1/

√
12}.

Panel A: Discrete distribution.
α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(π+, π0, π
−) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

(10,75,15)% 0.3 0.3 4.7 3.9 19.6 16.9 41.9 37.5 63.7 59.3
(10,60,30)% 1 0.7 8.7 6.5 28 23.1 52 45.7 71.8 66.3
(10,30,60)% 2.6 1.5 16.4 12 43.7 36.1 69.8 61.8 85.7 79.9
(13,67.5,19.5)% 0.7 0.6 8.2 6.7 27.5 23.6 50.8 45.9 71.2 66.6
(13,48,39)% 1.9 1.3 14 10.7 38.2 32.1 62.8 56 80.6 75.2
(13,9,78)% 5.1 3.3 27.8 21.7 62.3 55.2 87.6 82.4 96.6 94.2

Panel B: Mixture of a discrete and a normal distributions.
σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

π0 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

75% 0.2 0.1 14 11.9 33.9 31.7 48.3 46.4 58.1 56.4
60% 0.6 0.3 19.3 16.4 39.6 36.9 53.8 51.3 62.5 60.5
30% 2.2 1.2 28.2 23.9 49.2 45.4 62 59 70.5 68
67.5% 0.4 0.2 16.8 14.3 36.8 34.4 51.2 49 60.7 58.7
48% 1.2 0.7 22.9 19.4 43.6 40.3 57.1 54.4 65.6 63.3
9% 3.6 2.1 34 29 56.1 51.7 68.5 65.4 75.9 73.8

Panel C: Mixture of two normal distributions.
(σ1, σ2)

(1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)
(µ1, µ2) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

(-2.3,-0.7) 0 0 0 0 1.2 0.6 6.5 4.2 15 11.2
(-2,-0.5) 0 0 0 0 2.1 1.1 8.9 6 18.2 13.9
(-2.5,0) 0 0 0.1 0.1 4.3 2.4 12.2 8.3 22.1 17.1
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have relatively less noise than ones in this simulation.

Concluding this section, we recollect that the simulated power of fFDR+ in detecting

out-performing funds is found to be larger than FDR+’s. This persists for different fund

alpha distributions, balanced and unbalanced data, cross-sectional dependence of error terms

accounted for or not. This power advantage depends on the magnitude and proportion of

positive alphas as well as the proportion of zero alpha in the population, the number of funds in

the sample, estimation errors in the covariates, and the average number of observations per fund.

Especially when the last factor is small, leading to a diminished power for both procedures, we

can recover that for the fFDR+ by uplifting the FDR level. In our empirical application of the

next section, we show how the investors can benefit from this.

6. Empirical Results

6.1. Five covariates proposed in the literature

We start our empirical investigation of the fFDR+ approach by considering five covariates

that may convey information about the performance of mutual funds. They are shown to be

persistent and, therefore, can predict the performance of mutual funds. We also propose four

new covariates based on asset pricing models.

First, we study the R-square of Amihud and Goyenko (2013), which is estimated from the

Carhart four-factor model and measures the activeness of a fund. If a fund replicates the market,

the R-square will be close to one; if, instead, it is more active, it will have a small R-square and

in this case, according to the authors, funds tend to perform better.

The second covariate is the Fund Size of Harvey and Liu (2017). This takes into account

both the fund size, which is the total net assets under management (TNA) of a fund, and the

industry size, which is the total assets under management of all active mutual funds in the

sample (sum of TNA). More specifically, for fund i at time t, it is defined as

Fund Sizei,t = ln
TNAi,t

IndustrySizet
− ln

TNAi,0∗

IndustrySize0∗
, (20)

where t = 0∗ corresponds to the time of the first TNA observation in our sample. The Fund

Size reflects the growth in scale of a fund relative to the whole active mutual fund market.

Harvey and Liu (2017) show a significant negative relationship between Fund Size and funds’

performance.20

20Pastor et al. (2015) and Chen et al. (2004) as well as Zhu (2018), respectively, argue that the industry size
and the fund size (approximated by the logarithm of the fund’s TNA) have a negative impact on the funds’
performance. We use the Fund Size of Harvey and Liu (2017) as it incorporates information of both covariates.
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The third covariate is the Return Gap of Kacperczyk et al. (2008), which is intended to reflect

the unobserved actions of the funds. Mutual funds usually disclose their portfolio holdings and

return periodically, e.g., quarterly or semi-annually. The investors are unaware of the funds’

trading activities in the period of consecutive reports. The Return Gap of a fund is defined as

the difference between the return that is disclosed by the fund and the return that the fund

would have based on disclosure of its last portfolio holdings. Kacperczyk et al. (2008) show that

the funds’ performance can be predicted by their past return gaps; mutual funds with higher

past return gap tend to perform better in the future.

Our fourth covariate is the Active Weight of Doshi et al. (2015), which aims to gauge the

fund’s activeness level and is given by the sum of the absolute differences of the stock value

weights and the actual weights that the fund assigns to the stocks in its portfolio holdings. In

their research, they show that funds with higher active weight tend to perform better. To obtain

meaningful values for the active weight and the return gap, as in Kacperczyk et al. (2008) and

Doshi et al. (2015), we require each mutual fund to hold at least 10 stocks in its portfolio at

any time.

The fifth covariate is the Fund Flow. The interaction of fund flow and funds’ performance

has been studied quite extensively such as in Sirri and Tufano (1998), Berk and Green (2004),

Harvey and Liu (2017) and Capponi et al. (2020), among others. Zheng (1999), in particular,

discovers that funds receiving money perform better than those that lose money. The author

also shows that investors can earn abnormal returns by using small funds’ flow information.

Here, we follow Bris et al. (2007) and define Fund Flow at time t as

Fund Flowt =
TNAt − (1 + rt)TNAt−1

(1 + rt)TNAt−1
, (21)

where rt is the return of the fund in the period t− 1 to t.

In addition to the aforementioned well-known covariates, we propose four new covariates that

are based on asset pricing models and are available for all funds in our sample. These are the

Sharpe ratio, the Beta and Treynor ratio obtained from the Capital Asset Pricing Model, and

the idiosyncratic volatility (Sigma) of the Carhart four-factor model. The Sharpe and Treynor

ratios are risk-adjusted performance measures of funds, whereas the Beta and Sigma reflect

systematic and idiosyncratic risk, respectively. These metrics reveal aspects of the past mutual

funds’ performance and, thus, may assist in identifying out-performing and under-performing

Other studies on the relationship between fund size and performance and funds’ holding liquidity (e.g., Yan,
2008) or funds’ merger (i.e., McLemore, 2019) document the same conclusion.
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funds. Asset pricing metrics are regularly used by wealth managers and academics in the fields

of trading, asset pricing and investors’ performance, but are overlooked in the mutual funds

literature.21

6.2. The FDR+ and fFDR+ portfolios

In this section, we illustrate how fFDR+ helps to identify out-performing mutual funds

using a portfolio approach following BSW. More specifically, at the end of year t, we select a

group of funds to invest in year t + 1 based on historical information from the last five years

(t− 4 to t). In order to implement fFDF+ and FDR+, we require the observed values of the

covariates of each fund, the estimated alpha and the p-value of each test. We execute, first, the

Carhart four-factor model over the 5-year period to estimate the alpha.

The informative value of the Return Gap, Active Weight, Fund Flow and Fund Size on

funds’ performance is persistent, i.e., the choice between using the most recent (final-year)

observations for these covariates or their average values over the whole in-sample (five years)

is of less importance, as demonstrated by our robustness check in Section IF of the Internet

Appendix.22 Although the predictability of the covariates may last for a long horizon of up to

five years, we expect their informative values to decrease with time; hence, forming portfolios

based on their recent realizations is preferred to their average values of the whole last five years’

time. Because of this, Return Gap, Active Weight, Fund Flow and Fund Size are calculated

based on data in the final year of the in-sample (i.e., we use the exposure of the fund flow in

year t for the Fund Flow, the value at the end of year t for the Fund Size, whereas for the

Active Weight and the Return Gap we use their average exposures in year t). The R-square,

Sharpe Ratio, Beta, Sigma and Treynor ratio are based on the whole five years. We calculate

our p-values in a similar fashion to BSW. For the funds that suffer from heteroskedasticity or

autocorrelation, we calculate the t-statistics based on the heteroskedasticity and autocorrelation-

consistent standard deviation estimator of Newey andWest (1987). For each fund, we implement

10,000 bootstrap replications to estimate the distribution of the t-statistic and subsequently

calculate the bootstrapped p-value for the fund.23

As required by our method, the p-values of any truly zero-alpha funds, given a covariate

21For instance, Clifford et al. (2021) study the relation between idiosyncratic volatility and mutual funds flows
but they do not focus on using this informative covariate as a factor for funds selection.

22Readers may refer to Kacperczyk et al. (2008), Doshi et al. (2015), Zheng (1999) and Harvey and Liu (2017)
for the studies of the persistence of the Return Gap, Active Weight, Fund Flow and Fund Size, respectively. It
should also be noted, that in our fFDR framework, all covariates are transformed to uniform with only the
ranking of the covariates across the funds counting.

23The bootstrapping procedure may result in duplicated bootstrapped p-values. For this, we use an adequate
number of replications to reduce that effect and obtain good estimates of π0(z) and f(p, z).
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value, should be uniformly distributed. Although it is difficult for us to validate this requirement

in reality as we never know which funds are truly zero-alpha, it appears intuitive for us to assume

that this condition is satisfied. Consider, for example, the R-square. We expect the truly zero-

alpha funds to invest randomly in the stock market, thus they should possess an R-square value

of roughly equal to one. Conditional on a specific R-square value that a truly zero-alpha fund

could have, i.e., close to one, if the fund is truly zero-alpha then its p-value should follow a

uniform distribution like any usual true null hypothesis test.24

Next, we describe the selection process of out-performing funds to invest in year t+1 given

a FDR target τ in (0, 1). First, we recall the relevant selection process for BSW’s “FDRτ”

portfolio. For each γ on the grid {0.01, 0.02, ..., 0.6}, we calculate the F̂DR
+

γ given by (13).

Then, we find γ∗ such that F̂DR
+

γ∗ is closest to τ ; this is the significant threshold for BSW’s

portfolio, that is, all the positively estimated alpha funds in the in-sample window with p-values

≤ γ∗ will be included in the FDRτ portfolio. This guarantees the non-empty property of the

portfolio but does not always meet the FDR target τ , thereby F̂DR
+

γ∗ may be much higher

than τ .

Second, we select out-performing funds for a fFDR-based portfolio, namely, “fFDRτ”.

To establish comparable fFDRτ and FDRτ portfolios, we implement the fFDR+ (with a

particular covariate) to control pFDR+ at a target τ∗ that reflects the FDR level controlled

by the FDRτ portfolio but has to be less than one.25 As the FDR of the FDRτ portfolio is

controlled at level F̂DR
+

γ∗ which may be greater than one or less than τ , we set: τ∗ = τ if

F̂DR
+

γ∗ ≤ τ < 1; τ∗ = F̂DR
+

γ∗ if τ < F̂DR
+

γ∗ < 1.26 If F̂DR
+

γ∗ ≥ 1, we just select all the funds

in the FDRτ portfolio.

For both the fFDRτ and FDRτ portfolios, we invest equally in the selected funds in the

following year. If a selected fund does not survive for a month during the year, then its weights

are redistributed to the remaining (surviving) funds.

As aforementioned, at the beginning of each year we select funds in to a portfolio by using

24Indeed, the p-value of each test i is defined as pi = 1− F (|ti|), where F (|ti|) = P(|Ti| < |ti||αi = 0) and Ti

is the conventional t statistic of test i and ti its estimated value. If hypothesis αi = 0 is true, conditional on a
specific covariate value, the p-value of test i is uniformly distributed since P(Pi < pi) = P(1 − F (|Ti|) < pi) =
P(|Ti| > F−1(1− pi)) = 1− P(|Ti| < F−1(1− pi)) = 1− F (F−1(1− pi)) = pi.

25If we implement the fFDR+ and FDR+ to strictly control FDR at a target, say, τ = 10% or τ = 20%,
both result in empty portfolios for many years. With BSW’s FDRτ portfolios, the problem is solved. In BSW’s

study, for the FDR10% portfolio, the empirical F̂DR
+

γ∗ is always greater than 10% with an average of 41.5%.

For our data, among the thirty eight times of portfolio construction, with target τ = 20% (10%) the F̂DR
+

γ∗ is
less than τ on eight (zero) occasions and greater than one on five occasions for both targets.

26We could have set τ∗ = F̂DR
+

γ∗ for both cases. However, it seems fairer to set τ∗ = τ if F̂DR
+

γ∗ ≤ τ since
both portfolios initially aim to control FDR at τ .
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the previous five consecutive years as in-sample. To be eligible for this, a fund needs to have 60

observations in the in-sample. We start constructing our portfolios from December 1981.27

6.3. Performance comparison

In this section, we assess the portfolios’ performance based on their alphas. We demonstrate

the advantage of the fFDR+ in picking out-performing funds and the efficient use of the

covariates’ information. We estimate the alpha evolution and the average alphas of our fFDRτ

portfolios based on the nine covariates and compare with those of the FDRτ portfolio. We

also explore the performance of fFDRτ portfolios after linearly combining the nine covariates

and using their first principal component, an ordinary least squares regression, a least absolute

shrinkage and selection operator, a ridge regression and an elastic net.28

We focus on portfolios with small FDR targets of τ = 10%. We repeat all estimations with

τ = 20% in Section IE of the Internet Appendix. Our results remain unchanged for all exercises.

6.3.1. The alpha evolution

For each portfolio, we obtain its alpha evolution by calculating the Carhart four-factor alpha

using its returns from January 1982 up to the end of each month from December 1991 onwards.

In addition to the aforementioned portfolios, we construct two naive benchmark equally weighted

portfolios, without control for the FDR: one that simply includes all the mutual funds in the

in-sample window to be invested in the following year; and, another that contains only those

with positive estimated alphas. We name these two portfolios Equal Weight and Equal Weight

Plus.

We present all the alpha evolution in Figure 5. It is obvious from it that the FDR10% port-

folio gains higher alphas than the equally weighted portfolio and all the fFDR10% portfolios

outperform the FDR10%. Ultimately, at the end of 2019, the fFDR10% portfolios with the

R-square and Beta covariates are found to be the best with annualized alphas of about 1.7%,

followed by the fFDR10% portfolios with the Active Weight, Fund Flow, Sigma, Treynor

ratio, Fund Size, Sharpe ratio and Return Gap covariates achieving annualized alphas of at

least 0.77%. By contrast, the FDR10%, without the use of covariate information, winds up

with a small positive alpha of 0.36%. It is noteworthy that all fFDR10% and the FDR10%

portfolios seem to rebounce in terms of performance over the last two years of our sample.

27As Fama and French (2010) point out possible biases in the CRSP mutual fund data before 1984, we conduct
a robustness check using a sample from 1984 to 2019; based on our results, presented in Section IC of the Internet
Appendix, our conclusions remain unchanged.

28In Appendix B we provide a detailed comparison of all the fFDRτ portfolios in regard to several trading
metrics, whereas in Section ID of the Internet Appendix the performance in terms of wealth evolution is presented.
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Figure 5: Alpha evolution of fFDR10% and FDR10% portfolios over time. The graph presents the
evolution of annualized alphas (in %) of the nine fFDR10% portfolios corresponding to the nine covariates, the
portfolio FDR10% of BSW and the two equally weighted portfolios.

6.3.2. The average alpha

The alpha evolution in the previous section is calculated based on the portfolio returns

from the start of 1982 up to a time point of interest. This may represent limited informa-

tion in the case of investors with a different investment period of, say, five or ten years. For

this, in Table 6, we report the average alpha that the investors will gain if they invest for

n ∈ {5, 10, 15, 20, 30, 35, 38} consecutive years: for each portfolio, we calculate its “n-year”alpha

based on the portfolio returns over a period of 12n consecutive months, we repeat by shift-

ing every time one month forward, and eventually present the average alpha. We report the

fFDR10% for each covariate and the FDR10%. We note that the last case, n = 38, corresponds

to the alphas for the whole period from January 1982 to December 2019 and are the last points

in the plots in Figure 5.

We find that the fFDR10% portfolios outperform the FDR10% for all considered covariates

and for all n. Although these results should be interpreted with caution (some covariates were

not well known in the literature at the start of our sample, such as the Active Weight and the

Fund Size which were published in 2015 and 2017, respectively), they do indicate the stability

of our approach for different investment horizons.
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Table 6: Comparison of portfolios’ performances for varying time lengths of investing. In this
table, we consider 10 portfolios including nine fFDR10% portfolios corresponding to the nine covariates and
the FDR10% portfolio of BSW. We compare the average alphas of the portfolios that are kept in periods of
exactly n consecutive years. For example, consider n = 5. For each portfolio, we calculate the alpha for the first
5 years based on the portfolios’ returns from January 1982 to December 1986. Then, we roll forward by a month
and calculate the second alpha. The process is repeated and the last alpha is estimated based on the portfolios’
returns from January 2015 to December 2019. The average of these alphas is presented in the first rows of the
table.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma

5 1.49 0.87 1.24 0.56 0.92 0.57 0.73 1.09 1.19 0.12
10 1.48 0.85 1.18 0.51 0.93 0.65 0.76 1.2 1.06 0.05
15 1.7 0.94 1.4 0.72 1.06 0.79 0.88 1.2 1.09 0.14
20 1.84 1.05 1.59 0.91 1.15 0.91 0.96 1.31 1.17 0.26
25 1.61 0.9 1.36 0.67 0.99 0.8 0.86 1.24 1.09 0.13
30 1.41 0.78 1.23 0.54 0.95 0.78 0.86 1.2 1.01 0.01
38 1.69 1.14 1.38 0.77 1.3 1.04 1.15 1.67 1.27 0.36

6.3.3. Sub-period performance

In the alpha evolution in Figure 5, we note that the performance of our portfolios varies over

time. By construction, this figure contain returns which start from January 1982 and are not

representative of the recent mutual fund performance. In order to investigate the contribution

of the returns in different periods to the performance of the portfolios, we split the whole period

into four non-overlapping sub-periods: 1982–1991 (P1), 1992–2001 (P2), 2002–2011 (P3) and

2012–2019 (P4). We repeat the exercise for each sub-period and present in Table 7 the average

5-year alpha and alpha of portfolios (with a FDR target τ = 10%) in the sub-period.
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Table 7: Performance of portfolios in sub-periods. The table displays the performance of the nine fFDR10% portfolios corresponding to the nine covariates, the
FDR10% and equally weighted portfolios in sub-periods (P1: 1982–1991, P2: 1992–2001, P3: 2002–2011 and P4: 2012–2019) in terms of the average 5-year alpha (annualized,
in %), the annualized alpha (in %) of the whole sub-period, the corresponding t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent standard
error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha Whole sub-period t-statistic Annual Sharpe Ratio
Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
R-square 3.18 2.37 1.29 1.97 2.74 2.74 2.14 3.21 2.81 1.64 0.71 1.59 0.65 0.7 0.26 1.37
Fund Size 2.01 1.74 0.23 1.44 1.86 2.27 0.53 3.07 2.18 1.18 -0.29 1.56 0.62 0.61 0.2 1.37

Active Weight 3.01 3.1 -0.48 1.19 2.87 3.11 -0.01 0.56 2.47 1.85 -0.54 0.53 0.65 0.74 0.19 1.17
Return Gap 2.29 0.91 -0.43 0.55 2.11 1.78 0.17 0.09 2.3 1.04 -0.3 0.09 0.6 0.61 0.2 1.12
Fund Flow 2.65 0.73 0.06 1.82 2.73 1.32 0.54 3.44 2.22 0.74 -0.06 1.77 0.66 0.62 0.22 1.42
Sharpe 1.45 0.7 0.57 1.11 1.83 0.87 0.94 2.99 1.97 0.59 0.25 1.46 0.64 0.72 0.25 1.37
Treynor 1.77 0.73 0.62 1.37 2.12 0.98 0.93 3.19 2.03 0.63 0.19 1.61 0.64 0.69 0.24 1.38
Beta 3.52 0.72 0.45 2.02 3.92 1.58 1.33 3.65 2.15 0.64 0.06 1.94 0.65 0.45 0.21 1.43
Sigma 2.19 1.66 1.6 2.36 2.07 1.66 2.03 3.63 1.88 0.91 0.84 1.93 0.59 0.64 0.29 1.38

FDR10% 2.7 0.6 -0.47 -0.35 2.23 1.2 0.09 1.63 2.01 0.83 -0.33 0.69 0.6 0.65 0.19 1.09
Equal Weight -0.45 -1.65 0.29 -1.56 -0.48 -1.28 0.2 -1.34 -1.11 -1.53 -0.36 -2.65 0.48 0.54 0.23 1.01

Equal Weight Plus 0.76 -0.96 0.26 -0.65 0.84 -1.01 0.4 -0.38 1.17 -1.12 -0.36 -0.62 0.55 0.54 0.21 1.11



In terms of alphas and average 5-year alphas, it is clear that all the portfolios perform well

in the first two sub-periods before suffering a decline in the third sub-period. On P3, we observe

negative average 5-year alphas for the FDR10% portfolio and the fFDR10% portfolios with

Active Weight and Return Gap covariates. On the last sub-period, this decrease continues

for FDR10%, whilst all of the fFDR10% portfolios witness rebounds. We note that all the

fFDR10%, except the ones with Return Gap and Active Weight covariates, achieve both

positive alpha and average 5-year alpha in all the sub-periods. The t-statistic columns for

the whole sub-period alpha, show that most portfolios have significantly positive alphas in the

first sub-period. Interestingly, for the Sharpe ratio, we witness the highest reports in the last

sub-period (which is also slightly shorter), whereas the lowest ones appear in the third sub-

period which covers the global financial crisis of 2007–2008. From the realizations of the equally

weighted portfolio, that is, the portfolio that selects all the eligible funds in the in-sample

windows and invests them equally in the following year, we infer that the high Sharpe ratio in

the final sub-period partially comes from the whole mutual fund market. The Equal Weight Plus

portfolio, which invests in all funds with positive estimated alphas in the previous five years,

is always better than the Equal Weight one. This simple screening portfolio even outperforms

the FDR10% in the last two sub-periods. The alphas of the fFDR10% portfolios, by contrast,

are nuanced depending on the covariate used; most of them beat the equally weighted one in

all the sub-periods and for all the metrics (with notable exceptions of the Active Weight and

Return Gap covariates in the third sub-period).

The implications of these results are as follows. First, we note that the R-square, Return

Gap, Active Weight, Fund Flow and Fund Size retain their predictive abilities for mutual fund

performance in recent years. From the five traditional covariates, the R-square, Fund Size and

Fund Flow still have predictive abilities even after their respective publication dates.29 Our

results disagree partly with the findings of Jones and Mo (2021) who argue that published

predictors are losing value in the recent period due to increases in arbitrage activities. Second,

we note that our four new covariates contain valuable information on mutual funds’ performance

that in recent years can surpass the conventional covariates in some cases (see, for example, the

performance of the fFDR10% portfolios in P4 with the Sigma and the Return Gap). Third,

they further verify that our approach can resolve the identification issues in mutual funds due

to noise/luck where other approaches (such as BSW) fail to.

29Appendix C shows that three out of the five covariates still gain significant alphas in the post-published
period.
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To further support the aforementioned argument on identification issues, we compare the

performance of the portfolios formed in the fFDR framework with a traditional sorting portfolio

formation. If a covariate has a highly linear relation with the performance of mutual funds,

then forming a portfolio based on sorting the funds on the covariate should be sufficient. We

construct single- and double-sorting portfolios similarly to Kacperczyk et al. (2008) and Doshi

et al. (2015), and Amihud and Goyenko (2013), respectively.30

The performance in terms of alpha of those portfolios from 1982 to 2019 is presented in

Table 8. Our results show that most of the sorting portfolios, except the Active Weight and

Sharpe ratio, have negative or negligible positive alphas at the end of 2019, which contrasts

to the assumption of a linear relationship between the covariate and the funds’ performance.

Obviously, sorted portfolios perform better if they are based on the correct sign of the correlation

between the underlying covariate and our funds’ performance.

Table 8: Performance comparison of portfolios based on fFDR and portfolios based on sorting
on covariates (single-sorting) as well as based on both covariates and past alpha (double-sorting).
The table shows the portfolios’ annual Carhart four-factor alpha (in %) for the period January 1982 to December
2019. At the end of each year, for the single-sorting 10% portfolio, funds are sorted by the covariate. Depending
on whether the relationship of the covariate and the fund performance is positive or negative, the funds in the
top or bottom 10% are chosen to invest in the following year. For the double-sorting 10% portfolio, the funds
chosen in the single-sorting 10% are ranked based on the past five-year alpha and then only 10% of the funds
in the top are selected. Note. As documented in the literature, the R-square and Fund Size (Fund flow, Return
Gap and Active Weight) have a negative (positive) effect on the mutual funds’ performance. The single- and
double-sorting portfolios constructed based on this assumption appear italicized.

Portfolio R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma

Panel A: Performance of fFDR10% and fFDR20% portfolios

fFDR10% 1.69 1.14 1.38 0.77 1.30 1.04 1.15 1.67 1.27
fFDR20% 1.84 1.16 1.45 0.82 1.28 1.02 1.10 1.77 1.61

Panel B: Assuming a positive effect of the covariate on performance of the fund

Single sort 10% -1.07 -0.64 -0.63 -1.46 -1.02 0.13 -0.07 -2.11 -2.40
Double sort 10% -1.03 0.03 1.43 -0.40 0.33 0.18 0.44 0.30 0.97
Single sort 20% -1.17 -0.75 -0.67 -1.15 -0.75 -0.17 -0.28 -1.80 -1.69
Double sort 20% -0.60 -0.18 1.15 -0.07 0.11 0.01 -0.10 -0.64 -0.53

Panel C: Assuming a negative effect of the covariate on performance of the fund

Single sort 10% -0.89 -0.83 -1.40 -1.45 -1.00 -1.96 -2.28 0.49 -0.50
Double sort 10% -1.72 0.30 -1.39 -0.37 0.31 1.86 0.80 0.18 0.47
Single sort 20% -0.86 -1.01 -1.14 -1.34 -1.04 -1.49 -1.49 0.21 -0.67
Double sort 20% -0.34 0.25 -1.20 0.04 -0.01 0.47 0.16 0.19 -0.03

The portfolios based on fFDR gain significant positive alphas and beat the corresponding

sorted portfolios. These results further validate the advantage of our method in exploiting the

non-linear relationship of the covariates, luck and funds’ performance. The inability of the

traditional sorted portfolios, that dominate the related literature, to reflect the predictive value

of the covariates under study is thus noteworthy.

In Section IG of the Internet Appendix, we implement an exercise to combine the covariates

30For further details on the construction of these portfolios we refer the reader to Appendix D.
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to a new one via linear regression and shrinkage method. We see that these simple linear combi-

nations of the covariates does not improve the performance of the fFDR based portfolios. This

result further supports the assumption of the non-linear relationship between the considered

covariates and the performance of mutual funds. As further robustness checks, in Section IH

of the Internet Appendix, we demonstrate that our findings are robust with respect to a data

subset where we require a minimum of $15 million in TNA for a fund to be considered. In

Section IH of the Internet Appendix, we construct a similar set of portfolios, namely fFDR−τ ,

that aim to select the under-performing funds. We see that these portfolios successfully pick

the unprofitable funds and are consistently beaten by the equally weighted portfolios.

7. Concluding Discussion

In this paper, we introduce the fFDR+, a novel multiple hypothesis testing framework,

that incorporates informative covariates to raise the power of detecting outperformers, and

apply it to mutual fund investing. First, we conduct simulation experiments to assess how well

our method performs in controlling FDR and raising power compared to the FDR+ method of

BSW. We then construct empirical portfolios based on our new method and nine covariates. We

study five covariates, which, based on earlier contributions, convey information about mutual

funds’ performance and propose four new ones based on asset pricing models. We show how

the admixture of control for FDR and incorporated covariates advances the generation of more

positive and higher alphas than a portfolio that controls FDR only or a portfolio based on

sorting on the covariate and the past funds’ performance.

The implications of our study are both methodological and empirical. The methodological

literature in the field of selecting out-performing mutual funds is rich and expanding. In addition

to the influential and well-cited study of BSW, other notable contributions are due to Kosowski

et al. (2006), Andrikogiannopoulou and Papakonstantinou (2016), Harvey and Liu (2020) and

Grønborg et al. (2021). All these have their merits and the authors present several promising

empirical findings. In our study we focus on the FDR, whilst we defer an examination of

their power relative to ours to future research. Nevertheless, we ought to note three main

distinguishing features of our method. First, it allows the use of more data in the form of

informative covariates, whilst the vast majority of others are limited to funds’ past returns

and their cross dependencies. Second, it is simple to implement and computationally less

intensive than some of the most recent ones (e.g., the double bootstrap of Harvey and Liu,

2020). Third, our work can be extended to other problems in which statistical power weighs
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more than conservatism (i.e., the FDR threshold is higher), such as in the selection of hedge

funds and bond funds or the assessment of trading strategies.

The empirical implications of our study are also of interest to academics and practitioners.

We demonstrate that the five traditional mutual fund covariates can offer substantial profits

in more recent periods. However, the relationship between these covariates, luck and funds’

performance is non-linear. To fully exploit them, one should rely on powerful methods that

control luck and noise. Our method ensures that. We also introduce four new covariates and

find that their performance in our context is strong and surpasses that of traditional covariates;

a finding that is expected to be of interest to investment managers who are constantly looking

for valuable covariates in portfolio selection.

As with any methodological approach, there are caveats with our fFDR procedure. In

particular, this requires large datasets and gains higher power as the FDR threshold increases

(see Sections 5.3 and 5.4). This implies that our approach should not be applied in problems

which require a small FDR target (i.e., when the risk of a false discovery can lead to disastrous

outcomes). As in our context of mutual funds’ performance, it is difficult to explore covariates

that seem promising (see, for example, the list of covariates studied in Jones and Mo, 2021) but

with limited data availability.

We aspire that the fFDR and fFDR+ methods will become essential tools for people

confronted by multiple competing factors, funds or models. The fields of finance and economics

are extending towards big datasets and the literature is filled with predictors that may have

value in economic variables of interest. Our approach can contribute to the evaluation of all

these predictors and be a valuable arrow in the quiver of both academics and practitioners.
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Appendix A. Estimating π0(z) and f(p, z)

Let {(pi, zi)}mi=1 be the collection of p-value and covariate realizations of the different funds

under consideration, with {zi}mi=1 transformed in uniform distribution [0, 1] (see Section 2.1).

We create fund bins {Kb}nb=1, where Kb contains a fund i if zi ∈ ((b − 1)/n, b/n] and for each

bin Kb we estimate a common π0(z) for all the funds i in the bin. For some common λ ∈ (0, 1),

we estimate the π0(z) in each bin b by

π̂0,b(λ) =
#{pi > λ, zi ∈ Kb}

(1− λ)#Kb
, b = 1, 2, . . . , n. (A.1)

We determine λ by minimizing the mean integrated square error (MISE):

MISE(λ) = bias2 + variance =

(∫ 1

0
ϕ(z, λ)dz − π0

)2

+

∫ 1

0
[π̂0(z, λ)− ϕ(z, λ)]2dz (A.2)

We estimate π0 using the smoothing spline method of Storey and Tibshirani (2003, Remark B).31

Similarly to CRS, we calculate π̂0(zi, λ) = π̂0,b(λ) for each grid value λ ∈ Λ = {0.4, 0.5, . . . , 0.9},

i = 1, . . . ,m and b = 1, 2, . . . , n, the π̂0(zi, λ) and, subsequently,
∫ 1
0 π̂0(z, λ)dz =

∑m
i=1 π̂0(zi, λ)/m.

The unknown ϕ(z, λ) is estimated by ϕ̂(λ, z) = π̂0(z,Λmin)−cλ(1− π̂0(z,Λmin)), where cλ is cho-

sen such that
∫ 1
0 ϕ̂(λ, z)dz =

∫ 1
0 π̂0(λ, z)dz. We then obtain the optimal λ∗ = argminλMISE(λ).

To estimate the joint density function f(p, z), CRS use a local likelihood kernel density

estimation (KDE) method with a probit transformation (Geenens, 2014). Specifically, let Φ(t) =

1√
2π

∫ t
−∞ e−x2/2dx and Φ−1 its inverse. Using z′i = Φ−1(zi) and p′i = Φ−1(pi), we obtain a

“pseudo-sample” {(p′i, z′i)}ni=1, i.e., we transform the variables (p, z) to (p′, z′); we denote by

f̃(p′, z′) the joint density function of (p′, z′), which CRS estimate using the local likelihood

KDE method. The bandwidth of the KDE is chosen locally via a k-Nearest-Neighbor approach

using generalized cross-validation; this step can be implemented easily via the freely available

R package locfit. The desired density function is then estimated as f̂(p, z) = f̃(p′,z′)
ϕ(p′)ϕ(z′) where

ϕ(x) = 1√
2π
e−x2/2.

Additionally, f(p, z) may be non-increasing in p for each fixed z. CRS implement one more

step which modifies the f̂(p, z) so that monotonicity is ensured. In our simulations, we use all

the aforementioned techniques. In the empirical part, the monotonicity is switched off as this

property is unknown in our data. For more details, readers are referred to CRS and their R

package fFDR, Geenens (2014) as well as to the references therein.

31On rare occasions when the sample size m is small, the smoothing spline method does not work adequately.
In these cases, we use the bootstrap method of Barras et al. (2010, Appendix A.1).
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Appendix B. A comparison of portfolios’ trading metrics

Next, we evaluate our portfolios in regard to a set of trading metrics, including the annualized

estimated alpha α̂ of the Carhart four-factor model, its bootstrap p-value and t-statistic (with

use of heteroskedasticity and autocorrelation-consistent standard error), the annual standard

deviation of the four-factor model residuals (σ̂ε), the geometric mean return in excess of the

one-month T-bill rate, the annual Sharpe ratio and the annual Information Ratio α̂/σ̂ε. All

metrics are presented in Table B.9. We find that the fFDR10% portfolio based on the R-square

covariate is the best for all considered metrics.

Table B.9: Comparison of performance statistics of all considered portfolios with τ = 10%. The
table compares the portfolios with regard to metrics including the annual Carhart four-factor alpha (α̂, in %) with
its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent
standard error), the annual standard deviation of the four-factor model residuals (σ̂ε, in %), the mean return in
excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR
R-square 1.69 (0.06) 1.85 4.42 7.93 0.61 0.38
Fund Size 1.14 (0.2) 1.32 4.02 7.34 0.56 0.28

Active Weight 1.38 (0.1) 1.72 3.79 8 0.6 0.36
Return Gap 0.77 (0.34) 0.99 3.81 7.38 0.55 0.2
Fund flow 1.3 (0.14) 1.56 3.78 7.75 0.6 0.34
Sharpe 1.04 (0.2) 1.33 3.37 7.77 0.62 0.31
Treynor 1.15 (0.15) 1.45 3.49 7.65 0.6 0.33
Beta 1.67 (0.07) 1.78 4.92 7.28 0.55 0.34
Sigma 1.27 (0.26) 1.16 5.01 7.69 0.57 0.25

FDR10% 0.36 (0.72) 0.37 4.75 6.5 0.52 0.08
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

Appendix C. Performance of fFDR10% in various periods

In this section, we present the alpha of the fFDR10% portfolios in periods before and after

the covariates were published. The first line of Table C.10 shows that all covariates gain positive

alpha for the period January 1982 to the end of the prior-published year. The last line of the

table indicates that three of the five previously known covariates still gain significant alpha in

the post-published period.
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Table C.10: Performance of fFDR10% portfolios in various periods prior- and post-published
year of the covariates. The table shows the annualized alpha (in %) of the fFDR10% portfolio corresponding
to each covariate in specific periods, with [a, b] denoting a period extending from the beginning of year a over to
the end of year b. For instance, the first value in the R-square column, that is, 1.75, is the alpha of the fFDR10%
with R-square covariate for the period from the beginning of 1982 to the end of 2012 (i.e., n− 1 = 2012, where
n = 2013 is the published year of the covariate). The middle value in the column is the Carhart four-factor alpha
of the portfolio for year n, which contains only 12 months corresponding to 12 data points of returns.

fFDR10%
R-square Fund Size Active Weight Return Gap Fund flow

Period n = 2013 n = 2017 n = 2015 n = 2008 n = 1999
[1982, n− 1] 1.75 0.82 1.46 1.53 1.6
[n− 10, n− 1] 1.20 -2.04 -1.27 3.00 0.35
[n− 5, n− 1] -2.11 0.11 -1.54 1.71 -0.65
[n− 4, n− 1] -1.81 -0.12 -0.76 0.62 -1.01
[n− 3, n− 1] -2.50 0.22 2.79 0.20 -1.44
[n− 2, n− 1] -2.44 0.50 3.09 0.82 -1.83
[n− 1, n− 1] -0.92 -2.1 8.00 -0.04 -0.87

[n, n] -4.77 -2.39 -3.22 2.67 -0.40
[n+ 1, n+ 1] 4.27 1.33 -1.81 2.70 20.76
[n+ 1, n+ 2] -0.21 5.45 -0.91 -0.95 6.85
[n+ 1, n+ 3] 1.45 - -0.53 -1.73 4.33
[n+ 1, n+ 4] 1.82 - -0.05 -0.81 2.36
[n+ 1, n+ 5] 3.03 - - -2.13 1.90
[n+ 1, n+ 10] - - - -0.59 2.47
[n+ 1, 2019] 3.73 5.45 -0.05 -0.3 1.31

Appendix D. The construction of sorting portfolios

Here, we describe the constructions of the single- and double-sorting portfolios which are

traditionally conducted in the literature. Specifically, the single-sorting portfolios based on a

covariate are as in Kacperczyk et al. (2008) and Doshi et al. (2015), and the double-sorting

based on a covariate and the past alpha are as in Amihud and Goyenko (2013).

To construct the single-sorting portfolio for each covariate, at the end of each year from

1981, all the mutual funds are sorted into deciles (quintiles) according to the given covariate.

For the covariate that has a negative/positive relationship with the performance of the funds,

the funds in the bottom/top decile (quintile) are selected. These form a portfolio to be invested

in the following year. To form the double-sorting portfolio, the funds selected in the single-

sorting portfolio are again sorted into decile (quintile) according to the past alpha. The funds

in the top decile (quintile) form the portfolio to be invested in the following year. This process

is rolled forward until the end of the sample period.

For consistency with the fFDR portfolios, we use the same type of 5-year rolling window,

i.e., each time we use the aforementioned observed covariates and the alpha and covariates

calculated based on the last five years.
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IA. Simulation execution

We summarize the simulation procedure as follows.

As a first step, we generate the covariate and alpha for each of the m funds. We generate the

covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform distribution [0, 1]

and assign them to the funds. For the cases (15) or (16), we determine c in (18) such that∫ 1
0 π0(z)dz = π0 for a given π0 > 0. For each fund i, we draw hi from the Bernoulli distribution

with success probability 1 − π0(zi) and assign a zero alpha to fund i with hi = 0. Finally, for

the remaining funds, we draw true non-zero alphas from the given distribution (15) or (16) and

assign them such that a fund with a smaller z has a smaller alpha. For the case (17), we draw

alphas from the distribution and then assign them to the funds; again, a fund with a smaller z

has a smaller alpha.

In the second step, we simulate the return factors from a normal distribution with parameters

equal to their sample counterparts. The loadings of these factors are also drawn from a normal

distribution with parameters equal to their sample counterparts obtained from the fund level

estimation of equation (14). We consider balanced panel data for 2, 000 funds with 274 time-

series observations; the number of 2, 000 is chosen to be close to our real sample of 2,224

funds, whereas the number of 274 periods is the median of our sample funds’ observations.

In unbalanced panel data, the number of observations for each fund is drawn randomly with

replacement from the set of the number of observations of the funds in the real-data counterpart.

Under cross-sectional independence, the noise term εi,t is drawn from a normal distribution

N (0, σ2
ε), where, as in Barras et al. (2020), σε is set equal to the median of its real-data

counterpart, that is, approximately 0.0183 for our sample. Under cross-sectional dependence,

we follow Barras et al. (2010) (BSW henceforth) and assume that all fund residuals load on a

common latent factor Gt, whereas the out-performing and under-performing funds load on the

specific factors G+
t and G−

t , respectively. Thus,

εi,t = γGt + γG+
t 1αi>0 + γG−

t 1αi<0 + ηi,t, (A.1)

where 1αi>0 and 1αi<0 are, respectively, out-performing and under-performing indicators taking

the value 1 if the fund i is out-performing or under-performing, and 0 otherwise. The three

latent factors Gt, G
+
t and G−

t are assumed to be mutually orthogonal and to the four risk factors

and have a normal distribution N (0, σ2
G), where, from BSW, σG is set equal to the average of the

monthly standard deviations of the three risk factors (size, book-to-market and momentum).

The coefficient γ is set equal to the average of the loading of the three risk factors of the 2,224
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funds in our sample. Finally, {ηi,t}i are uncorrelated and drawn from the normal distribution

N (0, σ2
η), where ση is chosen such that σε is equated to the median of its real-data counterpart,

as in the independent case.

In the last step, we implement the fFDR+ and FDR+ and compute their performance

metrics. More specifically, based on the simulated data from the previous step, we calculate

the Carhart four-factor model alpha and the corresponding p-value for each fund. We use the

resulting p-value, the estimated alpha and the covariate as inputs to the fFDR+ and FDR+

procedures. At a given target of FDR, we calculate for each method a rate of falsely classified

funds F̃DR
+
and a detected rate P̃ ower

+
:

F̃DR
+
=

Ṽ +

max
{
R̃+, 1

} and P̃ ower
+
=

C̃+

T̃+
, (A.2)

where R̃+ is the number of classified out-performing funds and, among them, Ṽ + funds are

truly zero-alpha or under-performing funds. T̃+ is the number of truly out-performing funds in

the population and, among them, C̃+ funds are classified correctly.

The previous three steps are repeated 1,000 times and we use the average F̃DR
+

and

P̃ ower
+
as estimates for the actual FDR and power.

IB. Additional simulation results

To complement Section 5 of the main manuscript, we show here the performance of the

fFDR+ in terms of FDR control and power under several settings. We first present the per-

formance of fFDR+, where π0(z) can take three different forms. We then show the results

corresponding to the balanced panel data under cross-sectional dependence. Next, we present

results for unbalanced panel data under both cross-sectional independence and dependence.

Finally, to cover all distributions studied in the literature, we exhibit simulation results for the

case where alphas are drawn from a single normal distribution.

IB.1. Results for alternative forms of π0(z)

In this section, we consider three forms of π0(z), including decreasing, increasing and being

constant with respect to z. For the decreasing and increasing cases, we specify π0(z) based

on f(z) = −1.5(z − 0.5)3 + c or f(z) = 1.5(z − 0.5)3 + c. In the interest of space, we present

results for the mass distribution of alphas with balanced panel data which is generated under

cross-sectional independence. For all forms of π0(z), even when this is constant, we conclude

similarly to the case of π0(z) with an up-and-down shape presented in the main manuscript.
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Results for other distributions as well as under cross-sectional dependence convey the same

message and are available upon request.

Table I: Power comparison (in %) for discrete distribution when π0(z) is an increasing function.
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %)
and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.20 3.60 18.10 40.60 62.50
FDR+ 0.40 1.90 12.00 32.20 53.20

(10, 60, 30)%
fFDR+ 0.70 8.00 27.90 52.20 72.60
FDR+ 0.40 2.20 13.90 36.10 57.70

(10, 30, 60)%
fFDR+ 3.10 20.10 48.60 73.30 88.20
FDR+ 0.40 3.00 21.40 47.40 69.60

(13, 67.5, 19.5)%
fFDR+ 0.50 7.20 26.20 49.90 71.00
FDR+ 0.40 3.10 17.60 39.50 60.70

(13, 48, 39)%
fFDR+ 1.60 13.60 39.00 64.90 82.50
FDR+ 0.40 3.70 21.60 45.80 66.80

(13, 9, 78)%
fFDR+ 6.30 33.20 65.10 88.90 97.10
FDR+ 0.60 7.10 37.60 69.40 88.10

Table II: Power comparison (in %) for discrete distribution:when π0(z) is a decreasing function.
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %)
and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 1.20 10.40 31.00 55.00 74.50
FDR+ 0.40 2.00 11.80 32.00 53.20

(10, 60, 30)%
fFDR+ 2.70 16.60 43.10 68.00 84.20
FDR+ 0.40 2.20 14.00 35.80 57.60

(10, 30, 60)%
fFDR+ 6.50 29.20 67.70 89.30 96.10
FDR+ 0.40 3.00 21.20 47.40 69.60

(13, 67.5, 19.5)%
fFDR+ 2.00 14.10 37.50 61.20 78.70
FDR+ 0.50 3.10 17.70 39.50 60.50

(13, 48, 39)%
fFDR+ 4.40 24.50 54.50 77.20 89.90
FDR+ 0.40 3.60 21.60 45.60 66.80

(13, 9, 78)%
fFDR+ 9.40 39.20 79.20 93.20 97.90
FDR+ 0.50 6.90 37.50 69.10 88.10
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Table III: Power comparison (in %) for discrete distribution when π0(z) is a constant function.
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %)
and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.50 5.90 22.20 44.90 66.90
FDR+ 0.40 2.00 12.00 31.80 53.60

(10, 60, 30)%
fFDR+ 1.40 12.10 35.60 60.80 78.60
FDR+ 0.40 2.20 13.80 35.90 57.40

(10, 30, 60)%
fFDR+ 4.40 25.90 58.70 80.70 91.80
FDR+ 0.40 3.30 21.30 47.90 69.50

(13, 67.5, 19.5)%
fFDR+ 1.10 9.80 30.20 54.70 74.40
FDR+ 0.50 3.20 17.60 39.80 60.80

(13, 48, 39)%
fFDR+ 2.90 18.20 44.80 69.40 84.90
FDR+ 0.50 3.60 21.00 46.00 66.70

(13, 9, 78)%
fFDR+ 8.30 37.00 73.00 91.00 97.70
FDR+ 0.60 7.10 37.50 69.40 88.20

IB.2. Results for balanced panel data under cross-sectional dependence

We start by presenting in Figures I–III the cases where the data are generated as balanced

panels under cross-sectional dependent errors. The comparisons in terms of power between

fFDR+ and FDR+ are shown in Tables IV–VIII.

Figure I: Performance of fFDR+ for discrete distribution of α. The graphs show the performance of
the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution. The simulated data
are balanced panels with cross-sectional dependence.
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Figure II: Performance of fFDR+ for discrete and normal distribution mixture of α. The graphs
show the performance of the fFDR+ in terms of FDR control when alphas are drawn from a mixture of discrete
and normal distributions. The simulated data are balanced panels with cross-sectional dependence.

Figure III: Performance of fFDR+ for continuous distribution of α. The graphs show the performance
of the fFDR+ in terms of FDR control when alphas are drawn from a continuous distribution which is a mixture
of two normals. The simulated data are balanced panels with cross-sectional dependence.
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Table IV: Power comparison (in %) for discrete distribution. The table compares the power of the
fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a discrete distri-
bution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %) and proportions (π+, π0, π

−).
The simulated data are a balanced panel with 274 observations per fund and generated with cross-sectional
dependence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.8 6.1 21.3 43.6 65.5
FDR+ 0.5 2.6 12.1 30.5 51.9

(10, 60, 30)%
fFDR+ 1.9 11.2 32.3 56.6 76
FDR+ 0.5 3 14.1 34.3 56

(10, 30, 60)%
fFDR+ 4.6 23.1 51.5 75.4 89.1
FDR+ 0.5 4 20.7 46.6 68.8

(13, 67.5, 19.5)%
fFDR+ 1.5 9.7 29 53.1 73.7
FDR+ 0.7 4.1 17 38 59.2

(13, 48, 39)%
fFDR+ 3.4 17.1 41.3 66.3 83.3
FDR+ 0.6 4.6 20.7 44.4 65.3

(13, 9, 78)%
fFDR+ 8.5 34.2 67.9 89 97.2
FDR+ 0.7 8.2 37.1 69.1 87.9

Table V: Power comparison (in %) for discrete-normal distribution mixture. The table compares
the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
discrete-normal distribution mixture: α ∼ π0δα=0 + (1− π0)N (0, σ2) with varying σ (annualized, in %) and null
proportion π0. The simulated data are a balanced panel with 274 observations per fund and generated with
cross-sectional dependence.

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.5 15.7 36.2 51.2 60.8
FDR+ 0.2 8.4 26.6 41.7 52.3

60%
fFDR+ 1.6 21.5 42.8 57.1 66.3
FDR+ 0.3 11.4 31.3 46.5 56.8

30%
fFDR+ 4.7 32.4 54.5 67.6 75
FDR+ 0.6 17.9 40.8 55.8 65.4

67.5%
fFDR+ 1 18.7 39.4 54 63.3
FDR+ 0.2 9.8 29 44 54.5

48%
fFDR+ 2.5 25.5 47.3 61.3 70.2
FDR+ 0.3 13.5 34.6 49.8 59.9

9%
fFDR+ 6.7 38 60.7 73.6 80.7
FDR+ 0.7 22 46.9 62.5 72
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Table VI: Power comparison (in %) for mixture of two normal distributions. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a mixture
of two normal distributions: α ∼ 0.3N (µ1, σ

2
1)+ 0.7N (µ2, σ

2
2) with varying standard deviation pairs (σ1, σ2) and

mean pairs (µ1, µ2) (both parameters’ pairs are annualized and in %). The simulated data are a balanced panel
with 274 observations per fund and generated with cross-sectional dependence.

(σ1, σ2)
(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0.1 0.4 5 13.6 23.3
FDR+ 0 0 0.3 2.2 7.4

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0.1 0.6 6.5 15.8 25.5
FDR+ 0 0.1 0.5 3.2 9.1

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0.4 1 9.2 18.6 28.3
FDR+ 0 0.1 1 4.7 11.7
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Table VII: Power comparison (in %) for varying sample size and observation length. The table
compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of observations
per fund (T ) and number of funds (m). We present three cases where alphas of m funds are drawn from i) discrete
distribution: α ∼ 0.1δα=2+0.3δα=0+0.6δα=−2 (Panel A); ii) discrete-normal mixture: α ∼ 0.3δα=0+0.7N (0, 22)
(Panel B); and mixture of two normal distributions: α ∼ 0.3N (−2, 22)+0.7N (−0.5, 1) (Panel C). For each alpha
population, we generate data with cross-sectional dependence.

Number of observations per fund

m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 3.7 9.4 19.9 31 43.5 54.5

FDR+ 0.7 1.4 3.2 6.2 12 18.9

1000
fFDR+ 2.2 8.3 17.1 29.8 40.4 52.9

FDR+ 0.4 1.1 2.6 5.9 11.3 19.9

2000
fFDR+ 2.1 7.3 16.5 26.8 40.6 50.6

FDR+ 0.2 0.9 2.5 5.5 11.9 19.9

3000
fFDR+ 1.9 7 16 27.8 39.5 48.9

FDR+ 0.2 0.7 2.2 5.9 12.3 19.6

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 13 22 29.2 35.8 40.6 45.5

FDR+ 3 8.1 13.8 20 25.3 29.9

1000
fFDR+ 12.5 21.2 29.1 35.1 39.8 44.2

FDR+ 2.9 8.2 14.6 20.3 24.9 29.6

2000
fFDR+ 12.1 20.9 28.4 34.9 39.4 44.3

FDR+ 2.7 8.2 14.4 20.4 25 29.8

3000
fFDR+ 11.8 20.8 28.3 34.4 39.9 43.7

FDR+ 2.7 8.3 14.4 20.1 25.6 29.6

Panel C: Mixture of Normal distributions

500
fFDR+ 1.7 3.5 6.4 8.2 11.2 14.2

FDR+ 0.2 0.3 0.6 0.9 1.4 2

1000
fFDR+ 1.2 3.2 5.6 8.6 10.8 13.3

FDR+ 0.1 0.2 0.4 0.9 1.2 1.9

2000
fFDR+ 1.1 2.8 4.9 7.6 10.1 12.8

FDR+ 0.1 0.2 0.3 0.7 1.1 2

3000
fFDR+ 1.1 2.8 5 7.6 10.3 12.6

FDR+ 0.1 0 0.3 0.6 1.2 1.9
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Table VIII: Power comparison (in %) for varying FDR targets (in %) for sample with small size
and small number of observations under cross-sectional dependence. In this table, we consider three
distributions as in Table VII for samples consisting of m = 500 funds (balanced panels) with T = 60 observations
per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.8 3 7.3 13.6 21.9 31.4 41 51.3 63.3
FDR+ 0.3 0.5 0.8 1 1.4 1.9 2.8 4 5.9

Mixture of discrete fFDR+ 3.1 8.5 15.4 23.5 32.3 41.4 50.8 60.9 67.2
and normal FDR+ 0.4 1.2 2.7 5.2 8.6 14.5 22.3 32.5 41.3

Mixture of normals
fFDR+ 0.4 1.8 4.3 8.1 13.4 29.8 27.7 37.6 50.7
FDR+ 0.1 0.1 0.3 0.4 0.5 0.8 1.4 2.5 4.1

IB.3. Results for unbalanced panel data

In this section, we present the performance of the fFDR+ under both cross-sectional in-

dependence and dependence. Figures IV–VI depict the FDR control of the fFDR+, while the

power comparisons are given in Tables IX–XI.

9



Figure IV: Performance of fFDR+ in terms of FDR control when alphas are drawn from the discrete distribution
with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure V: Performance of fFDR+ in terms of FDR control when alphas are drawn from the discrete-normal
distribution mixture with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure VI: Performance of fFDR+ in terms of FDR control when alphas are drawn from the mixture of two
normals with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Table IX: Power comparison (in %) for discrete distribution. The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of
2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %) and proportions (π+, π0, π

−). The simulated data
are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data counterpart. We study the simulated data with
both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5 α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.4 5.5 21.1 41.3 58.9 0.6 5.9 20.6 40.3 57.8
FDR+ 0.4 2.6 12.7 29.9 46.7 0.4 2.9 13 29.3 45.9

(10, 60, 30)%
fFDR+ 1.1 10.3 30.6 51.8 68 1.5 10.5 29.8 50.7 66.9
FDR+ 0.5 2.9 14.6 32.6 49.9 0.5 3.2 14.3 31.9 49

(10, 30, 60)%
fFDR+ 3.2 19.8 46.6 66.8 79.8 3.9 19.8 45.6 66 79.4
FDR+ 0.5 3.6 19.1 40 58.1 0.5 4 18.9 39.5 57.6

(13, 67.5, 19.5)%
fFDR+ 0.9 8.9 27.7 48.5 65.1 1.2 9.2 27.1 47.5 64.1
FDR+ 0.5 3.9 17.4 35.6 52.3 0.6 4.2 17 34.9 51.5

(13, 48, 39)%
fFDR+ 2.2 15.5 37.8 58.8 73.7 2.9 15.5 37.1 57.8 73
FDR+ 0.5 4.5 20.3 39.8 56.9 0.7 4.8 19.5 39 56

(13, 9, 78)%
fFDR+ 6.2 27.5 60.2 78.1 88.7 7.5 29.2 60 78.4 88.9
FDR+ 0.6 6.8 29.5 54.2 72.5 0.8 7.7 30 54.7 72.8
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Table X: Power comparison (in %) for discrete-normal distribution mixture. The table compares the power of the fFDR+ and FDR+ at FDR target of 10%
when alphas of 2,000 funds are drawn from a discrete-normal distribution mixture: α ∼ π0δα=0 + (1− π0)N (0, σ2) with varying σ (annualized, in %) and null proportion π0.
The simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data counterpart. We study the
simulated data with both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.3 13.9 31.9 45.9 55.7 0.4 13.9 31.7 45.7 55.5
FDR+ 0.2 7.8 23.5 37.1 47.5 0.3 7.9 23.3 36.9 47.2

60%
fFDR+ 1.3 19.2 38 51.8 60.9 1.3 19 37.8 51.7 60.9
FDR+ 0.3 10.4 27.8 41.9 52.2 0.3 10.3 27.6 41.7 52

30%
fFDR+ 3.5 27.6 48.3 61.9 70.3 3.6 27.4 48 61.4 70.1
FDR+ 0.4 15.4 35.7 50.5 60.6 0.5 15.2 35.4 50.2 60.3

67.5%
fFDR+ 0.8 16.8 35.2 48.9 58.4 0.9 16.9 35.1 49 58.5
FDR+ 0.3 9.2 25.9 39.6 49.8 0.3 9.2 25.7 39.6 49.9

48%
fFDR+ 2.1 22.9 42.5 56.1 65.2 2.3 22.9 42.4 56 65.1
FDR+ 0.3 12.4 31.2 45.6 55.7 0.4 12.5 31.1 45.4 55.4

9%
fFDR+ 5.3 33.3 54.9 68.2 76.7 5.6 33.5 55 68.2 76.7
FDR+ 0.6 19.1 41.6 57 67.2 0.7 19.1 41.5 57 67.2



Table XI: Power comparison (in %) for mixture of two normal distributions. The table compares
the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying standard deviation pairs

(σ1, σ2) and mean pairs (µ1, µ2) (both parameters’ pairs are annualized and in %). The simulated data are
an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the
real-data counterpart. We study the simulated data with both cross-sectional independence (left-hand side) and
cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(µ1, µ2) Procedure σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

(−2.3,−0.7)
fFDR+ 0 0.2 3.8 11.3 19.5 0 0.3 4.2 11.7 20.1
FDR+ 0 0 0.3 1.8 6.3 0 0 0.3 2 6.4

(−2,−0.5)
fFDR+ 0 0.4 5 13 21.7 0.1 0.5 5.5 13.7 22.2
FDR+ 0 0.1 0.4 2.7 7.8 0 0.1 0.5 2.9 8.1

(−2.5, 0)
fFDR+ 0.1 0.5 7.3 15.4 24 0.3 0.8 7.8 16 24.6
FDR+ 0 0.1 0.6 3.9 9.9 0 0.1 0.9 4.2 10.3

where σ1 = (1, 0.5), σ2 = (1.5, 0.6), σ3 = (2, 1), σ4 = (2.5, 1.25), σ5 = (3, 1.5).

IB.4. Simulation results for single normal distribution

In this section, we present the simulation results for a special case of continuous distribution

where the mixture (17) has only one component. Specifically, we consider the case π2 = 0,

α ∼ N (µ, σ2) and, based on Jones and Shanken (2005) and Fama and French (2010), we use

µ ∈ {−0.8,−0.5, 0} and σ ∈ {1, 1.5, 2, 2.5, 3} (the presented values of both parameters are

annualized and in %).32

Figures VII and VIII present the performance of the fFDR+ procedure when the alphas

are drawn from balanced and unbalanced panel data, respectively. It is shown that the FDR is

controlled at any given target.

32Jones and Shanken (2005) assume that the fund alphas are drawn from a normal distribution and their
estimates for the mean and standard deviation are based on prior beliefs. They find that the mean is 1.3%-1.4%
per annum before expenses (about 2%) and the standard deviation is 1.5%-1.8%. In addition, Fama and French
(2010) assume that the fund (gross) alpha population has a normal distribution centered at 0.
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Figure VII: Performance of fFDR+ in terms of FDR control when alphas are drawn from the single normal
distribution with balanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure VIII: Performance of fFDR+ in terms of FDR control when alphas are drawn from the single normal
distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

In Table XII, we focus on comparing the performance of fFDR+ and FDR+ in terms of

power. As π+ depends on both the mean µ and variance σ2 of the distribution, we need to

distinguish the value of π+ from the pairs (µ, σ). We provide in Panel A additional information

about π+, which helps us assess the impact of the magnitude of positive alphas on the power.

For instance, for π+ ≈ 40%, the power of the two procedures for (µ, σ) = (−0.8, 3) is significantly

higher than for (µ, σ) = (−0.5, 2). We observe a boost in power for both methods with increasing

σ (for given non-positive µ), resulting in larger proportion and magnitude of positive alphas.

In all the cases under consideration, the fFDR+ dominates FDR+ in terms of power and this

gap soon becomes omnipresent for σ ≥ 1.5 reaching up to 18%.
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Table XII: Power comparison (in %) for single normal distribution. The table compares the power of
the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a normal distribution:
α ∼ N (µ, σ2) with varying standard deviation σ and mean µ (both parameters are annualized and in %).
In Panel A the simulated data are a balanced panel with 274 observations per fund, whereas in Panel B an
unbalanced panel with the number of observations of each fund drawn randomly with replacement from the
real-data counterpart. For each type of panel data, we generate data cross-sectional independence (left-hand
side) and with cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
σ σ

µ Procedure 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Panel A: Balanced Data

−0.8
π+ 21.2 29.7 34.5 37.4 39.5 21.2 29.7 34.5 37.4 39.5

fFDR+ 1.6 14.1 30.5 44.4 55.1 2.1 14.9 30.9 44.7 55.4
FDR+ 0.1 1.7 12.6 27.2 40.6 0.1 2.1 12.8 27.4 40.7

−0.5
π+ 30.9 36.9 40.1 42.1 43.4 30.9 36.9 40.1 42.1 43.4

fFDR+ 3 17.6 33.8 47.3 57.7 3.8 18.3 34.5 47.8 58.1
FDR+ 0.1 3.6 16.5 31.3 44.1 0.2 4 16.7 31.5 44.3

0
π+ 50 50 50 50 50 50 50 50 50 50

fFDR+ 7.9 24.8 40.7 52.8 62.4 8.9 25.7 41.3 53.3 62.7
FDR+ 0.6 9.1 24.2 38.7 50.3 1 9.5 24.6 38.9 50.5

Panel B: Unbalanced Data

−0.8
fFDR+ 1.4 12.1 26.5 39.5 50.1 1.7 12.7 27.1 39.8 50.2
FDR+ 0.1 1.7 10.8 23.2 35.2 0.1 2 11.2 23.5 35.4

−0.5
fFDR+ 2.6 15.2 29.8 42.5 52.6 3.1 15.8 30.2 42.8 52.7
FDR+ 0.2 3.4 14.1 26.8 38.6 0.2 3.7 14.5 27.2 38.8

0
fFDR+ 6.8 21.6 36 47.8 56.9 7.4 22.4 36.4 48 57.1
FDR+ 0.6 8.1 20.8 33.6 44.5 0.9 8.5 21.2 33.9 44.6

IC. Results for data sample period from 1984

Given potential biases in the mutual fund data for the period before 1984, we construct

portfolios using a data sample from 1984 as a robustness check. We start by using the first

five years’ data, spanning from January 1984 to December 1988, to calculate the inputs of the

procedures. The detected out-performing funds are equally invested in 1989. Then, the five

years of data from January 1985 to December 1989 are used for the recalculation of the inputs

of the procedures to detect out-performing funds invested in 1990, and so on. The process is

yearly rolled over until the end of the sample. Thus, the OOS returns of the portfolios start from

January 1989 to December 2019. At the end of each month from December 1998, i.e. when the

portfolios’ return series reach a length of at least ten years, we calculate the portfolios’ alpha

based on the returns from January 1989 to that month and present that in Figure IX. We also

report the average n-year alpha with the length of investing n from 5 to 31 years in Table XIII.
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Figure IX: Alpha evolution of fFDR10% and FDR10% portfolios over time with use of data
from 1984. The graph presents the evolution of annualized alphas (in %) of the nine fFDR10% portfolios
corresponding to the nine covariates, the portfolio FDR10% of BSW and the two equally weighted portfolios.

Table XIII: Comparison of portfolios’ performances for varying time lengths of investing: results
for sample data from 1984 to 2019. In this table, we consider 10 portfolios including nine fFDR10%
portfolios corresponding to the nine covariates and the FDR10% portfolio of BSW. We compare the average
alphas of the portfolios that are kept in periods of exactly n consecutive years. For example, consider n = 5. For
each portfolio, we calculate the alpha for the first 5 years based on the portfolios’ returns from January 1989 to
December 1993. Then, we roll forward by a month and calculate the second alpha. The process is repeated and
the last alpha is estimated based on the portfolios’ returns from January 2015 to December 2019. The average
of these alphas is presented in the first rows of the table.

fFDR10%
FDR10%

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma

5 1.17 0.62 0.88 0.22 0.5 0.35 0.47 0.53 1.02 -0.45
10 1.43 0.61 0.99 0.46 0.58 0.5 0.51 0.91 1.04 -0.37
15 1.64 0.6 1.09 0.65 0.69 0.65 0.63 0.96 1.03 -0.17
20 1.61 0.65 1.29 0.7 0.77 0.79 0.75 1.07 1.17 -0.12
25 1.28 0.53 1.12 0.43 0.61 0.59 0.57 0.9 0.93 -0.33
30 1.45 0.93 1.07 0.43 1.02 1.05 1.05 1.13 1.21 0.03
31 1.5 0.96 1.11 0.49 1.02 1.04 1.06 1.16 1.23 0.1

ID. Wealth evolution

In Figure 5 in the main manuscript, we study the alpha evolution of the portfolios over

time. However, an investor may be interested in the gain in value. Figure X shows the growth

of 1 dollar that the investor invests in each portfolio at the beginning of 1982. Ultimately, at

the end of 2019, this amount grows to about 74 dollars if she chooses the fFDR10% portfolio

with R-square as the covariate, as opposed to just 45, 47 and 41 dollars with the FDR10%,

the equal weight plus and equally weighted portfolios, respectively. This exercise reveals the
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potential profitability of an investor who had the perfect oracle in 1982 on the methods and the

covariate that would be presented over the next 30 years.

Figure X: Evolution of wealth. The graph plots the evolution of 1 dollar invested at the beginning of 1982 in
the nine FDR10% portfolios corresponding to the nine covariates, the fFDR10%, the Equal Weight and Equal
Weight Plus portfolios.

IE. Results for alternative target of FDR

In this section, we repeat the exercise with the FDR target of 20%. Figure XI presents the

alpha evolution of the individual covariates. Table XIV shows the average n-year alpha of those

portfolios. Finally, Table XV presents the statistic metrics for all mentioned portfolios.
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Figure XI: Alpha evolution of fFDR20% and FDR20% portfolios over time. The graph presents
the evolution of annualized alpha of the nine fFDR20% portfolios corresponding to the nine covariates, the
FDR20% of BSW and the two equally weighted portfolios.

Table XIV: Comparison of portfolios’ performances for varying time lengths of investing. In this
table, we consider 10 portfolios including nine fFDR20% portfolios corresponding to the nine covariates and the
FDR20% portfolio of BSW. We compare the average alphas (annualized and in %) of the portfolios that are
kept in periods of exactly n consecutive years. For example, consider n = 5. For each portfolio, we calculate
the alpha for the first 5 years based on the portfolios’ returns from January 1982 to December 1986. Then, we
roll forward by a month and calculate the second alpha. The process is repeated and the last alpha is estimated
based on the portfolios’ returns from January 2015 to December 2019. The average of these alphas is presented
in the first row in the table.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR20%

5 1.6 0.8 1.23 0.61 0.89 0.58 0.65 1.15 1.4 0.41
10 1.63 0.82 1.21 0.61 0.93 0.65 0.7 1.33 1.2 0.34
15 1.84 0.92 1.46 0.82 1.06 0.79 0.83 1.34 1.22 0.41
20 1.97 1.05 1.66 1.03 1.15 0.9 0.92 1.44 1.28 0.53
25 1.75 0.9 1.42 0.78 0.99 0.79 0.82 1.37 1.18 0.42
30 1.55 0.81 1.28 0.67 0.95 0.76 0.8 1.35 1.16 0.31
38 1.84 1.16 1.45 0.82 1.28 1.02 1.1 1.77 1.61 0.67
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Table XV: Comparison of performance statistics of all considered portfolios with τ = 20%. The
table compares the portfolios with regard to metrics including the annual Carhart four-factor alpha (α̂, in %) with
its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent
standard error), the annual standard deviation of the four-factor model residuals (σ̂ε, in %), the mean return in
excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR
R-square 1.84 (0.04) 2.03 4.41 8.08 0.62 0.42
Fund Size 1.16 (0.18) 1.35 4 7.37 0.56 0.29

Active Weight 1.45 (0.08) 1.81 3.7 8.06 0.6 0.39
Return Gap 0.82 (0.31) 1.05 3.77 7.43 0.55 0.22
Fund flow 1.28 (0.14) 1.54 3.76 7.76 0.59 0.34
Sharpe 1.02 (0.2) 1.31 3.37 7.77 0.61 0.3
Treynor 1.1 (0.17) 1.38 3.5 7.6 0.6 0.31
Beta 1.77 (0.05) 1.93 4.77 7.31 0.56 0.37
Sigma 1.61 (0.18) 1.44 5.02 7.91 0.59 0.32

FDR10% 0.67 (0.5) 0.69 4.79 6.9 0.54 0.14
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

IF. Results from using an alternative proxy of covariates

In this section, we present in Figure XII the alpha evolution of fFDR10% portfolios where

the proxy for each covariate is based on whole data in the in-sample period instead of the data

in final year as in the main manuscript. We see that the performance of the portfolios does not

vary significantly.

Figure XII: Alpha evolution of fFDRτ portfolios over time where the proxy for each covariate
(except the R-square and the four covariates obtained from the asset pricing models) is its average
realizations in the five years in-sample period. The graph presents the evolution of annualized alpha (in
%) of the nine fFDR10% portfolios (corresponding to the nine covariates), the portfolio FDR10% of BSW and
the two equally weighted portfolios.
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IG. Covariate combinations

So far, we have considered the effect from the information brought in by each single covari-

ate. In what follows, we explore the effect from combining the information from the different

covariates and potential consequent performance improvement. More specifically, we create a

new covariate given by the linear combination of the underlying covariates. More specifically,

for each fund i at time t, we have

New Covariatet,i = c1tR-squaret,i + c2tActive Weightt,i + c3tReturn Gapt,i

+c4tFund Sizet,i + c5tFund Flowt,i + c6tSharpe Ratiot,i

+c7tTreynor Ratiot,i + c8tSigmat,i + c9tBetat,i. (G.1)

We consider two approaches to estimating the coefficients c1t, . . . , c9t in (G.1). First, we

use as our new covariate the first principal component of all nine (standardized) covariates.

By transforming the covariates to their principal components, their information about the

performance of a fund is preserved and conveyed. We use the first principal component as

it captures most of the variation of the covariates. Second, we use a linear model that re-

gresses the fund returns for year k on the observed value of the covariates in year k − 1, where

k ∈ {t, t − 1, t − 2, t − 3}. Then, we predict the return for year t + 1 based on the estimated

regression model and the covariates in year t. This is equivalent to using equation (G.1) with the

regression’s estimated coefficients as the c1t, . . . , c9t. We use ordinary least squares (OLS), the

least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) , ridge regression

and the elastic net of Zou et al. (2005).33

Figure XIII exhibits the performance of the fFDRτ portfolios with the newly created

covariates in terms the alpha evolution.34 We find that the portfolio based on the covariate

obtained from the elastic net performs best amongst the combined covariates at τ = 10%.

33For each method (except OLS), the covariates are standardized before being used in the estimation. We use
cross-validation to determine the parameters in the LASSO, ridge and elastic net methods.

34There are a few years where LASSO (two years) and the elastic net (three years) shrink all the regression
coefficients to zero. In these cases, the new covariate is equal to zero for all funds and, to avoid an empty portfolio,
we simply select all the funds in the FDRτ portfolio.
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Figure XIII: Alpha evolution of fFDR10% portfolios with combined covariates. The graph shows
the alpha evolution of the fFDR10% portfolios with each using a covariate obtained from either the principal
component method or regression method; for the former, the covariate is the first principal component (PC 1)
of the five covariates, whereas for the latter the new covariate is a linear combination of the five underlying
covariates with the weights obtained based on one of the OLS, LASSO, Ridge and elastic net regressions.

Aiming to acquire a more complete portrayal of the various covariates combinations, we

study also the portfolios’ alphas for various time lengths of investing. Table XVI shows the

average n-year alphas of the fFDR10% portfolios.

Table XVI: Performance of fFDR10% portfolios with combined covariates for varying time lengths
of investing. The table displays the average n-year alpha (annualized and in %) of the fFDR10% portfolios
which use covariates obtained by the first principal component (PC 1), the OLS, LASSO, Ridge and elastic net
(see descriptions in Figure XIII). The average n-year alpha of each portfolio is calculated as per the description
in Table 6.

n OLS Ridge LASSO Elastic Net PC 1
5 0.78 1.02 0.8 1.2 0.76
10 0.81 1.03 0.81 1.36 0.94
15 0.91 1.07 0.89 1.5 1.17
20 1.06 1.15 1 1.67 1.31
25 0.96 1.07 0.9 1.44 1.13
30 0.94 1.05 0.89 1.32 1.02
38 0.93 1.04 0.91 1.25 1

The elastic net performs also better for all time lengths. However, this best combined

covariate does not beat the R-square and Beta under the fFDR framework. When we partition

the sample into four sub-periods, as mentioned above, Tables 7 and XVII show that for any sub-

period there is always an underlying individual covariate that beats all the combined covariates.

Nevertheless, since investors do not know which covariate will perform best in advance, the

combination of covariates is still advantageous in prediction in practice.
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Table XVII: Performance of portfolios in sub-periods. The table displays the performance of the fFDR10%, FDR10% and equally weighted portfolios in sub-periods
(P1: 1982–1991, P2: 1992–2001, P3: 2002–2011 and P4: 2012–2019) in terms of the average 5-year alpha, the alpha of the whole sub-period (both metrics are annualized and
in %), the corresponding t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha t-statistic Sharpe Ratio
Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

OLS 2.26 1.34 0.47 -0.1 2.26 1.15 0.99 -0.35 1.75 0.76 0.53 -0.41 0.64 0.8 0.26 1.11
Ridge 2.33 1.99 0.49 0.46 2.79 1.65 1.02 0.04 1.96 1.06 0.23 0.04 0.63 0.81 0.24 1.13
LASSO 2.65 1.16 0.49 -0.1 2.7 1.05 1.02 -0.35 1.83 0.67 0.3 -0.41 0.64 0.78 0.24 1.11

Elastic Net 2.45 2.63 0.39 -0.14 2.72 3 0.89 -0.37 1.68 1.88 0.2 -0.43 0.62 0.79 0.23 1.11
PC 1 1.69 1.48 0.62 -0.21 2 1.8 1.11 -0.47 1.75 1.19 0.56 -0.54 0.62 0.76 0.25 1.1



Similarly to Figure X, in Figure XIV we depict the wealth evolution of one dollar invested

in the fFDR10% portfolios based on the combined covariates. At the end of 2019, 1 dollar

grows to about 73 to 80 dollars if the investor invests in one of the fFDR10% portfolios with

the covariates obtained from OLS, LASSO, Ridge and elastic net regressions.

Figure XIV: Evolution of wealth of fFDRτ portfolios with combined covariates. The graph plots the
evolution of 1 dollar invested at the beginning of 1982 in the nine FDR10% portfolios corresponding to the nine
covariates, fFDR10%, Equal Weight and Equal Weight Plus portfolios. In this graph, the fFDR10% portfolios
are the ones described in Figure XIII.

IH. Restricted data

As supplementary to our empirical study of Section 6, we repeat here our experiments for a

data subset where a mutual fund enters the sample when its TNA reaches $15 million (adjusted

for inflation as of January 2019). This choice of threshold is consistent with Pastor et al. (2015)

and Zhu (2018). Table XVIII shows the average n-year alpha for the fFDR10% and fFDR20%

portfolios based on each individual covariate. We then present in Table XIX our results for the

fFDR10% and fFDR20% portfolios based on combinations of the covariates.
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Table XVIII: Comparison of portfolios’ performances for varying time lengths of investing: restricted data. We consider 20 portfolios including nine fFDR10%
portfolios, nine fFDR20% portfolios, the FDR10% and FDR20% portfolios of BSW. We compare the average alphas (annualized, in %) of the portfolios that are kept for
periods of exactly n consecutive years. For more details, refer to Table 6 of the main manuscript.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR

Panel A: fFDR10% versus FDR10%

5 1.5 0.81 1.39 0.62 0.93 0.57 0.73 1.09 1.19 0.13
10 1.48 0.68 1.36 0.63 0.93 0.65 0.75 1.2 1.06 0.06
15 1.7 0.73 1.6 0.85 1.06 0.8 0.87 1.2 1.1 0.15
20 1.84 0.82 1.79 1.07 1.14 0.91 0.96 1.31 1.18 0.27
25 1.62 0.71 1.56 0.82 0.98 0.81 0.86 1.24 1.09 0.14
30 1.42 0.63 1.41 0.69 0.95 0.79 0.86 1.2 1.01 0.02
38 1.69 1.01 1.52 0.94 1.3 1.04 1.14 1.68 1.27 0.37

Panel B: fFDR20% versus FDR20%
5 1.61 0.74 1.37 0.67 0.91 0.58 0.65 1.15 1.41 0.42
10 1.63 0.67 1.37 0.72 0.96 0.65 0.7 1.33 1.2 0.35
15 1.85 0.72 1.63 0.93 1.08 0.79 0.82 1.34 1.22 0.42
20 1.98 0.82 1.83 1.16 1.17 0.91 0.92 1.44 1.28 0.54
25 1.76 0.71 1.59 0.91 1.01 0.8 0.81 1.37 1.18 0.43
30 1.56 0.66 1.43 0.8 0.98 0.77 0.8 1.35 1.16 0.32
38 1.85 1.04 1.57 0.98 1.3 1.02 1.1 1.78 1.61 0.68



Table XIX: Performance of fFDRτ portfolios with combined covariates for varying time lengths
of investing: restricted data. The table displays the average n-year alpha of the fFDR10% (Panel A) and
fFDR20% (Panel B) portfolios using the covariates given by the first principal component (PC 1), the OLS,
ridge, LASSO and elastic net (see descriptions in Figure XIII of the main manuscript). The average n-year alpha
(annualized, in %) of each portfolio is calculated as described in Table 6 of the main manuscript.

n OLS Ridge LASSO Elastic Net PC 1
Panel A: τ = 10%

5 0.76 1.02 0.84 0.94 0.78
10 0.73 1.04 0.96 0.99 0.99
15 0.82 1.09 1.08 1.07 1.22
20 0.95 1.19 1.25 1.17 1.4
25 0.83 1.07 1.1 1.03 1.19
30 0.8 1.01 1.06 0.97 1.08
38 0.79 0.97 1.07 0.96 1.05

Panel B: τ = 20%
5 0.73 1 0.68 0.96 0.77
10 0.73 1.01 0.79 1.01 0.96
15 0.81 1.06 0.93 1.08 1.2
20 0.93 1.17 1.1 1.18 1.38
25 0.82 1.05 0.95 1.04 1.17
30 0.8 1 0.89 1 1.06
38 0.77 0.96 0.88 1.01 1.02

II. Selecting unprofitable funds with fFDR

In this section, we obtain, by analogy with the fFDRτ portfolio, a selection of unprofitable

funds. First, consider a selection of R− under-performing funds including V − wrongly selected

zero-alpha or out-performing funds. We define

FDR− = E
(

V −

max{R−, 1}

)
(I.1)

and

pFDR− = E
(
V −

R−

∣∣∣∣R− > 0

)
. (I.2)

If a fund i with p-value pi and negative estimated alpha (α̂i < 0) is selected as under-

performing fund whenever pi < γ, then FDR− is estimated by

F̂DR
−
γ =

π̂0γ/2

R̂−/m
(I.3)

where R̂− = #{i|pi < γ, α̂i < 0} and π̂0 is calculated as in equation (11) in the main manuscript.

At a given target τ of FDR−, we form the FDR−τ (fFDR−τ) portfolio of under-performing

funds similarly to the FDRτ (fFDRτ) portfolio of out-performing funds. Specifically, we

establish the FDR−τ portfolio using the same γ grid as for the FDRτ and form the fFDR−τ

portfolio by implementing the fFDR procedure (with a specific covariate) on the set of non-

positive estimated alpha funds to control pFDR− at the same level as the portfolio FDR−τ .
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The following tables present the average n-year alpha of the portfolios at target τ = 10%

(Table XX) and their trading metrics (Table XXI). We also construct a portfolio, namely Equal

Weight Minus, which includes all funds with negative estimated in-sample alpha invested in the

following year.
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Table XX: Comparison of portfolios’ performance for varying time lengths of investing: portfolios of unprofitable funds. We consider 11 portfolios including
the equal weight minus (EW−), the FDR−10% and the fFDR−10% with the nine individual covariates. The table compares the average alphas (annualized, in %) of
portfolios that are kept in periods of exactly n consecutive years. For more details, refer to Table 6.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma EW− FDR−10%
5 -3.96 -4.56 -2.85 -4.12 -3.43 -2.29 -2.16 -4.35 -4.13 -1.36 -4.77
10 -3.82 -4.37 -2.83 -3.85 -3.1 -2.05 -1.91 -4.18 -3.86 -1.24 -4.41
15 -3.59 -4.07 -2.62 -3.52 -2.86 -1.81 -1.65 -3.88 -3.62 -1.09 -4.09
20 -3.45 -3.89 -2.53 -3.33 -2.73 -1.7 -1.54 -3.72 -3.51 -1.01 -3.93
25 -3.61 -4.07 -2.73 -3.56 -2.93 -1.81 -1.66 -3.94 -3.69 -1.04 -4.17
30 -3.83 -4.29 -2.92 -3.83 -3.17 -2.05 -1.91 -4.22 -3.99 -1.1 -4.5
38 -4.12 -4.51 -3.21 -4.17 -3.74 -2.53 -2.41 -4.6 -4.31 -1.31 -4.91



Table XXI: Compe numbarison of performance statistics of all considered portfolios of unprofitable
funds with τ = 10%. The table compares the portfolios with regard to metrics including the annual Carhart
four-factor alpha (α̂, in %) with its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity
and autocorrelation-consistent standard error), the annual standard deviation of the four-factor model residuals
(σ̂ε, in %), the mean return in excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual
Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR

R-square -4.12 (< 0.01) -5.63 3.21 3.33 0.3 -1.29
Fund Size -4.51 (< 0.01) -6.26 3 2.86 0.27 -1.51

Active Weight -3.21 (< 0.01) -4.95 3.15 4.1 0.35 -1.02
Return Gap -4.17 (< 0.01) -5.89 3.32 3.2 0.29 -1.26
Fund flow -3.74 (< 0.01) -5.35 3.11 3.63 0.32 -1.2
Sharpe -2.53 (< 0.01) -4.2 2.68 4.48 0.38 -0.94
Treynor -2.41 (< 0.01) -4.04 2.68 4.68 0.39 -0.9
Beta -4.6 (< 0.01) -5.3 4.19 3.08 0.28 -1.1
Sigma -4.31 (< 0.01) -5.18 3.86 2.89 0.27 -1.12

FDR−10% -4.91 (< 0.01) -6.08 3.48 2.3 0.23 -1.41
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Minus -1.31 (< 0.01) -3 1.98 5.9 0.48 -0.66
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