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Abstract

We introduce a novel multiple hypothesis testing method named the functional False Discovery
Rate “plus” (fFDR™). The method incorporates informative covariates (and new information
they carry) in estimating the False Discovery Rate (FDR) of predictive models’ “conditional”
performance. In our simulation based on mutual fund returns, the fFDR™ controls well the
FDR and gains considerable power over prior methods that do not account for extra infor-
mation. Its advantage remains under different alpha distributions, balanced and unbalanced
data structure, and cross-sectional dependent and independent error terms. It is also robust
to estimation errors in the covariates. In further empirical analyses, we construct portfolios
based on several covariates (five well-known and four new ones) and show that they enhance
the performance of mutual fund portfolios, highlighting the value of extra information in the
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1. Introduction

Aiming to identify models with genuine predictive power from a large set of potential can-
didates, researchers have to resort to a multiple hypothesis testing framework to appropriately
address the “data-snooping” or “p-hacking” bias that is a major challenge to social science
(Sullivan et al., 1999, 2001; White, 2000; Hansen, 2005). To address this challenge, researchers
propose the concept of the False Discovery Rate (FDR) of Benjamini and Hochberg (1995),
Storey (2002), Storey (2003), and Romano and Wolf (2005), i.e., the ratio of models that are
mistakenly identified as having predictive power. Testing methods based on FDR has gained
considerable attention in the literature and has been successfully applied to many areas of social
science.!

One common feature of the methodologies in this framework is that the rejection crite-
rion only depends on information of raw data and predictive models’ performance metrics.
However, in economics and finance research, the economic agents use all available information
in assessing models’ performance. Extra information sources can assist researchers to more
accurately estimate FDR. Recently, Chen et al. (2021) introduced the functional FDR method
that embeds the role of informative covariates (i.e., variables that carry extra information) in
forming null hypotheses. This advancement is important in the sense that it enables us to test
the “conditional” performance of predictive models, which is more consistent with the rational
expectation hypothesis. To illustrate the importance of extra information in multiple testing
problems, we can use mutual fund performance assessment as an example. If we use prior
testing methods that do not account for extra information, we are testing an unconditional
zero hypothesis, which corresponds to investors not updating their information in assessing mu-
tual fund performance. This approach appears inappropriate because mutual funds and their
managers are routinely reviewed by investors based on updated information. In other words,
a more suitable null hypothesis for a mutual fund’s performance should be zero conditional on
the updated information set.

Our main contribution is the introduction of the functional False Discovery Rate “plus”
(fFDR™). Compared to the work of Chen et al. (2021), it has two distinguishing features. First,
it allows us to focus on the right or left tail of the distribution and detect the significant out-

performers/under-performers, which is important for decision makers (see Barras et al., 2010,

!For instance, Fan and Fan (2011) employ FDR in testing and detecting jumps; Lan et al. (2016) utilize such
a framework to control FDR in testing coefficients in high-dimensional linear models; see also Lan and Du (2019)
for extensions and applications in mutual fund selection; or Barbaglia et al. (2022) for applications in detecting
significant sentiment variables in forecasting with economic news.



hereafter BSW). Second, it is robust to cross-sectional dependencies among predictive models,
which is common for most problems in economics and finance. For example, in mutual funds,
the alphas are likely dependent due to herding and correlated trading behaviour (Wermers,
1999).

Compared to all earlier methods in the economics literature on control of the FDR, our
fFDR" method incorporates extra information, has higher power, and controls for noise. It
is easy to implement, does not rely on any strong assumption and can handle any continuous
informative covariate. In examining our method, we use simulated mutual fund performance
similarly to BSW and Andrikogiannopoulou and Papakonstantinou (2019) (AP henceforth).
We show that, when an informative covariate is available, our fFDR™ approach detects more
true positive alpha funds under different alpha distributions, balanced and unbalanced data,
and both cross-sectional independence and dependence in the error terms. The gap in power
between fEFDR" and prior FDR methods, depending on the distribution of the fund alpha
population, can be up to about 30%. Our approach is also robust to estimation errors in the
covariates.

We then apply our method and construct portfolios in order to evaluate it empirically in
selecting outperforming mutual funds. In particular, we explore nine informative covariates:
the first set contains five covariates that have been shown in prior studies to convey information
on mutual fund performance, and the second set contains four new covariates that are inspired
by asset pricing models. The first set includes the R-square of the asset pricing model (e.g.,
Carhart four-factor model) as suggested by Amihud and Goyenko (2013), the Return Gap of
Kacperczyk et al. (2008), the Active Weight of Doshi et al. (2015), the Fund Size of Harvey and
Liu (2017), and the Fund Flow suggested by Zheng (1999). The second set includes the Sharpe
ratio, the Beta and Treynor ratio based on the Capital Asset Pricing Model (CAPM), and the
idiosyncratic volatility of the Carhart four-factor model (Sigma).

We find that the set of mutual funds selected as out-performers by fFDR™ is usually larger
and different from the one obtained by prior FDR methods. As already discussed, earlier studies
do not account for information other than mutual funds’ returns and performance metrics; thus,
their null hypotheses are unconditional and neglect investors’ time-varying expectation. The
fact that our fFFDR™ discovers more outperforming funds suggests that, with more information
updating, there may exist more profitable mutual funds than researchers would have expected.

Based on the funds selected by fEFDR™, we build portfolios that consistently outperform the

one generated by prior methods. Our results highlight the economic value of extra information.



In particular, the fFDR" portfolios with the R-square and Beta covariates are found to be
the best with annualized alphas of 1.7%, followed by the fFDR™ portfolios with the Active
Weight, Fund Flow, Sigma, Treynor ratio, Fund Size, Sharpe Ratio and Return Gap covariates,
separately achieving annualized alphas of at least 0.77%. We note that this profitability is
persistent in our sample and is even strengthened over the recent period, a finding that disagrees
with part of the recent literature which suggests otherwise (see Jones and Mo, 2021). All our
fFDRT portfolios outperform the one generated by prior FDR methods and a set of portfolios
created by single- and double-sorting the covariates under study.

In additional analysis, we also consider the fFDR™ portfolio based on various ways of
combining the nine covariates, such as the first principal component of the nine covariates
(PC 1), the ordinary least squares (OLS), the least absolute shrinkage and selection operator
(LASSO) of Tibshirani (1996), the ridge regression and the elastic net of Zou et al. (2005). We
find that the elastic net delivers the best performance with an annualized alpha of 1.25%. The
investors may also benefit from such combinations as they result in lower volatility in portfolio
performance. This is advantageous as, in reality, investors do not know ex-ante what covariate
is the best.

The rest of the paper is organized as follows. In Section 2, we introduce and explain our
methodology. In Section 3, we provide a description of our data. Section 4 is devoted to our
simulation experiment descriptions, whereas in Section 5 we present in detail our simulation

results. Section 6 focuses on the empirical part of our analysis. Section 7 concludes the paper.

2. Methods for Controlling of Luck with Informative Covariate

2.1. Functional False Discovery Rate (fFDR)

Throughout this paper, we use mutual funds to represent predictive models. We define funds’
performance based on their net return, that is, the return net of trading cost, fees and other
expenses except loads and taxes. A fund is deemed out-performing if it distributes to investors
a net return that generates a positive alpha (i.e., a part of a return series that is unexplained
by systematic risk). If the alpha is negative (zero), the fund is said to be under-performing
(zero-alpha). These definitions of out-performing and under-performing funds coincide with
skilled and unskilled funds in BSW, respectively, and reflect the interest of investors.

Suppose that we are assessing m funds and each of them has a net return time series. We
also assume that there exists a covariate X, with observed values (z1,...,z,,), that conveys
information about the alpha of each fund. Associated with X, we define Z whose observed

value for fund i is z; = rank(x;)/m, where rank(x;) is the ranking of z; in the set of observed



values (x1,...,Zm,). As X to Z is an one-one mapping and we work based on Z, we call that
the covariate from now on. We introduce our notation by means of a single test, conditional on

Z, for the alpha of a mutual fund:
Hy:a =0, Hy:a#0. (1)

We denote by h the status of the null hypothesis, that is, A = 0 if the hypothesis o = 0 is true
and h = 1 if otherwise. In addition, P is the random variable representation of the p-value of
the test, Z, as mentioned above, is the covariate which is uniformly distributed on [0, 1], and
T = (P,Z). We suppose that (h|Z = z) ~ Bernoulli(1 — my(z)), that is, conditional on Z = z,
the fund possesses a zero alpha with probability 7y(z); this can be constant if Z does not convey
any information about the probability of the fund’s alpha being zero. The estimation procedure
for mp(z) will be discussed later on. We require that under the true null, (Plh = 0,7 = z) is
uniformly distributed on [0, 1] regardless of the value of z; when the null hypothesis is false, the
conditional density function of (Plh =1,Z = z) is fi(.|2).

To assess the performance of m funds in terms of o within our framework, we consider m

conditional hypothesis tests like (1):
Ho,iiai:(), Hl,i:ai;é(), z':l,...,m, (2)

where «; is the alpha of fund i. For each ¢ we have T; = (P;, Z;), and we assume that all the
pairs are independent and each of them has the same distribution as (7', h).2 Finally, we denote

by f(p,z) the joint density function of (P, Z). We have that

B(h = 01T = (p.2)) = =2 . pp.2) (3)

is the posterior probability of the null hypothesis being true given that we observe T = (p, 2).?

To control the type I error, Storey (2003) introduces the “positive false discovery rate”
v
pFDR =E §R>O , (4)

where R is the number of rejected hypotheses in m tests and V' the wrongly rejected ones. Chen

et al. (2021), CRS henceforth, show that, with a fixed set T in [0, 1]?, if we reject hypothesis

2In Section IB of the Internet Appendix, we show that this requirement can be eased for a typically cross-
sectional dependence in mutual fund data.
3For more details about the role of Z ~ Uniform(0, 1) and the derivation of (3), see Chen et al. (2021).



Hy; whenever T; € T', then
pFDR(I') =P(h=0T €T) = / r(p, z)dpdz. (5)
r

To maximize the number of rejections, we reject the hypotheses with the smallest statistic

r(p, z). Thus, the significance region {I'p : 6 € [0,1]} is defined as

Lo ={(p,2) € 0,1]* : v(p, ) < 0}, (6)

where a larger 6 implies more rejected hypotheses. Finally, we recall from Storey (2003) and
CRS the definition of the g-value for the observed (p, z):
q(p, 2) = . (;flzf)erT}pFDR(FT) =pFDR(L,p ). (7)
Given a target 7 € [0, 1], a procedure that rejects a hypothesis if and only if its ¢g-value < 7
guarantees that pF'DR is controlled at 7.
Empirically, let #9(z) and f(p, z) be the estimated functions 7(z) and f(p, z), respectively.*
We calculate 7(p, z) = #o(2)/f(p, z) and estimate the g-value function as
q(pis 2i) = Si Z F(Pr» 2k) (8)
' kes;
where S; = {j|7(pj,2;) < 7(pi, z;)} and p; is the p-value of test i. Then, given a target pF' DR
level 7 € [0,1], the null hypothesis Hy; is rejected if and only if §(p;, z;) < 7. CRS call this

procedure Functional False Discovery Rate (fFDR).
2.2. The fFDR™: application in selecting out-performing funds

By applying the fF DR methodology to mutual funds at a given target pF' DR level 7, we
obtain a set that includes both significantly out-performing and under-performing funds. To
further improve mutual fund selection, we propose a fF D R-based method that selects a group
of significantly out-performing funds with control of luck. In the following section, we introduce
our fFDR" and discuss its application in a mutual fund context.

Consider a selection of R out-performing funds including V' wrongly selected zero-alpha
or under-performing funds. We define the positive false discovery rate in those significantly
out-performing funds as

\as

+ _

Rt > 0> . (9)

For m tests, let AT be the set of hypotheses with positive estimated alpha, i.e., AT = {i|a; > 0},

4See Appendix A for more details.



where @; is the estimated alpha of fund i. At a given target 7 of pFDR™, by implementing
the fFDR procedure to control pFDR at the target 7 on the funds in set A', we obtain all
the funds with positive estimated alphas (referred to as significant alphas).’ Hence, the fFDR
selects positive-alpha funds with control of pF'DR at the given target; we call this procedure
the functional FDR “plus” (fFDRY).

Next, we highlight the differences between our and BSW'’s approaches. The starting point

of both is the control of the type I error as in Benjamini and Hochberg (1995):

FDR:E<I]W‘[/M):E(E‘R>0)P(R>o):pFDR-IP(R>o), (10)

where the last equality follows from (4). This implies that controlling for pF’ DR at a given
target 7, also controls for FDR at the same target. Furthermore, for a large number of tests,
controlling for pFF DR and FDR is equivalent (see Storey, 2002, 2003).

Consider the m tests (2) in the absence of the covariate Z and let ¢; be the test statistic of test
i. Storey (2002) assumes that t1, ..., ¢, are independent and the statuses of the null hypotheses
hi,...,hy are independent Bernoulli random variables with P(h; = 0) = m. Additionally,
across i, (t;|h; = 0) and (¢;|h; = 1) are identically distributed. When we reject based on the

p-values, for some A € [0,1), mp can be estimated by

() = FAR AL S L) (1)

where # returns the number of elements in the set; this estimate is conservative biased.® BSW
choose A = A* on the grid {0.3,0.35,...,0.7} such that the mean square error (MSE) of 7rp())
is minimal.” We set 7tp = 7o(\*).

To select out-performing funds with controlling for the FDR, BSW define the concept FDR™

to measure the FDR in a group of funds selected as significant and positive estimated alphas as

FDRT =E <HME]{%> : (12)

With a significant threshold v and a procedure which selects a fund with a positive estimated

5In doing so, we assume that the number of funds that are out-performing but exhibit a negative estimated
alpha is negligible. This is sensible as in practice we will not select those funds anyway. In BSW, as discussed
next, having a positive estimated alpha is a necessary condition for a fund to be selected as out-performer.

5To have the estimate of 7o, first, under independence, there are mmo funds with truly zero alpha and their
p-values have a uniform distribution in [0,1]. Hence, we expect mmo(1 — A) p-values in the set to fall in [, 1].
Second, this number can be conservatively approximated by #{p:|p; > A}, thus we have (11). With a larger A,
the estimate 7o is less conservative, as there are fewer p-values under the alternative belonging to [A, 1], but its
variance is higher.

"In MSE = E(#0(\) — 70)?, the unknown 7 is replaced by miny 7to(A) over the A grid.



alpha whenever its p-value < v, BSW estimate FDR™ by

FDR, = 2272 (13)

where R is the empirical number of funds selected as out-performers, i.e., Rt = #{ilp; <
v, &; > 0}. When using this approach to determine out-performing funds with controlling for
FDRT at a given target 7, the threshold « is raised gradually until the FDT%JF estimate in (13)
reaches the target 7. We refer to this procedure as FDR™.

To illustrate the differences between our and BSW’s procedures, we opt for a sub-period of
five years from 2001 to 2004 and implement the FDR' and fFDR™ to detect positive alpha
funds, with the alphas determined by the four-factor model of Carhart (1997). In this case, the
R-square of the model is used as the covariate for fFDR'.® In Figure 1, we demonstrate how
the two procedures work. Based on the p-values of all the considered funds, the FDR™ estimates
the proportion of zero-alpha funds in the whole sample, as a first step, giving 7 =~ 0.83. It then
selects the positive estimated alpha funds with smallest p-values until the estimated @j
reaches a given FDR target. For illustration, we choose the FDR target 7 = 35%, so that both
methods select a substantial number of funds.” Here, all the funds with p-values less than or
equal to v = 0.0086 are selected by the FDR™. The threshold  is depicted by the green dashed
line in Panel C and all the funds corresponding to the points on the left of the vertical line are
selected. By contrast, the fFDR" considers only the set of positive estimated alpha funds and
estimates the proportion of zero-alpha funds in this set as a step function of z (the quantiles of
R-square).

In this experiment, we split the sample into five bins based on the ranking of the covariate
z; thus, 7p(z) is a function with five “steps”. The procedure continues with the estimation of
the density function f(p,z) and of the functional g-value ¢(p,z). The fFDR™ selects all the
funds with estimated g-value less than or equal to 0.35: those funds correspond to the points
below the red dashed line (the g-value = 0.35 line) in Panel C. This clearly shows that, for the
same target, the fFDR™ selects significantly more funds than FDR™ (170 versus 19). More
importantly, the funds selected by the FDR™' are not merely a subset of those selected by
fFDRYT. Panel D displays the distribution of the selected funds with respect to the p-value

and z. We observe that the fFFDR" assigns more weight to some funds with smaller z (thus,

8The details of the funds and the calculation of the p-values are deferred to Section 6. Here, we focus only
on illustrating the differences.
9If we choose any target 7 < 30%, the FDR™ selects no funds.



Figure 1: Comparison of FDR' and fFDR™. The graphs show the differences between the two procedures
with respect to their null proportion estimations and their rejection rules. Panels A and B show that mo is
estimated as a fixed number in FDR"' procedure (see (11)) but as a step function in fEDR"' procedure (see
Appendix A). Panel C shows the rejection rules of the FDRT and fFDR": the former selects all the funds
corresponding to the points on the left of the vertical green dashed line which consists of all funds with positive
estimated alphas and p-values less than 0.0086, whereas the latter all the funds corresponding to the points below
the horizontal red dashed line which consists of all funds with estimated g-value (see (8)) less than 0.35. Panel D
shows the distribution of the selected funds in Panel C with respect to the p-value and the covariate z. In Panels
C and D, only funds with positive estimated alpha are shown as ultimately both methods select funds from this
set. The solid green points represent funds selected by the FDR™, whereas the red circles the funds selected by
the fFDR™; the green points with a red ring are the commonly selected funds.
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smaller R-square), but the weight is not equally distributed across the funds with the same
level of z. As the rejection rule of fEEDR™ is based on the functional g-value, which is based
on the estimates of mp(z) and f(p, z), it is not possible to explain this merely by the ranking of
the p-value and the covariate z, as evidenced in Panel D: the fFDR™ selects some funds with

p-values around 0.6 while skipping many funds with a smaller p-value at roughly the same level



of z.

As shown in AP, the FDR™ relies on an over-conservative estimate of the null proportion
and utilizes only p-values and the estimated alphas. On the other hand, the fFDR™ addition-
ally uses an informative covariate about the performance of the funds and expresses the null
proportion as a function of it, while accounting for the joint distribution of the p-value and the
covariate. This results in a more accurately estimated FDR and, therefore, an increased power
in detecting out-performing funds. We are illustrating the prominent power of the fFDR" via
a set of simulation studies in the next sections. In the empirical section, we will show the actual

profitability that the five covariates can bring to investors while controlling for luck.

3. Data

We use monthly mutual fund data from January 1975 to December 2019 collected from
the CRSP database.' As CRSP reports funds at the share class level, we use MFLINKS to
acquire fund data at the portfolio level. For a fund at a given point in time with multiple share
classes, we average the share classes’ net return weighted by the total net asset (TNA) value
at the beginning of the month.'’ The TNA at the fund level is estimated by the sum of the
share classes” TNA. We omit the following month return after a missed return observation as
CRSP fills this with the accumulated returns since the last non-missing month. To obtain the
holdings data of the funds, which will be used to calculate our covariates, we merge the CRSP
and Thomson/CDA databases by utilizing MFLINKS. The holdings database provides us with
stock identifiers, which we use to link the funds’ position with the CRSP equity files. From this
equity database, we obtain information such as the price and number of shares outstanding of
the stocks that the funds hold on their reported portfolio date. We use these to calculate the
return gap and the active weight, which are described in more detail later.

We consider only funds with an investment objective belonging to the categories Growth,
Aggressive Growth and Growth & Income. Both CRSP and CDA provide this information;
CDA is more consistent over time, hence we choose that. As the funds’ investment objective
can change, we collect first all the funds in these categories. If at some point a fund misses
its investment objective, we fill this in by its prior non-missing objective. If a fund’s objective

changes, we remove those return observations corresponding to periods when its objective does

"We are aware of the possible biases in the CRSP mutual fund data before 1984 (Fama and French, 2010)
and thus conduct a robustness check using a sample from 1984 to 2019 in Section IC of the Internet Appendix.

1Since 1991, we use the monthly TNA of the fund’s share classes. Before 1991, most of the funds report their
TNA on a quarterly basis. For this, we follow Amihud and Goyenko (2013) to fill in the missing TNA of each
fund (at the share class level) by its most recently available one.



not belong to the three aforementioned categories. To obtain a precise four-factor alpha esti-
mate, we select only funds with at least 60 monthly observations. Overall, we gather a sample
of 2,224 funds which provides the empirical metrics for our simulation study.

In the empirical part, when calculating the related covariates, we additionally require each
fund to hold at least 10 stocks; this is consistent with Kacperczyk et al. (2008) and Doshi et al.
(2015) and is needed here as we use the return gap and active weight from their studies as two
of our covariates. The number of funds used when constructing our covariate-based portfolios

varies over years and will be reported in detail in the empirical section.
4. Simulation Setup

In this section, we present the details of our simulation design consisting of the choice of the
model, the distributions of the alpha population, the data-generating process and the metrics

that we will use to gauge the performance of the methods.

4.1. The model

Following the majority of the existing literature on mutual fund performance, we use the

four-factor model of Carhart (1997) to compute the fund performance:
Tig = o + birm,t + SiTsmb,t + hirhml,t + MiTmom,t + Eits t=1,...,m, (14)

where 7;; is the excess net return of fund ¢ over the risk-free rate (i.e., the one-month Treasury
bill rate), 7y, + the market’s excess return on the CRSP NYSE/Amex/NASDAQ value-weighted
market portfolio, 7¢mp; the Fama-French small minus big factor, ry,,;: the high minus low
factor, 7mom, the momentum factor and €;; the noise of fund ¢ at time ¢. All factors and the
one-month Treasury bill rate are obtained from French’s website.

Our simulations are designed similarly to BSW and AP in terms of the data-generating
process accounting, in addition, for an informative covariate and considering more distribution
types of the fund alpha population. Whereas BSW and AP focus on the estimated proportions of
the out-performing, under-performing and zero-alpha funds, we consider the performance of the
FDR' and fFDRY. More specifically, for a given fund alpha distribution, we first generate
in each iteration the true fund alpha population and a covariate that conveys information
about the alpha of each fund. Second, we simulate the Fama—French factors (factors loadings)
by drawing from a normal distribution with parameters equal to their sample counterparts
(obtained from estimations of model (14)). Next, the noise is generated under both cross-

sectional independence and dependence. In the first case, the noise is drawn cross-sectionally
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independent from a normal distribution, that is, e;; ~ N(0,02) where, as in Barras et al. (2020),
0. is is set equal to the median of its real-data counterpart, that is, approximately 0.0183 for our
sample. The results under this assumption are reported in the next section. In the dependent
case, the noise is generated as in BSW and the simulation results are deferred to Section IB
of the Internet Appendix. The simulated data are then used to generate the net return for
each fund. Subsequently, by carrying out regression (14) of the generated net return on the
simulated Fama—French factors, we estimate the alpha and calculate the related p-values for the
tests (2). Finally, based on these estimated alphas, p-values and the covariate, we implement
the fFDRT and FDR™", for a given FDR target, to obtain the significantly out-performing
funds. We estimate the actual false discoveries rate of the fFDR™ and check if it meets the
given target. We then compare the two methods in terms of power, defined as the expected
ratio of the number of true positive alpha funds detected to the total number of true positive

alpha funds in the population.

4.2. The distribution of fund alphas

We consider three different types for the distribution of fund alphas: a discrete, a discrete-
continuous mixture and a continuous. A covariate Z conveys information about the alpha of
each fund in the population; more specifically, a fund with Z = z has a probability my(z) of
being zero-alpha. Also, without loss of generality, we assume that, for non-zero alpha funds,
their covariates and alphas are positively correlated.!?

First, in the discrete type, we draw alphas from three mass points —a* < 0, 0 and o* > 0

with probabilities 7~, mg and 7*. Thus,
QO ~ T S+ T00am0 + T 0p—a - (15)

We consider five values for o* € {1.5,2,2.5,3,3.5} (the values are annualized and in %) together
with six combinations of the proportions (7,7, 7~) based on 7+ € {0.1,0.13}, =~ /7" €
{1.5,3,6} and mp = 1 — 7~ — 7T, i.e., a total of thirty cases.!?

In the mixed discrete-continuous distribution, we draw alphas from two components in-

cluding the mass point 0 and the normal distribution A/(0,?) with, respectively, probabilities

21f the correlation is negative, we use instead —Z.

3The chosen 7+ values are close to those used in the recent literature: 7+ = 10.6% (see Harvey and Liu,
2018) and 7t = 13% (see Andrikogiannopoulou and Papakonstantinou, 2016). The ratio 7~ /7" = 6 is studied
in AP. Aiming to extend the range of our study, we consider also the ratios 1.5 and 3.

11



7 € (0,1) and 1 — mg. We have, therefore, that
o ~ moba—o + (1 — m)N(0, 02). (16)

We consider five values for o € {1,2,3,4,5} (the values are annualized and in %) and the same
six mp values as in the discrete distribution earlier.
Finally, in the continuous case, we draw alphas from a mixture of two normal distributions

N (p1,0%) and N (uz2,03) with, respectively, probabilities m € [0,1] and mg = 1 — 71, i.e.,
a ~ TN (1, 0%) + mN (2, 03). (17)

When 71 and 7y are positive, we have indeed a mixture; we adopt from Harvey and Liu (2018)
w1 = 0.3 and m = 0.7 and, to point up the performance of our method, we consider fifteen
combinations based on (u1, p2) € {(—2.3,—-0.7), (—2,—-0.5), (—=2.5,0)} and (o1, 02) € {(1,0.5),
(1.5,0.6), (2,1), (2.5,1.25), (3,1.5)} (the values of the pairs are annualized and in %).'

In (17) mg = 0, whereas in (15) and (16) mop > 0. When 7y > 0, we study an up-and-
down shape of m(z). Specifically, to guarantee mo(z) € [0, 1] for all z, we choose my(z) =

min{1, max(f(z),0)} € [0, 1], where
f(z) =3.5(z—0.5)3 —0.5(z — 0.5) + ¢ (18)

and c is chosen to satisfy fol mo(z)dz = my. This way we are able to investigate the effect of my on
the power of the methods by varying ¢ while keeping the shape of my(z) roughly unchanged.!®

Suppose the distribution of alpha and the form of my(z) are determined. We generate the
covariate vector (zi,22,...,%n) with each element drawn from the uniform distribution [0, 1]
and assign them to the funds satisfying the descriptions mentioned at the beginning of this
section. The noise in equation (14) is generated cross-sectionally independent or dependent.
In the former case it is drawn from a normal distribution A/(0,02), where, as in Barras et al.
(2020), o is set equal to the median of its real-data counterpart, that is, approximately 0.0183
for our sample. For each replication, we implement the fFDR' and FDR™ and compute the
rate of falsely selected funds among those classified as out-performers and the rate of truly out-

performing funds detected. The two metrics are averaged across 1,000 replications to obtain

QOur choices are intended to be wide enough to encompass the cases of Harvey and Liu (2018): (my,m2) =
(0.283,0.717), (u1, u2) = (—2.277,—0.685) and (o1, 02) = (1.513,0.586). In Section IB of the Internet Appendix,
we additionally present results of the case m2 = 0, i.e., when the mixture becomes a single normal distribution.

5The alternative choices of a decreasing function mo(z) with f(z) = —1.5(z — 0.5)% 4 ¢, an increasing function
mo(z) with f(z) = 1.5(z—0.5)3+c or a constant function 7 (z) = c result in some discrepancies, without affecting,
though, our main conclusions.
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estimates for the actual FDR and the power of each procedure.!

5. Analysis of fFDR™T and power

We set the number of funds for simulations at 2,000 which is close to our sample of 2,224
funds. We demonstrate the ability of the fFDR™ to control the FDR for balanced panel data,
where the number of observations per fund is equal to 274, under cross-sectional independence.
In the interest of space, we refer to Section IB of the Internet Appendix for the results under
cross-sectional dependence as well as the unbalanced panel data cases. We then compare the
powers of the fFFDR™ and the FDR™ in controlling the FDR at the 10% level; we extend to
higher levels and highlight the differences between the two procedures. In each simulation study,
we analyze the relationship between the powers of the two methods and: i) the proportion of
zero-alpha funds in the sample; ii) the magnitude and proportion of positive alpha funds in the
sample. We also study the impact of the number of funds in the sample and the number of
observations per fund on the power. Finally, we examine the impact of estimation errors in the
covariates, in the power of our procedure.

In general, the results show that the fFDR™ controls well the FDR at any given targets.
When the FDR target is set at 10%, the fFDR™ detects more positive alpha funds than
the FDR™' with a difference in power up to 30%, depending on cases and parameters of the
distributions. When we raise the FDR target to higher levels, the difference is even higher
in favour of the fFDR™. The results are consistent regardless of the number of funds in the
sample, the structure of the panel data and the dependence of the cross-sectional error terms.

In an empirical setting, the informative covariates are estimated quantities. This is trans-
lated to an estimation noise that may affect the power of our procedure. Our simulations reveal

that our method is robust in terms of power up to moderate to high estimation noise.

5.1. False discovery rate control of fEDR™

For varying targets of FDR € {5%, 10%,...,90%}, we implement the simulation procedure
in Section 4 with balanced panel data. Figures 2, 3 and 4 exhibit our results for the generated
data under cross-sectional independence.

In Figure 2, we show our results for the discrete distribution (15) for varying o*. The upper
three subplots correspond to 7 = 0.1, whereas the lower three subplots to 7+ = 0.13. From
left to right, the ratio 7~ /7" increases from 1.5 to 6 (with the null proportion 7 decreasing

accordingly). For example, the top-left subplot exhibits the actual FDR (vertical axis) and the

16We refer to Section IA of the Internet Appendix a detailed description of the simulation procedure.
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given targets of FDR (horizontal axis) with the alphas drawn from a discrete population of
which 75%, 10% and 15% are, respectively, zero-, positive- and negative-alpha funds. A point
on or below the 45°-line indicates that the fFFDR™ controls FDR well for the given level; this
is the case for o = 1.5 at all the FDR targets. For o* = 3.5, the FDR is slightly not met
for targets in the interval (0.1,0.8). In general, we witness slight failure of the fFDR" to
control for FDR when o is abnormally high. In the last case with smallest 7, the FDR is
controlled well. In Figure 3, we study the case of the fund alpha population described by the
mixed discrete-continuous distribution (16). We organize our results based on the same null
proportions my as in Figure 2 and present these for varying o. We observe that the FDR target
is slightly unmet only for extreme values of ¢ when the null proportion is very high and this
effect is also milder compared to the discrete distribution cases. Finally, in Figure 4, we report
the results for the continuous distribution (17) for varying u or (p1,u2) and o or (o1, 092). We

find that the fFEDR™ controls FDR well at all targets.

Figure 2: Performance of fFDR™ for discrete distribution of a. The graphs show the performance of
the fEDRY in terms of FDR control when alphas are drawn from a discrete distribution. The simulated data
are balanced panels with cross-sectional independence.
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Figure 3: Performance of fFDR™T for discrete and normal distribution mixture of c. The graphs
show the performance of the fEEDR™ in terms of FDR control when alphas are drawn from a mixture of discrete
and normal distributions. The simulated data are balanced panels with cross-sectional independence.
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Figure 4: Performance of fFDRY for continuous distribution of a. The graphs show the performance
of the fFDR™ in terms of FDR control when alphas are drawn from a continuous distribution which is a mixture
of two normals. The simulated data are balanced panels with cross-sectional independence.
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In summary, our simulations are based on proposed fund alpha distributions from the recent
literature, from the least realistic cases, with all the out-performing and under-performing
funds assumed to have the same mass alpha value, to the more realistic ones, where the alpha
is drawn from a continuous distribution, in which no fund has exact zero but rather mostly
negative alpha. Our results suggest that, for the continuous distribution, the proposed fFDR™
approach controls well for FDR at any given target.

In Section IB of the Internet Appendix we repeat the exercise for balanced data under

cross-sectional dependence and unbalanced data under both cross-sectional independence and
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dependence. Our findings remain robust.

5.2. Power analysis

Next, we study the power of our fF DR approach in detecting truly positive alpha funds,
calculated as described in Section 4, and compare it with the FDR™ of BSW for FDR control
at 10%. Although the magnitude of our results varies with different targets of FDR, our main
conclusion of the power superiority of the fFDR™ remains.

In Panel A of Table 1, we report for the discrete distribution (15). For (7+,mp, 7 ) =
(10,75,15)% with highest 79 and smallest o* = 1.5, both the fFDR" and FDR™" achieve
similar powers, i.e., 0.3% and 0.4%, respectively. This is expected in this particular case as the
number and magnitude of the true positive alphas are small, while we are controlling for FDR
at 10%.'7 The superiority of the fEEDR™T is more perceptible and stabler for larger o*. This
discrepancy depends not only on the magnitude and proportion of positive alphas, but also on
the proportion of zero alphas. This is because both procedures use the null proportion (7 in
FDR" and mg(2) in fFDR™) to estimate the FDR. With the same magnitude and proportion
of positive alphas, the small proportion of zero alphas implies the higher power of both the
fEFDR"™ and FDR™. The effect of the null proportion on the gap of fFDR™ over FDRT is
stronger when the magnitude of positive alphas is not too high. The gap varies by case and
may even exceed 30% (when 7 = 10%, mp = 30% and a* = 2.5).8

Panel B exhibits the power upshots for the case of the fund alpha population described by
the distribution mixture (16). This implies the dependence of the proportion and magnitude of
positive alphas on the proportion of the zero-alpha funds and the ¢ value for non-zero alphas.
We expect a higher power for both methods for a smaller zero-alpha proportion and/or a higher
value of . We find that the fFDR" is more powerful than FDR™. More specifically, for the
balanced data under cross-sectional independence and w9 = 75%, the power of the fFDR™
(FDRT) increases from 0.3% to 60.8% (0.2% to 52.2%) with increasing o from 1 to 5. For
given, say, 0 = 2, the power of the fFDR" (FDR™) increases from 15.4% to 38% (8.2% and
22%) with reducing mp. The gap is generally evident for o > 1 with power differences around

10% but which can also reach up to 16%.

17As will be shown later, with a higher FDR target (such as 30%), the power of the fFDR" exceeds that
of FDR"' by 6%. Considering a higher target than 10% is sensible for trading and diversification purposes as
otherwise very few or no out-performing funds are selected. In the study of BSW, the estimated FDR in the
empirical application is at least 41.5% on average (depending on portfolio).

18 As shown in Section IB of the Internet Appendix, the relevant reports vary slightly when the simulated
data are generated with alternative forms of m(z) mentioned in footnote 15, with unbalanced panel or with
cross-sectional dependence, however the overall picture remains the same.
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Table 1: Performance comparison in terms of power (%). The table compares the power of the fFDR™
and FDR" at FDR target of 10% when the alphas of 2,000 funds are drawn from a discrete distribution, i.e.
o~ T 0qmar + T000—0 + T Oae—ax (Panel A), a discrete-normal distribution mixture, i.e. o ~ moda=o + (1 —
70)N(0,0%) (Panel B), and a mixture of two normal distributions, i.e. a ~ 0.3N (i1, 0%) 4 0.7A (u2, 03) (Panel
C) with various setting of parameters. The simulated data are a balanced panel with 274 observations per fund
and are generated with cross-sectional independence.

Panel A: discrete distribution.

(mt, 7o, ™) Procedure  o*=1.5 a* =2 a* =25 a* =3 a* =35
fFDR+ 0.3 5.1 21.8 45.7 67.3
(10,75,15)% FDR* 0.4 2.1 12.1 32.3 53.5
fFDR* 1.1 10.3 33.1 58.5 77.5
(10,60, 30)% FDR* 0.4 2.3 13.8 35.9 57.4
fFDR™ 3.5 22.9 52.9 76.6 89.7
(10,30,60)% FDR* 0.4 3.3 21.4 47.8 69.6
fFDR* 0.8 8.8 30.1 55.1 75.1
(13,67.5,19.5)% FDR* 0.4 3.1 17.6 39.7 60.9
fFDR* 2.3 16.4 43 68.1 84.3
(13, 48,39)% FDR* 0.5 4 21.8 46.1 66.8
fFDR* 6.4 34 67.6 89.2 97.5
(13,9,78)% FDR* 0.5 6.9 37.2 69.2 88
Panel B: discrete-normal distribution mixture.
o Procedure c=1 oc=2 c=3 oc=4 c=25
75% fEFDR* 0.3 15.4 36.1 51.1 60.8
0 FDR* 0.2 8.2 26.7 41.7 52.4
60% fFDR"" 1.2 21.6 42.8 57.1 66.1
¢ FDR* 0.2 11.4 31.5 46.6 56.9
30% fFDR* 4 31.6 54 67.2 74.8
¢ FDR* 0.4 17.5 40.5 55.6 65.4
67 5% fFDR* 0.8 18.9 40 54.5 63.7
70 FDR* 0.2 9.9 29.6 44.5 55
48 fFDR* 2.3 25.9 47.8 61.6 70.4
¢ FDR* 0.3 13.9 35.4 50.5 60.5
9% fFDR* 6 37.9 60.6 73.6 80.9
0 FDR* 0.5 22 47.1 62.7 72.2
Panel C: mixture of two normal distributions.
(Ula 02)
(1, pi2) Procedure (1,0.5) (1.5,0.6) (2,1) (2.5,1.25) (3,1.5)
T =6% T =104% 7t =20.7% wt=255% =wt =29.1%
(-2.3,-0.7) fFDR* 0 0.3 45 12.9 22.5
FDR™* 0 0 0.3 1.9 7.1
7t =118% 7t =16.9% =t =264% =t =305% =t =33.4%
(—=2,-0.5) fFDR* 0 0.4 5.9 15.1 24.8
FDR* 0 0.1 0.4 2.9 9
7t =352% 7t =364% at=382% 7t =398% nt=41.1%
(—2.5,0) fFDR* 0.1 0.6 8.3 17.8 27.6
FDR* 0 0 0.6 4.2 11.4

Finally, in Panel C, we study the outcome from using the mixture of normals (17) with
m1 = 0.3, my = 0.7 and non-positive means (u1, 1) to limit the likelihood of a positive alpha.
The proportion of positive alphas ranges from 6% to 41.1%. For small (o1,02) values, the

positive alphas are also small in magnitude and, consequently, the power is negligible. When
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(01,02) are higher than (2, 1), the power of both methods as well as their discrepancy increase
significantly and favourably for fFDR™ reaching up to 16%.

Our analysis has shown that, when controlling for FDR at an as low level as 10%, both the
fFDR*' and FDR™ have good power for large (in magnitude) alphas. When this happens, the
gain in power of the fFDRT over FDR™ can vary depending on the underlying fund alpha
distribution: 10% to 16% (continuous distribution) and 20% to 30% (discrete distribution). On
the other hand, when the zero-alpha proportion is high and the proportion and magnitude of
positive alphas is small, the power of both methods reduces.

Finally, as we demonstrate in Section IB of the Internet Appendix that our conclusions are

not affected by the data structure (balanced versus unbalanced panel) or dependencies.

5.8. Power and FDR trade-off

In what follows, we study the impact on power when controlling for FDR at different (higher
than 10% level) targets. Our results show clear differences between the fEDR' and FDR™
and, in support of the former, even for cases of negligible power for a 10% target. Constructing
mutual fund portfolios at higher FDR levels is sensible as otherwise we may end up with empty
portfolios. Investors have to face a trade-off between the power in detecting out-performing

funds and the FDR threshold, which we discuss next.

Table 2: Power comparison (in %) for varying FDR targets (%). The table presents some selected
cases of low powers of the fFEDRT and FDR" at FDR target of 10%. We consider a discrete distribution:
a ~ 0.750a=0 + 0.16a=1.5 + 0.1554=—_1.5; a discrete-normal mixture: « ~ 0.7504=0 + 0.2A/(0, 1.52); and a two-
normal mixture: o ~ 0.3N(—2.3,1%) + 0.7A(—0.7,0.5%). The simulated data are balanced panels with cross-
sectional independence.

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90
fFDRT™ 03 25 8 181 323 485 643 763 85
FDR* 04 09 2 3.9 7.4 14 24.7 415 65.1

Mixture of discrete  fFDRT™ 0.3 1.3 32 6.5 11.8 19.8 31.3 46.3 64.1
and normal FDR* 02 04 07 1.1 1.7 27 49 104 26.5

fFDR* 0 01 04 12 27 59 11.7 213 353
FDR* 0 0 0 01 01 01 01 01 01

Discrete

Mixture of normals

We focus on cases of very low power when the FDR is controlled at 10%. For brevity,
we present in Table 2 our results for only balanced data under cross-sectional independence
and FDR targets up to 90%, noting that these are largely unchanged for unbalanced data. In
particular, for the underlying discrete fund alpha distribution, the fFDR™ gains rapidly power
with increasing FDR targets, peaking at 40% in excess of the FDR™ when the target is set
at 70%. For the continuous distribution, the power of the FDR™ changes very slowly and is

persistently negligible (mixture of normals) even for FDR controlled at 90%. On the other
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hand, the fFDR™T detects abundant positive alpha funds with a power that can reach up to

46% in excess of the FDR™ (mixture of two normal distributions with 90% target).

5.4. Varying the number of observations and funds

Hitherto, we have assumed a sample with m = 2,000 funds, which reflects our actual dataset
for the whole period from 1975 to 2019. When constructing a portfolio, we usually use sub-
periods of five years and the number of alive funds in these sub-periods naturally varies. In
this section, we investigate the impact of varying number of observations 1" per fund and the
number of funds m on the power.

In Table 3, we present the outcomes for different underlying distributions of fund alphas,
when we control FDR at a 10% target and use balanced panel data with cross-sectional inde-
pendence. We vary m from 500 to 3,000 and 7" from 120 months (i.e., 10 years) to 420 months
Table 3: Power comparison (in %) for varying sample size and observation length. The table
compares the power of the fFDR" and FDR™ in a balanced panel data with varying number of observations
per fund (7") and number of funds (m). We present three cases where alphas of m funds are drawn from i) discrete
distribution: a ~ 0.184=2+0.304=0 +0.600=—2 (Panel A); ii) discrete-normal mixture: « ~ 0.364=0+0.7A(0, 22)

(Panel B); and mixture of two normal distributions: a ~ 0.3A(—2,2%) +0.7A/(—0.5,1) (Panel C). The simulated
data are balanced panels with cross-sectional independence.

Number of observations per fund
m Procedure T =120 T =180 T =240 T =300 T =360 1T =420
Panel A: Discrete distribution

500 fEDRT 2.7 8.5 19.6 31.8 44.6 54.8
FDR™* 0.6 1.4 3 5.3 10.6 18.4
1000 fFDR+ 1.5 6 16.3 29.4 42.4 52.9
FDR™* 0.4 0.8 2.1 4.9 10.6 19.1
92000 fFDR* 1.2 5.7 15.4 28 40.6 51.4
FDR™* 0.2 0.6 1.5 4.8 11.2 20.4
3000 fFDR™ 1.1 5.4 15 27.6 39.3 50.8
FDR™* 0.2 0.5 1.6 4.9 11.8 20.7
Panel B: Mixture of Discrete and Normal distributions
500 fEDR' 12.4 21.3 29.1 35.2 40.5 44.9
FDR™* 2.4 7.5 14.1 20 25.3 29.8
1000 fFDR+ 11.7 21 28.1 34.7 40 44.5
FDR™* 2.1 7.8 14.1 20.1 25.2 29.7
92000 fFDR' 11.4 20.5 28.1 34.1 39.3 43.7
FDR™* 2.2 7.9 14.2 19.9 25.1 29.7
3000 fFDRT 11.2 20.4 27.8 33.9 39 43.6
FDR™* 2.3 8 14.1 20 25.2 29.7
Panel C: Mixture of Normal distributions
500 fFDR™ 1.3 3 5.3 8 10.9 13.4
FDR™* 0.2 0.3 0.5 0.8 1.3 1.8
1000 fFDR+ 0.9 2.4 4.8 7.6 10.1 12.8
FDR™T 0.1 0.2 0.4 0.6 1.1 1.6
92000 fFDR* 0.7 2.2 4.5 6.9 9.6 12
FDR™* 0.1 0.1 0.3 0.5 1 1.6
3000 fFDR+ 0.7 2.2 4.3 6.8 9.3 11.9
FDR™* 0 0.1 0.2 0.4 0.9 1.5
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(i.e., 35 years). It is evident from the reports that the power of the f FDR™ increases at a much
faster pace with increasing 7. With rising m, the power of the fFDR™ slightly decreases,
whereas such is observed for the FDR™ mainly in Panel C. This is not a substantial concern
though, as in reality we do not have a very large number of alive funds in a given sub-period.
Overall, the power of the fEEDR™ in excess of the FDR™ can reach 30%.

Apparently for T' = 120, both procedures have low power. Empirically, when constructing
a portfolio of mutual funds, we usually use in-sample sub-periods of 5 years. In these cases,
the investors may have to raise the FDR target to a higher level as explained in the previous
section.!” In Table 4, we focus the spotlight on (small) m = 500 and T = 60 (i.e., 5 years).
It is shown there that both methods yield even lower power at the FDR target of 10%. By
increasing the target, the power of the fFDR™ in detecting out-performing funds rises faster
than that of the FDR™, especially for the discrete and mixed normal distributions.
Table 4: Power comparison (in %) for varying FDR targets for sample with small size and small

number of observations. In this table, we consider three distributions as in Table 3 for samples consisting of
m = 500 funds (balanced panels with cross-sectional independence) with T' = 60 observations per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90
fFDRY 05 22 58 122 209 30.8 415 535 66.3
FDR* 0.2 05 0.7 09 1.3 1.7 2.1 2.6 3.6

Mixture of discrete ~ fFDRT 24 74 144 23 327 429 532 635 68.4
and normal FDR* 04 09 1.6 3 5.6 104 189 322 473

fFDRT™ 02 1 29 6.2 111 18 26.7 375 51
FDR* 01 01 02 03 04 05 08 1 1.5

Discrete

Mixture of normals

5.5. Estimation errors in the covariate

In the main settings of simulations, we consider a simple covariate where in the set of non-
zero alpha funds, the ranking of funds’ alpha is the same as that of funds’ covariate. This does
not hold in the whole population. Put differently, one cannot simply rank the funds based on a
covariate to distinguish the out-performing ones from the zero-alpha and the under-performing
ones. In this section, we further study the behaviour of our fFDR* approach by adding to
the original covariate a noise reflecting potential estimation biases, as all covariates in the real
data are calculated based on a certain sample period. More specifically, instead of using the

covariate Z as in our previous simulations, we use Z’ = (z],...,z/,) given by

2h =z +n;, (19)

19Tn fact, in order to construct non-empty FDR™ portfolios based on five-year in-samples, BSW introduce a
procedure where they allow the estimate of FDR" to be above 70% for several years.
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where 7; denotes the noise and is generated independently from a normal distribution N (0, 03]).
Alternatively Z’ can be viewed as a realization of some informative covariate which aims to
capture Z. Depending on the scale of the estimation error, the realized covariate could have
different levels of information. We do not know actual estimation errors in covariates in reality.
Thus, we simulate low to high noise in our covariates. More specifically, we consider three
different values of o, including o1 = 0.5/ V12 and o9 = 1/4/12. These values are based on the
fact that the covariate Z ~ U[0, 1], which has a standard deviation of 1/1/12. We confirm that
the fEEDR™ controls well for the FDR in this setting and the figures are virtually the same
as those presented in the previous sections in the original setting. This is the most important
characteristic of f FFDR™ we should expect, that is, ability to control well for the risk even when
the new information contains noise.

In Table 5 we provide further information by presenting the power (at FDR target of 10%)
of the fFDR™. Comparing with Table 1, the power is lower but still remarkably higher than
that of the FDR™ with a varying gap across cases of the alpha distribution and the choice
of 0;,.As will be shown in our empirical analysis, the fFDR" with use of each covariate gains
significant power over the FDR™. Therefore, we could assume that covariates in our application
Table 5: Power (in %) of fFDR™ under noised covariate. The data are generated as in tables 1-3 except

the use of a new covariate containing a noise: Z’ = Z + n instead of Z. The noise is drawn independently form
normal distribution n ~ N(0,07) where o, taking value in {01 = 0.5/V/12,02 = 1/V/12}.

Panel A: Discrete distribution.

a*=15 a* =2 a* =25 a*=3 a* =35
(™t , 7o, ™) o1 09 o1 o9 o1 o9 o1 o9 o1 o9
(10,75,15)% 0.3 0.3 4.7 3.9 19.6 16.9 41.9 375 63.7 59.3
(10,60,30)% 1 07 8.7 6.5 28  23.1 52 45.7 71.8 66.3
(10,30,60)% 26 1.5 16.4 12 43.7 36.1 69.8 61.8 85.7 79.9
(13,67.5,19.5)% 0.7 0.6 8.2 6.7 27.5 23.6 50.8 45.9 71.2  66.6
(13,48 39)% 1.9 1.3 14  10.7 38.2 321 62.8 56 80.6 75.2
(13,9,78)% 51 3.3 27.8 21.7 62.3 55.2 87.6 824 96.6 94.2
Panel B: Mixture of a discrete and a normal distributions.
c=1 oc=2 c=3 c=4 oc=5
™o g1 g9 g1 g9 g1 g9 g1 g9 g1 g9
75% 0.2 0.1 14 119 33.9 317 48.3 46.4 58.1 56.4
60% 0.6 0.3 19.3 16.4 39.6 36.9 53.8 51.3 62.5 60.5
30% 2.2 1.2 28.2 239 49.2 454 62 59 70.5 68
67.5% 04 0.2 16.8 14.3 36.8 34.4 51.2 49 60.7 58.7
48% 1.2 0.7 229 194 43.6  40.3 57.1 54.4 65.6 63.3
9% 3.6 21 34 29 56.1 51.7 68.5 65.4 75.9 73.8
Panel C: Mixture of two normal distributions.
(01,02)
(1,0.5) (1.5,0.6) (2,1) (2.5,1.25) (3,1.5)
(M17H2) g1 02 g1 02 g1 02 g1 02 g1 g2
(-2.3,-0.7) 0 0 0 0 1.2 0.6 6.5 4.2 15  11.2
(-2,-0.5) 0 0 0 0 2.1 1.1 8.9 6 18.2 13.9
(-2.5,0) 0 0 0.1 0.1 4.3 2.4 122 8.3 22.1 17.1
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have relatively less noise than ones in this simulation.

Concluding this section, we recollect that the simulated power of fFDR' in detecting
out-performing funds is found to be larger than FDR™'’s. This persists for different fund
alpha distributions, balanced and unbalanced data, cross-sectional dependence of error terms
accounted for or not. This power advantage depends on the magnitude and proportion of
positive alphas as well as the proportion of zero alpha in the population, the number of funds in
the sample, estimation errors in the covariates, and the average number of observations per fund.
Especially when the last factor is small, leading to a diminished power for both procedures, we
can recover that for the fFDR" by uplifting the FDR level. In our empirical application of the

next section, we show how the investors can benefit from this.

6. Empirical Results

6.1. Five covariates proposed in the literature

We start our empirical investigation of the fFDR™ approach by considering five covariates
that may convey information about the performance of mutual funds. They are shown to be
persistent and, therefore, can predict the performance of mutual funds. We also propose four
new covariates based on asset pricing models.

First, we study the R-square of Amihud and Goyenko (2013), which is estimated from the
Carhart four-factor model and measures the activeness of a fund. If a fund replicates the market,
the R-square will be close to one; if, instead, it is more active, it will have a small R-square and
in this case, according to the authors, funds tend to perform better.

The second covariate is the Fund Size of Harvey and Liu (2017). This takes into account
both the fund size, which is the total net assets under management (TNA) of a fund, and the
industry size, which is the total assets under management of all active mutual funds in the

sample (sum of TNA). More specifically, for fund 7 at time ¢, it is defined as

TNAiyt . TNAi,O*

Fund Size; ; =1

(20)

n n
IndustrySize, IndustrySizeg. ’

where ¢ = 0* corresponds to the time of the first TNA observation in our sample. The Fund
Size reflects the growth in scale of a fund relative to the whole active mutual fund market.
Harvey and Liu (2017) show a significant negative relationship between Fund Size and funds’

performance.?’

20Pastor et al. (2015) and Chen et al. (2004) as well as Zhu (2018), respectively, argue that the industry size
and the fund size (approximated by the logarithm of the fund’s TNA) have a negative impact on the funds’
performance. We use the Fund Size of Harvey and Liu (2017) as it incorporates information of both covariates.
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The third covariate is the Return Gap of Kacperczyk et al. (2008), which is intended to reflect
the unobserved actions of the funds. Mutual funds usually disclose their portfolio holdings and
return periodically, e.g., quarterly or semi-annually. The investors are unaware of the funds’
trading activities in the period of consecutive reports. The Return Gap of a fund is defined as
the difference between the return that is disclosed by the fund and the return that the fund
would have based on disclosure of its last portfolio holdings. Kacperczyk et al. (2008) show that
the funds’ performance can be predicted by their past return gaps; mutual funds with higher
past return gap tend to perform better in the future.

Our fourth covariate is the Active Weight of Doshi et al. (2015), which aims to gauge the
fund’s activeness level and is given by the sum of the absolute differences of the stock value
weights and the actual weights that the fund assigns to the stocks in its portfolio holdings. In
their research, they show that funds with higher active weight tend to perform better. To obtain
meaningful values for the active weight and the return gap, as in Kacperczyk et al. (2008) and
Doshi et al. (2015), we require each mutual fund to hold at least 10 stocks in its portfolio at
any time.

The fifth covariate is the Fund Flow. The interaction of fund flow and funds’ performance
has been studied quite extensively such as in Sirri and Tufano (1998), Berk and Green (2004),
Harvey and Liu (2017) and Capponi et al. (2020), among others. Zheng (1999), in particular,
discovers that funds receiving money perform better than those that lose money. The author
also shows that investors can earn abnormal returns by using small funds’ flow information.
Here, we follow Bris et al. (2007) and define Fund Flow at time ¢ as

TNAt - (1 + ’I”t)TNAt_l

Fund F1 =
un oW (1 + T‘t)TNAtfl ’

(21)

where r; is the return of the fund in the period ¢ — 1 to ¢.

In addition to the aforementioned well-known covariates, we propose four new covariates that
are based on asset pricing models and are available for all funds in our sample. These are the
Sharpe ratio, the Beta and Treynor ratio obtained from the Capital Asset Pricing Model, and
the idiosyncratic volatility (Sigma) of the Carhart four-factor model. The Sharpe and Treynor
ratios are risk-adjusted performance measures of funds, whereas the Beta and Sigma reflect
systematic and idiosyncratic risk, respectively. These metrics reveal aspects of the past mutual

funds’ performance and, thus, may assist in identifying out-performing and under-performing

Other studies on the relationship between fund size and performance and funds’ holding liquidity (e.g., Yan,
2008) or funds’ merger (i.e., McLemore, 2019) document the same conclusion.
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funds. Asset pricing metrics are regularly used by wealth managers and academics in the fields
of trading, asset pricing and investors’ performance, but are overlooked in the mutual funds

literature.?!

6.2. The FDR' and fFDR™ portfolios

In this section, we illustrate how fFDR™ helps to identify out-performing mutual funds
using a portfolio approach following BSW. More specifically, at the end of year ¢, we select a
group of funds to invest in year ¢ + 1 based on historical information from the last five years
(t —4 to t). In order to implement fFDFT and FDR™", we require the observed values of the
covariates of each fund, the estimated alpha and the p-value of each test. We execute, first, the
Carhart four-factor model over the 5-year period to estimate the alpha.

The informative value of the Return Gap, Active Weight, Fund Flow and Fund Size on
funds’ performance is persistent, i.e., the choice between using the most recent (final-year)
observations for these covariates or their average values over the whole in-sample (five years)
is of less importance, as demonstrated by our robustness check in Section IF of the Internet
Appendix.?? Although the predictability of the covariates may last for a long horizon of up to
five years, we expect their informative values to decrease with time; hence, forming portfolios
based on their recent realizations is preferred to their average values of the whole last five years’
time. Because of this, Return Gap, Active Weight, Fund Flow and Fund Size are calculated
based on data in the final year of the in-sample (i.e., we use the exposure of the fund flow in
year t for the Fund Flow, the value at the end of year ¢ for the Fund Size, whereas for the
Active Weight and the Return Gap we use their average exposures in year t). The R-square,
Sharpe Ratio, Beta, Sigma and Treynor ratio are based on the whole five years. We calculate
our p-values in a similar fashion to BSW. For the funds that suffer from heteroskedasticity or
autocorrelation, we calculate the t-statistics based on the heteroskedasticity and autocorrelation-
consistent standard deviation estimator of Newey and West (1987). For each fund, we implement
10,000 bootstrap replications to estimate the distribution of the t-statistic and subsequently
calculate the bootstrapped p-value for the fund.??

As required by our method, the p-values of any truly zero-alpha funds, given a covariate

21For instance, Clifford et al. (2021) study the relation between idiosyncratic volatility and mutual funds flows
but they do not focus on using this informative covariate as a factor for funds selection.

22Readers may refer to Kacperczyk et al. (2008), Doshi et al. (2015), Zheng (1999) and Harvey and Liu (2017)
for the studies of the persistence of the Return Gap, Active Weight, Fund Flow and Fund Size, respectively. It
should also be noted, that in our fFDR framework, all covariates are transformed to uniform with only the
ranking of the covariates across the funds counting.

23The bootstrapping procedure may result in duplicated bootstrapped p-values. For this, we use an adequate
number of replications to reduce that effect and obtain good estimates of mo(z) and f(p, z).
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value, should be uniformly distributed. Although it is difficult for us to validate this requirement
in reality as we never know which funds are truly zero-alpha, it appears intuitive for us to assume
that this condition is satisfied. Consider, for example, the R-square. We expect the truly zero-
alpha funds to invest randomly in the stock market, thus they should possess an R-square value
of roughly equal to one. Conditional on a specific R-square value that a truly zero-alpha fund
could have, i.e., close to one, if the fund is truly zero-alpha then its p-value should follow a
uniform distribution like any usual true null hypothesis test.?*

Next, we describe the selection process of out-performing funds to invest in year ¢t + 1 given
a FDR target 7 in (0,1). First, we recall the relevant selection process for BSW’s “FDRT”
portfolio. For each « on the grid {0.01,0.02,...,0.6}, we calculate the F/DT%j given by (13).
Then, we find v* such that F/lﬁ%j* is closest to 7; this is the significant threshold for BSW’s
portfolio, that is, all the positively estimated alpha funds in the in-sample window with p-values
< 4* will be included in the F DRt portfolio. This guarantees the non-empty property of the
portfolio but does not always meet the FDR target 7, thereby F/Zﬁj may be much higher
than 7.

Second, we select out-performing funds for a fF D R-based portfolio, namely, “fFDRT7”.
To establish comparable fFDR7T and FDRT portfolios, we implement the fFDR™ (with a
particular covariate) to control pFDR™ at a target 7* that reflects the FDR level controlled
by the FDRT portfolio but has to be less than one.?> As the FDR of the FDR7 portfolio is
controlled at level @; which may be greater than one or less than 7, we set: 7" = 7 if
F/DTE;F* <7Tt<l;tr= ﬁ; if 7 < F/DE;L* < 1.2 If F/lﬁ%;: > 1, we just select all the funds
in the F DR portfolio.

For both the fF DRt and F' DRt portfolios, we invest equally in the selected funds in the
following year. If a selected fund does not survive for a month during the year, then its weights
are redistributed to the remaining (surviving) funds.

As aforementioned, at the beginning of each year we select funds in to a portfolio by using

#Indeed, the p-value of each test 4 is defined as p; = 1 — F(|t;|), where F(|t;]) = P(|T;| < |ti||c; = 0) and T;
is the conventional ¢ statistic of test ¢ and t; its estimated value. If hypothesis a; = 0 is true, conditional on a
specific covariate value, the p-value of test 4 is uniformly distributed since P(P; < p;) = P(1 — F(|Ti]) < pi) =
P(|Ti| > F' (1= pi) =1 =P(Ti| < F7'(1 —pi)) =1 = F(F~'(1 - pi)) = pi.

25If we implement the fFDR' and FDR™ to strictly control FDR at a target, say, 7 = 10% or 7 = 20%,
both result in empty portfolios for many years. With BSW’s F'D Rt portfolios, the problem is solved. In BSW’s

—
study, for the FDR10% portfolio, the empirical FDR.« is always greater than 10% with an average of 41.5%.
——t
For our data, among the thirty eight times of portfolio construction, with target 7 = 20% (10%) the FDR.,~ is
less than 7 on eight (zero) occasions and greater than one on five occasions for both targets.
—t —

26We could have set 7 = FDR.,« for both cases. However, it seems fairer to set 7* = 7 if FDR.» < 7 since

both portfolios initially aim to control FDR at 7.
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the previous five consecutive years as in-sample. To be eligible for this, a fund needs to have 60

observations in the in-sample. We start constructing our portfolios from December 1981.27

6.3. Performance comparison

In this section, we assess the portfolios’ performance based on their alphas. We demonstrate
the advantage of the fFDR" in picking out-performing funds and the efficient use of the
covariates’ information. We estimate the alpha evolution and the average alphas of our fF DRt
portfolios based on the nine covariates and compare with those of the FDR7 portfolio. We
also explore the performance of fF DRt portfolios after linearly combining the nine covariates
and using their first principal component, an ordinary least squares regression, a least absolute
shrinkage and selection operator, a ridge regression and an elastic net.®

We focus on portfolios with small FDR targets of 7 = 10%. We repeat all estimations with

7 = 20% in Section IE of the Internet Appendix. Our results remain unchanged for all exercises.

6.3.1. The alpha evolution

For each portfolio, we obtain its alpha evolution by calculating the Carhart four-factor alpha
using its returns from January 1982 up to the end of each month from December 1991 onwards.
In addition to the aforementioned portfolios, we construct two naive benchmark equally weighted
portfolios, without control for the FDR: one that simply includes all the mutual funds in the
in-sample window to be invested in the following year; and, another that contains only those
with positive estimated alphas. We name these two portfolios Equal Weight and Equal Weight
Plus.

We present all the alpha evolution in Figure 5. It is obvious from it that the FFDR10% port-
folio gains higher alphas than the equally weighted portfolio and all the fFDR10% portfolios
outperform the FFDR10%. Ultimately, at the end of 2019, the fFDR10% portfolios with the
R-square and Beta covariates are found to be the best with annualized alphas of about 1.7%,
followed by the fEFDR10% portfolios with the Active Weight, Fund Flow, Sigma, Treynor
ratio, Fund Size, Sharpe ratio and Return Gap covariates achieving annualized alphas of at
least 0.77%. By contrast, the FDR10%, without the use of covariate information, winds up
with a small positive alpha of 0.36%. It is noteworthy that all fFDR10% and the FDR10%

portfolios seem to rebounce in terms of performance over the last two years of our sample.

27 As Fama and French (2010) point out possible biases in the CRSP mutual fund data before 1984, we conduct
a robustness check using a sample from 1984 to 2019; based on our results, presented in Section IC of the Internet
Appendix, our conclusions remain unchanged.

28In Appendix B we provide a detailed comparison of all the fFDRr portfolios in regard to several trading
metrics, whereas in Section ID of the Internet Appendix the performance in terms of wealth evolution is presented.
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Figure 5: Alpha evolution of fFDR10% and FDR10% portfolios over time. The graph presents the
evolution of annualized alphas (in %) of the nine fFDR10% portfolios corresponding to the nine covariates, the
portfolio FDR10% of BSW and the two equally weighted portfolios.
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6.3.2. The average alpha

The alpha evolution in the previous section is calculated based on the portfolio returns
from the start of 1982 up to a time point of interest. This may represent limited informa-
tion in the case of investors with a different investment period of, say, five or ten years. For
this, in Table 6, we report the average alpha that the investors will gain if they invest for
n € {5, 10, 15, 20, 30, 35, 38} consecutive years: for each portfolio, we calculate its “n-year”alpha
based on the portfolio returns over a period of 12n consecutive months, we repeat by shift-
ing every time one month forward, and eventually present the average alpha. We report the
FFDR10% for each covariate and the FDR10%. We note that the last case, n = 38, corresponds
to the alphas for the whole period from January 1982 to December 2019 and are the last points
in the plots in Figure 5.

We find that the fFDR10% portfolios outperform the F D R10% for all considered covariates
and for all n. Although these results should be interpreted with caution (some covariates were
not well known in the literature at the start of our sample, such as the Active Weight and the
Fund Size which were published in 2015 and 2017, respectively), they do indicate the stability

of our approach for different investment horizons.
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Table 6: Comparison of portfolios’ performances for varying time lengths of investing. In this
table, we consider 10 portfolios including nine fFDR10% portfolios corresponding to the nine covariates and
the FDR10% portfolio of BSW. We compare the average alphas of the portfolios that are kept in periods of
exactly n consecutive years. For example, consider n = 5. For each portfolio, we calculate the alpha for the first
5 years based on the portfolios’ returns from January 1982 to December 1986. Then, we roll forward by a month
and calculate the second alpha. The process is repeated and the last alpha is estimated based on the portfolios’
returns from January 2015 to December 2019. The average of these alphas is presented in the first rows of the
table.

FFDR10% FDR10%

n  R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma

5 1.49 0.87 1.24 0.56 0.92 0.57 0.73 1.09 1.19 0.12
10 1.48 0.85 1.18 0.51 0.93 0.65 0.76 1.2 1.06 0.05
15 1.7 0.94 1.4 0.72 1.06 0.79 0.88 1.2 1.09 0.14
20 1.84 1.05 1.59 0.91 1.15 0.91 0.96 1.31 1.17 0.26
25 1.61 0.9 1.36 0.67 0.99 0.8 0.86 1.24 1.09 0.13
30 1.41 0.78 1.23 0.54 0.95 0.78 0.86 1.2 1.01 0.01
38 1.69 1.14 1.38 0.77 1.3 1.04 1.15 1.67 1.27 0.36

6.3.3. Sub-period performance

In the alpha evolution in Figure 5, we note that the performance of our portfolios varies over
time. By construction, this figure contain returns which start from January 1982 and are not
representative of the recent mutual fund performance. In order to investigate the contribution
of the returns in different periods to the performance of the portfolios, we split the whole period
into four non-overlapping sub-periods: 1982-1991 (P1), 1992-2001 (P2), 2002-2011 (P3) and
2012-2019 (P4). We repeat the exercise for each sub-period and present in Table 7 the average

5-year alpha and alpha of portfolios (with a FDR target 7 = 10%) in the sub-period.
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Table 7: Performance of portfolios in sub-periods. The table displays the performance of the nine fFDR10% portfolios corresponding to the nine covariates, the
FDR10% and equally weighted portfolios in sub-periods (P1: 1982-1991, P2: 1992-2001, P3: 2002-2011 and P4: 2012-2019) in terms of the average 5-year alpha (annualized,
in %), the annualized alpha (in %) of the whole sub-period, the corresponding ¢-statistic (with use of Newey—West heteroskedasticity and autocorrelation-consistent standard
error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha Whole sub-period t-statistic Annual Sharpe Ratio

Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
R-square 3.18 237 129 197 2.714 274 214 3.21 281 164 071 1.59 0.65 0.7 0.26 1.37
Fund Size 2.01 174 023 1.44 1.86 227 0.53 3.07 2.18  1.18 -0.29 1.56 0.62 061 02 137
Active Weight 3.01 3.1 -048 1.19 287 3.11 -0.01 0.56 2.47 1.85 -0.54 0.53 0.65 0.74 0.19 1.17
Return Gap 229 091 -043 0.55 211 1.78 0.17  0.09 2.3 1.04 -0.3 0.09 0.6 061 02 1.12
Fund Flow 2.65 0.73 0.06 1.82 2.73 132 054 344 222 0.714 -0.06 1.77 0.66 0.62 0.22 142
Sharpe 1.45 0.7 057 1.11 1.83 087 094 299 197 059 025 1.46 0.64 0.72 0.25 1.37
Treynor 177 073 0.62 1.37 2.12 098 093 3.19 2.03 063 0.19 161 0.64 0.69 0.24 1.38
Beta 3.52  0.72 045 2.02 392 1.58 1.33 3.65 2.15  0.64 0.06 1.94 0.65 045 0.21 1.43
Sigma, 2.19  1.66 1.6 2.36 2.07 166 2.03 3.63 1.88 091 084 1.93 0.59 0.64 0.29 1.38
FDR10% 2.7 0.6 -0.47 -0.35 2.23 1.2 0.09 1.63 2.01 0.83 -0.33 0.69 0.6 0.65 0.19 1.09
Equal Weight -0.45 -1.65 0.29 -1.56 -0.48 -1.28 0.2 -1.34 -1.11  -1.53 -0.36 -2.65 0.48 0.54 0.23 1.01

Equal Weight Plus 0.76 -0.96 0.26 -0.65 0.84 -1.01 04 -0.38 1.17  -1.12 -0.36 -0.62 0.55 0.54 021 1.11
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In terms of alphas and average 5-year alphas, it is clear that all the portfolios perform well
in the first two sub-periods before suffering a decline in the third sub-period. On P3, we observe
negative average 5-year alphas for the FDR10% portfolio and the fFDR10% portfolios with
Active Weight and Return Gap covariates. On the last sub-period, this decrease continues
for FDR10%, whilst all of the fFDR10% portfolios witness rebounds. We note that all the
fFDR10%, except the ones with Return Gap and Active Weight covariates, achieve both
positive alpha and average 5-year alpha in all the sub-periods. The t-statistic columns for
the whole sub-period alpha, show that most portfolios have significantly positive alphas in the
first sub-period. Interestingly, for the Sharpe ratio, we witness the highest reports in the last
sub-period (which is also slightly shorter), whereas the lowest ones appear in the third sub-
period which covers the global financial crisis of 2007-2008. From the realizations of the equally
weighted portfolio, that is, the portfolio that selects all the eligible funds in the in-sample
windows and invests them equally in the following year, we infer that the high Sharpe ratio in
the final sub-period partially comes from the whole mutual fund market. The Equal Weight Plus
portfolio, which invests in all funds with positive estimated alphas in the previous five years,
is always better than the Equal Weight one. This simple screening portfolio even outperforms
the FDR10% in the last two sub-periods. The alphas of the fFDR10% portfolios, by contrast,
are nuanced depending on the covariate used; most of them beat the equally weighted one in
all the sub-periods and for all the metrics (with notable exceptions of the Active Weight and
Return Gap covariates in the third sub-period).

The implications of these results are as follows. First, we note that the R-square, Return
Gap, Active Weight, Fund Flow and Fund Size retain their predictive abilities for mutual fund
performance in recent years. From the five traditional covariates, the R-square, Fund Size and
Fund Flow still have predictive abilities even after their respective publication dates.?? Our
results disagree partly with the findings of Jones and Mo (2021) who argue that published
predictors are losing value in the recent period due to increases in arbitrage activities. Second,
we note that our four new covariates contain valuable information on mutual funds’ performance
that in recent years can surpass the conventional covariates in some cases (see, for example, the
performance of the fFDR10% portfolios in P4 with the Sigma and the Return Gap). Third,
they further verify that our approach can resolve the identification issues in mutual funds due

to noise/luck where other approaches (such as BSW) fail to.

29 Appendix C shows that three out of the five covariates still gain significant alphas in the post-published
period.
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To further support the aforementioned argument on identification issues, we compare the
performance of the portfolios formed in the fF DR framework with a traditional sorting portfolio
formation. If a covariate has a highly linear relation with the performance of mutual funds,
then forming a portfolio based on sorting the funds on the covariate should be sufficient. We
construct single- and double-sorting portfolios similarly to Kacperczyk et al. (2008) and Doshi
et al. (2015), and Amihud and Goyenko (2013), respectively.3"

The performance in terms of alpha of those portfolios from 1982 to 2019 is presented in
Table 8. Our results show that most of the sorting portfolios, except the Active Weight and
Sharpe ratio, have negative or negligible positive alphas at the end of 2019, which contrasts
to the assumption of a linear relationship between the covariate and the funds’ performance.
Obviously, sorted portfolios perform better if they are based on the correct sign of the correlation
between the underlying covariate and our funds’ performance.

Table 8: Performance comparison of portfolios based on fFDR and portfolios based on sorting
on covariates (single-sorting) as well as based on both covariates and past alpha (double-sorting).
The table shows the portfolios’ annual Carhart four-factor alpha (in %) for the period January 1982 to December
2019. At the end of each year, for the single-sorting 10% portfolio, funds are sorted by the covariate. Depending
on whether the relationship of the covariate and the fund performance is positive or negative, the funds in the
top or bottom 10% are chosen to invest in the following year. For the double-sorting 10% portfolio, the funds
chosen in the single-sorting 10% are ranked based on the past five-year alpha and then only 10% of the funds
in the top are selected. Note. As documented in the literature, the R-square and Fund Size (Fund flow, Return

Gap and Active Weight) have a negative (positive) effect on the mutual funds’ performance. The single- and
double-sorting portfolios constructed based on this assumption appear italicized.

Portfolio R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
Panel A: Performance of fFDR10% and fFDR20% portfolios

fFDR10% 1.69 1.14 1.38 0.77 1.30 1.04 1.15  1.67 1.27

fFDR20% 1.84 1.16 1.45 0.82 1.28 1.02 1.10 1.77 1.61
Panel B: Assuming a positive effect of the covariate on performance of the fund

Single sort 10% -1.07 -0.64 -0.63 -1.46 -1.02 0.13 -0.07 -2.11  -2.40

Double sort 10% -1.03 0.03 1.48 -0.40 0.33 0.18 0.44 0.30 0.97

Single sort 20% -1.17 -0.75 -0.67 -1.15 -0.75 -0.17 -0.28 -1.80 -1.69

Double sort 20% -0.60 -0.18 1.15 -0.07 0.11 0.01 -0.10 -0.64 -0.53
Panel C: Assuming a negative effect of the covariate on performance of the fund

Single sort 10% -0.89 -0.83 -1.40 -1.45 -1.00 -1.96 -2.28 049  -0.50

Double sort 10% -1.72 0.50 -1.39 -0.37 0.31 1.86 0.80 0.18 0.47

Single sort 20% -0.86 -1.01 -1.14 -1.34 -1.04 -1.49 -1.49  0.21 -0.67

Double sort 20% -0.34 0.25 -1.20 0.04 -0.01 0.47 0.16 0.19 -0.03

The portfolios based on fF DR gain significant positive alphas and beat the corresponding
sorted portfolios. These results further validate the advantage of our method in exploiting the
non-linear relationship of the covariates, luck and funds’ performance. The inability of the
traditional sorted portfolios, that dominate the related literature, to reflect the predictive value
of the covariates under study is thus noteworthy.

In Section IG of the Internet Appendix, we implement an exercise to combine the covariates

30For further details on the construction of these portfolios we refer the reader to Appendix D.
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to a new one via linear regression and shrinkage method. We see that these simple linear combi-
nations of the covariates does not improve the performance of the fF DR based portfolios. This
result further supports the assumption of the non-linear relationship between the considered
covariates and the performance of mutual funds. As further robustness checks, in Section IH
of the Internet Appendix, we demonstrate that our findings are robust with respect to a data
subset where we require a minimum of $15 million in TNA for a fund to be considered. In
Section IH of the Internet Appendix, we construct a similar set of portfolios, namely fFEDR™ T,
that aim to select the under-performing funds. We see that these portfolios successfully pick

the unprofitable funds and are consistently beaten by the equally weighted portfolios.

7. Concluding Discussion

In this paper, we introduce the fFDR™, a novel multiple hypothesis testing framework,
that incorporates informative covariates to raise the power of detecting outperformers, and
apply it to mutual fund investing. First, we conduct simulation experiments to assess how well
our method performs in controlling FDR and raising power compared to the FDR* method of
BSW. We then construct empirical portfolios based on our new method and nine covariates. We
study five covariates, which, based on earlier contributions, convey information about mutual
funds’ performance and propose four new ones based on asset pricing models. We show how
the admixture of control for FDR and incorporated covariates advances the generation of more
positive and higher alphas than a portfolio that controls FDR only or a portfolio based on
sorting on the covariate and the past funds’ performance.

The implications of our study are both methodological and empirical. The methodological
literature in the field of selecting out-performing mutual funds is rich and expanding. In addition
to the influential and well-cited study of BSW, other notable contributions are due to Kosowski
et al. (2006), Andrikogiannopoulou and Papakonstantinou (2016), Harvey and Liu (2020) and
Grgnborg et al. (2021). All these have their merits and the authors present several promising
empirical findings. In our study we focus on the FDR, whilst we defer an examination of
their power relative to ours to future research. Nevertheless, we ought to note three main
distinguishing features of our method. First, it allows the use of more data in the form of
informative covariates, whilst the vast majority of others are limited to funds’ past returns
and their cross dependencies. Second, it is simple to implement and computationally less
intensive than some of the most recent ones (e.g., the double bootstrap of Harvey and Liu,

2020). Third, our work can be extended to other problems in which statistical power weighs
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more than conservatism (i.e., the FDR threshold is higher), such as in the selection of hedge
funds and bond funds or the assessment of trading strategies.

The empirical implications of our study are also of interest to academics and practitioners.
We demonstrate that the five traditional mutual fund covariates can offer substantial profits
in more recent periods. However, the relationship between these covariates, luck and funds’
performance is non-linear. To fully exploit them, one should rely on powerful methods that
control luck and noise. Our method ensures that. We also introduce four new covariates and
find that their performance in our context is strong and surpasses that of traditional covariates;
a finding that is expected to be of interest to investment managers who are constantly looking
for valuable covariates in portfolio selection.

As with any methodological approach, there are caveats with our fFDR procedure. In
particular, this requires large datasets and gains higher power as the FDR threshold increases
(see Sections 5.3 and 5.4). This implies that our approach should not be applied in problems
which require a small FDR target (i.e., when the risk of a false discovery can lead to disastrous
outcomes). As in our context of mutual funds’ performance, it is difficult to explore covariates
that seem promising (see, for example, the list of covariates studied in Jones and Mo, 2021) but
with limited data availability.

We aspire that the fFDR and fFDR"™ methods will become essential tools for people
confronted by multiple competing factors, funds or models. The fields of finance and economics
are extending towards big datasets and the literature is filled with predictors that may have
value in economic variables of interest. Our approach can contribute to the evaluation of all

these predictors and be a valuable arrow in the quiver of both academics and practitioners.
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Appendix A. Estimating wo(z) and f(p, 2z)

Let {(pi, zi) }7*, be the collection of p-value and covariate realizations of the different funds
under consideration, with {z;}/", transformed in uniform distribution [0, 1] (see Section 2.1).
We create fund bins {K3}y ,, where Kj contains a fund ¢ if z; € ((b — 1)/n,b/n] and for each
bin K} we estimate a common 7p(z) for all the funds ¢ in the bin. For some common A € (0, 1),

we estimate the my(z) in each bin b by

7%0717()\) = #{pl = A’Zi = Kb}7 b= ]-727 sy T (Al)

(1= N#Ky

We determine A by minimizing the mean integrated square error (MISE):

1 2 1
MISE()) = bias? + variance = ( /O B(z, \)dz — m) + /0 [T0(z,A) — (2, \))?dz (A.2)

We estimate 7 using the smoothing spline method of Storey and Tibshirani (2003, Remark B).3!
Similarly to CRS, we calculate 7tg(2;, A) = g () for each grid value A € A = {0.4,0.5,...,0.9},
i=1,...,mandb=1,2,...,n, the #p(z;, \) and, subsequently, fol 7o(z, N)dz = > To(zi, A)/m.
The unknown ¢(z, \) is estimated by ¢(X, z) = #0(2, Amin) — € (1 —7F0(2, Amin)), where ¢ is cho-
sen such that fol b\, z)dz = fol 7o(\, z)dz. We then obtain the optimal \* = arg miny, MISE()).
To estimate the joint density function f(p,z), CRS use a local likelihood kernel density
estimation (KDE) method with a probit transformation (Geenens, 2014). Specifically, let ®(t) =
\/% ffoo e */2dz and & its inverse. Using zl = ®71(z) and p, = ®7!(p;), we obtain a

“pseudo-sample” {(p}, z{)}I" , i.e., we transform the variables (p,z) to (p/,z'); we denote by

f(p',7) the joint density function of (p/,z'), which CRS estimate using the local likelihood
KDE method. The bandwidth of the KDE is chosen locally via a k-Nearest-Neighbor approach

using generalized cross-validation; this step can be implemented easily via the freely available

R package locfit. The desired density function is then estimated as f (p,z) = % where

— 1 —a?/2
() = NI .

Additionally, f(p,z) may be non-increasing in p for each fixed z. CRS implement one more
step which modifies the f (p, z) so that monotonicity is ensured. In our simulations, we use all
the aforementioned techniques. In the empirical part, the monotonicity is switched off as this

property is unknown in our data. For more details, readers are referred to CRS and their R

package fFDR, Geenens (2014) as well as to the references therein.

310n rare occasions when the sample size m is small, the smoothing spline method does not work adequately.
In these cases, we use the bootstrap method of Barras et al. (2010, Appendix A.1).
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Appendix B. A comparison of portfolios’ trading metrics

Next, we evaluate our portfolios in regard to a set of trading metrics, including the annualized
estimated alpha & of the Carhart four-factor model, its bootstrap p-value and t-statistic (with
use of heteroskedasticity and autocorrelation-consistent standard error), the annual standard
deviation of the four-factor model residuals (6.), the geometric mean return in excess of the
one-month T-bill rate, the annual Sharpe ratio and the annual Information Ratio &/6.. All
metrics are presented in Table B.9. We find that the fFDR10% portfolio based on the R-square
covariate is the best for all considered metrics.

Table B.9: Comparison of performance statistics of all considered portfolios with 7 = 10%. The
table compares the portfolios with regard to metrics including the annual Carhart four-factor alpha (&, in %) with
its bootstrap p-value and t-statistic (with use of Newey—West heteroskedasticity and autocorrelation-consistent

standard error), the annual standard deviation of the four-factor model residuals (6, in %), the mean return in
excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual Information Ratio (IR = &/5.).

Covariate & (p-value)  t-statistic 6.  Mean Return  Sharpe Ratio IR
R-square 1.69 (0.06) 1.85 4.42 7.93 0.61 0.38
Fund Size 1.14 (0.2) 1.32 4.02 7.34 0.56 0.28
Active Weight 1.38 (0.1) 1.72 3.79 8 0.6 0.36
Return Gap 0.77 (0.34) 0.99 3.81 7.38 0.55 0.2
Fund flow 1.3 (0.14) 1.56 3.78 7.75 0.6 0.34
Sharpe 1.04 (0.2) 1.33 3.37 7.77 0.62 0.31
Treynor 1.15 (0.15) 1.45 3.49 7.65 0.6 0.33
Beta 1.67 (0.07) 1.78 4.92 7.28 0.55 0.34
Sigma 1.27 (0.26) 1.16 5.01 7.69 0.57 0.25
FDR10% 0.36 (0.72) 0.37 4.75 6.5 0.52 0.08
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43
Equal Weight Plus  -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

Appendix C. Performance of fFDR10% in various periods

In this section, we present the alpha of the fFFDR10% portfolios in periods before and after
the covariates were published. The first line of Table C.10 shows that all covariates gain positive
alpha for the period January 1982 to the end of the prior-published year. The last line of the
table indicates that three of the five previously known covariates still gain significant alpha in

the post-published period.
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Table C.10: Performance of fFDR10% portfolios in various periods prior- and post-published
year of the covariates. The table shows the annualized alpha (in %) of the fFFDR10% portfolio corresponding
to each covariate in specific periods, with [a,b] denoting a period extending from the beginning of year a over to
the end of year b. For instance, the first value in the R-square column, that is, 1.75, is the alpha of the fFDR10%
with R-square covariate for the period from the beginning of 1982 to the end of 2012 (i.e., n — 1 = 2012, where
n = 2013 is the published year of the covariate). The middle value in the column is the Carhart four-factor alpha
of the portfolio for year n, which contains only 12 months corresponding to 12 data points of returns.

fFDR10%

R-square Fund Size Active Weight Return Gap Fund flow

Period n=2013 n=2017 n = 2015 n = 2008 n = 1999
[1982,n — 1] 1.75 0.82 1.46 1.53 1.6
[n—10,n — 1] 1.20 -2.04 -1.27 3.00 0.35
[n—5,n—1] -2.11 0.11 -1.54 1.71 -0.65
[n— 4 n—1] -1.81 -0.12 -0.76 0.62 -1.01
[n—3,n—1] -2.50 0.22 2.79 0.20 -1.44
[n— 2 n—1] -2.44 0.50 3.09 0.82 -1.83
[n—1,n—1] -0.92 -2.1 8.00 -0.04 -0.87
[n,7] 477 -2.39 -3.22 2.67 -0.40
[n+1,n+1] 4.27 1.33 -1.81 2.70 20.76
[n+1,n+2] -0.21 5.45 -0.91 -0.95 6.85
[n+1,n+ 3] 1.45 - -0.53 -1.73 4.33
[n+1,n+4] 1.82 - -0.05 -0.81 2.36
[n+1,n+5] 3.03 - - 213 1.90
[n+1,n+ 10] - - - -0.59 2.47
[n+ 1,2019] 3.73 5.45 -0.05 -0.3 1.31

Appendix D. The construction of sorting portfolios

Here, we describe the constructions of the single- and double-sorting portfolios which are
traditionally conducted in the literature. Specifically, the single-sorting portfolios based on a
covariate are as in Kacperczyk et al. (2008) and Doshi et al. (2015), and the double-sorting
based on a covariate and the past alpha are as in Amihud and Goyenko (2013).

To construct the single-sorting portfolio for each covariate, at the end of each year from
1981, all the mutual funds are sorted into deciles (quintiles) according to the given covariate.
For the covariate that has a negative/positive relationship with the performance of the funds,
the funds in the bottom/top decile (quintile) are selected. These form a portfolio to be invested
in the following year. To form the double-sorting portfolio, the funds selected in the single-
sorting portfolio are again sorted into decile (quintile) according to the past alpha. The funds
in the top decile (quintile) form the portfolio to be invested in the following year. This process
is rolled forward until the end of the sample period.

For consistency with the fF DR portfolios, we use the same type of 5-year rolling window,
i.e., each time we use the aforementioned observed covariates and the alpha and covariates

calculated based on the last five years.
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TIA. Simulation execution

We summarize the simulation procedure as follows.

As a first step, we generate the covariate and alpha for each of the m funds. We generate the
covariate vector (z1,22,...,2my) with each element drawn from the uniform distribution [0, 1]
and assign them to the funds. For the cases (15) or (16), we determine ¢ in (18) such that
fol mo(z)dz = mp for a given my > 0. For each fund i, we draw h; from the Bernoulli distribution
with success probability 1 — mo(z;) and assign a zero alpha to fund ¢ with h; = 0. Finally, for
the remaining funds, we draw true non-zero alphas from the given distribution (15) or (16) and
assign them such that a fund with a smaller z has a smaller alpha. For the case (17), we draw
alphas from the distribution and then assign them to the funds; again, a fund with a smaller z
has a smaller alpha.

In the second step, we simulate the return factors from a normal distribution with parameters
equal to their sample counterparts. The loadings of these factors are also drawn from a normal
distribution with parameters equal to their sample counterparts obtained from the fund level
estimation of equation (14). We consider balanced panel data for 2,000 funds with 274 time-
series observations; the number of 2,000 is chosen to be close to our real sample of 2,224
funds, whereas the number of 274 periods is the median of our sample funds’ observations.
In unbalanced panel data, the number of observations for each fund is drawn randomly with
replacement from the set of the number of observations of the funds in the real-data counterpart.
Under cross-sectional independence, the noise term e;; is drawn from a normal distribution
N(0,02), where, as in Barras et al. (2020), o. is set equal to the median of its real-data
counterpart, that is, approximately 0.0183 for our sample. Under cross-sectional dependence,
we follow Barras et al. (2010) (BSW henceforth) and assume that all fund residuals load on a
common latent factor GG¢, whereas the out-performing and under-performing funds load on the

specific factors Gz’ and G , respectively. Thus,
e = VGt + G Lay>0 +7G; Lai<o + i, (A1)

where 1,,~0 and 1,,<¢ are, respectively, out-performing and under-performing indicators taking
the value 1 if the fund ¢ is out-performing or under-performing, and 0 otherwise. The three
latent factors Gy, G and G} are assumed to be mutually orthogonal and to the four risk factors
and have a normal distribution N(0, aé), where, from BSW, o¢ is set equal to the average of the
monthly standard deviations of the three risk factors (size, book-to-market and momentum).

The coefficient « is set equal to the average of the loading of the three risk factors of the 2,224



funds in our sample. Finally, {n;}; are uncorrelated and drawn from the normal distribution
N(0, 0,27), where o, is chosen such that o, is equated to the median of its real-data counterpart,
as in the independent case.

In the last step, we implement the fFDR" and FDR™ and compute their performance
metrics. More specifically, based on the simulated data from the previous step, we calculate
the Carhart four-factor model alpha and the corresponding p-value for each fund. We use the
resulting p-value, the estimated alpha and the covariate as inputs to the fFDR' and FDR™
procedures. At a given target of FDR, we calculate for each method a rate of falsely classified

funds FDR and a detected rate Power :

+ Vv + Ot
FDR = ——F—— and Power = —, (A.2)

max {R+, 1} T+
where R* is the number of classified out-performing funds and, among them, V' funds are

truly zero-alpha or under-performing funds. T+ is the number of truly out-performing funds in

the population and, among them, C* funds are classified correctly.

_l’_
The previous three steps are repeated 1,000 times and we use the average FDR and

+
Power as estimates for the actual FDR and power.

IB. Additional simulation results

To complement Section 5 of the main manuscript, we show here the performance of the
fFDR™ in terms of FDR control and power under several settings. We first present the per-
formance of fFDR", where my(z) can take three different forms. We then show the results
corresponding to the balanced panel data under cross-sectional dependence. Next, we present
results for unbalanced panel data under both cross-sectional independence and dependence.
Finally, to cover all distributions studied in the literature, we exhibit simulation results for the

case where alphas are drawn from a single normal distribution.

IB.1. Results for alternative forms of mo(z)

In this section, we consider three forms of 7y(z), including decreasing, increasing and being
constant with respect to z. For the decreasing and increasing cases, we specify m(z) based
on f(z) = —1.5(z — 0.5)3 + c or f(2) = 1.5(z — 0.5)3 + c. In the interest of space, we present
results for the mass distribution of alphas with balanced panel data which is generated under
cross-sectional independence. For all forms of m(z), even when this is constant, we conclude

similarly to the case of mp(z) with an up-and-down shape presented in the main manuscript.



Results for other distributions as well as under cross-sectional dependence convey the same

message and are available upon request.

Table I: Power comparison (in %) for discrete distribution when mo(z) is an increasing function.
The table compares the power of the fFEDR' and FDR™' at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: o ~ 7" 6qza* + Todam0 + T~ Sa=—a* With varying o* (annualized, in %)
and proportions (7,7, 7). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.

(T, 7o, ™) Procedure o* =15 o =2 a* =25 oa*=3 a* =35
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Table II: Power comparison (in %) for discrete distribution:when mo(z) is a decreasing function.
The table compares the power of the fEDRT and FDR™ at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: o ~ 77 6a=a* + T00a=0 + T da=_a+ with varying a* (annualized, in %)
and proportions (7,7, 7). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.

(nt, m, ™) Procedure o* =15 a*=2 a* =25 a*=3 a*=35
wmwn G0 Se s w0 s
cos030% TR Sl 5 1o s 57a
coseon IR UM Ge sis ma oo
R e O B vy S
asassoe DR L0 SR W e eow
8979%  oR U0 oa0  ave0  Gei0  sado




Table III: Power comparison (in %) for discrete distribution when mo(z) is a constant function.
The table compares the power of the fFEDR' and FDR' at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: o ~ T da—a* + T00a=o + T Oa——a+ with varying o (annualized, in %)
and proportions (7,7, 7). The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence.
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1B.2. Results for balanced panel data under cross-sectional dependence

We start by presenting in Figures I-1II the cases where the data are generated as balanced
panels under cross-sectional dependent errors. The comparisons in terms of power between

fFDR' and FDR" are shown in Tables IV-VIILI.

Figure I: Performance of fFDRY for discrete distribution of a. The graphs show the performance of
the fFDRY in terms of FDR control when alphas are drawn from a discrete distribution. The simulated data
are balanced panels with cross-sectional dependence.
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Figure II: Performance of fFDRT for discrete and normal distribution mixture of a. The graphs
show the performance of the fFEDR™ in terms of FDR control when alphas are drawn from a mixture of discrete
and normal distributions. The simulated data are balanced panels with cross-sectional dependence.
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Figure III: Performance of fFDR™ for continuous distribution of .. The graphs show the performance
of the fFDR™ in terms of FDR control when alphas are drawn from a continuous distribution which is a mixture
of two normals. The simulated data are balanced panels with cross-sectional dependence.
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Table IV: Power comparison (in %) for discrete distribution. The table compares the power of the
fFDR' and FDR" at FDR target of 10% when the alphas of 2,000 funds are drawn from a discrete distri-
bution: o ~ T da=a* + Toda=0 + T Ga=_q+ with varying a* (annualized, in %) and proportions (7™, m, 7).
The simulated data are a balanced panel with 274 observations per fund and generated with cross-sectional
dependence.

(77, Mo, ™) Procedure o*=15 ao*=2 o* =25 a*=3 a*=35
0T %  hppt 0 se w1 wms st
R I e
(10,30,60)% fﬁgg 3:(53 2?:1'1 géi Zgig 22:33
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Table V: Power comparison (in %) for discrete-normal distribution mixture. The table compares
the power of the fFDRT and FDR' at FDR target of 10% when alphas of 2,000 funds are drawn from a
discrete-normal distribution mixture: a ~ moda=o + (1 — mo)N(0,0?) with varying o (annualized, in %) and null
proportion my. The simulated data are a balanced panel with 274 observations per fund and generated with
cross-sectional dependence.

o Procedure o=1 0=2 06=3 o0c=4 o=5
fFDR* 0.5 15.7 36.2 51.2 60.8

75% FDR* 0.2 8.4 26.6 41.7 52.3
60% fFDR™ 1.6 21.5 42.8 57.1 66.3
FDR* 0.3 11.4 31.3 46.5 56.8
30% fFDR™ 4.7 324 54.5 67.6 (0]
FDR* 0.6 17.9 40.8 55.8 65.4
67.5% fFDR* 1 18.7 39.4 o4 63.3
FDR* 0.2 9.8 29 44 54.5
A8% fFDR™ 2.5 25.5 47.3 61.3 70.2
FDR* 0.3 13.5 34.6 49.8 59.9
9% fFDR* 6.7 38 60.7 73.6 80.7

FDR* 0.7 22 46.9 62.5 72




Table VI: Power comparison (in %) for mixture of two normal distributions. The table compares the
power of the fFDR™ and FDR"' at FDR target of 10% when alphas of 2,000 funds are drawn from a mixture
of two normal distributions: a ~ 0.3N (i1, 07) +0.7TA (2, 03) with varying standard deviation pairs (o1, 02) and
mean pairs (p1, u2) (both parameters’ pairs are annualized and in %). The simulated data are a balanced panel
with 274 observations per fund and generated with cross-sectional dependence.

(01,02)
(11, pi2) Procedure  (1,0.5) (1.5,0.6) 2,1) (2.5,1.25) (3,15)
Tt =6% 7t =104% 7t =207% ~wt=255% wt=29.1%
(-2.3,-0.7) fFDR* 0.1 0.4 5 13.6 23.3
FDR™* 0 0 0.3 2.2 7.4
T =11.8% 7t =169% 7t =264% =T =30.5% =t =33.4%
(-2, —0.5) fFDR+ 0.1 0.6 6.5 15.8 25.5
FDR* 0 0.1 0.5 3.2 9.1
7t =352% 7t =364% 7t =382% 7T =39.8% nt=41.1%
(—2.5,0) fFDR* 0.4 1 9.2 18.6 28.3
FDR*+ 0 0.1 1 4.7 11.7




Table VII: Power comparison (in %) for varying sample size and observation length. The table
compares the power of the fFDR"™ and FDR™ in a balanced panel data with varying number of observations
per fund (7") and number of funds (m). We present three cases where alphas of m funds are drawn from i) discrete
distribution: a ~ 0.184=2+0.300=0 +0.600=—2 (Panel A); ii) discrete-normal mixture: o ~ 0.304=0+0.7A(0, 22)
(Panel B); and mixture of two normal distributions: o ~ 0.3V (—2,2?)+0.7A/(—0.5,1) (Panel C). For each alpha
population, we generate data with cross-sectional dependence.

Number of observations per fund
m Procedure T =120 T =180 T =240 T =300 T =360 7T =420

Panel A: Discrete distribution

500 fFDR* 3.7 9.4 19.9 31 43.5 54.5
FDR* 0.7 1.4 3.2 6.2 12 18.9
1000 fFDR* 2.2 8.3 17.1 29.8 40.4 52.9
FDR* 0.4 1.1 2.6 5.9 11.3 19.9
2000 fFDR™ 2.1 7.3 16.5 26.8 40.6 50.6
FDR* 0.2 0.9 2.5 5.5 11.9 19.9
3000 fFDRT 1.9 7 16 27.8 39.5 48.9
FDR* 0.2 0.7 2.2 5.9 12.3 19.6
Panel B: Mixture of Discrete and Normal distributions
500 fFDR™ 13 22 29.2 35.8 40.6 45.5
FDR* 3 8.1 13.8 20 25.3 29.9
1000 fFDR* 12.5 21.2 29.1 35.1 39.8 44.2
FDR* 2.9 8.2 14.6 20.3 24.9 29.6
9000 fFDR* 12.1 20.9 28.4 34.9 39.4 44.3
FDR* 2.7 8.2 14.4 20.4 25 29.8
3000 fFDRT 11.8 20.8 28.3 34.4 39.9 43.7
FDR* 2.7 8.3 14.4 20.1 25.6 29.6
Panel C: Mixture of Normal distributions
fEFDR™ 1.7 3.5 6.4 8.2 11.2 14.2
500 FDR* 0.2 0.3 0.6 0.9 14 2
1000 fFDRT 1.2 3.2 5.6 8.6 10.8 13.3
FDR* 0.1 0.2 0.4 0.9 1.2 1.9
2000 fFDRT 1.1 2.8 4.9 7.6 10.1 12.8
FDR* 0.1 0.2 0.3 0.7 1.1 2
3000 fFDR* 1.1 2.8 5 7.6 10.3 12.6
FDR* 0.1 0 0.3 0.6 1.2 1.9




Table VIII: Power comparison (in %) for varying FDR targets (in %) for sample with small size
and small number of observations under cross-sectional dependence. In this table, we consider three
distributions as in Table VII for samples consisting of m = 500 funds (balanced panels) with 7' = 60 observations
per fund (5 years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90
fFDRT 08 3 73 136 219 314 41 51.3 63.3
FDR* 0.3 05 0.8 1 1.4 1.9 2.8 4 5.9

Mixture of discrete fFDRY 3.1 85 154 235 323 41.4 508 609 67.2
and normal FDR* 04 12 27 52 86 145 223 325 413

Mixture of normals fFDRT™ 04 18 43 81 134 298 27.7 37.6 50.7
x FDR* 01 01 03 04 05 08 14 25 41

Discrete

1B.3. Results for unbalanced panel data

In this section, we present the performance of the fFFDR™ under both cross-sectional in-
dependence and dependence. Figures IV-VI depict the FDR control of the f FDR™, while the

power comparisons are given in Tables IX—XI.



Figure I'V: Performance of fF DR in terms of FDR control when alphas are drawn from the discrete distribution
with unbalanced panel data.
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Figure V: Performance of fFDR" in terms of FDR control when alphas
distribution mixture with unbalanced panel data.
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Figure VI: Performance of fEDR" in terms of FDR control when alphas are drawn from the mixture of two
normals with unbalanced panel data.
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Table IX: Power comparison (in %) for discrete distribution. The table compares the power of the fFDR' and FDR" at FDR target of 10% when the alphas of
2,000 funds are drawn from a discrete distribution: o ~ 77 da—a* + T00a=0 + T dae_q+ with varying o (annualized, in %) and proportions (7T+, mo, 7). The simulated data
are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data counterpart. We study the simulated data with
both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence

(nt, mo, ) Procedure o* =15 o*=2 a*=25 a*=3 a*=35 a*=15 a*=2 a*=25 a*=3 a*=35
(10,75, 15)% fFDR* 0.4 5.5 21.1 41.3 58.9 0.6 5.9 20.6 40.3 57.8
L 0 FDR* 0.4 2.6 12.7 29.9 46.7 0.4 2.9 13 29.3 45.9
(10, 60, 30)% fFDR* 1.1 10.3 30.6 51.8 68 1.5 10.5 29.8 50.7 66.9
. 0 FDR* 0.5 2.9 14.6 32.6 49.9 0.5 3.2 14.3 31.9 49
(10,30, 60)% fFDR* 3.2 19.8 46.6 66.8 79.8 3.9 19.8 45.6 66 79.4
T 0 FDR* 0.5 3.6 19.1 40 58.1 0.5 4 18.9 39.5 57.6
fFDR* 0.9 8.9 27.7 48.5 65.1 1.2 9.2 27.1 47.5 64.1

(13,67.5,19.5)% FDR™* 0.5 3.9 17.4 35.6 52.3 0.6 4.2 17 34.9 51.5
fFDR* 2.2 15.5 37.8 58.8 73.7 2.9 15.5 37.1 57.8 73

(13,48, 39)% FDR* 0.5 4.5 20.3 39.8 56.9 0.7 4.8 19.5 39 56
(13,9,78)% fFDR* 6.2 27.5 60.2 78.1 88.7 7.5 29.2 60 78.4 88.9
B ° FDR™* 0.6 6.8 29.5 54.2 72.5 0.8 7.7 30 54.7 72.8
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Table X: Power comparison (in %) for discrete-normal distribution mixture. The table compares the power of the fFDR" and FDR"' at FDR target of 10%
when alphas of 2,000 funds are drawn from a discrete-normal distribution mixture: a ~ ma—o + (1 — m0)N (0, 0?) with varying o (annualized, in %) and null proportion .
The simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data counterpart. We study the
simulated data with both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence

o) Procedure o=1 0=2 06=3 o0c=4 o0c=5 c=1 o0=2 0c=3 o0c=4 oc=5
5% fFDRT 0.3 13.9 31.9 45.9 55.7 0.4 13.9 31.7 45.7 55.5
¢ FDR™* 0.2 7.8 23.5 37.1 47.5 0.3 7.9 23.3 36.9 47.2
60% fFDRT 1.3 19.2 38 51.8 60.9 1.3 19 37.8 51.7 60.9
¢ FDR* 0.3 10.4 27.8 41.9 52.2 0.3 10.3 27.6 41.7 52
30% fFDRT 3.5 27.6 48.3 61.9 70.3 3.6 27.4 48 61.4 70.1
¢ FDR* 0.4 15.4 35.7 50.5 60.6 0.5 15.2 35.4 50.2 60.3
67.5% fFDRT 0.8 16.8 35.2 48.9 58.4 0.9 16.9 35.1 49 58.5
R FDR* 0.3 9.2 25.9 39.6 49.8 0.3 9.2 25.7 39.6 49.9
A8 fFDRT 2.1 22.9 42.5 56.1 65.2 2.3 22.9 42.4 56 65.1
¢ FDR* 0.3 12.4 31.2 45.6 55.7 0.4 12.5 31.1 454 55.4
9% fFDRT 5.3 33.3 54.9 68.2 76.7 5.6 33.5 55 68.2 76.7
0 FDR™* 0.6 19.1 41.6 57 67.2 0.7 19.1 41.5 57 67.2

14



Table XI: Power comparison (in %) for mixture of two normal distributions. The table compares
the power of the fFDR" and FDR" at FDR target of 10% when alphas of 2,000 funds are drawn from a
mixture of two normal distributions: a ~ 0.3N (u1,01) + 0.7 (u2,03) with varying standard deviation pairs
(01,02) and mean pairs (u1,p2) (both parameters’ pairs are annualized and in %). The simulated data are
an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the
real-data counterpart. We study the simulated data with both cross-sectional independence (left-hand side) and
cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence

(p1, o) Procedure o! o072 o3 of od ol 0?7 o3 o o°
(=2.3,-0.7) fFDR™ 0 02 38 113 195 0 03 42 11.7 20.1
R FDR* 0 0 03 18 6.3 0 0 03 2 6.4
(=2, -0.5) fFDR* 0 04 5 13 21.7 0.1 0.5 5.5 137 222
B FDR* 0 01 04 27 7.8 0 01 05 29 8.1
(=2.5,0) fFDRT™ 01 05 73 154 24 03 08 78 16 246
- FDR* 0 01 06 39 99 0 01 09 42 103

where o1 = (1,0.5),02 = (1.5,0.6),0° = (2,1),0% = (2.5,1.25),0° = (3, 1.5).

1B.4. Simulation results for single normal distribution

In this section, we present the simulation results for a special case of continuous distribution
where the mixture (17) has only one component. Specifically, we consider the case my = 0,
a ~ N(p,0?) and, based on Jones and Shanken (2005) and Fama and French (2010), we use
uw € {—0.8,-0.5,0} and o € {1,1.5,2,2.5,3} (the presented values of both parameters are
annualized and in %).3?

Figures VII and VIII present the performance of the fFDR™ procedure when the alphas
are drawn from balanced and unbalanced panel data, respectively. It is shown that the FDR is

controlled at any given target.

32 Jones and Shanken (2005) assume that the fund alphas are drawn from a normal distribution and their
estimates for the mean and standard deviation are based on prior beliefs. They find that the mean is 1.3%-1.4%
per annum before expenses (about 2%) and the standard deviation is 1.5%-1.8%. In addition, Fama and French
(2010) assume that the fund (gross) alpha population has a normal distribution centered at 0.
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Figure VII: Performance of fFDR" in terms of FDR control when alphas are drawn from the single normal
distribution with balanced panel data.
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Figure VIII: Performance of fFDR" in terms of FDR control when alphas are drawn from the single normal
distribution with unbalanced panel data.
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In Table XII, we focus on comparing the performance of fFDR™ and FDR™ in terms of
power. As 7t depends on both the mean p and variance o2 of the distribution, we need to
distinguish the value of 7% from the pairs (y1, o). We provide in Panel A additional information
about 7", which helps us assess the impact of the magnitude of positive alphas on the power.
For instance, for 7™ ~ 40%, the power of the two procedures for (i, o) = (—0.8, 3) is significantly
higher than for (u, o) = (—0.5,2). We observe a boost in power for both methods with increasing
o (for given non-positive p), resulting in larger proportion and magnitude of positive alphas.
In all the cases under consideration, the f FDR' dominates FDR™ in terms of power and this

gap soon becomes omnipresent for o > 1.5 reaching up to 18%.
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Table XII: Power comparison (in %) for single normal distribution. The table compares the power of
the fFDR™ and FDR™ at FDR target of 10% when alphas of 2,000 funds are drawn from a normal distribution:
a ~ N(u,0?) with varying standard deviation o and mean g (both parameters are annualized and in %).
In Panel A the simulated data are a balanced panel with 274 observations per fund, whereas in Panel B an
unbalanced panel with the number of observations of each fund drawn randomly with replacement from the
real-data counterpart. For each type of panel data, we generate data cross-sectional independence (left-hand
side) and with cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
o o
W Procedure 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Panel A: Balanced Data
T 21.2 297 345 374 39.5 21.2 297 345 374 39.5

-0.8 fFDR* 1.6 141 305 444 55.1 21 149 309 447 554
FDR* 0.1 1.7 126 272 40.6 0.1 21 128 274 407

ot 309 369 40.1 421 434 309 369 40.1 42.1 434
-0.5 fFDR" 3 176 33.8 473 57.7 3.8 183 345 47.8 581
FDR* 0.1 3.6 165 313 44.1 0.2 4 16.7 31.5 44.3

ot 50 50 50 50 50 50 50 50 50 50
0 fFDR* 79 248 40.7 528 62.4 8.9 25.7 413 533 62.7
FDR* 0.6 9.1 24.2 387 50.3 1 9.5 24.6 38.9 50.5

Panel B: Unbalanced Data
_0.8 fFDR™ 1.4 12.1 26.5 395 50.1 1.7 12,7 271 39.8 50.2
’ FDR* 0.1 1.7 10.8 23.2 35.2 0.1 2 11.2 235 354
05 fFDR* 2.6 152 29.8 425 52.6 3.1 158 30.2 428 527
’ FDR* 0.2 3.4 14.1 26.8 38.6 0.2 3.7 145 272 38.8
0 fFDR* 6.8 21.6 36 47.8 56.9 7.4 224 364 48 57.1

FDR* 06 81 208 33.6 44.5 09 85 212 339 446

IC. Results for data sample period from 1984

Given potential biases in the mutual fund data for the period before 1984, we construct
portfolios using a data sample from 1984 as a robustness check. We start by using the first
five years’ data, spanning from January 1984 to December 1988, to calculate the inputs of the
procedures. The detected out-performing funds are equally invested in 1989. Then, the five
years of data from January 1985 to December 1989 are used for the recalculation of the inputs
of the procedures to detect out-performing funds invested in 1990, and so on. The process is
yearly rolled over until the end of the sample. Thus, the OOS returns of the portfolios start from
January 1989 to December 2019. At the end of each month from December 1998, i.e. when the
portfolios’ return series reach a length of at least ten years, we calculate the portfolios’ alpha
based on the returns from January 1989 to that month and present that in Figure IX. We also

report the average n-year alpha with the length of investing n from 5 to 31 years in Table XIII.
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Figure IX: Alpha evolution of fFDR10% and FDR10% portfolios over time with use of data
from 1984. The graph presents the evolution of annualized alphas (in %) of the nine fFDR10% portfolios
corresponding to the nine covariates, the portfolio FDR10% of BSW and the two equally weighted portfolios.
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Table XIII: Comparison of portfolios’ performances for varying time lengths of investing: results
for sample data from 1984 to 2019. In this table, we consider 10 portfolios including nine fFDR10%
portfolios corresponding to the nine covariates and the FDR10% portfolio of BSW. We compare the average
alphas of the portfolios that are kept in periods of exactly n consecutive years. For example, consider n = 5. For
each portfolio, we calculate the alpha for the first 5 years based on the portfolios’ returns from January 1989 to
December 1993. Then, we roll forward by a month and calculate the second alpha. The process is repeated and
the last alpha is estimated based on the portfolios’ returns from January 2015 to December 2019. The average
of these alphas is presented in the first rows of the table.

JFDR10% FDR10%

n  R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma

5 1.17 0.62 0.88 0.22 0.5 0.35 0.47 0.53  1.02 -0.45
10 1.43 0.61 0.99 0.46 0.58 0.5 0.51 091 1.04 -0.37
15 1.64 0.6 1.09 0.65 0.69 0.65 0.63 0.96 1.03 -0.17
20 1.61 0.65 1.29 0.7 0.77 0.79 0.75 1.07 1.17 -0.12
25 1.28 0.53 1.12 0.43 0.61 0.59 0.57 0.9 0.93 -0.33
30 1.45 0.93 1.07 0.43 1.02 1.05 1.05 1.13 1.21 0.03
31 1.5 0.96 1.11 0.49 1.02 1.04 1.06 1.16 1.23 0.1

ID. Wealth evolution

In Figure 5 in the main manuscript, we study the alpha evolution of the portfolios over
time. However, an investor may be interested in the gain in value. Figure X shows the growth
of 1 dollar that the investor invests in each portfolio at the beginning of 1982. Ultimately, at
the end of 2019, this amount grows to about 74 dollars if she chooses the fFDR10% portfolio
with R-square as the covariate, as opposed to just 45, 47 and 41 dollars with the FDR10%,

the equal weight plus and equally weighted portfolios, respectively. This exercise reveals the
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potential profitability of an investor who had the perfect oracle in 1982 on the methods and the
covariate that would be presented over the next 30 years.
Figure X: Evolution of wealth. The graph plots the evolution of 1 dollar invested at the beginning of 1982 in

the nine FFDR10% portfolios corresponding to the nine covariates, the fFDR10%, the Equal Weight and Equal
Weight Plus portfolios.
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IE. Results for alternative target of FDR

In this section, we repeat the exercise with the FDR target of 20%. Figure XI presents the
alpha evolution of the individual covariates. Table XIV shows the average n-year alpha of those

portfolios. Finally, Table XV presents the statistic metrics for all mentioned portfolios.
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Figure XI: Alpha evolution of fFDR20% and FDR20% portfolios over time. The graph presents
the evolution of annualized alpha of the nine fFDR20% portfolios corresponding to the nine covariates, the
FDR20% of BSW and the two equally weighted portfolios.
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Table XIV: Comparison of portfolios’ performances for varying time lengths of investing. In this
table, we consider 10 portfolios including nine fF DR20% portfolios corresponding to the nine covariates and the
FDR20% portfolio of BSW. We compare the average alphas (annualized and in %) of the portfolios that are
kept in periods of exactly n consecutive years. For example, consider n = 5. For each portfolio, we calculate
the alpha for the first 5 years based on the portfolios’ returns from January 1982 to December 1986. Then, we
roll forward by a month and calculate the second alpha. The process is repeated and the last alpha is estimated
based on the portfolios’ returns from January 2015 to December 2019. The average of these alphas is presented
in the first row in the table.

n  R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR20%
5 1.6 0.8 1.23 0.61 0.89 0.58 0.65 1.15 1.4 0.41
10 1.63 0.82 1.21 0.61 0.93 0.65 0.7 1.33 1.2 0.34
15 1.84 0.92 1.46 0.82 1.06 0.79 0.83 1.34 1.22 0.41
20 1.97 1.05 1.66 1.03 1.15 0.9 0.92 1.44 1.28 0.53
25 1.75 0.9 1.42 0.78 0.99 0.79 0.82 1.37 1.18 0.42
30 1.55 0.81 1.28 0.67 0.95 0.76 0.8 1.35 1.16 0.31
38 1.84 1.16 1.45 0.82 1.28 1.02 1.1 1.77 1.61 0.67
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Table XV: Comparison of performance statistics of all considered portfolios with 7 = 20%. The
table compares the portfolios with regard to metrics including the annual Carhart four-factor alpha (&, in %) with
its bootstrap p-value and t-statistic (with use of Newey—West heteroskedasticity and autocorrelation-consistent
standard error), the annual standard deviation of the four-factor model residuals (6¢, in %), the mean return in
excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual Information Ratio (IR = &/6.).

Covariate & (p-value) t-statistic 6. Mean Return Sharpe Ratio IR
R-square 1.84 (0.04) 2.03 4.41 8.08 0.62 0.42
Fund Size 1.16 (0.18) 1.35 4 7.37 0.56 0.29
Active Weight 1.45 (0.08) 1.81 3.7 8.06 0.6 0.39
Return Gap 0.82 (0.31) 1.05 3.77 7.43 0.55 0.22
Fund flow 1.28 (0.14) 1.54 3.76 7.76 0.59 0.34
Sharpe 1.02 (0.2) 131 3.37 777 0.61 0.3
Treynor 1.1 (0.17) 1.38 3.5 7.6 0.6 0.31
Beta 1.77 (0.05) 1.93 4.77 7.31 0.56 0.37
Sigma 1.61 (0.18) 144 5.02 7.91 0.59 0.32
FDR10% 0.67 (0.5) 0.69 4.79 6.9 0.54 0.14
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43
Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

IF. Results from using an alternative proxy of covariates

In this section, we present in Figure XII the alpha evolution of fFDR10% portfolios where
the proxy for each covariate is based on whole data in the in-sample period instead of the data
in final year as in the main manuscript. We see that the performance of the portfolios does not
vary significantly.

Figure XII: Alpha evolution of fF DRt portfolios over time where the proxy for each covariate
(except the R-square and the four covariates obtained from the asset pricing models) is its average
realizations in the five years in-sample period. The graph presents the evolution of annualized alpha (in

%) of the nine fFDR10% portfolios (corresponding to the nine covariates), the portfolio FDR10% of BSW and
the two equally weighted portfolios.
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IG. Covariate combinations

So far, we have considered the effect from the information brought in by each single covari-
ate. In what follows, we explore the effect from combining the information from the different
covariates and potential consequent performance improvement. More specifically, we create a
new covariate given by the linear combination of the underlying covariates. More specifically,

for each fund ¢ at time ¢, we have

New Covariate;; = c1tR-square, ; + corActive Weighttﬂ- + cg:Return Gapm-
“+c4eFund Sizeg ; + c5:Fund Flow; ; + cg;Sharpe Ratio, ;

+cri Treynor Ratio, ; + cgiSigma, ; + co;Betay ;. (G.1)

We consider two approaches to estimating the coefficients cyy,...,co; in (G.1). First, we
use as our new covariate the first principal component of all nine (standardized) covariates.
By transforming the covariates to their principal components, their information about the
performance of a fund is preserved and conveyed. We use the first principal component as
it captures most of the variation of the covariates. Second, we use a linear model that re-
gresses the fund returns for year k on the observed value of the covariates in year k — 1, where
ke {t,t —1,t —2,t —3}. Then, we predict the return for year ¢t + 1 based on the estimated
regression model and the covariates in year t. This is equivalent to using equation (G.1) with the
regression’s estimated coefficients as the ¢4, ..., co;. We use ordinary least squares (OLS), the
least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) , ridge regression
and the elastic net of Zou et al. (2005).%3

Figure XIII exhibits the performance of the fF DRt portfolios with the newly created
covariates in terms the alpha evolution.>® We find that the portfolio based on the covariate

obtained from the elastic net performs best amongst the combined covariates at 7 = 10%.

33For each method (except OLS), the covariates are standardized before being used in the estimation. We use
cross-validation to determine the parameters in the LASSO, ridge and elastic net methods.

34There are a few years where LASSO (two years) and the elastic net (three years) shrink all the regression
coefficients to zero. In these cases, the new covariate is equal to zero for all funds and, to avoid an empty portfolio,
we simply select all the funds in the F'D Rt portfolio.

23



Figure XIII: Alpha evolution of fFDR10% portfolios with combined covariates. The graph shows
the alpha evolution of the fFDR10% portfolios with each using a covariate obtained from either the principal
component method or regression method; for the former, the covariate is the first principal component (PC 1)
of the five covariates, whereas for the latter the new covariate is a linear combination of the five underlying
covariates with the weights obtained based on one of the OLS, LASSO, Ridge and elastic net regressions.
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Aiming to acquire a more complete portrayal of the various covariates combinations, we
study also the portfolios’ alphas for various time lengths of investing. Table XVI shows the
average n-year alphas of the fFDR10% portfolios.

Table XVI: Performance of f FDR10% portfolios with combined covariates for varying time lengths
of investing. The table displays the average n-year alpha (annualized and in %) of the fFDR10% portfolios
which use covariates obtained by the first principal component (PC 1), the OLS, LASSO, Ridge and elastic net
(see descriptions in Figure XIII). The average n-year alpha of each portfolio is calculated as per the description
in Table 6.

n  OLS Ridge LASSO Elastic Net PC 1

5 0.78 1.02 0.8 1.2 0.76
10 0.81 1.03 0.81 1.36 0.94
15 091  1.07 0.89 1.5 1.17
20 1.06 1.15 1 1.67 1.31
25 096 1.07 0.9 1.44 1.13
30 094 1.05 0.89 1.32 1.02
38 093 1.04 0.91 1.25 1

The elastic net performs also better for all time lengths. However, this best combined
covariate does not beat the R-square and Beta under the fF DR framework. When we partition
the sample into four sub-periods, as mentioned above, Tables 7 and XVII show that for any sub-
period there is always an underlying individual covariate that beats all the combined covariates.
Nevertheless, since investors do not know which covariate will perform best in advance, the

combination of covariates is still advantageous in prediction in practice.
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Table XVII: Performance of portfolios in sub-periods. The table displays the performance of the f FDR10%, FDR10% and equally weighted portfolios in sub-periods
(P1: 1982-1991, P2: 1992-2001, P3: 2002-2011 and P4: 2012-2019) in terms of the average 5-year alpha, the alpha of the whole sub-period (both metrics are annualized and
in %), the corresponding t-statistic (with use of Newey—West heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha t-statistic Sharpe Ratio
Portfolio P1 P2 P3 P4 P11 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
OLS 226 1.34 047 -0.1 226 1.15 0.99 -0.35 1.75 0.76 0.53 -0.41 0.64 0.8 026 1.11
Ridge 2.33 1.99 0.49 0.46 2.79 1.65 1.02 0.04 1.96 1.06 0.23 0.04 0.63 0.81 0.24 1.13

LASSO 2.65 116 049 -0.1 2.7 105 1.02 -0.35 1.83 0.67 0.3 -0.41 0.64 0.78 0.24 1.11
Elastic Net 2.45 2.63 0.39 -0.14 2.72 3 0.89 -0.37 1.68 1.88 0.2 -0.43 0.62 0.79 0.23 1.11
PC1 1.69 1.48 0.62 -0.21 2 1.8 1.11 -047 1.75 1.19 0.56 -0.54 0.62 0.76 0.25 1.1

25



Similarly to Figure X, in Figure XIV we depict the wealth evolution of one dollar invested
in the fFDR10% portfolios based on the combined covariates. At the end of 2019, 1 dollar
grows to about 73 to 80 dollars if the investor invests in one of the fFDR10% portfolios with

the covariates obtained from OLS, LASSO, Ridge and elastic net regressions.

Figure XIV: Evolution of wealth of fF DRt portfolios with combined covariates. The graph plots the
evolution of 1 dollar invested at the beginning of 1982 in the nine FDR10% portfolios corresponding to the nine
covariates, fFDR10%, Equal Weight and Equal Weight Plus portfolios. In this graph, the fFDR10% portfolios
are the ones described in Figure XIII.
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IH. Restricted data

As supplementary to our empirical study of Section 6, we repeat here our experiments for a
data subset where a mutual fund enters the sample when its TNA reaches $15 million (adjusted
for inflation as of January 2019). This choice of threshold is consistent with Pastor et al. (2015)
and Zhu (2018). Table XVIII shows the average n-year alpha for the f FDR10% and fFDR20%
portfolios based on each individual covariate. We then present in Table XIX our results for the

fFDR10% and fFDR20% portfolios based on combinations of the covariates.
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Table XVIII: Comparison of portfolios’ performances for varying time lengths of investing: restricted data. We consider 20 portfolios including nine fFDR10%
portfolios, nine fFDR20% portfolios, the FDR10% and FDR20% portfolios of BSW. We compare the average alphas (annualized, in %) of the portfolios that are kept for
periods of exactly n consecutive years. For more details, refer to Table 6 of the main manuscript.

n  R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR

Panel A: fFDR10% versus FDR10%

5 1.5 0.81 1.39 0.62 0.93 0.57 0.73 1.09 1.19 0.13
10 1.48 0.68 1.36 0.63 0.93 0.65 0.75 1.2 1.06 0.06
15 1.7 0.73 1.6 0.85 1.06 0.8 0.87 1.2 1.1 0.15
20 1.84 0.82 1.79 1.07 1.14 0.91 0.96 1.31 1.18 0.27
25 1.62 0.71 1.56 0.82 0.98 0.81 0.86 1.24 1.09 0.14
30 1.42 0.63 1.41 0.69 0.95 0.79 0.86 1.2 1.01 0.02
38 1.69 1.01 1.52 0.94 1.3 1.04 1.14 1.68 1.27 0.37
Panel B: fFDR20% versus FDR20%
5 1.61 0.74 1.37 0.67 0.91 0.58 0.65 1.15 1.41 0.42
10 1.63 0.67 1.37 0.72 0.96 0.65 0.7 1.33 1.2 0.35
15 1.85 0.72 1.63 0.93 1.08 0.79 0.82 1.34 1.22 0.42
20 1.98 0.82 1.83 1.16 1.17 0.91 0.92 1.44 1.28 0.54
25 1.76 0.71 1.59 0.91 1.01 0.8 0.81 1.37 1.18 0.43
30 1.56 0.66 1.43 0.8 0.98 0.77 0.8 1.35 1.16 0.32
38 1.85 1.04 1.57 0.98 1.3 1.02 1.1 1.78 1.61 0.68
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Table XIX: Performance of fF DRt portfolios with combined covariates for varying time lengths
of investing: restricted data. The table displays the average n-year alpha of the fFDR10% (Panel A) and
fFDR20% (Panel B) portfolios using the covariates given by the first principal component (PC 1), the OLS,
ridge, LASSO and elastic net (see descriptions in Figure XIII of the main manuscript). The average n-year alpha
(annualized, in %) of each portfolio is calculated as described in Table 6 of the main manuscript.

n  OLS Ridge LASSO Elastic Net PC 1
Panel A: 7 = 10%

5 0.76 1.02 0.84 0.94 0.78
10 0.73 1.04 0.96 0.99 0.99
15 0.82 1.09 1.08 1.07 1.22
20 0.95 1.19 1.25 1.17 1.4
25  0.83 1.07 1.1 1.03 1.19
30 0.8 1.01 1.06 0.97 1.08
38 0.79 0.97 1.07 0.96 1.05
Panel B: 7 = 20%
5 0.73 1 0.68 0.96 0.77
10 0.73 1.01 0.79 1.01 0.96
15 0.81 1.06 0.93 1.08 1.2
20 0.93 1.17 1.1 1.18 1.38
25 0.82 1.05 0.95 1.04 1.17
30 0.8 1 0.89 1 1.06
38 0.77 0.96 0.88 1.01 1.02

II. Selecting unprofitable funds with fFDR

In this section, we obtain, by analogy with the fF D R7 portfolio, a selection of unprofitable
funds. First, consider a selection of R~ under-performing funds including V'~ wrongly selected

zero-alpha or out-performing funds. We define

FDR =E <W{VR;1}> (L1)
. pFDR™ =E (;:‘ R > 0) . (1.2)

If a fund ¢ with p-value p; and negative estimated alpha (&; < 0) is selected as under-

performing fund whenever p; < v, then FDR™ is estimated by

— iy/2
FDR, = Toy/ (L.3)
R=/m
where R~ = #{i|p; < v, a&; < 0} and 7y is calculated as in equation (11) in the main manuscript.

At a given target 7 of FDR™, we form the FDR™ 7 (f F DR~ 1) portfolio of under-performing
funds similarly to the FDR7r (fFDRT) portfolio of out-performing funds. Specifically, we
establish the FF DR~ 7 portfolio using the same  grid as for the FDR7 and form the fFDR™ T
portfolio by implementing the fF DR procedure (with a specific covariate) on the set of non-

positive estimated alpha funds to control pFF DR~ at the same level as the portfolio FDR™ 7.
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The following tables present the average n-year alpha of the portfolios at target 7 = 10%
(Table XX) and their trading metrics (Table XXTI). We also construct a portfolio, namely Equal
Weight Minus, which includes all funds with negative estimated in-sample alpha invested in the

following year.
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Table XX: Comparison of portfolios’ performance for varying time lengths of investing: portfolios of unprofitable funds. We consider 11 portfolios including
the equal weight minus (EW ™), the FDR™10% and the fFDR™10% with the nine individual covariates. The table compares the average alphas (annualized, in %) of
portfolios that are kept in periods of exactly n consecutive years. For more details, refer to Table 6.

n  R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FEW~ FDR™10%

5) -3.96 -4.56 -2.85 -4.12 -3.43 -2.29 -2.16 -4.35 -4.13  -1.36 -4.77
10 -3.82 -4.37 -2.83 -3.85 -3.1 -2.05 -1.91 -4.18  -3.86 -1.24 -4.41
15 -3.59 -4.07 -2.62 -3.52 -2.86 -1.81 -1.65 -3.88  -3.62 -1.09 -4.09
20 -3.45 -3.89 -2.53 -3.33 -2.73 -1.7 -1.54 -3.72 -3,51 -1.01 -3.93
25 -3.61 -4.07 -2.73 -3.56 -2.93 -1.81 -1.66 -3.94  -3.69 -1.04 -4.17
30 -3.83 -4.29 -2.92 -3.83 -3.17 -2.05 -1.91 -4.22  -3.99 -1.1 -4.5
38 -4.12 -4.51 -3.21 -4.17 -3.74 -2.53 -2.41 -46 -431 -1.31 -4.91
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Table XXI: Compe numbarison of performance statistics of all considered portfolios of unprofitable
funds with 7 = 10%. The table compares the portfolios with regard to metrics including the annual Carhart
four-factor alpha (&, in %) with its bootstrap p-value and t-statistic (with use of Newey—West heteroskedasticity
and autocorrelation-consistent standard error), the annual standard deviation of the four-factor model residuals
(6, in %), the mean return in excess of the one-month T-bill rate (in %), the annual Sharpe ratio and the annual
Information Ratio (IR = &/6-).

Covariate & (p-value)  t-statistic 6. Mean Return Sharpe Ratio IR
R-square -4.12 (< 0.01) -5.63 3.21 3.33 0.3 -1.29
Fund Size -4.51 (< 0.01) -6.26 3 2.86 0.27 -1.51
Active Weight -3.21 (< 0.01) -4.95 3.15 4.1 0.35 -1.02
Return Gap -4.17 (< 0.01) -5.89 3.32 3.2 0.29 -1.26
Fund flow -3.74 (< 0.01) -5.35 3.11 3.63 0.32 -1.2
Sharpe -2.53 (< 0.01) -4.2 2.68 4.48 0.38 -0.94
Treynor -2.41 (< 0.01) -4.04 2.68 4.68 0.39 -0.9
Beta -4.6 (< 0.01) -5.3 4.19 3.08 0.28 -1.1
Sigma -4.31 (< 0.01) -5.18 3.86 2.89 0.27 -1.12
FDR™10% -4.91 (< 0.01) -6.08 3.48 2.3 0.23 -1.41
Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43
Equal Weight Minus -1.31 (< 0.01) -3 1.98 5.9 0.48 -0.66
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