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1 Introduction

Value-at-Risk (VaR) remains one of the key risk management tools. As a risk measure

it combines elements of conditional volatility with the shape of the left tail of a return

distribution. Estimates of VaR are highly nonlinear functions of past return data and

other predictive variables. Since volatility is a crucial scaling variable for constructing

VaR, the performance of a VaR model is closely related to the quality of a volatility

prediction model. For volatility models nonlinearities have been investigated since the

early GARCH models with leverage effects.

In recent years much progress has been made in modeling the nonlinearities using

neural network (NN) models and other machine learning methods. Examples for VaR are

the early contribution of Taylor (1999), or more recently Wu and Yan (2019). Similarly,

Christensen, Siggaard, and Veliyev (2021) and Rahimikia and Poon (2020) report that

NN models outperform Corsi’s (2009) HAR for predicting realized variance, while Bucci

(2020) finds that recurrent NN models pick up important nonlinearities for improved

forecasting of monthly realized volatility.

Our model combines the two strands of literature. We develop a Neural Network

(NN) model for multiple outputs that jointly predicts realized volatility, the conditional

variance of daily close-to-close returns as well as VaR at different quantiles and for mul-

tiple horizons. The main motivation for the multiple output model is that we can pool

the dynamic specification for the different variables we predict. Realized variance is ob-

viously related to the conditional daily variance. Both realized variance and conditional

daily variance measure the crucial scaling factor for VaR estimates given the quantiles of

scaled returns. We thus expect that the latent variables (‘neurons’) that predict realized

variance and conditional daily variance are useful for VaR and the other variables.

Our approach differs from a number of other applications of NN to volatility modelling

in the literature. Donfack and Dufays (2020) introduce NN’s to allow for time-varying

parameters in a GARCH model as an extension of the Engle and Rangel (2008) approach

for modeling the unconditional volatility as a function of macro variables. Bucci (2020)

considers a variety of NN architectures to predict monthly realized volatility using macroe-
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conomic predictors. The main innovation of our approach is the multi-output design by

simultaneously modeling volatility and VaR, gaining predictive power from the pooling

of dynamic structure in the LSTM. A second difference with the setup in Bucci (2020)

is the length of the input sequences in the LSTM. We view our approach as most closely

related to Corsi (2009). Corsi’s HAR model forecasts future volatility as a parsimonious

linear combination of three predictors. Corsi (2009) specifies the predictors as intuitively

motivated weighted averages of past realised volatility. Our NN model replaces these by

data-driven nonlinear functions of past realised volatilities and leverage effects.

The multi-output design is a distinguishing feature of our approach. Combining fore-

casts for related variables puts regularization on the NN architecture, since the dynamic

part of the model is forced to have predictive power for the different outputs. It is only

for the final step from the last layer of hidden states to the different outputs that we allow

for an output specific link. This means that the bulk of the parameters in the network is

common to all the different outputs.

Neural network models offer great flexibility, but are often criticized for their black

box type predictions. The model we propose retains an interpretable structure. We

specify a recurrent NN, more precisely a Long Short Term Memory (LSTM) model with

a single hidden layer and a linear output. The LSTM model has a very flexible dynamic

specification. It processes long histories of past data, in our case realized volatilities and

returns, to construct a number of latent variables that serve as predictors for the final

outputs. The neurons themselves are highly nonlinear functions of long past sequences of

returns and realized variances. With the LSTM we have both great flexibility, but also

parsimony. In the application to equity returns we find that a small set of neurons is

often enough to linearly predict both volatility as well as VaR.

The structure of the proposed LSTM is motivated by the HAR and AHAR models

introduced by Corsi (2009) and Corsi et al. (2012). In these models it appears that a few

well designed temporal aggregations, such as weekly and monthly realized variance and

the negative part of weekly and monthly returns, have strong predictive power. Bollerslev

et al. (2016) follow this heterogenous structure and improve the HAR model by incorpo-
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rating measurement error into their HARQ model. In LSTM such temporally aggregated

constructs are learned by the network, simple averages being a very special case. The

non-parametric weighting scheme that the LSTM applies to past observations and their

nonlinear transformations show that our model can be thought of as a generalized version

of the HAR model.

LSTM models are part of the family of Recurrent Neural Networks (RNN). Recurrent

NN’s create memory in the model. The special feature of the LSTM is the sharing of

parameters when processing each time step in a long sequence of temporally ordered past

data. The structure of a LSTM, introduced by Hochreiter and Schmidhuber (1997), avoids

problems with vanishing and exploding gradients for parameters associated with data in

the distant past. In the textbook specification we adopt, the bulk of the parameters in

the network is associated with the dynamic structure, while each of the outputs is related

to the hidden layer neurons with a few parameters. Moreover, the number of parameters

does not depend on the length of the histories of past data used to predict next day’s

events.

With the multi-output model we are also able to incorporate recent developments in

volatility modeling. We extend the HEAVY model of Shephard and Sheppard (2010) who

advocate a joint model for squared daily close-to-close returns and the realized variance

of open-to-close returns. The realized variance is an accurate measurement of volatility,

but misses the overnight returns, whereas the daily squared return is a very noise measure

of volatility, but cover the full day. Therefore squared daily returns and realized variance

are two of the outputs in our neural network model.

An important element in the design of the model is the choice of a loss function. Most

of the NN literature uses Mean-Squared-Error (MSE) loss. For VaR this does not work.

Since realized VaR is not observed, we will need to estimate the VaR variables using a

quantile regression function. Linear quantile regression is well known, see Koenker and

Bassett (1978). White (1992) shows that non-linear quantile regressions using a neural

network provide consistent estimates. In an early application, Taylor (1999) implements

such a neural network model for VaR estimation with daily exchange rate data with
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volatility as one of the predictors. An important conclusion from Taylor (1999) is the

need for a large training sample. A major difference between our approach and Taylor

(1999) is that we model multiple quantiles in one step, using a single multi-output NN and

we include the volatility model within our NN. A second difference is the NN architecture

itself. Since volatility is persistent, adding the volatility within the NN requires more time

series structure. This we accommodate by using an LSTM.

Another contribution is the sampling method for training the neural network. We

apply random sampling of sequences of returns and realized variances to ensure that

we include both quiet, volatile and crisis periods for estimation. The NN must have

seen previous crisis events in order to recognize the onset of a new crisis, if such a new

crisis can be predicted at all. The validation sample must also contain a broad mix of

different market circumstances to properly evaluate the performance of the model. In that

sense our method differs from standard econometric practice of using rolling windows to

estimate a relatively parsimonious model. After a quiet period such a model has lost

data information about the dynamics of volatility and quantiles around a crisis, and will

not be able to quickly adjust VaR estimates. Whether a complicated model such as

an LSTM trained on a long sample will do better than a simple model estimated on a

rolling window, depends on the underlying process. If there is a recurring pattern in

recognising quiet periods and crises, the LSTM trained on a long sample will outperform

the parsimonious rolling window model. If, on the other hand, the process is subject to

structural breaks, patterns from a previous crisis will not be informative on the start of

a new crisis. In a world with structural breaks, characterized by ‘this time is different’,

every new crisis has its own typical characteristics and the use of training a NN on a long

data series is limited.

Nieto and Ruiz (2016) review the empirical evidence on forecasting conditional VaR.

For conditional VaR they distinguish two main approaches. The first is the two-stage

approach consisting of a volatility model for conditional variance plus a model for the

quantiles of the scaled returns. Most applications use some form of GARCH to esti-

mate conditional volatility. In recent years, the second approach, Realized Volatility
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has become more popular, as it appears to produce more accurate VaR forecasts. In

our benchmark models we will therefore take the Corsi (2009) HAR model to estimate

conditional volatility.

2 Methodology

We aim to predict volatility and Value-at-Risk (at different quantiles) at different horizons

using daily data on returns and realized variance. Since VaR depends heavily on the

volatility of a stock, we model volatility and VaR jointly, using a latent dynamic model

with states that are common to both VaR as well as volatility.

2.1 Variable definitions

Let rt be the daily close-to-close logarithmic return on a stock or stock index, and let rjt

be the jth intraday return on day t. Intraday logarithmic returns are used to construct

realized variance (RV )

RVt =
∑
j

r2jt. (1)

For the intraday returns we will use a 5-minute frequency, which gives 77 observations

per day. The 5-minute frequency offers a good balance between bias and variance (Liu,

Patton, and Sheppard, 2015). RV is an accurate measurement of volatility, but misses

the overnight returns, whereas the daily squared return r2t is a very noisy measure of

volatility, but covers the full day. Shephard and Sheppard (2010) advocate to use both

variables jointly for modelling volatility.

Both GARCH type conditional volatility as well as realized volatility show asymmetric

responses to past returns. Volatility forecasts can be improved by taking into account this

leverage effect. Following Glosten, Jagannathan, and Runkle (1993) and Corsi, Audrino,

and Renó (2012) we therefore add the negative part of the return,

RMt = −min(rt, 0), (2)
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as a predictor.

We will use both RV and RM to predict volatility and VaR. Based on the evidence

in Corsi (2009) we allow for a large number of lags for RV. For the asymmetry we expect

a much shorter memory. All inputs are stored in the (2×K) matrix Xt as

Xt =

RVt−K+1 RVt−K+2 . . . RVt−10 RVt−9 . . . RVt

0 0 . . . 0 RMt−9 . . . RMt


=

(
xt−K+1 . . . xt−1 xt

)
(3)

The second line partitions Xt as a list of (2 × 1) input vectors xt−j to be processed

sequentially starting at the longest lag. In all models we set K = 60, but only use the

most recent 10 lags of RM.

Outputs of the model are stored in a vector Ŷt consisting of three types of variables:

conditional variance, expected daytime realized variance, and conditional VaR. A variance

forecast is defined as

ŷVt,L = E
[
y2t+L

∣∣Xt

]
(4)

for y2t+L = 1
L

∑L
`=1 r

2
t+`. This definition implicitly assumes a zero expected return for

short horizons of a few days. VaR outputs ŷqt,L are defined by the quantiles,

Pr
[
yt+L < ŷqt,L

∣∣Xt

]
= q, (5)

for different quantiles q. In practice we only consider the 1%, 5%, and 10% VaR. Finally,

for the realised variance we use the outputs

ŷRVt,L = E
[
yRVt+L

∣∣Xt

]
, (6)

with yRVt+L = 1
L

∑L
`=1RVt+`.

Putting everything together, for the one-step-ahead output we have the (5×1) vector

ŷt,1 =

(
ŷRVt,1 ŷVt,1 ŷ1%t,1 ŷ5%t,1 ŷ10%t,1

)
.
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In models where we only consider the one-step forecasts we use the shorthand notation

ŷt = ŷt,1. For the multi-period predictions the output vector is augmented to (subsets of)

Ŷt =

(
ŷt,1, . . . , ŷt,L

)
,

where the number of elements in Ŷt equals Ny = 5L.

2.2 Long Short-Term Memory model

A neural network (NN) takes a vector of inputs Xt to produce a vector of outputs Ŷt.

With a single hidden layer the inputs are first transformed to a vector of hidden neurons

Ht, and then through another transformation to the final outputs,

Xt −→ Ht −→ Ŷt,

where the transformation from X → H consists of highly nonlinear regression functions.

When the dimension of the input vector is large but structured, as in our case with Xt

consisting of K lags xt−j, we may not want to allow for all possible interactions among

the inputs and hidden neurons. A recurrent neural network (RNN) adds more structure

by processing the elements xt−j in Xt such that the hidden layer neurons Ht go through

a series of sequential updates. The hidden layer is initialized at ht−K = 0, and updated

recursively as

hτ = ψ(hτ−1, xτ ), τ = t−K + 1, . . . , t. (7)

At the final step the construction is terminated by Ht = ht. In the model the hidden

states are re-initialized at zero for every t.1 The final output is produced by the output

1 Because the hidden layer is re-initialized every period, notation is somewhat ambiguous. In a stricter
notation, the neurons need a double subscript hτ,t, with the first index running from t −K to t in (7)
and the second index referring to the input matrix Xt being processed. The recursion is then initialized
at ht−K,t = 0 and output at time t is a function of ht,t. Our notation follows the literature, e.g. Fischer
and Krauss (2018), by omitting the second t index.
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layer,

Ŷt = ΦY (Ht). (8)

This design is shown in figure 1a. The important part of the design is that the function

ψ(·) does not depend on τ or t. Hence the model provides a pooling of the dynamic

structure and implies shared dynamics for the data. A special case of the ψ(·) function

is the linear model,

hτ = Ahτ−1 + Bxτ , (9)

where the hidden layer ht has Nh elements (neurons), and matrices A and B are the

same for each time step. Solving (9) for the final value Ht = ht then gives

Ht =
K−1∑
j=0

AjBxt−j. (10)

In other words, the hidden neurons are moving sums with weights Aj of linear combi-

nations of the inputs Bxt−j. For suitable choices of A and B the neurons may then

represent slow and fast moving averages of past realized variance, similar in spirit to the

Corsi (2009) HAR model, plus a few asymmetry terms as in the A-HAR model.

A much more general specification is the Long-Short-Term Memory (LSTM) model,

which allows much more flexibility in the processing of the inputs. An LSTM is a special

form of an RNN. The LSTM networks considered in this paper are composed of three

layers: an input, a (hidden) LSTM and an output layer. A graphical representation for

a single time step in the recursion (7) is shown in figure 1b. Our specification closely

follows the textbook treatment in Goodfellow et al. (2016) and the finance application in

8



Fischer and Krauss (2018). The equations for the recursion are, for τ = t−K + 1, . . . , t,

fτ = sigm (Wfxxt + Wfhhτ−1 + bf )

s̃τ = tanh(Ws̃xxτ + Ws̃hhτ−1 + bs̃)

iτ = sigm(Wixxτ + Wihhτ−1 + bi)

sτ = ft � sτ−1 + iτ � s̃τ

oτ = sigm(Woxxτ + Wohhτ−1 + bo)

hτ = oτ � tanh(sτ ).

(11)

The hidden layer hτ−1 is updated in several steps. The intermediate results fτ , s̃τ , iτ ,

sτ , oτ are all vectors of the same length as hτ . The sigm(·) function is the elementwise

sigmoid activation function that returns weights between 0 and 1. The weights ft, it

and ot are known as the ‘forget’, ‘input’ and ‘output’ gates. Based on the previous state

hτ−1 and new data xτ they give weight to past states sτ−1, the current input xτ , and its

relevance for the next state hτ . The tanh(·) function produces outputs between -1 and 1.

The matrices Wpq and vectors bp (p = f, s̃, i, o; q = x, h) contain unknown parameters.

The final state for time t is Ht = ht. At the end of the recursion there is an output

layer similar to (8), which we take as linear,2

Ŷt = WyhHt + by. (12)

Equations for f , s̃, i, and o each have Nh(Nx +Nh + 1) parameters in the matrices W.h,

W.x and vectors b.. The output layer adds another Ny(Nh+1) parameters. Lag length K

of the predictors does not add to the number of parameters. In the baseline model with 10

neurons, one-step ahead predictions and 2 predictors we have Nθ = 4×10×13+5×11 =

575 parameters. The bulk of these parameters is associated with the dynamic structure

2 Since volatility and VaR all positive quantities, we also used the ReLU function max(0, z) for the
output layer, to avoid negative predictions. But even without such a safety valve, our models never
produce any negative predictions. During estimation, non-positive predictions are heavily penalized
by the QLIKE loss function defined in (13). This automatically forces the model to produce valid in-
sample predictions. The trained models also produce strictly positive predictions in the test samples.
We therefore report results using the simpler linear output layer. Negative predictions are a problem,
though, for some of the benchmark models, especially the asymmetric HAR (see Section 2.7 below).
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linking Xt to Ht.

2.3 Loss function

Since conditional mean, variance and quantiles are not directly observed, the estimation

proceeds through the choice of appropriate loss functions.

For scale variables, such as a conditional variance, a popular choice is the Quasi-

Likelihood (QLIKE) loss function as defined in Patton (2011):

QLIKE(y, ŷ) =
y

ŷ
− ln

(
y

ŷ

)
− 1, (13)

where y is the output and ŷ its predictor. We will use the QLIKE loss for both the

conditional variance and the realized variance. Since y > 0, QLIKE is only defined for

ŷ > 0; hence it forces the learning algorithm to produce non-negative forecasts in the

training sample.

For VaR we use the tilted absolute value loss function, introduced by Koenker and

Bassett (1978) for estimating quantile regressions (see Gourieroux and Jasiak (2010) for

applications to estimating VaR),

QUANT(y, ŷ) = max (q(y − ŷ),−(1− q)(y − ŷ)) , (14)

where q is the quantile of interest and ŷ an estimator of y, as before. Choosing q = 0.5

is similar to optimizing on the median (or optimizing according to the Mean Absolute

Deviation loss). Both QLIKE and QUANT are loss functions that solely depend on the

output variable y and its predictor ŷ and can be trained using user-defined loss functions

in a neural net optimizer.

With multiple outputs we need to set weights for the loss functions of the different

outputs. The overall loss is the weighted sum of the individual losses,

L =
N∑
j=1

wj

T0∑
t=1

Lt,j, (15)
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with Lt,j the loss (either QLIKE or QUANT) for output Yt,j and wj its weight where

N is the number of outputs and T0 is the number of training sample observations. We

adopt an iterative approach to construct data-based weights. We start with equal weights

wj = 1. After a pre-defined number of epochs, i.e. number of passes through the data

plus parameter updates, we compute the loss for each output and set the weights to the

inverse of the estimated losses. We then continue the optimization with the estimated

weights.

However, we find that the weights do not appear very important, as different weighting

schemes did not deliver substantial differences. One reason is that parameters for the

output layer are completely separate for each output, and can be freely optimized per

output variable. Conditional on the hidden layer neurons, prediction errors for one output

do not jeopardize the fit for another. Second, and one of the main motivations for our

choice of outputs, is that the output variables are highly correlated. Any choice of

LSTM parameters that produces more informative neurons for one output, will likely be

beneficial for all outputs.

In general, the larger the weight on the loss for a particular element in Yt, the better

the model will fit that element at the cost of other elements. That cost will turn into

an advantage if the outputs are highly correlated. By forcing the signal Ht to fit all

the different outputs, the multiple outputs become a regularization device. The bulk

of the LSTM parameters are associated with the dynamic model for Ht. Pooling these

parameters to predict multiple outputs limits overfitting, since the same neurons that

predict one element of the output vector must also have predictive power for all other

outputs.

Outputs in our model very likely will exhibit strong correlations. For the two vari-

ances, ŷVt and ŷRVt , the correlation is obvious. The VaR quantiles are also closely con-

nected to the volatility estimates. The one-day ahead VaR is approximately

ŷqt ≈ zq

√
ŷRVt , (16)

with zq the qth quantile of the scaled returns. We therefore expect that a model that
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performs well in predicting volatility, will also be a strong contender for conditional

VaR.3

Having realized variance among both inputs as well as outputs further adds to im-

proving the information content of the hidden layer. Because of its better signal-to-noise

ratio, RV can be better predicted than squared returns. Pushing the neurons to fit RV,

will also provide them with information for the other variables. Similarly, due to the

strong persistence of the volatility process, longer horizon forecasts for volatility will be

highly correlated with one-day ahead predictions.

2.4 Early Stopping

Given the large number of parameters some form of regularization is required to prevent

overfitting. In the previous subsection we already discussed parameter sharing by pool-

ing of the dynamic structure of the network as one regularization method. For further

regularization we primarily rely on early stopping based on the loss in a validation sample.

The total number of observations is T . Based on T we set a batch-size Tb = T/7. We

retain T2 = 2Tb observations as a test sample that will not be used for estimation or the

selection of the early stopping time. The remaining data are split in a estimation sample

with T0 = 4Tb observations and a validation sample of length T1 = Tb.

We feed the data to the network in batches of size Tb. For each batch the optimizer

updates the parameters. After each epoch, consisting of four batches, we compute the loss

in the validation sample. Iterations are stopped when the validation loss is minimized.

However, the optimization process is not always monotonic in its improvements of the

validation loss; a local minimum may be encountered and a strict early stopping would

stop the process at this local minimum. That would prevent potential improvements of

the model. That is why we apply a patience parameter that ‘waits’ before stopping the

optimization. We use a patience parameter of 50, meaning that the algorithm only stops

when the model loss has not been improved for 50 epochs.

We also experimented with dropout. Dropout consists in randomly neglecting a pre-

3 In the full LSTM the quantile zq for the scaled return can (and will) of course be time-varying as
well depending on the recent history of returns and realized variance.
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defined proportion of the connections of the network in the optimization process. Adding

10% dropout did not improve the validation sample performance in our case. We therefore

report results without dropout.

2.5 Implementation

The number of LSTM neurons is set by performing a sensitivity analysis. The number

of neurons is initially set to 20 and adjusted upwards and downwards in order to de-

tect whether there exists a pattern in terms of performance with respect to the number

of neurons selected. The lowest and highest numbers of tested neurons are 5 and 40,

respectively.

The first step consists of running the LSTM over 25 epochs (number of iterations over

the whole training sample) with the MSE as loss function for the conditional variance

and realized variance. We start with the MSE, and not the QLIKE, because we need a

valid set of starting parameters that generate non-negative variance predictions. With

random starting values some predicted variances may be negative, which will lead to

infinite QLIKE loss. Once the optimization has taken place over 25 epochs, the QLIKE

loss can be calculated without any problem. All results are obtained using the keras

(Allaire and Chollet, 2020) and tensorflow (Allaire and Tang, 2020) packages in R, using

the ADAM optimiser.

2.6 Data shuffling and samples definition

In developing a neural network model the data are separated into a training sample and a

test sample. The performance of a neural network is evaluated out-of-sample using a test

sample. Essentially, training data are used for the optimization only and then the testing

data are used to compute fitted values and assess the performance of the model. Given

the large number of parameters that neural networks often require, it is not surprising

to observe a very good performance in the training sample, as many steps are used in

the optimization process. However, this high number of parameters to estimate is an

important issue when we use new data, as the algorithm can be prone to overfitting. To
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circumvent this issue, we use robustness procedures, as defined in the previous section.

Early stopping requires monitoring of the loss of the model in order to be able to tell

when the optimization has to stop. That is done via the validation sample. This sample

is a subset of the training sample and it is not used for the parameter optimization.

What happens is that the remaining part of the training sample (the estimation sample)

is the only one directly used in the parameter optimization. At each step, the validation

sample is used on the current model and the associated loss is recorded. It is only when

the optimization is finished, potentially because of the early stopping, that the model is

evaluated on the test sample data.

Practically, blocks of observations are allocated to the different samples following the

model designs from the previous subsection. A block of observations can be defined as

the sequence of data points from t−K + 1 to t for the inputs and from t+ 1 to t+ 1 +L

for the outputs, given a forecasting horizon L. We set K = 60 for RV and K = 10 for

the past negative returns. The last element of each block is always its most recent data

point. We make a key distinction in the way observation blocks are allocated to each

subsample. The test sample data are either randomly selected from the full sample or

always taken as the last part of the entire sample, at the end of the calendar period.

Once the test sample data have been identified, the remaining data points are allocated

to either the estimation or validation sample randomly, for both designs.

The random block allocation is the design that is expected to perform the best in terms

of forecasting power, as the optimization process of the LSTM model encounters a large

variety of volatility states and the testing data are supposed to have similar properties

as the training data. The non-linear nature of our model is expected to help when fitting

the model to a new data set (test data). However, the benefits of randomly selecting

the observations blocks are not restricted to our LSTM model. Both linear benchmarks

should also benefit from this random allocation.

Models with a fixed test sample at the end of the calendar period should have more

difficulties in delivering good predictions than the models with the random block alloca-

tion. This is due to the fact that all types of regimes may not be observed in the training
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sample with this type of sampling design, making it difficult to adapt to a new unknown

situation.

2.7 Benchmark models

The first benchmark model is the Heterogeneous Autoregressive Regression (HAR) model

for Realized Variance. It was introduced by Corsi (2009) and has become a standard in the

literature. It is a parsimonious model that has the ability to reproduce the long-memory

features of volatility. The HAR model, as specified in Corsi (2009), is

RVt+1 = β0 + β1RVt + β2RV5,t + β3RV22,t + εt+1, (17)

where RVk,t = k−1
∑k−1

i=0 RVt−i.

In order to take into account nonlinear effects, we use Corsi, Audrino, and Renó (2012)

as a basis to augment the original HAR by three input variables: the past day, past week

and past month negative returns. We call this model the Asymmetric Heterogeneous

Autoregressive Regression (AHAR) model:

RVt+1 = β0 + β1RVt + β2RV5,t + β3RV22,t + β4RMt + β5RM5,t + β6RM22,t + εt+1, (18)

where

RMk,t = −min

(
k−1

k−1∑
i=0

rt−i, 0

)
.

Both the HAR and AHAR are models where the dependent variable is the realized vari-

ance but we also use these models to estimate the daily squared returns. For that purpose,

we replace RVt+1 by r2t+1.

The original HAR model is estimated using OLS so we also use this method here.

The standard specification and estimation have a few disadvantages. The linear HAR

could generate negative variance forecasts. The distribution of variance is also closer to

log-normal. Corsi et al. (2012) therefore prefer a log-linear specification. For the same

reasons we introduced QLIKE as the loss function in section 2.3. For comparability
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between the LSTM and the benchmark models we will therefore estimate them both by

OLS as well as QLIKE.

As for both volatility measures, we estimate VaR for each benchmark model using two

different methods. For the benchmark models estimated by OLS, we compute VaR esti-

mates using the empirical density of scaled returns in the training sample. This method

is comparable to the models developed in Brownlees and Gallo (2010). Scaled returns are

defined as the returns divided by the square root of the corresponding predicted Realized

Variance. The quantiles estimated in the training sample are retained for the test sample

VaR calculation. For prediction in the test sample, (16) combines the fixed quantile with

the predicted RV to forecast VaR.

For the alternative estimation method, VaR estimates are computed by a quantile

regression where the dependent variable is the daily return and the regressors are the

same as equations (17) and (18). This estimation method is also used in Chernozhukov

and Umantsev (2001), where different regressors are used. The training sample parameter

estimates are used in the test sample to make VaR forecasts.

In order to evaluate the forecasting performance of the LSTM model with the bench-

mark models, we apply Diebold-Mariano (DM) tests, as introduced by Diebold and Mar-

iano (1995). DM tests are applied to each forecasted variable, including VaR forecasts

where we use the tilted absolute value loss function QUANT from (14) as the loss function

in the test.

3 Application to the S&P500

We use 5-minute intraday data on SPY, an ETF tracking the S&P500 index, obtained

from TickWrite for the period Nov-1995 to Nov-2015. We augment our sample by the

realized volatility estimates provided by the Oxford Man Library and daily open/close

prices from YahooFinance for the S&P500 index for the period Nov-2015 to Mar-2020.

The combined sample covers 25 years, 6265 observations, where market conditions have

been very diverse. The data show two distinct huge outbursts in volatility (2009, 2020)
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plus a slow but noisy cycle. Figures 2 and 3 show the evolution of the daily returns and

annualized realized volatility, respectively. The levels in figure 3 are similar to other stud-

ies (Maheu and McCurdy, 2011; Patton and Sheppard, 2009). Table 1 shows summary

statistics for the variables in our models.

Mean StDev Skewness Kurtosis Min Max

RV 1.092 2.413 10.927 187.665 0.012 62.927
Returns 0.030 1.224 -0.372 12.889 -12.670 10.883
Squared returns 1.498 5.156 13.859 290.140 0 160.536
RM -0.393 0.789 -4.172 33.542 -12.670 0

Returns are in units of percent per day. RV and RM are calculated according to (1)
and (2). Returns and squared returns are for close-to-close daily returns. Skewness and
Kurtosis are the third and fourth standardized moments.

Table 1: Summary statistics

3.1 Random training and test samples

Results in this subsection are obtained when observations are randomly allocated to train-

ing and test samples. The model output is the vector ŷt,k, for each horizon k, containing

RV, squared returns and three levels of VaR. The LSTM layer contains 10 neurons, which

means that we have 575 parameters to estimate in total (520 for the LSTM layer and

55 for the layer with the five outputs). The regularization in the model is achieved by

the shared LSTM layer parameters among all output variables. Only 11 parameters in

the output layer are specific for a particular output variable. Diebold-Mariano (DM)

tests are performed in order to assess the difference in performance between LSTM and

other models for each horizon and output variable. We apply a Newey-West correction

for horizons greater than one day on reordered data, taking into account the number of

missing days between ordered test observations.

Table 2 shows the values of the loss functions for all output variables, horizons and

models. The first output variable is RV. For all horizons, LSTM produces the smallest

QLIKE among all models considered. Standard HAR and AHAR models are estimated

by OLS under MSE loss. It cannot then be expected that these models perform the

best when considering their average QLIKE loss. For a fair comparison we re-estimate
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QLIKE QUANT

horizon model RV r2 VaR1% VaR5% VaR10%

1 day

LSTM 0.152 1.425 0.037 0.123 0.201
HAR 0.199 1.443 0.036 0.124 0.201
AHAR 1.291 9628 0.058 0.145 0.216
HAR(QL) 0.164 1.420 0.041 0.127 0.204
AHAR(QL) 0.157 1.421 0.038 0.126 0.203

5 days

LSTM 0.141 0.355 0.092 0.298 0.470
HAR 0.186 0.373 0.090 0.292 0.468
AHAR 0.178 2.995 0.094 0.301 0.474
HAR(QL) 0.147 0.366 0.090 0.292 0.470
AHAR(QL) 0.142 0.360 0.090 0.300 0.474

10 days

LSTM 0.170 0.296 0.134 0.397 0.626
HAR 0.221 0.318 0.139 0.415 0.641
AHAR 0.202 0.483 0.135 0.418 0.643
HAR(QL) 0.191 0.313 0.143 0.425 0.652
AHAR(QL) 0.187 0.303 0.138 0.421 0.652

20 days

LSTM 0.192 0.266 0.148 0.511 0.832
HAR 0.247 0.283 0.175 0.546 0.860
AHAR 0.234 0.300 0.174 0.550 0.863
HAR(QL) 0.205 0.277 0.177 0.552 0.864
AHAR(QL) 0.203 0.273 0.179 0.561 0.866

Results are for a random test sample consisting of 1790 observations. The QLIKE and QUANT columns
are computed as the average over the loss functions as given in (13) and (14). Losses are computed for
all horizons and different models. HAR and AHAR models are computed with OLS while HAR(QL) and
AHAR(QL) are optimized on the QLIKE loss. For HAR and AHAR the VaR estimates are based on
the empirical density of the standardized returns. The forecasting performance of the LSTM model is
compared to the other models via Diebold-Mariano (DM) tests. Light red cells signal outperformance
of the LSTM. Darker red cells correspond to relatively higher DM statistics.

Table 2: Average losses for randomly selected test data

these models under the same QLIKE loss as the LSTM model. Almost by construction,

the QLIKE-optimized versions of HAR and AHAR models systematically outperform the

standard models when evaluated under QLIKE loss. This difference is consistent over

all horizons considered. The HAR(QL) and AHAR(QL) models are also much closer to

the LSTM model in terms of QLIKE loss. These models are able to gain performance

compared to the standard HAR and AHAR in periods of low volatility, as shown in
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figure 4.

The strong performance of the LSTM for realized volatility is mostly due to sample

periods when volatility is low, as was already observed from figure 4. Figure 5 shows

the cumulative sum of the loss difference between HAR and LSTM in red and HAR(QL)

and LSTM in blue, where observations are ordered on the observed RV. HAR is then

able to gain on LSTM marginally on the rest of the sample. For HAR(QL), however,

the graph shows that LSTM is gaining consistently in all economic environments. These

observations are valid for all horizons considered. DM tests show that the performance of

the LSTM versus the other models is very good in three quarters of the tests performed,

as can be observed from the number of green cells in the first column of table 2.

In comparison to RV, squared returns are notoriously more difficult to forecast, given

their low signal to noise ratio. This is confirmed by figure 6, where we see that the

forecasts are far from the volatility measure for several observations. The very poor

score of AHAR for squared returns predictions at the one-day horizon is to be related to

the bottom observations on figure 6b. For these observations, AHAR generates negative

forecasts, which are not possible in reality, so we replace them by the smallest non-zero

squared return observed in the training sample. This correction is not necessary for the

LSTM and for the HAR models estimated with QLIKE loss. The performance of all

models for forecasting this noisy variable improves as the forecasting horizon increases

as seen in Table 2. The LSTM model produces the smallest QLIKE loss for all horizons,

except at the one day horizon, where it is just behind HAR(QL) and AHAR. DM tests

show that the relative underperformance of LSTM at the one day horizon is minor and

that LSTM is edging the other models especially at the ten days horizon.

The last output variables are the three levels of VaR. The relative performance of the

models does not generally differ with the VaR level chosen. However, contrary to what

we observe for the other two output variables, the linear models optimized on QLIKE do

not outperform their OLS counterparts when forecasting VaR. The LSTM, once again,

performs well, especially at the 10 and 20 days horizons, where its model loss is the

lowest for all levels. At the 1 day horizon, only the HAR model has a smaller loss than
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the LSTM. The 5 days horizon results are not in line with the other horizons considered.

Here, HAR(QL) and HAR perform the best.

Figure 7 shows the cumulative sum of loss differences between LSTM and both bench-

mark models obtained via OLS, for the one day horizon. The general pattern does not

differ between models and VaR levels. In all cases, the LSTM generates better VaR fore-

casts when returns are the smallest (low negative returns), which is when VaR forecasts

need to be particularly effective. The outperformance region in the lower tail expands as

the VaR level increases, and is always followed by a roughly equivalent interval of LSTM

underperformance. LSTM then generates consistently better forecasts for approximately

half of the sample, but loses a bit of its advantage when returns are high. DM tests show

that when LSTM is not the best performing model, it is not lagging far behind. On the

other hand, when LSTM is the leading model, is significantly leading most other models,

especially at the 20 days horizon. The VaR at the 10% level appear to be closer to each

other than for the remaining levels.

Overall, the results for this sampling technique confirm that our LSTM model is able to

take advantage of the regularization imposed by the model structure and outperform well-

established models such as HAR and AHAR, especially for predicting realized variance

and squared returns, but also for value-at-risk.

3.2 Fixed test sample at the end of the calendar period

In this subsection, we present the results of the design where the test sample is chosen

as the last 1790 observations of the entire sample, slightly more than the last seven years

(Aug-2013 to Mar-2021). Training is performed on the rest of the dataset. Observations

in the training set are randomly allocated to either the estimation or validation sample.

Table 3 provides the values of the loss functions for all output variables, models and

horizons considered.

Losses for the volatility forecasts are larger, and at longer horizons also substantially

larger, than with random test samples. This either means that the more recent volatitilites

are harder to predict, or that the volatility process has changed such that past histories
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QLIKE QUANT

horizon model RV r2 VaR1% VaR5% VaR10%

1 day

LSTM 0.239 1.562 0.039 0.114 0.178
HAR 0.296 140.0 0.037 0.116 0.180
AHAR 3.753 1941 0.043 0.122 0.186
HAR (QL) 0.228 1.548 0.039 0.120 0.185
AHAR (QL) 0.219 1.520 0.040 0.120 0.185

5 days

LSTM 0.253 0.501 0.112 0.281 0.425
HAR 0.316 0.571 0.100 0.278 0.423
AHAR 0.257 6.673 0.105 0.278 0.424
HAR (QL) 0.242 0.489 0.094 0.278 0.433
AHAR (QL) 0.235 0.487 0.098 0.279 0.436

10 days

LSTM 0.316 0.457 0.177 0.429 0.625
HAR 0.361 0.497 0.153 0.417 0.626
AHAR 0.320 0.918 0.146 0.415 0.622
HAR (QL) 0.297 0.438 0.159 0.425 0.641
AHAR (QL) 0.295 0.434 0.154 0.436 0.641

20 days

LSTM 0.442 0.616 0.272 0.608 0.896
HAR 0.449 0.602 0.251 0.600 0.896
AHAR 0.430 0.725 0.249 0.601 0.897
HAR (QL) 0.420 0.572 0.251 0.601 0.907
AHAR (QL) 0.418 0.570 0.249 0.601 0.912

Results are for a fixed test sample at the end of the calendar period consisting of 1790 observations.
Light blue cells indicate benchmark models that outperform the LSTM. Darker blue cells indicate
higher DM statistics. See table 2 for further notes.

Table 3: Average losses for fixed test sample at the end of the calendar period

are less relevant for forecasting. The VaR losses are, however, very similar and even

marginally lower to what we have seen for the random test samples. In that respect the

final calendar period seems representative for the entire sample. We are most interested

in the relative performance of one model against the other models. In that regard, the

LSTM performance has deteriorated for all horizons. In some cases the benchmark models

do significantly better than the LSTM, especially the AHAR model.

Similar to the results in the last subsection, the linear models optimized on QLIKE

perform better than their MSE-optimized counterparts when forecasting realized volatil-
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ity and squared returns but the opposite is true most of the time for the VaR forecasts.

For realized volatility, the AHAR(QL) model is the one with the smallest average loss.

Looking at this metric, LSTM lies in between the QLIKE-optimized and MSE-optimized

models. The results follow the same patterns over all horizons considered, but the differ-

ence between the models seems to fade away as the forecast horizon increases (as shown

by the DM tests outcomes). That is not specific for our model, but generally true when

comparing longer forecast horizons. Figure 8 shows that HAR overestimates RV when

volatility is low, while this problem does not occur with HAR(QL). This was also ob-

served in random test samples before and is due to the way the QLIKE loss function

works. QLIKE considers the relative prediction error whereas MSE minimises the ab-

solute errors. On the right panel of figure 8 the performance of LSTM and HAR(QL)

seems more even. Figure 9 indicates that the LSTM outperformance compared to HAR

is driven by the first half of the test sample (when observations ordered on observed RV),

while HAR(QL) outperformance on LSTM comes from the first quarter (performance is

equivalent for the rest of the sample).

Regarding VaR forecasts, models appear very similar. The only recurring pattern

is that QLIKE-optimized models perform worse than the corresponding MSE-optimized

models (except for the 5 days horizon). LSTM performs average, significantly outper-

forming the other models only at the one day horizon for the 5- and 10-% levels. Figure 10

shows that the LSTM outperformance is driven by specific parts of the test sample. At

the 1% level, the very first observations are better predicted by HAR and HAR(QL),

which penalizes the overall performance of the model. For the other VaR levels, LSTM

pulls its accuracy from the highly negative returns, namely when VaR specifically mat-

ters. When compared with HAR(QL), LSTM loses a bit of forecasting ability after the

distress period to consitently regain a significant advantage over the rest of the sample.

However, it is not able to reproduce the same pattern with the comparison with HAR,

as it consistently reduces its advantage gained during the distressed period over the rest

of the sample.
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4 Forecasts combination

For a deeper understanding of the differences between the LSTM and HAR (AHAR) mod-

els, we compare their predictions. Both the LSTM and AHAR predict realized volatility

by a linear combination of several predictors. For AHAR these are six predetermined

variables, while for LSTM we use ten latent variables whose construction is completely

data driven.

Predictors for the LSTM model have been defined as the vector Ht in (12). The

predictors for AHAR have been defined in (18), which we denote by the vector Gt. The

first question we ask is how closely the two sets of predictors are related. For this purpose,

figures 11 and 12 show the canonical correlations between Gt and Ht, both for training

and test data. The first canonical correlation between Gt and Ht is almost equal to one.

In other words there exist linear combinations of the sets of predictors that are almost

perfectly correlated. For a series such as RV this is just the level effect of volatility, and in

line with the unit root like behavior of RV. The second and third canonical correlations are

also high (around 0.8), indicating a close connection between the two types of models.

The further canonical correlations are much lower, indicating differences between the

potential predictions of the two models.

The high correlations support both LSTM and HAR. For the HAR it means that the

different moving averages (daily, weekly, monthly) are consistent with what is obtained

from a data driven algorithm attempting to find the best predictors. At the same time

it shows the power of the LSTM in being able to construct high quality predictors. A

second observation on the canonical correlations is the stability of the pattern between

test and training samples.

The results for the random sampling versus fixed final test period are similar, apart

from slightly lower canonical correlations in the latter case. When the LSTM is fed

with data excluding the last seven years, it has seen less diverse histories. Consistent

with what we observed in the loss functions, the predetermined predictors of the HAR

(AHAR) perform differently under these circumstances.

The predictions of the two models are highly, but not perfectly, correlated. A natural
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question is therefore whether a forecast combination adds value. Given the prediction by

each model, LSTM versus AHAR(QL), we run the encompassing regression

Yt+L = c0 + c1ŷ
LSTM
t + c2ŷ

AHAR(QL)
t + vt+L, (19)

where Yt+L is any of the five output variables defined in (4)–(6), i.e. RV, r2, VaR(1%,

5%, 10%), at horizon L.

Values of c0 = c1 = 0 and c2 = 1 imply a perfect forecast of the AHAR model while

c0 = c2 = 0 and c1 = 1 imply a perfect forecast of LSTM. Models are estimated with

the same loss functions (QLIKE, QUANT) as before as a generalized linear model. By

construction, since the encompassing models nest the LSTM and AHAR(QL), the losses

must be less than those reported in tables 2 and 3 for the different sampling schemes.

Table 4 shows that the forecast combinations for the randomly selected test data only

marginally reduce the prediction loss for all outputs at all horizons. Consistent with the

earlier results for the Diebold-Mariano tests, the coefficient for the LSTM predictions

is in most cases larger than the weight of the AHAR(QL) predictions. In many cases,

except for r2, the weight for AHAR(QL) is not significantly different from zero. This is

another indication that the LSTM model generally has better predictive power.

In table 5, with the fixed calendar time test sample, the AHAR(QL) performs rela-

tively better. Losses are now sometimes substantially below the minimum of LSTM and

AHAR(QL) in table 3, indicating a potential for forecast combination. Whether that

will really work out-of-sample is not clear yet, since the weights in the encompassing

regressions have been estimated ex-post on the test sample data themselves. Coefficients

for the AHAR(QL) are now higher than the ones for the LSTM, except for the VaR

forecasts, where they are mostly either insignificant or lower than the LSTM ones.

As a final analysis of the predictions we look at the relations among the neurons in the

LSTM. We chose the 10 neurons without much experimentation, and definitely without

using the number of latent neurons as a parameter in the optimisation. In figures 13

and 14 we show network graphs for the time series of the neurons in the test sample,

for both sampling schemes. Each connection in the graph denotes a partial correlation
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between two neurons. The width of the vertex indicates the magnitude of the correlation,

with 0.3 (in absolute terms) used as threshold. For the random test sample, the neurons

for the one-day ahead predictions have a very clear structure. Neuron 1 is different from

all others, while neurons (2, 6, 7), (3, 4, 8, 10) and (5, 9) are clusters of similar neurons.

This can be taken as some indication that four predictors may have been enough for this

dataset and that each cluster contributes to the overall predictive power of the model. The

same intuition can be used to interpret the neurons for the one-day ahead predictions in

the other sampling scheme. There it seems that five predictors could have been sufficient.

For the 20-days horizon, there are many more connections and it is no longer possible to

separate sets of correlated neurons. The lack of separation between neurons, in terms of

their partial correlation, implies that the relationship between the inputs, neurons and

outcome variables are potentially more nonlinear and complex for longer horizons.
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y = c0 + c1ŷ
LSTM + c2ŷ

AHAR(QL)

Estimates RV r2 V aR1% V aR5% V aR10%

1 day

c0 -0.006 0.046 1.430 -0.242 -0.094
(0.007) (0.040) (0.879) (0.204) (0.143)

c1 0.797 0.395 0.737 1.043 0.834
(0.125) (0.184) (0.513) (0.406) (0.230)

c2 0.215 0.541 0.827 -0.177 0.080
(0.114) (0.170) (0.750) (0.443) (0.296)

Loss 0.151 1.413 0.036 0.123 0.200

5 days

c0 0.007 -0.015 1.689 0.111 0.294
(0.008) (0.024) (2.032) (0.796) (0.557)

c1 0.607 0.677 0.972 0.679 0.742
(0.078) (0.108) (0.535) (0.323) (0.299)

c2 0.386 0.361 0.355 0.405 0.341
(0.074) (0.101) (0.469) (0.423) (0.403)

Loss 0.136 0.350 0.088 0.295 0.469

10 days

c0 0.015 0.051 -3.675 -1.591 -0.846
(0.014) (0.039) (3.333) (0.634) (0.440)

c1 0.940 0.735 1.149 1.344 1.244
(0.085) (0.128) (0.848) (0.134) (0.203)

c2 0.033 0.227 -0.369 -0.663 -0.496
(0.080) (0.123) (1.085) (0.234) (0.194)

Loss 0.170 0.292 0.127 0.392 0.620

20 days

c0 0.035 0.065 -0.253 -0.349 -0.611
(0.017) (0.036) (3.669) (0.590) (1.065)

c1 0.744 0.652 0.893 0.787 0.675
(0.128) (0.155) (0.290) (0.116) (0.129)

c2 0.199 0.271 0.080 0.144 0.163
(0.120) (0.150) (0.284) (0.028) (0.236)

Loss 0.188 0.260 0.147 0.506 0.825
Note: Standard errors in parentheses

Table 4: Encompassing test sample regressions table, random training and test samples
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y = c0 + c1ŷ
LSTM + c2ŷ

AHAR(QL)

Estimates RV r2 V aR1% V aR5% V aR10%

1 day

c0 -0.010 -0.165 0.872 1.139 0.245
(0.008) (0.029) (0.492) (0.617) (0.091)

c1 0.219 -0.135 1.275 1.137 1.198
(0.102) (0.196) (0.442) (0.419) (0.178)

c2 0.736 1.556 0.232 0.634 0.044
(0.100) (0.248) (0.261) (0.738) (0.081)

Loss 0.216 1.491 0.036 0.112 0.177

5 days

c0 0.007 -0.101 -1.823 1.632 0.806
(0.011) (0.024) (2.905) (0.632) (0.988)

c1 0.090 0.179 0.376 0.966 1.058
(0.142) (0.188) (1.935) (0.333) (0.418)

c2 0.871 1.204 0.495 0.536 0.208
(0.144) (0.218) (1.808) (0.169) (0.647)

Loss 0.235 0.467 0.092 0.273 0.422

10 days

c0 0.060 -0.058 -0.274 -0.408 -0.563
(0.015) (0.039) (5.074) (2.763) (1.043)

c1 -0.302 -0.053 -0.112 1.347 1.541
(0.128) (0.164) (1.125) (0.564) (0.455)

c2 1.202 1.331 1.462 -0.264 -0.716
(0.148) (0.198) (0.444) (1.014) (0.516)

Loss 0.289 0.421 0.132 0.424 0.624

20 days

c0 0.121 0.132 -9.678 -0.532 -6.225
(0.040) (0.090) (15.674) (2.595) (0.468)

c1 -0.037 -0.290 -0.692 0.048 0.771
(0.276) (0.275) (1.557) (0.140) (0.278)

c2 0.848 1.391 0.657 0.794 -1.198
(0.293) (0.324) (0.599) (0.540) (0.150)

Loss 0.403 0.522 0.245 0.597 0.870
Note: Standard errors in parentheses

Table 5: Encompassing test sample regressions table, fixed test sample at the end of the
calendar period
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5 Conclusion

We develop an LSTM neural network model for the joint prediction of conditional vari-

ance of daily returns and Value-at-Risk at different horizons. We do so by pooling the

LSTM dynamic structure for multiple outputs. The pooling acts as a regularizer that

benefits out-of-sample forecasts. Due to the relatively small number of variable-specific

parameters and the non-linear structure resulting from the hidden layers, our model is

similar to a generalized (non-linear) heterogenous model. In addition, the model can be

easily generalized with additional output variables and horizons.

We consider two sample allocation designs to illustrate the forecast performance of the

proposed model compared to benchmarks. The results show that the sample allocation

design is an important aspect in the model’s performance. A fully random block allo-

cation and random test sample, consistent with the usual machine learning framework,

is the configuration that provides the best opportunity to extract the most out of the

proposed model. In this sampling design, the multi-output LSTM outperforms compared

to benchmarks. The second sampling design considers a fixed test sample at the end

of the calendar period. In this case, the outperformance is less pronounced. In both

sampling designs, our method is more efficient compared to benchmarks due to the joint

modeling of multiple risk factors. We further compare the LSTM predictors (neurons)

with benchmark (AHAR) model predictors in terms of their correlations and explanatory

power. The LSTM predictors are not directly correlated with AHAR predictors and the

former has higher explanatory power for most output measures and particularly under

the random block allocation sampling design.

The outperformance of the LSTM can be due to several factors, such as a more general

lag structure or additional non-linearities. This flexible framework offers potential for

further investigation, in terms of the variables selected and horizons considered.
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7 Figures
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The left panel is a recurrent neural network with a single hidden layer in between the input Xt =
(xt−K+1, . . . , xt) and the output Yt. Elements xt−` in Xt are processed one by one, starting at the
longest lag. The hidden neurons h are updated at each time-step using the next element in the input.
The final vector ht is passed to the output.
The right graph shows a single time step in the LSTM network. The current state, encapsulated in the
vectors hτ−1 and sτ−1, is combined with the data input xτ to construct the new state (hτ , sτ ). The
intermediate transformations are referred to as ‘forget gate’ ft, ‘input gate’ it and ‘output gate’ ot. The
circled ‘×’ operators denote elementwise multiplication. The circled ‘+’ denotes addition. All other
arrows are nonlinear functions. Again, the final vector ht is passed to the output Yt.

Figure 1: Recurrent Neural Network
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(b) RV forecasts HAR(QL) and LSTM
Observations are ordered on the observed RV (monotonic and upward-sloping black line). These graphs
represent test sample data for the random block allocation design. The red and blue dots are the
benchmark (HAR on left graph, HAR(QL) on right graph) and LSTM RV predictions, respectively.

Figure 4: ŷRVt,1 , random test data
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Cumulative sum of the differences in RV loss (QLIKE) between HAR(Q) and LSTM forecasts, where
the data points are ordered on the observed RV.

Figure 5: ŷRVt,1 , random test data
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(b) r2 forecasts AHAR and LSTM
Observations are ordered on the observed r2 (monotonic and upward-sloping black line). These graphs
represent test sample data for the random block allocation design. The black, red and blue lines are
respectively the observed r2, benchmark (HAR on left graph, AHAR on right graph) and LSTM r2

predictions.

Figure 6: ŷVt,1, random test data
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(c) VaR10%

Cumulative sum of loss differences between benchmark models (HAR in red and HAR(QL) in blue) and
LSTM for VaR forecasts. The out-of-sample data points are ordered on the observed daily returns.

Figure 7: ŷα%t,1 , random test data
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(b) RV forecasts HAR(QL) and LSTM

RV forecasts, where the observations are ordered on the observed RV (monotonic and upward-sloping
black line). These graphs represent data from a fixed test sample at the end of the calendar period. The
black, red and blue lines are respectively the observed RV , benchmark (HAR on left graph, HAR(QL)
on right graph) and LSTM RV predictions.

Figure 8: ŷRVt,1 , fixed test sample
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Cumulative sum of the differences in RV loss (QLIKE) between HAR(Q) and LSTM forecasts, where
the data points are ordered on the observed RV.

Figure 9: ŷRVt,1 , fixed test sample
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Cumulative sum of loss differences between benchmark models (HAR in red and HAR(QL) in blue) and
LSTM for VaR forecasts. The out-of-sample data points are ordered on the observed daily returns.

Figure 10: ŷα%t,1 , fixed test data
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Figure 11: Canonical correlations of LSTM neurons with (A)HAR components, random
training and test samples
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Figure 12: Canonical correlations of LSTM neurons with (A)HAR components, fixed test
sample at the end of the calendar period
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Figure 13: LSTM neurons test sample partial correlations, random training and test
samples
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Figure 14: LSTM neurons test sample partial correlations, fixed test sample at the end
of the calendar period
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