
Mispricing, Learning, and Price Discovery

We extend the “information share” (IS) framework of De Jong and Schot-
man (2010) by accommodating the endogenous error-correction mechanism
proposed by Andersen et al. (2022) and co-movement pricing-errors across
markets. We discuss identification issues and propose a generalized mea-
sure of information shares. We apply the new framework to Sp500-Emini
and SPY ETF contracts and find evidence that our model can capture the
intraday patterns of IS and other market behaviors more accurately. Specif-
ically, our model reveals the intraday patterns of single market self-learning
(endogenous error-correction mechanism), multiple markets cross-learning
(cointegration error-correction mechanism), over/under-reaction to the ef-
ficient price shock, and the IS of SPY and SP500-EMINI markets.
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1 Introduction

Learning is an important feature in many microstructure models. Some
traders have private information and they trade on it; other traders observe
market data and they learn from it (O’Hara, 2015).

In any market, there are various information sources from which to learn.
One natural source of learning is the historical price of the asset itself (re-
gardless of other markets). Imperfections in the information set and learning
conclusions compounded by acquisition and processing delays (Andersen et
al., 2022) cause price movements that do not fully reflect the information
innovation or are dilute by noise. When investors learn this, prices adjust
accordingly and the endogenous pricing-errors1 are corrected. This endoge-
nous pattern is vital from two perspectives: (1) Theoretically, the endogenous
error-correction mechanism answers a long standing puzzle – the dynamics of
autocorrelation. For the past two decades, researchers have pointed out that
autocorrelation behavior can vary a lot across different assets and periods, es-
pecially since the sign of autocorrelation can dramatically change. However,
this pattern is still not accounted for in most related studies, which could
be questionable. According to Hansen and Lunde (2006), exogenous noise
representations are inconsistent with high-frequency asset return dynamics,
as exhibited by the autocorrelation pattern. (2) Empirically, for models with
only exogenous noise representations, in which traders do not learn from the
past information of the underlying asset’s historical price, or in which en-
dogenous ’look-back’ learning is not incorporated, such price-errors diverge
from the efficient price and the spot price in the long run and are hardly
corrected. Nevertheless, the endogenous pricing-error pattern is underesti-
mated in previous literature. One potential reason might be the existence
of identification issues. For the models embedded with endogeneity learning
patterns (e.g., endogenous pricing-errors), the estimation and identification
of the parameters can be cumbersome. Moreover, state-space models (unob-
served component models), argued by various literature as one of the most
efficient and powerful frameworks for high-frequency market puzzles, com-
monly suffer from strong identification issues due to the latent variable(s).
Thus, the endogenous pricing-error or error-correction models within the
state-space framework, which could have a very high potential to capture

1The difference between the historical spot price and historical efficient value.
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various market behaviors, are not well widely adopted since the estimation
of these models typically requires strong additional assumptions, which could
be hard to support economically.

Only recently, there have been several milestone exercises. Andersen et
al. (2022) introduce their model with an endogenous error-correction mech-
anism to allow for autocorrelation sign and return dynamics changes. They
find a robust stylized fact that indicates the existence of a significant endoge-
nous error-correction mechanism within the market. In other words, many
investors are learning from past pricing errors to correct current prices. How-
ever, because of the natural difficulty of estimating state-space representa-
tions, they have to make stronger assumptions to solve the identification issue
led by the endogenous pricing-error terms – they assume that ongoing learn-
ing on the part of the investor moves slower, at a constant frequency, than
the efficient price innovation and endogenous error-correction terms. Here,
we extend their endogenous error-correction model to the multi-market case
which relaxes the need for identification constraints and generates more sta-
ble estimation.

Another natural source of learning is the price dynamics of related mar-
kets. Therefore, our framework is also designed to capture the cross-learning
pattern among multiple markets. Similarly, when investors learn pricing-
errors from closely-linked markets, they take advantage of this pricing-error
so that it will be eliminated/minimized by the underlying error-correction
mechanism. Such a pattern is essential, especially recently, since markets are
more tightly inter-connected, sewn together by market making/statistical
arbitrage that operates across, not just within, markets (O’Hara, 2015).
Specifically, some of these markets are naturally connected by arbitrage
or short-term equilibrium considerations. It is natural to wonder how the
pricing-errors (e.g., the price disagreement between decentralized markets)
are corrected in the price discovery process or the error-correction mechanism
of multiple markets. For example, closely-linked markets where prices have
a cointegrating relationship (i.e., the same asset on different exchanges). It
is critical to examine cointegration type pricing-errors (the price difference
of these market prices) and the underlying error-correction mechanism be-
cause traders constantly seek arbitrage opportunities by the price difference
of cointegrated series. Hence, our framework is also designed to capture such
pricing-errors and the underlying error-correction mechanism.
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Furthermore, for closely linked multiple market cases, one essential ques-
tion of price discovery is ’who moves first from the efficient price innovations.’
One of the most popular measurements of price formation is the information
share (IS) of Hasbrouck (1995), which is based on the cointegration model
of Engle and Granger (1987). Other approaches have also been advocated:
Harris, McInish, Shoesmith, and Wood (1995) propose the Component Share
(CS) framework; Yan and Zivot (2010) and Putniņš (2013) merge IS and CS
into new indicators, and De Jong and Schotman (2010) extend the IS to an
unobserved component (UC) framework. However, none of these approaches
is ideal. The VECM/VMA IS frameworks can be easily diluted by the nature
of Cholesky decomposition, and the UC framework requires strong assump-
tions to solve the identification issue. Thus, we provide a new approach and
framework to solve these problems.

In general, motivated by the studies of endogenous error-correction mech-
anism by Andersen et al. (2022) and the IS estimation with state-space
representation by De Jong and Schotman (2010), we propose a novel solu-
tion to the issues above: we propose a framework that extends both the
framework of Andersen et al. (2022) and the framework of De Jong and
Schotman (2010). Our model naturally connects multivariate frameworks in
Hasbrouck (1995) and De Jong and Schotman (2010) to two critical pricing-
errors and underlying error-correction mechanisms. Hence, the benefits are
three-fold: (1) In comparison to the framework of Andersen et al. (2022),
we prove the identification issue is solved within our framework, and our
framework better captures the patterns of the multivariate markets because
we include further information (the closely-linked market relationship). (2)
Compared to other multivariate frameworks, our framework not only solves
the identification issue of these frameworks, but also further captures the
intraday pattern of two pricing-errors, cointegration and endogenous pricing
errors, and estimates the underlying error-correction mechanisms. Since the
learning patterns have been more critical in the past decade, we believe our
framework is more realistic by including the two error-correction mechanisms
as the close-linked markets’ further co-movement mechanisms. (3) By elab-
orating the IS, our framework can capture it more accurately. Moreover,
our model captures the intraday pattern of IS, rarely discussed in previous
literature.
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In summary, our contributions are: (1) We propose a novel solution to
the identification issue of the Andersen et al. (2022) endogenous pricing-error
model. (2) We extended the De Jong and Schotman (2010) state-space IS
framework by allowing two additional error-correction mechanisms. (3) Our
work fills the gap between various market microstructure models and the IS
framework. It is hard for researchers to calculate IS from most market mi-
crostructure models under previous IS frameworks, but many of these models
readily fit into our generalized framework which enables the calculation of
the IS. (4) Our model provides a feasible and better methodology to estimate
the intraday pattern of the market, e.g., the scale IS, error-correction mech-
anisms, and over/under-reaction to efficient price shocks, without requiring
ultra-high frequency data. With tick level data, our framework can generate
intraday IS per 10 minutes. Specifically, we find i. the endogenous pricing-
error is corrected faster in the SP500-EMINI market; ii. the cross-learning
pattern between these two markets is stronger shortly after the opening and
before the closing of the SPY market; iii. the two markets have similar IS,
but they are not consistent on intraday level. The SPY is more sensitive to
efficient price shock shortly after the opening of the SPY market, and the
EMINI is more sensitive shortly after the opening and before the closing of
the SPY market. (5) Our model further connects the market microstructure
models with high-frequency econometrics.

The rest of the paper is structured as follows. Section 2 introduces the
model setup, including elaboration of the identification issue and the IS.
Section 3 focuses on the discussion of the model estimation and empirical
exercise. Section 4 presents the empirical findings, and Section 5 concludes
the paper.

2 Model Set Up

2.1 General framework

In our multivariate framework, we allow for generalized error-correction terms
that can include various kinds of pricing-error and underlying error-correction
mechanisms (endogenous error-correction type terms2 and cointegration error-

2The difference of the past spot price and the efficient price.
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correction type terms3), and the spot value of these markets shares the same
efficient price (from the permanent-transitory decomposition). Therefore,
our general model is written as follows:

pt = 1⃗mt + αrt + ΦL(pt,mt) + et

mt = mt−1 + rt
(1)

Where mt is the scalar of efficient price at time t, rt is the scalar of the
efficient price change at time t. For the general K cointegrated markets case,
pt is a K × 1 vector containing the spot price of K markets, α is a K × 1
vector, 1⃗ is a K × 1 vector of 1, ΦL is a matrix of functions of lagged linear
combinations of pt and mt. et is a K × 1 vector of normally distributed noise
terms. In our framework, we restrict Cov(rt, rt−i) = 0, Cov(et, et−i) = {0},
Cov(ri, ej) = 0⃗ for all i, j ∈ N, where {0} is a K × K matrix of 0 and 0⃗ is a
K × 1 vector of 0.
To fit the cointegration relationships of each pair of markets within these
K markets, we decompose ΦL(pt,mt) as ΦL(pt,mt) = Φ1L(pt − 1⃗mt−1) −
Φ2L(mt −mt−1)⃗1, where Φ1L and Φ2L are matrix of functions of lagged indi-
cators.
On the other hand, the Φ1L(pt − 1⃗mt−1) can readily contain both the afore-
mentioned error-correction mechanisms. The endogenous error-correction
mechanism (with various lags, e.g. p1,t−1 − mt−1, where p1,t−1 is the spot
price of market 1.) can be included by allowing the diagonal term of Φ1L and

Φ2L. For example, when Φ1L=

(
a× L 0
0 b× L

)
and Φ2L=

(
a× L 0
0 b× L

)
,

then ΦL(pt,mt) = Φ1L(pt− 1⃗mt−1)−Φ2L(mt−mt−1)⃗1 =

(
a(p1,t−1 −mt−1)
b(p2,t−1 −mt−1)

)
,

capturing the endogenous pricing-errors. For a cointegration type of error-
correction mechanism (with various lags, e.g. p1,t−1 − p2,t−1, where p1,t−1 is
the spot price of market 1 and p2,t−1 is the spot price of market 2), can also
be readily constructed within this term by calculating the difference between

two endogenous error-correction terms. For example, when Φ1L=

(
a −a
b −b

)
,

Φ1L(pt− 1⃗mt−1) =

(
a(p1,t − p2,t)
b(p1,t − p2,t)

)
, capturing the cointegration-type pricing-

error. Hence, both error-correction type mechanisms are incorporated, and
can be distinguished since the non-diagonal term of Φ1L is only related with

3The two cointegrated markets’ spot prices difference.
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cointegration type error-correction terms, with the rest being endogenous
error-correction mechanism terms.

2.2 Identification of the General Framework

In this part, we discuss the identification of our framework. The main text
provides a summary with full details given in the appendix.
Firstly, we provide the identification constraints of the estimation process.
We can get the representation of ∆pt from equation(1) as following:

∆pt = 1⃗Lrt + (I − L)(I − Φ1L)
−1(⃗1− Φ2L1⃗)rt + (I − L)(I − Φ1L)

−1et (2)

Where I is a K-by-K identification matrix, L is the lagging indicator and
∆pt = pt − pt−1.
Following our model assumptions, the second moment of the asset return
provides our information constraint and is represented as follows:

E[∆pt∆pt−h] = E[
h+1∑
q=0

AqBh+1−q +
∞∑
p=h

(

p∑
q=0

AqBp−q)(

p−h∑
q=0

AqBp−h−q)]⃗1σ
2
rt+

∞∑
p=h

ApAp−hΩ

(3)

where σ2
rt is the variance of the efficient price shock rt, Ω is the variance-

covariance matrix of the transitory noise et, and

(I − Φ1L)
−1 = ϕ0,1 + ϕ1,1L+ ϕ2,1L

2 + ...

Φ2L = ψ0,2 + ψ1,2L+ ψ2,2L
2 + ...ψn,2L

n

A0 = ϕ0,1

Am = ϕm,1 − ϕm−1,1

B0 = I − ψ0,2

Bm = ψm,2

(4)

The detailed derivation is in the appendix Section 1.1.

7



2.2.1 Identification analysis

Due to the complexity of the identification analysis of the most generalized
framework, we discuss the identification of a simplified model – the illus-
trative case with over/under-reaction of efficient price shock and lag 1 of
error-correction mechanisms. We believe this simplified derivation is enough
because (1) we argue that even if only the lag one error-correction terms are
considered, this special case model already captures the further lagged error-
correction mechanisms with reasonable structure. The derivation is in the
appendix section 1.2, where we also discuss what endogenous error-correction
terms capture; and (2) this identification analysis process can also be easily
implemented for most of the special cases of our generalized framework.
Again we provide the summary here, the detailed derivation is in the ap-
pendix section 1.3.
We consider the model below:

pt = 1⃗mt + αrt + Φ(pt−1 − 1⃗mt−1) + et (5)

For the K market case, pt is a K×1 array of asset prices, 1⃗ is a K×1 vector
of 1, mt is the efficient price scalar, Φ is a K×K matrix (Notice, since we
already restricted the lag structure, Φ is a matrix of coefficients not a function
of coefficients and lagging indicators), α is a K×1 array of coefficients, and
et is a K×1 array of noise.
From the model above, we can write out the constraints as follows:

E(∆pt∆p
′
t) = [(⃗1 + α)(⃗1 + α)′ + αα′]σ2

rt + 2Ω

E(∆pt∆p
′
t−h) = Φh−1(Φ− I)[(α1⃗′ + αα′Γ(1)′)σ2

rt + ΩΓ(1)′]
(6)

In general, we can summarize the identification conclusion as follows :
(1) For the single market case, an additional restriction is needed for identi-
fication. This could either be the restriction from Andersen et al. (2022) or
the Watson restriction.
(2) For two market case, we follow De Jong and Schotman to assume Ω as
diagonal matrix. (3) For multi-market cases, there is no identification issue
for most general cases.4

Specifically, in the multi-market cases, Φ is always over-identified from the
infinite count of autocorrelation constraints.

4If identification issue exists, the additional identification restriction can be examined
following our appendix.
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The detailed derivation and proof are in appendix section 1.3. On the other
hand, we aware that the general case (K markets) might be complicated, so
we provide the derivation of two special cases in corollary 1 and 2.

2.3 Information share framework

In this section, we calculate the information share (IS) for the generalized
model following De Jong and Schotman (2010). Again, the detailed deriva-
tion is provided in the appendix section 2.
We start from the most generalized model5:

pt = 1⃗mt + αrt + ΦL(pt,mt) + et

mt = mt−1 + rt
(7)

where mt is the scalar of the efficient price, rt is the scalar of the efficient
price change, and since we are modeling a K market case, pt is a K × 1
vector, α is a K × 1 matrix, I is a K × K identity matrix, 1⃗ is a K × 1
vector of 1, ΦL is a function of matrix with polynomial lagging indicator and
linear coefficient with Cov(rt, rt−i) = 0, Cov(et, et−i) = 0, Cov(rt, et) = 0
and Cov(rt, et−i) = 0 for all i ∈ N.
Following De Jong and Schotman (2010), we define the price innovations at
time t as vt = pt − 1⃗mt−1.
Therefore, the price innovation can be represented as follows:

vt = ϕ0,1(⃗1 + α− ψ0,21⃗)rt + Φother,LL1⃗rt +
∞∑
i=0

ϕi,1L
iet (8)

where the Φother,LL1⃗rt term includes the lagged rt terms, which are orthog-
onal to rt.
Then, following De Jong and Schotman (2010), we run the regression rt =
γolsvt + ηt, γols can be calculated as follows:

γols = Υ−1Cov(vt, rt)

= Υ−1ϕ01(⃗1 + α− ψ0,21⃗)σ
2

(9)

5Notice, we do not restrict the lag structure, Φ is a function of coefficients (linear) and
lagging indicators (polynomial)
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Then the IS can be calculated as:

R2 = 1−
σ2
η

σ2

=
γ′olsΥγols

σ2

= γ′ols[ϕ01(⃗1 + α− ψ0,21⃗)]

(10)

Hence, the IS can be represented as follows

γols = Υ−1ϕ0,1(⃗1 + α− ψ0,21⃗)σ
2

IS = γols ◦ ϕ0,1(⃗1 + α− ψ0,21⃗).

Υ = E[vtv
′
t]

(11)

Equation (11) is the generalized IS estimator from De Jong and Schotman
(2010), where they restrict ϕ0,1 = I and ψ0,2 = 06. By the generalized repre-
sentation equation (1), the framework is consistent with various multivariate
market microstructure models.
Due to the generalization of our framework, the scope of IS is slightly differ-
ent in our framework compared to De Jong and Schotman (2010). One of
the most significant differences is that De Jong and Schotman (2010)’s IS is
restricted to the range of [0,1] while our estimate is unrestricted. In extreme
cases the IS can be estimated outside this range. Since economically the IS
must lie within the range [0,1], we adopt a quasi-Bayesian approach to ensure
our IS measure falls within this range. In practice, where the global minimum
produces an IS outside the [0,1] range, we select the best regional minimum.
Indeed, in most of these cases, we can find other regional minimums with IS
in the [0.1] range with better MLE.

3 Estimated Models

In this section, we discuss and provide our estimated model. We run our
empirical model on the two market cases, where st is the log price of the
SPY market, and ft is the log price of the SP500-EMINI market.

6We aware that they mention that the transitory noise in their model could be non-
diagonal. However, in their paper, they adopt much stronger restrictions in their iden-
tification analysis, e.g., Cov(et, rt) = 0 and the BN decomposition, and orthogonal et to
restrict their IS to be in the range [0,1].
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3.1 Brief Introduction

Our empirical analysis is based on this general framework but with the adop-
tion of different restrictions:(
st
ft

)
=

(
st−1

ft−1

)
+

(
γs
γf

)
(mt −mt−1)−

(
α11 α12

α21 α22

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(12)

which is equivalent to:(
st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(13)

We estimate with two different restrictions :
Model 1:(
α11 α12

α21 α22

)
=

(
1 0
0 1

)
and following De Jong and Schotman (2010), assuming est and eft are or-
thogonal.
Model 2:

The matrix

(
α11 α12

α21 α22

)
is unrestricted. We still follow De Jong and Schot-

man by assuming est and eft are orthogonal.
Model 1 is the model proposed by De Jong and Schotman (2010), which
only allows the over/under-reaction of the efficient price shock. Model 2
is our generalized model, which allows endogenous and cointegration error-
correction mechanisms and over/under-reaction of the efficient price.

3.2 Identification of Estimated Models

The identification of model 1 is thoroughly discussed by De Jong and Schot-
man (2010). The restriction of the diagonal covariance matrix of transitory
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term noise guarantees that the model can be fully identified.
The identification of model 2 follows the identification analysis in section 2.2.1
with pt restricted to the two market case. Specifically, the detail of the iden-

tification process is exactly the same as corollary 1 – the

(
α11 − 1 α12

α21 α22 − 1

)
matrix can be over-identified from the ‘ratio’ of different lags of second mo-
ment restrictions from equation (6), and the remaining parameters (γ-s, σ2

rt ,
σ2
est and σ

2
ef t

) can be identified from all constraints. The detailed derivation
is in the appendix section 1.3 and corollary 1.

3.3 Information Share of Estimated Models

The IS of both model 1 and model 2 can be calculated from the general model
and adding restrictions on the α matrix. The general model is same as before:(
st
ft

)
=

(
st−1

ft−1

)
+

(
γs
γf

)
(mt −mt−1)−

(
α11 α12

α21 α22

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(14)

which is equivalent to:(
st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(15)

To calculate the IS in equation (11), we need to calculate the variance-
covariance matrix of vt (Υ). It is calculated following the process of the
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generalized IS as follows:(
st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
vt =

(
γs
γf

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
E[vt, v

′
t] =

(
γs
γf

)(
γs
γf

)′

σ2
rt +

(
α11 − 1 α12

α21 α22 − 1

)
Cov

(
st−1 −mt−1

ft−1 −mt−1

)
(
α11 − 1 α12

α21 α22 − 1

)′

+ Cov

(
est
eft

)
(16)

where the price innovation vt =

(
st −mt−1

ft −mt−1

)
following De Jong and Schot-

man (2010).

Here the Cov

(
st−1 −mt−1

ft−1 −mt−1

)
is estimated as follows by setting the transitory

part of pt as tt =

(
st −mt

ft −mt

)
, and Vec is the function mapping a matrix to
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its numerator vector representation:(
st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)
(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
tt =

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)
tt−1 +

(
est
eft

)
E[tt, t

′
t] =

(
γs − 1
γf − 1

)(
γs − 1
γf − 1

)′

σ2
rt +

(
α11 − 1 α12

α21 α22 − 1

)
E[tt, t

′
t](

α11 − 1 α12

α21 α22 − 1

)′

+ Cov

(
est
eft

)
V ec(E[tt, t

′
t]) = V ec(

(
γs − 1
γf − 1

)(
γs − 1
γf − 1

)′

σ2
rt + Cov

(
est
eft

)
)+

(

(
α11 − 1 α12

α21 α22 − 1

)
⊗
(
α11 − 1 α12

α21 α22 − 1

)
)V ec(E[tt, t

′
t])

(17)

The Cov

(
st−1 −mt−1

ft−1 −mt−1

)
is calculated by reshaping from its vectorized rep-

resentation.
Then we calculate the IS from the previous conclusion:

γols = Υ−1ϕ0,1(

(
γs
γf

)
− ψ0,21⃗)σ

2

IS = γols ◦ ϕ0,1(

(
γs
γf

)
− ψ0,21⃗).

Υ = E[vtv
′
t]

(18)

where ϕ0,1 is an identification matrix and ψ0,2 = 0.

3.4 Parameter restrictions

Before we estimate the model and calculate the IS indicator, we still need
to discuss the restriction of parameters for model estimation. The first re-
striction is the IS within [0,1], as we discussed before. In addition, following
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Andersen et al. (2022), our restriction needs to uphold the stationarity con-
dition. However, since in the multivariate case for N markets the stationary
condition is equivalent to restricting the analytical solution of the eigenvalue
to [-1,1] of the matrix rank up to N, and this can be as complex as restricting
the root of a polynomial function with the power of N, which might not be
feasible when N > 4, we do not pursue the general solution of the stationary
condition here, rather we only focus on the specific empirical cases previously
discussed.
We discuss the stationary condition of the special case model from equation
(12): (

st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(
st −mt

ft −mt

)
=

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(19)

Therefore, for the permanent-transitory representation, we require the tem-
porary part to be stationary or follow a random-walk7. The equation above

can be rewritten as a VAR (tt =

(
st −mt

ft −mt

)
):

tt =

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 − 1 α12

α21 α22 − 1

)
tt−1 +

(
est
eft

)
tt = −

(
α11 − 1 α12

α21 α22 − 1

)
tt−1 +

(
(γs − 1)rt + est
(γf − 1)rt + eft

) (20)

Then setting ϵt =

(
(γs − 1)rt + est
(γf − 1)rt + eft

)
, the model is equivalent to a VAR(1)

model, and the stationary restriction is equivalent to:∣∣∣∣(I2λ+

(
α11 − 1 α12

α21 α22 − 1

))∣∣∣∣ = 0 (21)

7This is the case when the root is on the unit circle. We allow this case since Andersen
et al. (2022) allow α=0 or 2.
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Where I2 is the identity matrix with rank of 2. For all eigenvalue λ that
|λ| ≤ 1.
Therefore, it is equivalent to both roots |λ| ≤ 1:

(λ+ α11 − 1)(λ+ α22 − 1)− α12α21 = 0 (22)

Thus, we obtain the restrictions for our special cases:

Under Model 1:(
α11 α12

α21 α22

)
=

(
1 0
0 1

)
Hence equation (22) collapses to λ2 = 0. Thus, λ1 = λ2 = 0 and the model
is stationary.

Under Model 2:

The matrix is

(
α11 α12

α21 α22

)
is unrestricted. The stationary condition is equal

to equation (22). In this case, the restriction of the αs is rather complex.
Therefore, we check whether the coefficients indicate the model is stationary
following estimation.
Clearly, here we have the stationary condition of st −mt and ft −mt. How-
ever, we are aware, the linear combination of stationary series might not be
stationary. The linear combination of stationary series is stationary if and
only if these series are jointly weak stationary. In our model, we observe that
Cov(st −mt, ft+h −mt+h) and Cov(st+h −mt+h, ft −mt) are only related to
h and not to t. Therefore, the jointly weak stationarity condition holds in
our model and the condition of both st −mt and ft −mt being stationary is
a sufficient condition for st − ft to be stationary.

4 Empirical Analysis

Having implemented our approach to dealing with the IS representation and
identification issues, we implement our multi-market model using data on
the SPY and S&P500 Emini (EMINI).

16



Table 1 presents some basic information about these two assets:

SPY ETF S&P500 EMINI

Unit Size 1/10th of Index $50 ×Index
Trading Venue NYSE CME Globex
Ticker Symbol SPY ES
24-Hour Trading No Yes
Operating Ex-
penses

0.0945% None

Table 1 SPY and EMINI contract details

4.1 Data

Due to its high liquidity, we use the SPY trading days of the year 2019. For
each day, we include all 6.5 common trading hours (9:30 AM to 16:00 PM)
of SPY and EMINI, with tick level frequency. All data is obtained from
Refinitiv datascope.
There are various popular high-frequency dataset filters, and we follow Kalev
and Duong (2008) and Wallace et al. (2019) to filter the dataset using the
following steps:

a. Since we are dealing with a period of whole year, we account for the
issue of rolling (Emini) contracts following Kalev and Duong (2008), and
Wallace et al. (2019) and generate the future contract price as follows:

i. Only the Emini contract closest to the maturity month is used.
ii. The contract is rolled over to the next when it enters its maturity

month.

b. By construction, SPY is 1
10

of the scale of the S&P500 Index and S&P
future contracts. Therefore, following Hasbrouck(2003) and Budish et al.
(2015), we scale the SPY by ten.

c. The difference between the scaled SPY and Emini still includes two ma-
jor discrepancies: the cost-of-carry and the cash component of the ETF.
Following Hasbrouck (2003), we allow the constant component in the state-
space representation and VAR framework per estimation window. Specifi-
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cally, Hasbrouck (2003) argues that it is robust to assume that the difference
is constant at the daily frequency. Since we are using the shorter window,
this assumption should be reasonable.
Tables 2–3 report the summary statistics of the SPY and the EMINI. We
observe that both trading volume and the Amihud Illiquidity measure indi-
cate the SPY market is far more liquid than the EMINI market.

Month Price Range Volume
Amihud

Illiquidity (e-8)

Jan, 2019 259.70 (5.90) 3.22 (1.28) 825.20 (199.12) 1.81
Feb, 2019 275.05 (3.80) 1.91 (0.58) 615.78 (103.53) 1.27
Mar, 2019 279.96 (2.49) 2.60 (1.14) 684.86 (143.80) 1.73
Apr, 2019 289.57 (2.53) 1.59 (0.52) 482.27 (85.63) 1.46
May, 2019 285.46 (4.76) 3.14 (1.25) 708.02 (213.76) 1.96
Jun, 2019 288.96 (5.32) 2.22 (0.89) 561.84 (162.95) 1.56
Jul, 2019 298.86 (1.78) 2.00 (1.05) 434.70 (138.03) 2.59
Aug, 2019 289.78 (3.41) 4.13 (2.01) 769.76 (309.42) 2.81
Sep, 2019 298.03 (2.82) 2.35 (1.02) 552.78 (138.94) 1.87
Oct, 2019 297.21 (4.73) 2.52 (1.31) 522.13 (210.54) 2.35
Nov, 2019 310.13 (2.64) 1.49 (0.40) 438.36 (97.63) 1.56
Dec, 2019 317.44 (4.30) 1.66 (0.89) 499.86 (226.49) 1.82

Table 2 Descriptive Statistics of SPY
Note, the table reports the descriptive statistics of SPY. Volume is the av-
erage daily traded volume in units of 100,000 and Amihud Illiquidity is the
daily average scaled by 10−8. Range is the average daily price range where
the range is the daily high price minus the daily low price, and price is the
average daily transacted price. The standard deviation of each statistic is in
parentheses.
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Month Price/10 Range/10 Volume
Amihud

Illiquidity (e-5)

Jan, 2019 260.32 (5.80) 3.26 (1.29) 12.40 (2.61) 1.19
Feb, 2019 275.23 (3.69) 1.90 (0.60) 10.22 (1.88) 0.79
Mar, 2019 280.83 (2.84) 2.63 (1.15) 9.87 (5.34) 4.87
Apr, 2019 290.51 (2.38) 1.61 (0.52) 8.70 (1.54) 0.79
May, 2019 285.68 (4.98) 3.16 (1.26) 14.16 (4.25) 1.01
Jun, 2019 289.43 (5.60) 2.24 (0.89) 6.34 (5.69) 2.06
Jul, 2019 299.80 (1.64) 2.03 (1.06) 8.47 (2.20) 1.39
Aug, 2019 289.94 (3.44) 4.11 (2.03) 14.25 (4.63) 1.48
Sep, 2019 298.33 (2.77) 2.41 (1.05) 7.11 (5.62) 12.35
Oct, 2019 297.77 (4.62) 2.55 (1.33) 9.89 (2.98) 1.21
Nov, 2019 310.23 (2.52) 1.51 (0.41) 8.24 (1.65) 0.82
Dec, 2019 317.88 (4.78) 1.67 (0.90) 5.53 (5.04) 11.6

Table 3 Descriptive Statistics of EMINI
Note, the table reports the descriptive statistics of EMINI. Volume is the
average daily traded volume in units of 100,000m, price and range are the
average daily traded price in units of 10 and Amihud Illiquidity is daily aver-
age scaled by 10−5. Range is the average daily price range where the range is
the daily high price minus the daily low price, and price is the average daily
transacted price. The standard deviation of each statistic is in parentheses.

4.2 Abnormal Autocorrelation

Following Andersen et al. (2022), firstly, we investigate the autocorrelation
pattern or return dynamic in SPY and EMINI. The abnormal autocorrelation
structure has been mentioned in various papers (e.g., Hansen and Lunde,
2006). Andersen et al. (2022) indicate by plotting the volatility signature
plot that several stocks exhibit abnormal positive autocorrelation on various
days. We find a similar pattern in our case. For example, figure one presents
two kinds of observed patterns in the volatility signature plots of the SPY8.

8We find similar patterns within the EMINI market.
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Figure 1: Volatility Signature Plots

The left figure is the volatility plot of the 9th trading day of Sep, and
the right figure is the 23rd trading day of Sep. As discussed by Hansen and
Lunde (2006) and Andersen et al. (2022), if the autocorrelation of return is
always negative, the volatility signature plot should have a downward trajec-
tory (as shown on the left). However, on the right-hand side we observe some
evidence of an upward trajectory. This suggests evidence of autocorrelation
dynamics within the series. Moreover, we identify some complex volatility
signature plot structures. For example, figure 2 plots the 17th trading day of
Sep. Here, the volatility signature plot indicates an autocorrelation pattern
that is far more complex than the ’all negative’ pattern that many previous
market microstructure models assume.

Figure 2: Volatility Signature Plot

This primary evidence suggests that the autocorrelation pattern in the
SPY and EMINI markets can be quite complex. Thus, it is important
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that any model is able to capture more complex and longer autocorrela-
tion structures. One straightforward way is to incorporate the endogenous
error-correction mechanism as indicated by Andersen et al. (2022).

4.3 Statistical Results

The log-likelihood-ratio test is used to examine whether our unrestricted
model 2 (capturing the error-correction mechanisms and transitory noise cor-
relation) fits the data better than restricted model 1 (De Jong and Schtoman
(2010) model). We find that out of 9777 windows, the log-likelihood ratio
test indicates that in 9746 windows, model 2 are preferred compared to model
19, which indicates that more than 99% of the time, model 2 is statistically
better than the De Jong and Schotman (2010) specification, model 1. Table
4 reports the intraday pattern of the likelihood ratio test results. It is ob-
served that model 2 consistently outperforms model 1.

Percentage that model 2 is preferred

Average 99.17%
Min 98.02%
Pct50 98.81%
Max 100.00%

Table 4 Descriptive Statistics of Likelihood Ratio Test
Note, the table reports the descriptive intraday statistics of the Likelihood
Ratio test. The descriptive statistics were based on the estimation/LR test
result regrouped by the period. For example, the first group contains the
estimation/LR test result of 9:30 AM-9:40 AM on all days.

4.4 Model Estimation Result

For estimation, we split the tick level data of full 6.5 common trading hours
(9:30 AM to 16:00 PM EST) of SPY (st) and EMINI (ft) by every 10 minute
, giving a total of 39 trading windows each day. The intraday pattern plots

9We remove the window Jul 3, Nov 29 and Dec 24 after 12:15 due to missing data.

21



are calculated by average for each 10 minute intraday window across all days
in the sample. For example, for the intraday pattern of 9:30 AM to 9:40 AM,
we calculate the average of the estimates from all 252 trading days for the
window 9:30 AM to 9:40 AM.
Recalling equation (12), we can separate out the two error-correction mech-
anisms and rewrite the equation as follows:(
st
ft

)
=

(
st−1

ft−1

)
+

(
γs
γf

)
(mt −mt−1)−

(
α11 + α12 0

0 α21 + α22

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
α12 × (st−1 − ft−1)
α21 × (ft−1 − st−1)

)
+

(
est
eft

)
(23)

where st is the log spot price of the spot market SPY at time t, ft is the
log spot price of the EMINI futures market at time t, and mt is the efficient
price at time t.
From equation (23), γs and γf capture the spot price reaction to the effi-
cient price change within the SPY and EMINI markets. When γs or γf is
in in the range (0,1), the underlying market partially reflects the efficient
price change. When γs or γf is 1, the underlying market perfectly reflects
the efficient price change, and if either is 0, the efficient price change is not
reflected at all immediately. Therefore for most cases we expect γs and γf
be estimated in the range [0,1]. (α11 + α12) and (α21 + α22) capture the
endogenous error-correction mechanism. When (α11 + α12) or (α21 + α22) is
in the range (0,1), it means the underlying market is partially correcting its
own historical pricing error. When (α11 + α12) or (α21 + α22) is 0, it means
the underlying market does not correct its own historical pricing-error at all,
and either term is 1, its own historical pricing-error is fully corrected. Equiv-
alently, therefore, we expect most estimates of (α11 + α12) and (α21 + α22)
to be in the range [0,1]. Lastly, α12 and α21 captures the cointegration type
error-correction mechanism. When α12 or α21 in the range (-1,0), it means
the underlying market past cointegration pricing-error is partially corrected.
Similarly, when α12 or α21 is 0, it means the price difference between these
markets (cointegration pricing-error) is not corrected at all, and either term
is -1, the price difference is fully corrected. Therefore, we expect most α12

and α21 in the range [-1,0].
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4.4.1 Estimation of Multivariate Framework without Error-Correction
Mechanisms

In this section, we provide the estimation of model 1 (De Jong and Schot-
man (2010)’s framework). Table 5 reports the summary statistics fo the
estimation. Generally, the mean estimation of each parameter is in line with
expectations, though estimation of higher moments indicates some potential
instability in parameter distributions.

γs γf Std(rt) std(est) std(eft)

Mean 0.76 0.80 3.25E-05 1.13E-05 2.32E-05

Std 0.24 0.24 1.95E-05 7.19E-06 1.48E-05

Skewness -0.91 -1.07 1.92 24.94 56.10

Kurtosis 3.09 3.63 9.17 953.32 3911.48

Pct1 0.08 0.09 8.68E-06 1.70E-06 1.55E-05

Pct10 0.44 0.50 1.40E-05 7.17E-06 1.90E-05

Pct25 0.53 0.60 1.90E-05 8.99E-06 2.06E-05

Pct50 0.85 0.90 2.76E-05 1.10E-05 2.25E-05

Pct75 0.94 0.98 4.04E-05 1.30E-05 2.47E-05

Pct90 1.00 1.03 5.72E-05 1.50E-05 2.70E-05

Pct99 1.09 1.14 1.02E-04 2.23E-05 3.43E-05

Table 5 Estimation of model 1
In figure 3 we report each market’s reaction to an efficient price change

γ from De Jong and Schotman (2010)’s model. The parameter distributions
are not very stable, but it can still be observed that the scale of γs and γf
are roughly the same. This suggests that, as expected, the SPY and EMINI
market react to the efficient price shock in similar ways.
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Figure 3: γs and γf of model 0

Similarly, the scale and the distribution of the volatility estimation from
De Jong and Schotman (2010)’s model are also in line with expectations.
Figure 4 presents the standard deviation of efficient price change and the
transitory noise terms of two markets. Both the scales and the distributions
are as expected.

Figure 4: Std(rt), Std(est) and Std(eft) of model 1

The distribution pattern of the information share of the SPY and EMINI
markets are presented in figure 5. The plots suggest the IS of the two markets
does not match prior expectations and previous literature. Normally, the IS
(or the efficiency of the reaction to an efficient price change) should be similar
for these two markets since both markets have their relative advantages:
The SPY market attracts more investors due to its very high liquidity (from
table 2 and table 3), while the EMINI market is naturally attractive to
informed investors due to leverage. Therefore, we expect the IS of these two
markets should be similar. However, figure 5 indicates that the SPY market
reacts to the efficient price change more efficiently comparing to the EMINI
market. We believe this is inconsistent with the common understanding of
these markets.
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Figure 5: SPY and EMINI IS

Moreover, roughly speaking, the IS is mainly determined by the coefficient
of γs, γf , and the inverse of the volatility of the transitory noise ((est) and
(eft)). In other words, for each market, the closer γs or γf are to 1, and
the smaller the transitory noise terms are, the larger the IS. However, as
indicated, the scale of γs and γf are similar, as are the two transitory noises,
yet the ISs of these two markets are very different. We believe this indicates
that model 1 does not perform well in this case due to the strong assumption
that the two markets are only correlated through the efficient price change.
This assumption does not ideally fit the case selected.

4.4.2 Estimation of Multivariate Framework with Error-Correction
Mechanisms

In this section, we provide the estimation of our model that accounts for
the over/under-reaction of the efficient price change, endogenous and cointe-
gration type error-correction mechanisms, the volatility of the efficient price
change and transitory noise of the two markets, and the co-movement cap-
tured, but unexplained, by our framework.

Table 6 reports the summary statistics of our model 2 estimation. The
majority of the statistics fit with expectations. Moreover, the higher mo-
ment statistics indicate the distributions of model 2 estimation are more
stable than the distributions of model 1 estimation.
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γs γf α11 + α12 α12 α21 α21 + α22 Std(rt) std(est) std(eft)

Mean 0.94 0.99 0.13 -0.11 -0.06 0.65 3.31E-05 8.85E-06 1.62E-05

Std 0.10 0.13 0.30 0.14 0.43 0.64 2.07E-05 4.94E-06 6.24E-06

Skewness -0.97 -0.42 0.44 -0.64 0.45 0.23 6.00 5.08 3.86

Kurtosis 12.31 13.18 3.76 6.27 2.97 2.97 164.31 101.30 89.00

Pct1 0.64 0.61 -0.56 -0.54 -0.93 -0.63 8.77E-06 4.56E-07 2.17E-06

Pct10 0.81 0.88 -0.21 -0.29 -0.58 -0.23 1.45E-05 3.42E-06 8.95E-06

Pct25 0.89 0.94 -0.03 -0.19 -0.36 0.26 1.96E-05 5.98E-06 1.27E-05

Pct50 0.96 0.99 0.07 -0.10 -0.04 0.66 2.81E-05 8.60E-06 1.65E-05

Pct75 1.00 1.04 0.29 -0.02 0.12 0.97 4.09E-05 1.14E-05 1.97E-05

Pct90 1.04 1.13 0.55 0.03 0.60 1.54 5.79E-05 1.42E-05 2.25E-05

Pct99 1.16 1.35 0.94 0.19 0.97 2.20 1.03E-04 2.02E-05 2.91E-05

Table 6 Estimation of model 2
In terms of the reaction of each market to a change in the efficient price

and how γ evolves across time, figure 6 reports the distributions of γs and γf
while figure 7 plots the intraday patterns of γs and γf . As shown in equation
(23), γ = 0 indicates that the efficient price change is not reflected within
the underlying asset price while γ = 1 indicates the efficient price change
is fully reflected within the underlying asset price. Therefore, for the SPY
and EMINI markets, we observe the efficient price change is mainly reflected
within both price series (under-reaction to the efficient price change occurs
when γ < 1 and over-reaction when γ > 1). This echoes our expectation
because, in the year 2019, both these markets are very efficient regarding the
information shock.
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Figure 6: γs and γf

We observe that the distributions of γs and γf from model 2 more closely
represent a normal distribution compared with the estimations of model 1.
The intraday pattern of γs indicates that shortly after the SPY market opens,
the asset price is more sensitive to an efficient shock and related investors
are more active. It suggests that the SPY market is more information-driven
during this period. On the other hand, the EMINI market is typically very
sensitive to efficient price change since its γf is always around 1. Shortly after
SPY market opens and before it closes, the EMINI market is more efficiently
reflecting the efficient price change comparing to other periods. Overall, gen-
erally, both markets are pretty efficiently reflecting the efficient price.

Figure 7: Intraday γs and γf

As shown in equation (23), α11 + α12 captures the endogenous error-
correction mechanism within the SPY market, and α21 + α22 captures the
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endogenous error-correction mechanism within the EMINI market. When
either of these terms is 0, it means the past pricing error regarding its own
historical price is not corrected. When the estimated coefficients sum to 1,
then its own past pricing error is fully corrected.
Figure 8 reports the distributions of the endogenous error-correction mecha-
nisms as captured by α11 + α12 and α21 + α22. Figure 9 reports the intraday
patterns of α11 + α12 and α21 + α22.

Figure 8: α11 + α12 and α21 + α22

Figure 9: Intraday α11 + α12 and α21 + α22

It is observed that figure 8 and figure 9 indicate that most of the time,
both the SPY and EMINI are partially correcting their past individual pricing
error. Though, the proportion of past pricing-error being corrected, is larger
in EMINI market than in the SPY market. This is consistent with expecta-
tions, since the EMINI market is more leveraged, and investors are therefore
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more actively hunting the pricing error within its own historical price. Our
findings suggest endogenous pricing-error seekers are continuously active in
both the SPY and EMINI markets during the entire trading period (every
10 minute window), with investors in the EMINI market more efficiently cor-
recting past pricing errors compared to SPY investors. On intraday level,
our estimation indicates that the SPY market is more efficiently correcting
its past pricing-error during middle of the day, and the EMINI market is
more activelly correcting its past pricing error shortly after the SPY market
opens and in the middle of the day.

Again, as shown in equation (23), the second type of error-correction
mechanism in our model – the cointegration type error-correction mecha-
nism, is captured by α12 in the SPY market, and by α21 for the EMINI
market. When either α12 or α21 is 0, the price difference between the SPY
and EMINI is rarely corrected with the respective underlying market. When
either coefficient is -1, the two-market pricing error is fully corrected within
the respective underlying market. Similar to earlier results, we present the
distributions of α12 and α21 in figure 10 and the intraday patterns in figure 11.

Figure 10: α12 and α21
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Figure 11: Intraday α12 and α21

Figure 10 (left panel α12 – SPY, right panel α21 – EMINI) indicates that
the cointegration error-correction mechanism plays an important role in both
the SPY and EMINI markets. This suggests that the SPY and EMINI mar-
kets are learning from each other.
The intraday pattern in Figure 11 indicates the existence of a ‘highly information-
driven period’ (shortly after the opening and before the closing of the SPY
market) when investors are more actively searching the price difference be-
tween these two markets, and the cointegration type error-correction mecha-
nism is more active. This is represented by the two inverse ’U’ shapes in the
figure.10

Figure 12 reports the distribution and figure 13 plots the intraday pattern
of the standard deviation of efficient price change rt, and the transitory noise
terms of the SPY and EMINI markets (est and eft).

Figure 12: Std(rt), Std(est) and Std(eft)

10We aware that from 9:30-10:00 AM the cointegration error-correction mechanism is
less active than 10:00-10:30AM, but still the first 30 minutes cointegration error-correction
mechanism is pretty active comparing the average of the day.
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Figure 13: Intraday Std(rt), Std(est) and Std(eft)

From figure 13 it can be observed that both these markets receive more
information shortly after the opening and before the closing of the SPY mar-
ket, reflected by higher efficient price shock volatility. Moreover, as expected,
the transitory noise in both markets is stronger during these periods due to
the presence of more active investors and more volatile markets.

The intraday pattern of the information share in the SPY (left panel)
and EMINI (right panel) markets is presented in figure 14. The IS of each
of the two markets are similar, meaning the SPY and EMINI markets are
roughly equally actively reflecting the efficient price change. This echos our
earlier result, especially with respect to the estimation of γs and γf . More-
over, the intraday pattern of the SPY and EMINI ISs is also consistent with
our earlier findings. At the opening of the SPY market, the information
share is significantly higher than at other periods, so is γs. Conversely, the
information share from the EMINI market, γf , is higher shortly before the
opening and closing of the SPY market. This pattern indicates that shortly
after the opening of the SPY market, due to the inflow of information, both
SPY and EMINI reflect the efficient price change more actively compared to
other periods or is more sensitive to information than during the rest of the
day due to the more active investors. During the closing of the SPY market,
the EMINI market becomes more sensitive to efficient price changes or infor-
mation shocks. In general, the IS estimation echoes our previous estimation
– the two markets have similar ISs, but each market is active at a different
point in the trading day.11.

11The IS is more closely related to the γs and γf (over/under-reaction to the efficient
price change), rather than the two error-correction mechanisms
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Figure 14: SPY and EMINI IS

5 Conclusion

We propose a framework as a generalization of both the endogenous pricing-
error model of Andersen et al. (2022) and the IS framework of De Jong
and Schotman (2010) to establish a richer model at the microstructure level
to better measure information shares. We make multiple methodological
and empirical contributions to the literature. (1) Our generalized framework
provides a solution to the identification issues associated with the model of
Andersen et al. (2022). (2) We generalized the IS framework of De Jong
and Schotman (2010). (3) Our framework fills the gap between various mar-
ket microstructure models and IS estimation by extending the IS from Has-
brouck (1995) and De Jong and Schotman (2010). (4) The intraday pat-
tern of various market mechanisms (over/under-reaction of the efficient price
change, and endogenous and cointegration error-correction mechanisms) and
the IS can be captured with our framework more accurately without higher
frequency dataset and computational power. (5) We provide an example
that when the endogenous pricing-error terms are included in the model,
the model can capture further second moment/autocorrelation constraints.
Our empirical analysis highlights that (1) Both the SPY and EMINI mar-
kets actively reflect the efficient price change. At the intraday level, both
of them are more efficient shortly after the opening of the SPY market, and
the EMINI market is also very efficient shortly before the closing of SPY
market. (2) Both the SPY and EMINI markets are partially correcting their
past endogenous pricing-error. Shortly after the opening and before the clos-
ing of the SPY market, both SPY and EMINI have more active endogenous
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error-correction mechanisms. Compared to the SPY market, EMINI is more
efficient in correcting its own historical/endogenous pricing-error. (3) The
cointegration pricing-error are partially corrected in both the SPY and EM-
INI markets. At the intraday level, for both SPY and EMINI markets, the
cointegration error-correction mechanism is more active shortly after the SPY
market opens and shortly before the close of the SPY market. (4) During our
estimation period, SPY and EMINI’s ISs are found to be similar, indicating
that these two markets are roughly equally active in reflecting the efficient
price dynamics or information shock. At the intraday level, SPY is more effi-
cient shortly after it opens comparing other times, and the EMINI market is
more efficient shortly after the opening and before the closing of SPY market.
These patterns echo the intraday pattern of the over/under-reaction of the
efficient price change coefficient. (5) As expected, there is more information
flow shortly after the opening and before the close of the SPY market, which
is captured by the volatility of the efficient price change. The transitory noise
is also larger for both the SPY and EMINI markets in these two time periods.
Overall, our proposed framework highlights the importance of capturing the
different dynamics and mechanisms at play in the multiple market setting.
We observe notable intraday patterns that further underline the importance
of a better and richer understanding of intraday dynamics, mispricing, and
learning mechanisms and how these impact price discovery and information
shares.
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Mispricing, Learning, and Price Discovery -

Appendix

1 Identification of the General Framework

In this part, we discuss the identification of the generalized model below.

pt = 1⃗mt + αrt +ΦL(pt,mt) + et

mt = mt−1 + rt
(1)

where mt is the scalar of efficient price at time t, rt is the scalar of efficient price
change at time t. For the general K cointegrated markets case, pt is a K × 1
vector contains the spot price of K markets, α is a K × 1 vector of coefficients,
1⃗ is a K × 1 vector of 1, ΦL is a matrix of linear combination of lagged pt and
mt. et is a K × 1 vector of normal distributed noise terms. In our framework,
we restrict Cov(rt, rt−i) = 0, Cov(et, et−i) = {0}, Cov(ri, ej) = 0⃗ for all i, j ∈
N1, where {0} is a K × K matrix of 0 and 0⃗ is a K × 1 vector of 0.

1.1 Identification Restrictions

Firstly, we discuss the identification constraints of estimation. Easily, eq.(1)
can be written as following by decomposing ΦL(pt,mt) = Φ1L(pt − 1⃗mt−1) −
Φ2L(mt −mt−1)⃗1. Therefore, the eq(1) can be written as following:

pt = 1⃗mt +Φ1L(pt − 1⃗mt−1)− Φ2L(mt −mt−1)⃗1 + et

(I − Φ1L)(pt −mt−1) = (⃗1− Φ2L1⃗)rt + et

pt −mt−1 = (I − Φ1L)
−1(⃗1− Φ2L1⃗)rt + (I − Φ1L)

−1et

∆pt = 1⃗Lrt + (I − L)(I − Φ1L)
−1(⃗1− Φ2L1⃗)rt

+ (I − L)(I − Φ1L)
−1et

(2)

Where I is K-by-K identity matrix, L is the lagging indicator and ∆pt =
pt − pt−1.
To analyze the return dynamic of the model above, we need to decompose the
(I − Φ1L)

−1 and Φ2L.
Since Φ2L contains lagging indicator, we can write Φ2L as Φ2L = ψ0,2+ψ1,2L+

1Here 0 is not included.
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ψ2,2L
2 + ...ψn,2L

n by reorganizing based on lagging terms2.
For (I−Φ1L)

−1, the decomposition would be slightly more complex and include
potentially infinite count of terms. In this case, we assume ||Φ1L|| < 1. The
infinite term representation is normally needed because of the inverse of lagging
metrics. It can be achieved by unfolding the following decomposition to factor-
ization from the matrix of polynomial of L to the product of the highest power
of 1. Therefore, we can move the lagging indicators out, and Ψi1 matrices do
not include lagging indicator L. 3

Specifically, here we firstly decompose (I−Φ1L)
−1 to finite amount of ”factors”

and then decompose each of these finite terms into infinite terms as follows,
where Φi1 does not contain lagging term:

(I − Φ1L)
−1 = Φ0,1(I − Φ11L)

−1(I − Φ21L)
−1...(I − Φi1L)

−1

= Φ0,1(I +Φ11L+Φ2
11L

2 + ...)(I +Φ21L+Φ2
21L

2 + ...)...

(I +Φi1L+Φ2
i1L

2 + ...)

= Φ0,1

i∏
k=1

∞∑
j=1

(I +Φj
k1L

j)

(3)

On the other hand, we rewrite the eq.(3) as following:

(I − Φ1L)
−1 = ϕ0,1 + L

∑
p1∈[1,i]

Φp11 + L2
∑

p1,p2∈[1,i]

Φp11Φp21+

L3
∑

p1,p2,p3∈[1,i]

Φp11Φp21Φp31 + ...
(4)

Then this equation can be simplified as:

(I − Φ1L)
−1 = ϕ0,1 + ϕ1,1L+ ϕ2,1L

2 + ...

ϕm,1 =
∑

pq∈[1,i]

m∏
q=1

Φpq1
(5)

where m,q as integer and pm not necessarily different from pn for m ̸= n.
To distinguish these two kinds of decomposition, for infinite decomposition (for
(I − Φ1L)

−1) we use ϕ as coefficient metrics, and for finite decomposition (for
(I −Φ2L)) we use ψ for the decomposed coefficient metrics (there is no lagging
term embedded in these matrices).
Since we assume that the noise is normal distributed, our constraints would be
the second moment conditions.
Before we calculate the moment restrictions of E[pt, pt−h’], we rewrite out the

2Finite count of terms
3For example, for a one-by-one matrix of (I−Φ1L)

−1 = [(1−3L+2L2)−1] is decomposed
to (1− 2L)−1(1−L)−1. Then (I −Φ11L) = 1− 2L and (I −Φ21L) = 1−L. In this way, the
Ψi1 matrices do not include the lagging indicator L.
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∆pt with following setting to simplify the equation above:

A0 = ϕ0,1

Am = ϕm,1 − ϕm−1,1

B0 = I − ψ0,2

Bm = −ψm,2

(6)

Then the ∆pt as following and splitting the pt to two parts, the lagging terms
of rt −mt −mt−1 and et of time from (1) t-h+1 to t and (2) the others with
higher lags from eq.(2):

∆pt = 1⃗Lrt + (A0 +A1L+A2L
2 + ...)(B0 +B1L+B2L

2 + ...)⃗1rt+

(A0 +A1L+A2L
2 + ...)et

= 1⃗Lrt +

∞∑
p=0

p∑
q=0

AqBp−q +

∞∑
r=0

ArL
ret

=

∞∑
p=h

p∑
q=0

AqBp−q 1⃗L
prt +

∞∑
r=h

ArL
r−hLhet +Gr(rt, L, lag < h) +Ge(et, L, lag < h)

(7)

where Gr(rt, L, lag < h) and Ge(et, L, lag < h) are the terms with rt−h+1 to rt
and et−h+1 to et.
Therefore, the pt−h as:

∆pt−h = 1⃗Lh+1rt +

∞∑
p=0

p∑
q=0

AqBp−q 1⃗rtL
hLp +

∞∑
r=h

ArL
rLhet (8)

Then E[∆pt∆p
′
t−h] can be written as following:

E[∆pt∆pt−h] =

h+1∑
q=0

AqBh+1−q 1⃗⃗1
′σ2

rt +

∞∑
p=h

(

p∑
q=0

AqBp−q )⃗1⃗1
′(

p−h∑
q=0

AqBp−h−q)
′]σ2

rt+

∞∑
r=h

ArΩA
′
p−h

(9)

where σ2
rt is the variance of efficient price shock rt, the Ω is the variance-

covariance matrix of the transitory noise et.
The equation(9) are our constraints for all h ∈ N. Therefore, our general model
captures all second moment restrictions across all lags. For the infinity equation
sets equation(9) for h in [0,∞), in general we can say that in many cases, this
is strong enough to identify/over-identify the parameter set [Ap, Bq, σ

2
rt ,Ω] for

multivariate model. If not, we can easily add some restrictions (e.g., De Jong
and Schotman, 2010, who is restricting the transitory noise variance-covariance
matrix diagonal) for identification. This is because Ap are constructed by the
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series of ϕp,1, and the ϕp,1 is set from i coefficient metrics Φpq1 from equation(5),
and Bq are constructed by the finite decomposition series of ψq,2. Therefore,
in general we have infinity amount of restrictions from equation(9) by infinity
amount of h from [0,∞), and we are estimating i K-by-K coefficient matrix Ap,
n K-by-K coefficient matrix of Bq, a scalar σ

2
rt and a K-by-K variance-covariance

matrix Ω.
We are aware that we did not provide strict analytical proof of when and why
equation(9) is strong enough to identify/over-identify the coefficients because
(1) we believe this is far beyond our scope (2) for most of the use cases, this
can be easily identified by following the special cases we provide, and (3) for
the models with too many lagging terms it might not be realistic because of
the extremely heavy computational burden. We provide an example of how the
special case of only lag 1 of endogenous and cointegration error-correction and
over/under-reaction of the efficient price shock model is identified, we believe
this should be the good enough because (1) reasonable computational burden
(2) it already captures both of the error-correction mechanisms with further
lagging (these terms are gradually decayed in an exponential pattern). Before
providing the identification of special cases, we would first argue why the two
error-correction mechanisms of lagging 1 is already reasonably capturing the
behavior of further lagging.

1.2 Two Error-Correction Mechanism Analysis

In this part, by discussing two markets model with lag 1 error-correction terms4,
we argue that the lag 1 terms has already captured the further lagging error-
correction mechanisms with reasonable structure. In other words, we discuss
what endogenous error-correction mechanism really captures in the multivariate
case.
For simplicity, we consider this simplified model with two markets (st and ft)
with over/under-reaction to the efficient price shock and only include lagging 1
of error-correction mechanisms:(
st
ft

)
=

(
st−1

ft−1

)
+

(
γs
γf

)
(mt −mt−1)−

(
α11 α12

α21 α22

)(
st−1 −mt−1

ft−1 −mt−1

)
+

(
est
eft

)
(10)

Which is equivalent to the following permanent-transitory decomposition:(
st
ft

)
=

(
mt

mt

)
+

(
γs − 1
γf − 1

)
(mt −mt−1)−

(
α11 + α12 − 1 0

0 α21 + α22 − 1

)
(
st−1 −mt−1

ft−1 −mt−1

)
+

(
α12 × (st−1 − ft−1)
α21 × (ft−1 − st−1)

)
+

(
est
eft

)
(11)

4Error-correction terms of t-1, e.g. st−1 −mt−1.
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For simplicity, we rewrite the model by setting the following:

G =

(
γs − 1
γf − 1

)
M = −

(
α11 + α12 − 1 0

0 α21 + α22 − 1

)
N =

(
α12 0
0 −α21

)
tt =

(
st −mt

ft −mt

)
ct = st − ft

eµt = G(mt −mt−1) + et

(12)

Therefore, the model can be written as: 5

tt =Mtt−1 +Nct−1 + eµt

(I −ML)tt = NLct + eµt

tt = (I −ML)−1NLct + (I −ML)−1eµt

tt = (I +ML+M2L2 + ...)NLct + (I +ML+M2L2 + ...)eµt

tt = (

∞∑
i=0

(ML)i)Nct−1 + (

∞∑
i=0

(ML)i)eµt

(13)

Or, equivalently, if we consider finite length time series, we can get same rela-
tionship by iteration.

tt =Mtt−1 +Nct−1 + eµt

=M(Mtt−2 +Nct−2 + eµt−1) +Nct−1 + eµt

=M2tt−2 +N(ct−1 +Mct−2) + eµt +Meµt−1

...

=M t−1t1 +N

t−1∑
i=1

M i−1ct−i +

t−1∑
i=1

M i−1eµt−i+1

(14)

From these two representations above, we can clearly see that the tt can be de-
composed into the weighted sum of lagged cointegration error-correction term
ct, lagged efficient price change mt −mt−1 and noise term, till the time of t-1
(not including t-1).
Therefore, the endogenous error-correction terms of tt−1 is the linear combi-
nation of the lagged terms before t-1. In another word, our model have three
patterns: endogenous error-correction terms (e.g. st−1 − mt−1) is responsible
for all information before t-1. Specifically, it takes over the over/under-reaction
of the cointegration error-correction term, efficient price change, and market

5We still assume ||M || < 1.
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microstructure noise before t-1 with a decaying speed of matrix M6. This is in
line with Andersen et al. 2022 paper, indicating their error-correction term is
capturing the past transitory part before t-1. This is also reflected in our spe-
cial case identification discussion in the following sections. The cointegration
error-correction term captures the price level difference of these series at time
t-1. The efficient price change term captures the over/under-reaction of efficient
price change at time t-1. Therefore, in general, these three terms capture totally
different patterns, which makes them orthogonal from one to the other.
Back to our original question, clearly from equation(14) we can see that the
endogenous error-correction term captures the past endogenous pricing-error,
past cointegration pricing-error, and past over/under-reaction of efficient price
shock, with a reasonable decay rate of matrix M. Therefore, even our special
case model only included the lag 1 of the error-correction terms in the rep-
resentation, the slow decay patterns of further past pricing-errors are already
captured 7. Hence, we would consider the special case model that only includes
lag 1 of the error-correction terms.

1.3 Identification analysis

Due to the complexity of the identification analysis of the most generalized
framework, also since the lag 1 endogenous error-correction terms reasonable
well capturing the further past two error-correction patterns with acceptable
decay rate, we discuss the identification issue of this special case model with
over/under-reaction of efficient price shock and lag 1 of error-correction mecha-
nisms. Moreover, this identification analysis process can also be easily applied
for most of the special cases of our generalized framework. We consider the
model below:

pt = 1⃗mt + αrt +Φ(pt−1 − 1⃗mt−1) + et (15)

For the K market case, pt is a K×1 array of asset price, 1⃗ is a K×1 vector of
1, mt is the efficient price scalar, Φ is a K×K matrix (Notice, since we already
fixed the lagging structure, Φ is a matrix but not a function), α is a K×1 array
of coefficients, and et is a K×1 array of noise.
Since we are assuming the noise follows normal distribution, and following De
Jong and Schotman (2010) and various literature, we calculate the second mo-
ment conditions as constraints. But first, we make some preparations from
equation(15) (where I is the K×K identity matrix):

pt − 1⃗mt = ΦL(pt − 1⃗mt) + αrt + et

(I − ΦL)(pt − 1⃗mt) = αrt + et

(pt − 1⃗mt) = (I − ΦL)−1(αrt + et)

(16)

6||M || < 1.
7As we are expecting, the further lagged pricing-errors should be less significantly affecting

future price change comparing to the more recent pricing-errors pattern. In other words,
investors would care more about more recent price series rather than the further lagged ones.
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Set (I − ΦL)−1=Γ(L),8 the price change ∆pt calculated as following:

pt = 1⃗mt + αrt +Φ(pt−1 − 1⃗mt−1) + et

pt − 1⃗mt − ΦL(pt − 1⃗mt) = αrt + et

(I − ΦL)(pt − 1⃗mt) = αrt + et

pt − 1⃗mt = (I − ΦL)−1(αrt + et)

pt = 1⃗mt + (I − ΦL)−1(αrt + et)

∆pt = 1⃗rt + (I − L)(I − ΦL)−1(αrt + et)

(17)

Since (I − ΦL)−1 = I +ΦL+Φ2L2 + ... when ||Φ|| < 1.

∆pt = 1⃗rt + (I − L)(I +ΦL+Φ2L2 + ...)(αrt + et)

= 1⃗rt + [I + (Φ− I)L+Φ(Φ− I)L2 +Φ2(Φ− I)L3 + ...](αrt + et)

= (⃗1 + α)rt + et + (Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et)

(18)

With the representation above, we can write out the second moment constraints.

E[∆pt∆p
′
t] = E[((⃗1 + α)rt + et + (Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et))

((⃗1 + α)rt + et + (Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et))
′]

= E[((⃗1 + α)rt + et + (Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et))

((⃗1 + α)′rt + e′t + (αrt + et)
′(L+ΦL2 +Φ2L3 + ...)′(Φ− I)′]

= E [⃗1⃗1r2t + 1⃗α′r2t + α1⃗′r2t + (αrt + et)(αrt + et)
′ + (Φ− I)

(L+ΦL2 +Φ2L3 + ...)(αrt + et)(αrt + et)
′(L+ΦL2 +Φ2L3 + ...)′

(Φ− I)′]

= 1⃗⃗1σ2
rt + 1⃗α′σ2

rt + α1⃗′σ2
rt +Σ+ (Φ− I)

E[(L(αrt + et) + ΦL2(αrt + et) + ...)(L(αrt + et)
′ + L2(αrt + et)

′Φ′ + ...)]

(Φ− I)′]

= 1⃗⃗1σ2
rt + 1⃗α′σ2

rt + α1⃗′σ2
rt +Σ+ (Φ− I)(Σ + ΦΣΦT +Φ2ΣΦ2

t + ...)

(ΦT − I)

= 1⃗⃗1σ2
rt + 1⃗α′σ2

rt + α1⃗′σ2
rt +Σ+

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I)

(19)

where Σ = E[(αrt + et)(αrt + et)
′] and ΦT = Φ′. The equation above is sim-

plified because cov(ri, ej) = 0 for all [i,j] in N, and cov(ri, rj) = cov(ei, ej) = 0
for all[i,j] in N and i ̸= j. Therefore, all cross terms between rt and et from

8When ||Φ|| < 1, the equation Γ(L) = I + ΦL + Φ2L2 + ... feasible because Φ can be
decomposed by spectral decomposition, Φ = AΛA′, where is the diagonal matrix with eigen-
values. Therefore, Φk converges to 0 when K is infinity, since Φk = AΛkA′ and all absolute
eigenvalues smaller than 1 and converge to 0.
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different lagging terms can be ignored.
Similarly, we can also calculate the lagged moment constraints as following:

E[∆pt∆p
′
t−h] = E[(⃗1 + α)rt + et + (Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et)

(Lh(⃗1 + α)rt + Lhet + Lh(Φ− I)(L+ΦL2 +Φ2L3 + ...)(αrt + et))
′]

= E[((⃗1 + α)rt + et + (Φ− I)(L(αrt + et) + ΦL2(αrt + et) + ...))

Lh((⃗1 + α)rt + et + (Φ− I)(L(αrt + et) + ΦL2(αrt + et) + ...))′]

= E[((Φ− I)(Φh−1Lh(αrt + et) + ΦhLh+1(αrt + et) + Φh+1Lh+2(αrt + et)

+ ...))Lh((⃗1 + α)rt + et + (Φ− I)(L(αrt + et) + ΦL2(αrt + et) + ...))′]

= (Φ− I)Φh−1E[(αrt + et)((⃗1 + α)rt + et)
′ +Φ(αrt + et)(αrt + et)

′

(ΦT − I) + Φ2(αrt + et)(αrt + et)
′ΦT (ΦT − I)]

= (Φ− I)Φh−1α1⃗′σ2
rt + (Φ− I)Φh−1Σ+ (Φ− I)Φh−1ΦΣ(ΦT − I)+

(Φ− I)Φh−1Φ2ΣΦT (ΦT − I) + ...

= Φh−1[(Φ− I)α1⃗′σ2
rt + (Φ− I)Σ + (Φ− I)ΦΣ(ΦT − I)+

(Φ− I)Φ2ΣΦT (ΦT − I) + ...]

= Φh−1[(Φ− I)α1⃗′σ2
rt + (Φ− I)Σ + Φ

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I)]

(20)

From the equation(20), we can see that (Φ− I)α1⃗′σ2
rt+(Φ− I)Σ+Φ

∑∞
k=0(Φ−

I)ΦkΣΦk
T (ΦT − I) is unrelated with h. Therefore, by changing h from 1 to ∞,

we can have these moment constraints to over identify Ψ, from E(∆pt∆P
′
t−h)

as follows:

E[∆pt∆p
′
t−2] = ΦE[∆pt∆p

′
t−1]

E[∆pt∆p
′
t−3] = Φ2E[∆pt∆p

′
t−1]

E[∆pt∆p
′
t−4] = Φ3E[∆pt∆p

′
t−1]

...

(21)

Therefore, the coefficient matrix Φ can be over-identified from these constraints.
Then for the next step, to identify the rest parameters (Σ,α and σ2

rt), we have
these two constraint matrices:

C1 = 1⃗⃗1σ2
rt + 1⃗α′σ2

rt + α1⃗′σ2
rt +Σ+

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I)

C2 = (Φ− I)α1⃗′σ2
rt + (Φ− I)Σ + Φ

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I)

(22)

where C1 and C2 are two constant metrics constraints, we can get C1 =
E[∆pt∆p

′
t] and C2 = Φ−h+1E[∆pt∆p

′
t−h].

8



Generally speaking, there are K(K+1)/2 constraints from C1, since both right
and left side of equation(19) are symmetry matrices and there areK2 constraints
since the right and left side of equation(20) are asymmetry matrices.
Therefore, we vectorize the equation(19) and equation(20) to consider the iden-
tification of the model:

V ec(C1) = V ec[(⃗1 + α)(⃗1 + α)′σ2
rt] + V ec(Ω) + V ec[

∞∑
k=0

(Φ− I)ΣΦk
T (ΦT − I)]

= V ec(⃗1⃗1′ + 1⃗α′ + α1⃗′)σ2
rt + V ec(Σ) +

∞∑
k=0

[(Φ− I)Φk]⊗

[(Φ− I)Φk]V ec(Σ)

(23)

To simplify the equation, we set Θ =
∑∞

k=0[(Φ− I)Φk]⊗ [(Φ− I)Φk], then the
vectorized C1 is following:9.

V ec(C1) = 1⃗I 1⃗σ2
rt + I ⊗ 1⃗V ec(α′)σ2

rt + 1⃗⊗ IV ec(α)σ2
rt + (IK

2

+Θ)V ec(Σ)

= 1⃗K2σ2
rt + (I ⊗ 1⃗ + 1⃗⊗ I)ασ2

rt + (IK2 +Θ)V ec(Σ)

(24)

where 1⃗⊗I 1⃗ = 1⃗k2 , which is a matrix size of K2×1, IK2 is the K2×K2 identity
matrix.
Similarly, we also vectorize the constraints C2 as following:

V ec(C2) = V ec[(Φ− I)α1⃗′]σ2
rt + V ec[(Φ− I)ΣI]+

V ec[Φ

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I)I]

= 1⃗⊗ (Φ− I)ασ2
rt + I ⊗ (Φ− I)V ec(Σ) + I ⊗ Φ

V ec(σ∞
k=0(Φ− I)ΦkΣΦk

T (Φ− T − I))

= 1⃗⊗ (Φ− I)ασ2
rt + I ⊗ (Φ− I)V ec(Σ) + I ⊗ Φ

∞∑
k=0

[(Φ− I)Φk]⊗ [(Φ− I)Φk]V ec(Σ)

= 1⃗⊗ (Φ− I)ασ2
rt + [I ⊗ (Φ− I) + I ⊗ ΦΘ]V ec(Σ)

(25)

9Here we use V ec(AXB) = (B′ ⊗A)V ec(X) and V ec(α) = V ec(α′) since α is a vector.
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Before we further discuss the identification of the model, we need to simplify Θ
to simplify the identification constraints10:

Θ =

∞∑
k=0

[(Φ− I)Φk]⊗ [(Φ− I)Φk]

=

∞∑
k=0

(Φ− I)⊗ (Φ− I)(Φk ⊗ Φk)

= (Φ− I)⊗ (Φ− I)(sum∞
k=0(Φ⊗ Φ))

= (Φ⊗ Φ+ I ⊗ I − Φ⊗ I − I ⊗ Φ)(IK2 − Φ⊗ Φ)−1

= IK2 + (2Φ⊗ Φ− Φ⊗ I − I ⊗ Φ)(IK2 − Φ⊗ Φ)−1

(26)

After splitting out the parameters (Σ, α and σ2
rt) by vectorization, we have a

clearer structure for identification issue. Generally speaking, the identification
issue can be discussed by cancel out parameter through the union/combine of
Vec(C1) and Vec(C2), since we have K2 +K(K + 1)/2 constraints to identify
K + K(K + 1)/2 + 1 parameters/coefficients. If there is identification issue,
additional restriction can be added to the model. We aware this might be too
general for the identification issue discussion. Therefore, we will provide an ex-
ample of a two markets case below.

Corollary 1 Identification of two markets case (K=2)
For the K=2 case (two markets case), we examine the identification by canceling
out α.
Set C3 = V ec(C2)− 1⃗⊗ (Φ− I)N+

L V ec(C1), where N
+
L is the Moore–Penrose

left inverse of the matrix (I ⊗ 1⃗ + 1⃗⊗ I).
Therefore, we can easily calculate C3 as follows:

C3 = (I ⊗ (Φ− I) + (I +Φ)Θ)V ec(Σ)− 1⃗⊗ (Φ− I)N+
L (IK2 +Θ)V ec(Σ)−

1⃗⊗ (Φ− I)N+
L (I ⊗ 1⃗)⃗1σ2

rt

= [(I ⊗ (Φ− I) + (I ⊗ Φ)Θ)− 1⃗⊗ (Φ− I)N+
L (IK2 +Θ)]V ec(Σ)

− 1⃗⊗ (Φ− I)N+
L (I ⊗ 1⃗)⃗1σ2

rt

(27)

Generally speaking, the equation above has 4 constraints (since C3 is a 4 × 1
matrix), and we need to identify 4 parameters (3 from Σ and 1 from σ2

rt).
However, we need to restrict the Σ diagonal so that the model is identifiable.
Here we will indicate why we need this additional restriction and why when Σ
is diagonal the model can be identified.
For the general case C3 = PV ec(Σ)+Qσ2

rt = [P1, P2, P3, P4]V ec(Σ)+ [Q]σ2
rt,

10We are using (A ⊗ C)(B ⊗ D) = (AC) ⊗ (BD) and (I − A)−1 = I + A + A2 + A3 + ...,
where ||A|| < 1.
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where Pi is the ith column of the matrix P.
The constraints as following:

C3 = [P1, P2, P3, P4][V ar(est), Cov(est, eft), Cov(est, eft), V ar(eft)]
′ +Qσ2

rt

= [P1, P2 + P3, P4][V ar(est, Cov(est, eft), V ar(eft)] +Qσ2
rt

(28)

We can find the rank([P1,P2+P3,P4])=2.11 Therefore, equation(27) is not
strong enough to identify 3 parameters/coefficients, so that we need to restrict
the Σ diagonal.
On the other hand, rank([Q,P1,P4])=3. Considering equation(27) is in the rep-
resentation of Ax=b with 4 rows, Σ (diagonal) and σ2

rt can be (over)-identified.
Specifically, equation(27) can be specified as equations below to identify σ2

rt,
V ar(est), Cov(est, eft) and V ar(eft):

q1× σ2
rt + p11× V ar(est) + (p12 + p13)× Cov(est, eft) + p14× V ar(eft) = C31

q2× σ2
rt + p21× V ar(est) + (p22 + p23)× Cov(est, eft) + p24× V ar(eft) = C32

q3× σ2
rt + p31× V ar(est) + (p32 + p33)× Cov(est, eft) + p34× V ar(eft) = C33

q4× σ2
rt + p41× V ar(est) + (p42 + p43)× Cov(est, eft) + p44× V ar(eft) = C34

(29)

where qi is the ith row of Q, Pij is the ith row of Pi, C3i is the ith row of C3.
For the equations above, all four parameters can be identified if and only if
[Q,P1,P2+P3,P4] is full rank. But we can also identify the rank of [Q,P1,P2+P3,P4]
is 3. Therefore, all these 4 parameters (σ2

rt, V ar(est), Cov(est, eft) and V ar(eft))
cannot be identified together.
On the other hand, if we restrict the Σ to be diagonal, we will identify σ2

rt,
V ar(est) and V ar(eft) from the equations below:

q1× σ2
rt + p11× V ar(est) + p14× V ar(eft) = C31

q2× σ2
rt + p21× V ar(est) + p24× V ar(eft) = C32

q3× σ2
rt + p31× V ar(est) + p34× V ar(eft) = C33

q4× σ2
rt + p41× V ar(est) + p44× V ar(eft) = C34

(30)

Since rank([Q,P1,P4])=3, we can (over)identify σ2
rt, V ar(est) and V ar(eft) from

the equation above.
After we identify Σ and σ2

rt, we can identify α from equation(19) as follows:

C1 = 1⃗⃗1σ2
rt + 1⃗α′σ2

rt + α1⃗′σ2
rt +Σ+

∞∑
k=0

(Φ− I)ΦkΣΦk
T (ΦT − I) (31)

We set C4 = [C1 − Σ −
∑∞

k=0(Φ − I)ΦkΣΦk
T (ΦT − I) − 1⃗⃗1′σ2

rt](σ
2
rt)

−1. The
constant matrix C4 has 3 constraints to identify α. If we set α = [a, b]′. The

11Due to the space limitation, we won’t show the calculation here. But this can be easily
checked by calculating software such as Matlab.
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identification can be simplified as follows:

C4 = 1⃗α′ + α1⃗′

=

(
2a a+ b
a+ b 1

)
(32)

Therefore, [a,b] or α can be identified.

2 Information share framework

In this part, we provide the steps to calculate the information share for the gen-
eralized model following Hasbrouck and De Jong and Schotman’s idea12, and
this analysis is based on the general case:

pt = 1⃗mt + αrt +ΦL(pt,mt) + et

mt = mt−1 + rt
(33)

Where mt is the scalar of efficient price, rt is the scalar of efficient price change,
since we are modeling a K market case, pt is a K × 1 vector, α is a K × 1 matrix,
I is a K × K identity matrix, 1⃗ is a K × 1 vector of 1, ΦL is a function of matrix
with lagged pt and mt with Cov(rt, rt−i) = 0, Cov(et, et−i) = 0, Cov(rt, et) = 0
and Cov(rt, et−i) = 0 for all i ∈ N.
In the general case, we still decompose ΦL(pt,mt) as Φ1L(pt−1⃗mt−1)−Φ2L(mt−
mt−1)⃗1, where Φ1L and Φ2L are polynomial functions of a matrix with the
lagging indicator.
Therefore, the model can be rewritten as follows by separating the generalized
error-correction terms:

pt = 1⃗mt + αrt +Φ1L(pt − 1⃗mt−1)− Φ2L(mt −mt−1)⃗1 + et

mt = mt−1 + rt
(34)

Following De Jong and Schotman (2010), we define the price innovations as
vt = pt − 1⃗mt−1.
Therefore, the model can be written as:

(I − Φ1L)vt = (⃗1 + α− Φ2L1⃗)rt + et

vt = (I − Φ1L)
−1(⃗1 + α− Φ2L1⃗)rt + (I − Φ1L)

−1et
(35)

In this case, we assume ||Φ1L|| < 1 thus (I−Φ1L)
−1 = ϕ0,1+ϕ1,1L+ϕ2,1L

2+ ...,
and Φ2L = ψ0,2+ψ1,2L+ψ2,2L

2+ ...ψn,2L
n. As mentioned, this representation

is normally achieved by unfolding following decomposition to factorization from
the matrix polynomial of L to the product of the highest power of 1. Therefore,

12Since the α coefficient indicate the over/under-reaction to the efficient price shock, we
leave this in the equation for all estimations besides the identification analysis.
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we can move the lagging indicators out and Ψi1 matrices no longer include
lagging indicator L.

(I − Φ1L)
−1 = ϕ01(I − Φ11L)

−1(I − Φ21L)
−1...(I − Φi1L)

−1

= ϕ01(I +Φ11L+Φ2
11L

2 + ...)(I +Φ21L+Φ2
21L

2 + ...)...

(I +Φi1L+Φ2
i1L

2 + ...)

= ϕ01

i∏
k=1

∞∑
j=1

(I +Φj
k1L

j)

(36)

Therefore, the general model or equation(35) can be modified as following:

vt = (ϕ0,1 + ϕ1,1L+ ϕ2,1L
2 + ...)(⃗1 + α− (ψ0,2 + ψ1,2L+ ψ2,2L

2 + ...ψn,2L
n)⃗1)rt

+(ϕ0,1 + ϕ1,1L+ ϕ2,1L
2 + ...)et

(37)

All lagged rt and all et are uncorrelated with rt by assumption. Since we are
following De Jong and Schotman’s information share representation, the IS is
based on the regression of rt to vt (where vt = pt−mt−1), so it is straightforward
to simplify eq.(35) as following:

vt = ϕ0,1(⃗1 + α− ψ0,21⃗)rt +Φother,LL1⃗rt +

∞∑
i=0

ϕi,1L
iet (38)

Then following De Jong and Schotman, 2010, we run the linear regression
rt = γolsvt + ηt, γ can be calculated as following:

γ = Υ−1Cov(vt, rt)

= Υ−1ϕ01(⃗1 + α− ψ0,21⃗)σ
2

(39)

Then the information share can be calculated as:

R2 = 1−
σ2
η

σ2

=
γ′Υγ

σ2

= γ′[ϕ01(⃗1 + α− ψ0,21⃗)]

(40)

Therefore, the information share can be represented as follows

γ = Υ−1ϕ0,1(⃗1 + α− ψ0,21⃗)σ
2

IS = γ ◦ ϕ0,1(⃗1 + α− ψ0,21⃗).

Υ = E[vtv
′
t]

(41)
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The equation(41) is the generalized IS estimator from De jong and Schotman,
where they restricted ϕ0,1 = I and ψ0,2 = 013. By the generalized represen-
tation equation(1), the framework would easily fit with various multivariate
market microstructure models.

2.1 Variance-covariance matrix of vt

On the other hand, to calculate the IS from equation(41), we need to provide
solution of Υ−1. Here we indicate how to get the expression of Υ−1 following
Lutkepohl (2005), Chapter 11.

We start the calculation from equation(35) by decomposing Φ1L = ψ0,1+ψ1,1L+
ψ2,1L

2 + ...ψn,1L
n:

(I − Φ1L)vt = (⃗1 + α− Φ2L1⃗)rt + et

(ψ0,1 + ψ1,1L+ ψ2,1L
2 + ...ψn,1L

n)vt = (⃗1 + α− Φ2L1⃗)rt + et

ψ0,1vt = −(ψ1,1L+ ψ2,1L
2 + ...ψn,1L

n)vt + (⃗1 + α− Φ2L1⃗)rt + et

vt = −ψ−1
0,1(ψ1,1L+ ψ2,1L

2 + ...ψn,1L
n)vt + ψ−1

0,1 (⃗1 + α− Φ2L1⃗)rt + ψ−1
0,1et

(42)

To simplify the equation above, we set:

Ai = −ψ−1
0,1ψi,1

ψ−1
0,1 (⃗1 + α− Φ2L1⃗) =

q∑
i=0

BiL
i

ψ−1
0,1et = ut

(43)

Therefore, eq.(42) can be simplified as:

vt = A1vt−1 +A2vt−2 + ...+Apvt−p +B0rt +B1rt−1 + ...+Bqrt−q + ut
(44)

13We aware that they mention that the transitory noise in their model can be non-diagonal.
However, in all the models, they included additional restrictions in their identification analysis,
e.g., Cov(et, rt) = 0 and BN decomposition, and restrict orthogonal et to restrict their IS
ranging from [0,1].
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Then this VAR(p)-X model can be rewritten as VAR(1) model as follows:

Yt = AYt−1 + Ut

Yt =



vt
vt−1

...
vt−p+1

rt
rt−1

...
rt−q+1


;A =

(
A11, A12

A21, A22

)
;Ut =



ut +B0rt
0
0
...
0
rt
0
0
...
0



A11 =


A1 A2 ... Ap−1 Aq

Im 0 ... 0 0
0 Im ... 0 0
... ... ... ... ...
0 0 ... Im 0
0 0 ... 0 Im

 ;A12 =


B1 ... Bq

0 ... 0
... ... ...
0 ... 0



A21 = 0;A22 =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 0



(45)

where Im is the K ×K identity matrix (K is the length of vt), and for Ut, rt is
in the pK+1 row.
Therefore, we can calculate the second moment of Yt from equation(45)) (define
ΓY (h) = E[YtY

′
t−h]):

Yt = AYt−1 + Ut

E[YtYt−h] = AE[Yt−1Y
′
t−h] + E[UtY

′
t−h]

ΓY (h) = AΓY (h− 1) + E[UtY
′
t−h]

(46)

Considering when h > 0, E[UtY
′
t−h] = 0 since ut and rt is not contained with

lagged vt and rt series.
Then we can easily get:

ΓY (h) = AΓY (h− 1)

ΓY (0) = AΓY (−1) + E[UtY
′
t ]

= AΓY (1)
′ + E[UtY

′
t ]

= AΓY (0)A
′ + E[UtY

′
t ]

vec(ΓY (0)) = vec(AΓY (0)A
′) + vec(E[UtY

′
t ])

vec(ΓY (0)) = (A⊗A)vec(ΓY (0)) + vec(E[UtY
′
t ])

vec(ΓY (0)) = (Im×m −A⊗A)−1vec(E[UtY
′
t ])

(47)
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With the expression of E[UtYt] we can get the vectored ΓY (0), then Cov(vt) =
Im 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

ΓY (0))

Therefore, since the expression of Ut and Yt can be taken from equation(45), we
can get the expression of E[UtY

′
t ] as

E[UtY
′
t ] =


utu

′
t +B0B

′
0r

2
t 0 ... B0r

2
t ... 0

0 0 ... 0 ... 0
... ... ... ... ... ...
B′

0r
2
t 0 ... rt × rt ... 0

... ... ... ... ... ...
0 0 ... 0 ... 0



=



ψ−1
0,1Σetψ

−1
0,1

′ 0 ... B0σ
2 ... 0

0 0 ... 0 ... 0
... ... ... ... ... ...

B′
0σ

2 0 ... σ2 ... 0
... ... ... ... ... ...
0 0 ... 0 ... 0



(48)

Where rt × rt and σ
2 is on the pm + 1 column and row. Note, Bi for i ∈ [0,q]

are K × 1 vectors here.

We understand that for most empirical models, the calculation of the variance-
covariance matrix does not need such a complex process (vectorization and so
on). However, we still provide the variance-covariance matrix for the general
framework of equation(34) since even though the representation might be cum-
bersome, the process can be easily standardized. More importantly, this process
indicates that the price innovation from the state-space model actually follows
a VARMA process after solving the unobserved component model.

2.2 Special cases of general information share indicator

Since the information share representation for the generalized market microstruc-
ture model is still too generalized, in most cases, the information share indicator
can be calculated with an easier process. Here we discuss two corollaries that
indicate how to calculate the information share in special cases. Notice, in these
corollaries, we might have stronger restrictions than the general case and our
empirical analysis (e.g., we assume Cov(et) is diagonal).

Corollary 2: When ΦL = β(pt−1 − 1⃗mt−1) and β is a K × K diagonal ma-
trix, the information share can be express as IS = γ ◦ (⃗1 + α). This is a case
when we add the endogenous error correction term within the De Jong and
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Schotman’s model.

Proof: Similar to the previous generous case, this model can be written as
follows:

pt = 1⃗mt + αrt + β(pt−1 − 1⃗mt−1) + et

mt = mt−1 + rt
(49)

where pt is a K × 1 vector, 1⃗ is a column vector of 1, mt is the efficient price
as a number, α is a K × 1 vector, β is a K × K diagonal matrix, Var(rt)=σ

2,
Var(et)=Ω, et is a K × 1 vector and Ω is a K × K diagonal matrix (which we
assume that E[cov(et, et−i)] = 0 for i ∈ N).
Similarly, if we assume vt = pt−mt−1, this model can be expressed as following:

vt = (⃗1 + α)rt + βvt−1 − β1⃗Lrt + et

(I − βL)vt = (⃗1 + α− β1⃗L)rt + et

vt = (I − βL)−1(⃗1 + α− β1⃗L)rt + (I − βL)−1et

(50)

Where L is the lag indicator, and I is a ranking K identity matrix.
Therefore, the express of Υ can be calculated as following:

Υ = E[vtv
′
t]

= [(I − βL)−1(⃗1 + α− β1⃗L)rt + (I − βL)−1et]

[(I − βL)−1(⃗1 + α− β1⃗L)rt + (I − βL)−1et]
′

(51)

To calculate Υ, we set diagonal of β as B, where B = [b1, b2, ...bn]
′ and all

(| bi |< 1),α = [a1, a2, ...an]
′, et = [et,1, et,2, ...et,n] and the diagonal vector of Ω

as ω = [ω1, ω2, ...ωn].
Thus, we can write vt as following:

vt = (I − βL)−1(⃗1 + α− β1⃗L)rt + (I − βL)−1et

= [(I + βL+ β2L2 + ...)(⃗1 + α− β1⃗L)rt + (I − βL)−1et]

= [(⃗1 + α)rt + (β1⃗ + βα− Iβ1⃗)Lrt + (β21⃗ + β2α− β21⃗)L2rt+

...+ (I − βL)−1et]

= [(⃗1 + α)rt + βαLrt + β2αL2rt + ...+ Iet + βLet + β2L2et + ...]

=


(1 + a1)rt + b1a1rt−1 + b21a1rt−2 + ...+ et,1 + b1et−1,1 + b21et−2,1...
(1 + a2)rt + b2a2rt−1 + b22a2rt−2 + ...+ et,2 + b2et−1,2 + b22et−2,2...

...
(1 + an)rt + bnanrt−1 + b2nanrt−2 + ...+ et,n + bnet−1,n + b2net−2,n...


(52)

Therefore, we can easily simplify the E[vtv
′
t] by two parts.
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
τ1,1 τ1,2 ...τ1,n
τ2,1 τ2,2 ...τ2,n
...
τn,1 τn,2 ...τn,n

 (53)

For the diagonal terms τi,i considering | bi |< 1, E[cov(ei, ej)] = 0 when i ̸= j
E[cov(ei, rj)] = 0 for any i and j, and cov(ri, rj) = 0 for i ̸= j , can be simplified
as following:

τi,i = E[(1 + ai)
2r2t + b2i a

2
i r

2
t−1 + b4i a

2
i rt−2 + ...+ e2t,i + b2i et−1,i + b4i et−2,i + ...]

= (1 + 2ai +
a2i

1− b2i
)σ2 +

ω2
i

1− b2i
(54)

For the non-diagonal terms τi,j(i ̸= j), similarly can be simplified as following:

τi,j = E[(1 + ai)(1 + aj)r
2
t + bibjaiajr

2
t−1 + b2i b

2
jaiajr

2
t−2 + ...]

= (1 + ai + aj +
aiaj

1− bibj
)σ2 (55)

With the format of Υ, we can just follow our general case to derive the repre-
sentation of information share.
The relation between innovation in the efficient price and the shocks to individ-
ual prices:

rt = γ′olsvt + ηt (56)

Therefore the regression coefficients γ are as follows:

γols = Υ−1Cov(rt, vt)

= Υ−1Cov(rt, (I − βL)−1(⃗1 + α− βL)rt + (I − βL)−1et)

= Υ−1Cov(rt, (I + βL+ βL2 + ...)(⃗1 + α− βL)rt)

= Υ−1Cov(rt, I (⃗1 + α)rt)

= Υ−1(⃗1 + α)σ2

(57)

Thus, the total fraction of the variance in the efficient price innovation rt ex-
plained by the vector price innovation is:

R2 = 1−
σ2
η

σ2
=
γ′olsΥγols

σ2
= γ′ols(⃗1 + α) (58)

Thus, the vector of information share (IS) can be defined following De Jong and
Schotman:

IS = γols ◦ (⃗1 + α) (59)

This is a special case of De Jong and Schotman’s representation when additional
endogenous endogenous error-correction terms exist in the transitory part.
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Corollary 3: When Φ1L does not including lagging indicator, there is a struc-
tural/instantaneous error correction term. For this case we set: Φ1L = ϕ01 and
Φ2L = 0, therefore pt is allowed within the error correction term.

Proof: the model can be written as:

pt = 1⃗mt + αrt + ϕ01(pt − 1⃗mt−1) + et

mt = mt−1 + rt
(60)

The derivation as the previous part:

vt = (⃗1 + α)rt + ϕ01vt + et

(I − ϕ01)vt = (⃗1 + α)rt + et

vt = (I − ϕ01)
−1(⃗1 + α)rt + (I − ϕ01)

−1et

(61)

We need to assume the matrix I − ϕ01 is full rank. To simplify the writing in
the function, we set ψ01 = (I − ϕ01)

−1.
Therefore, the equation above can be simplified as follows:

vt = ψ01(⃗1 + α)rt + ψ01et (62)

Similar as before, when running the regression rt = γolsvt + ηt, γols can be
calculated as following:

γols = Υ−1Cov(vt, rt)

= Υ−1ψ01(⃗1 + α)σ2
(63)

Then the information share can be calculated as before:

R2 =
γ′olsΥγols

σ2

= γ′ols[ψ01(⃗1 + α)]

(64)

IS = γols ◦ ψ01(⃗1 + α) (65)

Then there is the calculation of Υ:

Υ = E(vtv
′
t)

= E(ψ01(⃗1 + α)rt + ψ01et)(ψ01(⃗1 + α)rt + ψ01et)
′

= E(ψ01(⃗1 + α)rt + ψ01et)((⃗1 + α)′ψ′
01rt + e′tψ

′
01)

= ψ01(⃗1 + α)(⃗1 + α)′ψ′
01σ

2 + ψ01Ωψ
′
01

(66)
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3 Comparing generalized information share and
De Jong and Schotman’s information share

De Jong and Schotman’s information share model uses the diagonal restric-
tion of the variance-covariance matrix of transitory term et throughout their
study. Thus the asset price is only connected by the rt term (both permanent
and transitory parts). However, we remove this restriction to allow additional
co-movement across different markets. Therefore, the asset prices (pt or vt) is
connect not only by the term of rt, but also by the lagged rt and et terms. This is
clearly indicated from the equation(35): vt = (I−ϕ01)−1(⃗1+α)rt+(I−ϕ01)−1et.
We believe the beneficiary is two-folded:
First, it should better describe the high-frequency market. De Jong and Schot-
man’s diagonal variance-covariance matrix restricted that all agencies immedi-
ately react to the efficient shock. However, various papers have indicated that
information arrival can be delayed - some investors react to the market with lag.
Various studies of autocorrelation patterns echo this. We are aware that De Jong
and Schotman allowed AR(1) in the error term to allow autocorrelation within
the asset price change. However, we believe it would be more reasonable that
the autocorrelation comes from (1)the lagged efficient price change - some in-
vestors react to the news with delay, and (2) past error-correction mechanisms
- investors are correcting the past pricing errors for arbitrage opportunities.
Mathematically speaking, by allowing the endogenous error correction terms
(e.g. Andersen et al. pt−1 −mt−1), our model captured further autocorrelation
pattern and more second moment patterns, e.g. E[∆pt∆pt−h]. In another word,
we discuss the generous case when ei,t for market i potentially contains lagged
rt, lagged ei,t ,and lagged and current ej,t from market j.
Second, by adding these endogenous error-correction terms, our model solves
the identification issue of the De Jong and Schotman’s framework - our model
no long request the transitory noise term orthogonal to each other. In other
words, our model captures additional market patterns without requesting addi-
tional constraints.

4 Information Share Limitations

In this section, since both De Jong and Schotman’s and our information share
models are based on a similar idea - Hasbrouck’s information share, we discuss
the limitation of this methodology.

Regression Issues Both De Jong and Schotman, 2010 and our model con-
sider the relationship between the innovation in the efficient price and the shocks
to individual prices with the following equation:

rt = γolsvt + ηt (67)
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Naturally, this methodology encounter the issue that this regression might not
be valid. By definition, there might be some multicollinearity issue since the
vt are correlated by both models. However, this normally won’t be a severe
issue since in normal cases, since it is very unlikely that the price innovations of
different markets are highly correlated.14 But still, when the model parameters
indicate that the price innovations are highly correlated, we should aware that
the information share calculated in this extreme case might not be reliable. In
the extreme case, we might need replace this information share methodology
with other methodologies.

Information Share Scope In this part, we discuss the trustworthy scope
of the information share of De Jong and Schotman and our model – when the
information share can be restricted as [0,1].
Both De Jong and Schotman and our information share back to this basic equa-
tion(For simplicity, we discuss the case of 2 markets.):

vs,t = γsrt + θec,t + es,t

vf,t = γfrt + ec,t + ef,t

vs,t = st −mt−1

vf,t = ft −mt−1

(68)

Where all of the parameters are scalars.15

Or can be written as vectorized representation:

vt = βrt +Θec,t + et

β =

(
γs
γf

)
vt =

(
vs,t
vf,t

)
et =

(
es,t
ef,t

)
Θ =

(
θ
1

)
(69)

In both two models, Cov(rt, ec,t) = Cov(ec,t, es,t) = Cov(ec,t, ef,t) = Cov(rt, es,t) =
Cov(rt, ef,t) = 0.
The two cointegrated markets’ prices can be described with the equilibrium
above, and we know this model’s coefficients and variance-covariance structures
from the estimation (as discussed in the identification analysis section). The key
question would be the proportions of the variance of the efficient price change

14If it happens, it usually means that the estimation frequency is not high enough to dis-
tinguish the price series shocks.

15Our error correction terms will be included in the ec,t terms.
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explained by each market.
Then calculate the variance-covariance matrix of vt as De Jong and Schotman,
2010:

Υ = E[vt, v
′
t] = ββ′σ2

rt +ΘΘ′σ2
ec,t + σ2

et (70)

Then both De Jong and our model discuss the relationship between the innova-
tion of efficient price and shock to individual prices by this linear regression:

rt = γolsvt + ηt (71)

As mentioned before, this regression equation determines that the information
share estimation methodology is only valid when this regression is valid.
The regression coefficient, Var(rt), R

2, and information share follow the same
process in De Jong and our model:

γ′ols = Υ−1βσ2
rt

V ar(rt) = γ′Υγ + σ2
η

R2 = 1− σ2
η/σ

2
rt = γ′Υγ + σ2

η = γ′β

IS = γ ◦ β

(72)

Specifically, now we examine when the regression of equation(71) is valid and
what is the scope of the information share in the special case of two markets.
Specifically, why γols is positive in their model and why the information share
is scoped as [0,1]. We still from the general model of 2 markets:

vs,t = γsrt + θec,t + es,t

vf,t = γfrt + ec,t + ef,t

vs,t = st −mt−1

vf,t = ft −mt−1

(73)

We write out the Υ−1:

Υ−1 = (ββ′σ2
rt +Θσ2

ec,tΘ
′ + σ2

et)
−1

=

(
γ2sσ

2
rt + θ2σ2

ec,t + σ2
es,t γsγfσ

2
rt + θσ2

ec,t

γsγfσ
2
rt + θσ2

ec,t γ2fσ
2
rt + σ2

ec,t + σ2
ef,t

)−1

=
1

(γ2fσ
2
rt + σ2

ec,t + σ2
ef,t

)(γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t)− (γsγfσ2

rt + θσ2
ec,t)(γsγfσ

2
rt + θσ2

ec,t)(
γ2fσ

2
rt + σ2

ec,t + σ2
ef,t

−γsγfσ2
rt − θσ2

ec,t

−γsγfσ2
rt − θσ2

ec,t γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t

)
(74)

Notice, the fraction part is always positive because its denominator is V ar(vs,t)V ar(vf,t)−
Cov(vs,t)Cov(vf,t).
Then from the equation above, we can get (the cross terms are canceled here):
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γols = Υ−1βσ2
rt

=
1

(γ2fσ
2
rt + σ2

ec,t + σ2
ef,t

)(γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t)− (γsγfσ2

rt + θσ2
ec,t)(γsγfσ

2
rt + θσ2

ec,t)(
γ2fσ

2
rt + σ2

ec,t + σ2
ef,t

−γsγfσ2
rt − θσ2

ec,t

−γsγfσ2
rt − θσ2

ec,t γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t

)(
γs
γf

)
σ2
rt

=
σ2
rt

(γ2fσ
2
rt + σ2

ec,t + σ2
ef,t

)(γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t)− (γsγfσ2

rt + θσ2
ec,t)(γsγfσ

2
rt + θσ2

ec,t)(
γs(σ

2
ec,t + σ2

ef,t
)− θγfσ

2
ec,t

γf (θ
2σ2

ec,t + σ2
es,t)− θγsσ

2
ec,t

)
IS = γols ◦ β

=
σ2
rt

(γ2fσ
2
rt + σ2

ec,t + σ2
ef,t

)(γ2sσ
2
rt + θ2σ2

ec,t + σ2
es,t)− (γsγfσ2

rt + θσ2
ec,t)(γsγfσ

2
rt + θσ2

ec,t)(
γ2s (σ

2
ec,t + σ2

ef,t
)− θγsγfσ

2
ec,t

γ2f (θ
2σ2

ec,t + σ2
es,t)− θγsγfσ

2
ec,t

)

(75)

With the equation above, we can see when and why in some special case that the
correlation in our generalized model might be large and the information share
might getting negative - for example, when σ2

ec,t is significantly larger than σ2
es,t

and σ2
ef,t

. In this case, the smaller terms of γs and γf lead the mapped part of
the matrix to negative.
On the other hand, in De Jong and Schotman’s case, the information share as
follows:

IS =
σ2
rt

(γ2fσ
2
rt + σ2

ef,t
)(γ2sσ

2
rt + σ2

es,t)− γ2sγ
2
fσ

4
rt

(
γ2sσ

2
ef,t

γ2fσ
2
es,t

)
=

σ2
rt

γ2fσ
2
rtσ

2
es,t + γ2sσ

2
rtσ

2
es,t + σ2

ef,t
σ2
es,t

(
γ2sσ

2
ef,t

γ2fσ
2
es,t

)
=

1

γ2fσ
2
es,t + γ2sσ

2
es,t +

σ2
ef,t

σ2
es,t

σ2
rt

(
γ2sσ

2
ef,t

γ2fσ
2
es,t

) (76)

Easily, we can see why the information share by De Jong and Schotman is
positive and why the sum of them is smaller than 1, and why their framework
only allows the price innovations across different markets correlated through the
over/under-reaction of efficient price change rt

16.
In summary, the information share in De Jong and Schotman and our frame-
work is strictly scoped in [0,1] when in the equilibrium (equation(68)) restrict
the θe,c = 0. In other words, to limit the information share restricted in [0,1], the

16Only in this case they can guarantee the information share in their framework in [0,1]
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assumption that the two markets are only correlated through different scales of
over/under-reaction to the efficient price rt is needed. In our generalized model,
we allowed the two markets to correlate through additional mechanisms. Thus,
we no longer have the mathematical restriction of the information shares strictly
in the scope of [0,1]. However, for the general market case (especially the fre-
quency is reasonable, e.g., frequency of 1s for the co-movement of SPY-EMINI
markets for most cases), our generalized information share is normally good
enough to capture the information share of the two markets. This is because
in normal time, the over/under-reaction to the efficient price change is not very
large across these two markets, and the co-movement of these two markets is
already well captured by the two error-correction mechanisms embedded in our
model. For the extreme cases, our quasi Bayesian approach would restrict in-
formation share within the scope of [0,1], so that the estimation is reasonable.
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