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Abstract

We assess financial theory-based and machine learning methods to quantify
stock risk premia and investigate the potential of hybrid strategies. The
results indicate that at the one-month investment horizon, a theory-based
approach using option prices is preferable, especially if risk premium estimates
get updated at high frequencies. At the one-year horizon, a random forest
with sufficiently long training delivers a better performance than option-
based models. The integration of machine learning procedures to address the
approximation errors of a theory-based approach is identified as a novel and
promising hybrid strategy.
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1 Introduction

When it comes to measuring stock risk premia, two roads diverge in the finance

world – or at least, so it may seem to a student of recent literature on empirical asset

pricing. Two prominent studies exemplify this impression: Martin and Wagner (2019)

quantify the conditional expected return of a stock by exploiting the information

contained in current option prices, as implied by financial economic theory.1 Gu

et al. (2020) pursue the same end but along a completely different path, leveraging

the surge of machine learning applications in economics and finance, together with

advances in computer technology.2 Approaches similar to the one adopted by Martin

and Wagner (2019) derive results from asset pricing paradigms and have no need of

historical data to quantify stock risk premia; Gu et al. (2020) and related papers

instead do not refer substantially to financial economic theory and prefer to “let the

data speak for themselves.”

These radically different ways to address the same issue motivate us to conduct a

fair, comprehensive performance comparison of theory-based and machine learning

approaches to measuring stock risk premia and to explore the potential of hybrid

strategies. The comparison is based on the fact that the risk premium is the

conditional expected value of an excess return and that, in the present context,

the machine learning objective is to minimize the mean squared forecast error

(MSE). Because the conditional expectation is the best predictor in terms of MSE,

it seems natural to compare the opposing philosophies by gauging the quality of

1 Their strategy to quantify the risk premia of financial assets draws on Martin’s (2017) derivation
of a lower bound for the conditional expected return of the market, which in turn is based
on concepts outlined by Martin (2011). Kadan and Tang (2020) take up Martin’s (2017) idea
and argue that it can be applied to quantify risk premia for a certain type of stocks. Bakshi
et al. (2020) propose an exact formula for the expected return of the market that relies on
all risk-neutral moments of returns. In a similar vein, Chabi-Yo et al. (2021) consider bounds
for expected excess stock returns that take into account higher risk-neutral moments using
calibrated preference parameters.

2 Recent studies in a similar vein include those by Light et al. (2017), Martin and Nagel (2021),
and Freyberger et al. (2020).
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their excess return forecasts: A superior forecast indicates a better approximation

of the risk premium. Such a comparative analysis can reveal whether the use of

the information theoretically embedded in current option prices is preferable to

sophisticated statistical analyses of historical data, or vice versa.

Beyond this direct comparison, we also investigate the potential of hybrid strate-

gies that combine the theory-based and machine learning paradigms. In particular,

we rely on machine learning to address the approximation errors of the theory-based

approach. These residuals are functions of moments conditional on time t information,

and machine learning is employed to approximate the conditional moments using

time t stock- and macro-level variables. We refer to this strategy as theory assisted

by machine learning. We also consider a machine learning approach that includes

theory-implied risk premium measures computed from current option data, along

with historical stock- and macro-level feature data. To ensure a fair comparison we

deliberately adhere to the model specifications used in the base papers, for example

regarding the features considered and the training and validation strategy adopted

for machine learning.

To level the playing field, we need data for which both theory-based and machine

learning approaches are applicable. For our large-scale empirical study, we use data

on the S&P 500 constituents from 1964 to 2018, including firm- and macro-level

variables, as well as return and option data. The analysis centers on theory-based

and machine-learning-implied estimates of stock risk premia, computed at one-month

and one-year investment horizons. We focus on the machine learning methods that

Gu et al. (2020) identify as most promising, namely, an ensemble of artificial neural

networks (ANN), gradient boosted regression trees (GBRT), and random forests

(RF). We also include the elastic net (ENet), as a computationally less demanding

benchmark. We consider two training and validation strategies, starting in 1974 (long
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training) and 1996 (short training), respectively. Using the short training scheme is

necessary for all hybrid approaches, because the option data are not available earlier.

The main results are as follows: Of the two theory-based approaches that we

consider, the one proposed by Martin and Wagner (2019) (henceforth, MW) is

preferable to Kadan and Tang’s (2020) approach (henceforth, KT). At the one-month

horizon, MW is also superior to three of the four machine learning methods. Only

MW and the ANN deliver a positive predictive R2 of comparable size, according to

the analyses that use forecasts issued at the end of each month. When using risk

premium estimates at a daily frequency, the predictive R2 by MW increases from

0.2% to 0.9%. Adapting the machine learning models to deliver daily risk premium

estimates improves their performance, but it does not match that of MW; the best

machine learning result is achieved by the ANN, with a predictive R2 of 0.5%. We

note that among all the machine learning approaches and stock universes considered

by Gu et al. (2020), the highest reported predictive R2 is 0.7%; the one-month horizon

is a low signal-to-noise environment. Constructing prediction-sorted portfolios, we

find that the alignment of predicted and realized mean excess returns works better

and the cross-sectional variation of mean realized returns across prediction-sorted

portfolios is highest when using MW. The advantage of the theory-based paradigm at

the one-month horizon is confirmed by a complementary analysis in which we apply

Chabi-Yo et al.’s (2021) option-based method to approximate stock risk premia.

The signal-to-noise ratio increases at the one-year horizon. ANN and GBRT

achieve predictive R2 around 9%, very similar to MW. While ENet and KT are

less successful, the RF delivers the highest annual predictive R2 of about 19%. The

analysis of the alignment and cross-sectional variation of prediction-sorted portfolios

also provides corroborative evidence. To achieve this performance, the RF relies on the

long training scheme. Generally, the performance of machine learning approaches is
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attenuated when using a short training scheme, but hybrid strategies can compensate

for this drawback. A theory assisted by machine learning strategy that takes MW

as a basis and trains an RF or an ANN to deal with the approximation errors

implied by the theory-based formula is particularly successful. The assistance by

the RF increases the predictive R2 delivered by MW from 9% to 16%. The analysis

of prediction-sorted portfolios further establishes the expediency of this hybrid

approach: It produces the best alignment and highest variation of the mean realized

excess returns across the prediction-sorted portfolios. The MW+RF and MW+ANN

combinations answer critiques of machine learning as measurement without theory,

because they reflect financial economic paradigms and employ statistical assistance

only for the components that remain unaccounted for by theory.

When risk premia need to be estimated at a daily frequency, the theory-based

methods offer a natural advantage. The required option data are available at a daily

frequency, whereas many stock- and all macro-level features are updated monthly

at best. However, we find that a modified hybrid strategy that uses daily updated

theory-based features for an RF, trained using end-of-month data, does a good

job providing daily risk premium estimates. The annual predictive R2 of the RF

without theory-based features and evaluated at a daily frequency is 9%. Including

theory-based features doubles this value.

Further analysis reveals that the importance of firm- and macro-level features

does not differ markedly across the two applications of the RF, that is, its pure usage

or when assisting the theory-based approach. At the one-year horizon, the familiar

firm-level return predictive signals are most important in both applications: the book-

to-market ratio, liquidity-related indicators, and momentum variables (in that order).

The dominance of the short-run price reversal at the one-month horizon vanishes

at the one-year horizon. The importance of the Treasury bill rate (a macro-level
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predictor) in both applications supports the use of short-term interest rates as state

variables in variants of the intertemporal capital asset pricing model. The benefits

of theory assistance by machine learning are also corroborated by a disaggregated

analysis, for which we create portfolios by sorting stocks according to valuation ratios,

liquidity variables, momentum indicators, and industry affiliation.

Overall, these results indicate the usefulness of hybrid strategies that combine

theory-based and machine learning methods for quantifying stock risk premia. In this

respect, the present study complements recent literature that links machine learning

with theory-based empirical asset pricing and for which Giglio et al. (2022) provide

a comprehensive survey and guide. For example, Gu et al. (2021) note that a focus

of machine learning on prediction aspects does not constitute a genuine asset pricing

framework, so they propose using a machine learning method (autoencoder) that

takes account of the risk-return trade-off directly. Chen et al. (2021) use the results

reported by Gu et al. (2020) as a benchmark and find that the inclusion of no-arbitrage

considerations improves the empirical performance. In another combination of theory

and data science methods, Wang (2018) employs partial least squares to account

for higher risk-neutral cumulants when modeling stock risk premia. Kelly et al.

(2019) use an instrumented principle components analysis to construct a five-factor

model that spans the cross-section of average returns, and Kozak et al. (2020) use

penalized regressions to shrink the coefficients on risk factors in the pricing kernel.

Bryzgalova et al. (2021) generalize this idea and use decision trees to construct a set

of base assets that span the efficient frontier. In their attempt to address the plethora

of factors described in recent asset pricing literature, Feng et al. (2020) combine

two-pass regression with regularization methods. In what might be considered a

broad reality check, Avramov et al. (2021) take a practitioner’s perspective and

assess the advantages and limitations of the aforementioned approaches. Although
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our study is related to this strand of literature in the general sense of combining

financial economic theory with machine learning, our focus is on using this framework

for approximating conditional stock risk premia. We do not aim at providing hybrid

approaches for the purpose of recovering the stochastic discount factor explicitly

and then predict stock excess returns. Rather, our strategy to use machine learning

to deal with the approximation errors inherent to the theory-based approach could

be viewed as an exercise of predicting risk-adjusted returns or being related to the

notion of boosting.

The remainder of the paper is structured as follows: Section 2 contrasts theory-

based and machine learning methodologies for measuring stock risk premia, then

outlines ideas to combine them. Section 3 explains the construction of the database

and the implementation of the respective strategies. Section 4 contains a perfor-

mance comparison between theory-based and machine learning methods at varying

horizons and the assessment of the potential of hybrid strategies. Section 5 con-

cludes. An appendix and online appendix provide details on methodologies, data,

and implementation.

2 Methodological considerations

2.1 Two diverging roads

This section outlines the concepts and key equations associated with the theory-based

and machine learning approaches that are the focus of our study. We explain how,

from a common starting point, the methodologies to measure stock risk premia

diverge. For conciseness, the details of the respective approaches are presented in

the Appendix.

The theory-based approach (explicitly) and the machine learning approach (im-
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plicitly) take as a point of reference the basic asset pricing equation applied to a

gross return of asset i from time t to T (Ri
t,T ) in excess of the gross risk-free rate

(Rf
t,T ),

Et(Rei
t,T ) = Et(Ri

t,T ) −R
f
t,T = −Rf

t,T ⋅ covt(mt,T ,R
i
t,T ), (2.1)

where expected values are conditional on time t information. In preference-based

asset pricing, the stochastic discount factor (SDF) mt,T represents the marginal

rate of substitution between consumption in t and T . In the absence of arbitrage,

a positive SDF exists, such that Rf
t,T = Et(mt,T )−1 > 0. The sign and size of the

risk premium, reflected in the conditional expected excess return on asset i, are

determined by the conditional covariance on the right-hand side of Equation (2.1).

Theory-/option-based approach

We first take a look down the theory-based route. Using Equation (2.1) as a starting

point, we delineate in Appendix A.1 how Martin and Wagner (2019) derive the

following reformulation:

Et(Rei
t,T ) = R

f
t,T ⋅ {var∗t (

Rm
t,T

Rf
t,T

) + 1

2
⋅ [var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wjt ⋅ var∗t (
Rj
t,T

Rf
t,T

)]} + ait,T , (2.2)

where Rm denotes the return of a market index proxy, wjt is the time-varying value

weight of index constituent j, var∗t denotes a conditional variance under the risk-

neutral measure, and ait,T is a time-varying, asset-specific component that, as shown

in Appendix A.1, is a function of conditional moments either under the risk-neutral

or the physical measure. In a similar vein, Kadan and Tang (2020) advocate an even

more succinct formula:

Et(Rei
t,T ) =

1

Rf
t,T

⋅ var∗t (Ri
t,T ) − ξit,T , (2.3)

7



where ξit,T = covt(mt,T ⋅Ri
t,T ,R

i
t,T ). In Appendix A.1, we show how Kadan and Tang

(2020) draw on Martin’s (2017) derivation of a lower bound for the market equity

premium. They argue that, depending on the acceptable level of risk aversion, ξit,T < 0

holds for a large fraction of stocks, such that 1/Rf
t,T ⋅ var∗t (Ri

t,T ) represents a lower

bound for the risk premium.

According to Martin (2017), the risk-neutral variances in Equations (2.2) and

(2.3) can be obtained as follows (suppressing the asset index i for notational brevity):

var∗t (
Rt,T

Rf
t,T

) =
∫
Ft,T

0 putt,T (K)dK + ∫
∞
Ft,T

callt,T (K)dK

0.5 ⋅ S2
t ⋅R

f
t,T

, (2.4)

where callt,T (K) and putt,T (K) denote the time t prices of European call and put

options, respectively, with strike price K and time to maturity T . Furthermore, St is

the spot price, and Ft,T is the forward price of the underlying asset. The components

of the right-hand sides of Equations (2.2) and (2.3), except for the residuals ait,T

and ξit,T , can be approximated using current option prices for a sufficient number of

strikes. For Equation (2.3), these data are only required for asset i. Equation (2.2) is

more demanding, in that the option data must be provided for both the market index

proxy and its constituents, along with the time-varying index weights. Martin and

Wagner (2019) argue that the consequences of setting ait,T = 0 should be benign, such

that stock risk premia can be quantified without the need to estimate any unknown

parameters, by using:

Et(Rei
t,T ) ≈ R

f
t,T{var∗t (

Rm
t,T

Rf
t,T

) + 1

2
⋅ [var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wjt ⋅ var∗t (
Rj
t,T

Rf
t,T

)]}. (2.5)

Similarly, assuming that the negative correlation condition holds and that the lower

bound in Equation (2.3) is binding, Kadan and Tang’s (2020) approximative formula
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for the risk premium on stock i is given by:

Et(Rei
t,T ) ≈

1

Rf
t,T

⋅ var∗t (Ri
t,T ). (2.6)

Machine learning approach

Recalling that the conditional expectation is the best predictor in terms of MSE,

Equation (2.1) states that the MSE-optimal forecast of Rei
t,T is given by −Rf

t,T ⋅

covt(mt,T ,Ri
t,T ). Because the functional form of the conditional covariance is not

known, one can treat −Rf
t,T ⋅ covt(mt,T ,Ri

t,T ) as a function that depends on state

variables zit ∈ Ft, such that

Et(Rei
t,T ) = g0

T (zit), (2.7)

where the subindex T indicates dependence on the horizon of interest. The machine

learning approach then proceeds to approximate g0
T (zit) by gT (zit, θT ), a parametric

function implied by some statistical model with a parameter vector θT to be estimated.

The estimation of θT using machine learning procedures (MLPs) instead of standard

econometric methods may be advocated for the following reasons.

First, there are a lot of candidates for the state variables zit. A myriad of stock-

and macro-level return predictive signals (features in machine learning terms) appear

in empirical finance literature, and dimension reduction and feature selection are the

very domain of MLPs. Second, the suite of statistical models employed for MLPs

trade analytical tractability and rigorous statistical inference for flexible functional

forms and predictive performance. The prediction implications of the basic asset

pricing equation (2.1) naturally establish a learning objective, that is, minimization

of the forecast MSE. However, the combination of these two issues – many features

and a desire for flexibility – creates a vast risk of overfitting. To deal with this

concern, MLPs divide the data into a training, a validation, and a test sample and
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introduce regularization in the estimation process. Regularization is controlled by

the tuning of hyperparameters, which might take the form of a penalty applied to

the learning objective, early stopping rules applied to its optimization, or, more

generally, coefficients that determine the complexity of the statistical model (e.g.,

number of layers in an ANN). Using a given combination of hyperparameters, the

parameter vector θT is estimated on the training sample, and the model performance

gets evaluated, in terms of forecast MSE, on the validation sample. A search across

hyperparameter combinations ultimately points to the specification that delivers the

best performance. Using the hyperparameter combination thus selected, θT is re-

estimated on the merged training/validation sample. The result is the final estimated

model, gT (zit, θ̂T ), which is used as a machine learning-implied approximative risk

premium,

Et(Rei
t,T ) ≈ gT (zit, θ̂T ). (2.8)

Machine learning encompasses a variety of statistical models that offer flexible

approximations of g0
T (zit). In this study, we consider an ENet, GBRT, RF, and ANN.

We discuss the associated hyperparameter configurations in Section 3.2.

2.2 Pros and cons

As far as the empirical implementation is concerned, the theory-based and data

science approaches have their own unique pros and cons.

Parameter estimation and approximation errors

Using the theory-based formulas in Equation (2.5) or (2.6) and working under the risk-

neutral measure, one can dispense with the estimation of unknown model parameters

altogether. However, this parsimony of the theory-based approach comes at the cost

of approximation errors, the practical consequences of which are not quite clear. In
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contrast, the machine learning approach deals with a huge number of parameters,

which must be estimated without the risk of overfitting.

Time-varying parameters

A conspicuous feature of the theory-based approach is that it can deal naturally

with changing conditional distributions and even non-stationary data. The machine

learning approach, like any statistical/econometric method, struggles more with

ensuing problems like an incidental parameter problem that would occur if the

parameters in θT were time-varying. This caveat can be accounted for by employing

a dynamic procedure, in which the training sample is gradually extended and the

validation and test sample are shifted forward in time. (Hyper-)parameter estimation

is performed for each of these “sample splits.” Compared with Equation (2.8), it is

thus notationally more precise, albeit more cluttered, to write

Et(Rei
t,T ) ≈ gs,T (zit, θ̂s,T ), (2.9)

indicating the dependence of the functional form and estimates on the sample split s

and investment horizon T .

Data quality and computational resource demands

The demands for data quality and quantity in both the theory-based and machine

learning strategies are considerable, distinct, and complementary. The machine

learning approach needs historical data on stock-level predictors for every asset of

interest. A critical aspect is that these data suffer from a missing value problem

that is most severe in the more distant past. As pointed out by Freyberger et al.

(2021), the imputation of those observations is not innocuous and may hamper the

application of data-intensive machine learning methods. This issue is mitigated

using theory-based approaches. However, both MW and KT require high quality
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option data. In particular, for the option prices, the times-to-maturity must match

the horizons of interest, and only a sufficiently large number of strike prices K can

provide a good approximation of the integrals in Equation (2.4). Moreover, Equation

(2.5) reveals that these data are required for not only the stocks of interest but also

every member of the market index, as well as the index itself.

An advantage of the option-based approaches is that the computational resources

needed to provide quantifications of stock risk premia are moderate. Machine learning

approaches instead mandate ready access to considerable computing power. Training

and hyperparameter tuning are required for each statistical model, for each horizon

of interest, and for every new test sample.

2.3 Hybrid approaches

Because of the diversity of their respective pros and cons, it is intriguing to combine

the theory-based and machine learning philosophies. Our primary hybrid approach

is based on MW; it starts from Equation (2.2) and the approximative formula in

Equation (2.5) and then employs machine learning to account for the approximation

residuals ait,T .3 Let us use Ẽt(Rei
t,T ) to denote the right-hand side of Equation (2.5).

Then R̃ei
t,T = Rei

t,T − Ẽt(Rei
t,T ) gives the component of the excess return left unexplained

by MW. Provided that the aforementioned data requirements are met, R̃ei
t,T can be

computed for every i, t, and T . Emphasizing the prediction aspect of the basic asset

pricing equation, we consider the following decomposition:

R̃ei
t,T = ait,T + εit,T , (2.10)

3 Alternatively, we could also use KT as a starting point, but MW is arguably more appropriate
for a larger number of stocks.

12



where εit,T = Rei
t,T − Et(Rei

t,T ) can be conceived of as the irreducible idiosyncratic

forecast error. We can now apply the MLPs not to Rei
t,T and Et(Rei

t,T ) but rather to

R̃ei
t,T and ait,T . This is a sensible approach because the approximation residual ait,T is

a function of time t conditional moments, as is shown in Appendix A.1. Similar to

the treatment of g0
T (zit) in Equation (2.7), we can represent ait,T as a function of the

time t state variables zit, such that ait,T = h0
T (zit), and use a statistical model with

parameters ϑT to approximate h0
T (zit) ≈ hT (zit, ϑT ).

The machine learning-style estimation of the parameters ϑT entails minimizing the

MSE associated with the forecast error R̃ei
t,T − hT (zit, ϑT ) instead of Rei

t,T − gT (zit, θT ).

The hybrid risk premium quantification is then given by:

Et(Rei
t,T ) ≈ Ẽt(Rei

t,T ) + hT (zit, ϑ̂T ), (2.11)

which yields the familiar decomposition:

Rei
t,T − (Ẽt(Rei

t,T ) + hT (zit, ϑ̂T ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

hybrid forecast

= (ait,T − hT (zit, ϑT ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

approximation error

+(hT (zit, ϑT ) − hT (zit, ϑ̂T ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

estimation error

+εit,T .

(2.12)

To account for time-varying model parameters, the dynamic hyperparameter

tuning described in Section 2.3 can be applied in the same way, which yields the

following hybrid approximative formula for the stock risk premium:

Et(Rei
t,T ) ≈ Ẽt(Rei

t,T ) + hs,T (zit, ϑ̂s,T ). (2.13)

Neither the theory-based (“Econ”) nor the machine learning (“Metrics”) approach

would be described as econometrics, the discipline founded to connect economic

theory and statistics. Yet, the formula in Equation (2.13) may be seen as a novel

way to combine Econ and Metrics in the modern age of data science. We refer to
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this hybrid strategy as theory assisted by machine learning.

An obvious alternative hybrid strategy is motivated by the observation that

though GKX include a plethora of stock-level and macro features, they do not use

the information provided by the theory-based risk premium measures, or any other

conditional time t moment computed under the risk-neutral measure. By augmenting

the set of features accordingly, we can assess whether the theory-based measurements

enhance the explanatory power of the data science approach. We refer to this hybrid

approach as machine learning with theory features.

A central tenet of financial economics, derived from Equation (2.1), states that

marginal utility-weighted prices follow martingales. This tenet implies that return

predictability should be a longer-horizon phenomenon. High frequency price processes

are expected to behave like martingales, such that the MSE-optimal return prediction

at very short horizons should be close to the zero forecast (cf. Cochrane (2005),

Section 2.4). The signal-to-noise ratio – Et(Rei
t,T ) to εit,T – is expected to increase at

longer forecast horizons. So, the empirical question that we seek to address refers

to which of the approaches – theory-based, machine learning or hybrid – delivers a

better approximation of Et(Rei
t,T ), i.e. a superior out-of-sample performance, at given

horizons. To answer this question we need a comprehensive database.

3 Data, implementation, and performance assessments

3.1 Assembling the database

Selection of stocks and linking databases

The universe of stocks for which we compare the alternative risk premium measures

14



is defined by a firm’s membership in the S&P 500 index.4 One reason to choose this

criterion is that if we want to compute theory/option-based risk premia according to

Equation (2.5), we have to provide information about the constituents of the market

index proxy. Because the S&P 500 is used for that purpose, index membership is

the obvious criterion to select the cross-section of stocks considered for our analysis.

For the identification of historical S&P 500 constituents (HSPC) across databases,

we start by extracting information about a firm’s S&P 500 membership status from

Compustat. We thereby obtain, for every month from March 1964 to December 2018,

a list of HSPC. In total, we find 1,675 firms that have been in the S&P 500 for at

least one month. For the HSPC identified in Compustat, we retrieve price and return

data from CRSP. Compustat and CRSP also supply the data used for the machine

learning approaches. The option data, which are required to compute the theory-

based measures, come from OptionMetrics. Section O.1 of the Online Appendix

explains in detail how we link the three databases. Appendix A.2 documents the

quality of the matching procedure.

Stock-level and macro features

Following GKX, we retrieve from Compustat and CRSP 93 firm-level variables that

have been identified as predictors for stock returns in previous literature. We also

construct 72 binary variables that identify a firm’s industry (see Table 9 in Appendix

A.3).5 A cross-sectional median-based imputation is applied to deal with missing

4 Each company in the S&P 500 may be associated with multiple securities. An S&P 500
constituent is a specific company-security combination, but we refer to them, as is common in
the literature, interchangeably as “securities,”“stocks” or “firms.”

5 For that purpose, we adapt the SAS program from Jeremiah Green’s website, https://sites.
google.com/site/jeremiahrgreenacctg/home, accessed January 20, 2020. The industry indi-
cators are based on the first two digits of the standard industrial classification (SIC) code.
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observations.6

We consider two types of transformation for firm-level fetures: standard mean-

variance and median-interquartile range scaling, the latter being more robust in the

presence of outliers. The choice of the scaling procedure (standard or robust) is

treated as a hyperparameter.7 In either case, we make sure that no information

from the future enters the validation or tests sets in order to prevent a look-ahead

bias. The stock-level features are augmented by macro-level variables, obtained from

Amit Goyal’s website.8 These variables are the market-wide dividend-price ratio,

earnings-price ratio, book-to-market ratio, net equity expansion, stock variance, the

Treasury bill rate, term spread, and default spread. Their detailed definitions can be

found in Welch and Goyal (2008).

The variables retrieved have a mixed frequency: monthly (20 stock-level + 8

macro-level variables), quarterly (13 stock-level variables), or annual (60 stock-level

variables). Using the date of the last trading day of each month as a point of

reference, they are aligned according to Green et al.’s (2017) assumptions about

delayed availability to avoid any forward-looking bias. Features at the monthly

frequency are delayed at most one month, quarterly variables by at least a four-

6 Median-based imputation is frequently applied in related literature. However, Bryzgalova
et al. (2022) point out that firm characteristics are typically not missing at random, rendering
median-based imputation problematic. They propose an alternative approach that exploits
cross-sectional and time series dependencies between characteristics to impute missing values.
For their empirical analysis Bryzgalova et al. (2022) use a sample that comprises more than
22,000 stocks (including penny stocks) and starts in 1967. Missing data occur particularly often
at the beginning of the sample and for small firms. Being aware of the missing value issue,
we do not follow GKX, who use data from the late 1950s, but instead commence the training
process in 1974. Focusing on HSPC, which are large firms by constructions, further mitigates
the problem of missing values.

7 Here we deviate from GKX, who achieve outlier robustness by applying a cross-sectional rank
transformation and re-scaling the stock-level features to the interval -1 to 1. Various studies
(e.g., Da et al., 2022 and Kelly et al., 2019) report that their results do not critically depend on
the choice of scaling. To assess whether this conclusion also holds true in our setting, Section
A.5 of the Appendix reports the results of a robustness check, in which the empirical analysis is
conducted with rank-transformed features.

8 See http://www.hec.unil.ch/agoyal, accessed January 20, 2020.
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month lag, and annual variables by at least a six-month lag. Moreover, we match

CRSP returns at horizons of one month (30 calendar days) and one year (365 calendar

days), such that they are forward-looking from the vantage point of the end-of-month

alignment day.

A considerable number of missing values for stock-level features arise, if we go

further back in time than the mid-1970s. To mitigate the aforementioned negative

consequences associated with massively imputing missing values, we start using the

data in October 1974, when the problem is alleviated. Moreover, two of the originally

93 stock-level features retrieved are excluded, because they contain an excessive

amount of missing values. Figure 1 shows a heatmap that illustrates how the share

of missing values of stock-level features changes over time.

[Insert Figure 1 about here]

The out-of-sample analysis is performed for the period from January 1996, the

starting date of OptionMetrics, until December 2018. Proceeding as described, we

obtain an unbalanced panel data set at a monthly frequency that ranges from October

1974 until December 2018. The number of HSPC during that period is 1,145, with a

varying number of observations per stock. In total, there are 362,306 stock/month

observations.

Option data

The data to implement the option-based risk premium formulas in Equations (2.5)

and (2.6) are retrieved from OptionMetrics. Two issues must be resolved in the

process. First, options on S&P 500 stocks are American options, yet the computation

of risk-neutral variances according to Equation (2.4) relies on European options.

Second, a continuum of strike prices is not available, so the integrals in Equation

(2.4) must be approximated, using a grid of discrete strikes. As pointed out by

Martin (2017), a lack of a sufficient number of strikes may severely downward bias
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the computation of risk-neutral variances. Martin and Wagner (2019) advocate for

the use of the OptionMetrics volatility surface to address these issues and compute

risk-neutral variances according to Equation (2.4). Although European options are

traded on the S&P 500 index, and their prices are available in OptionMetrics, we

also rely on the volatility surface to compute risk-neutral index variances. Using

the OptionMetrics volatility surface, we compute the theory-based risk premium

measures for the selected stocks and the two horizons of interest. These data are

matched, by their security identifier and end-of-month date, with the aforementioned

unbalanced panel. A detailed explanation of our use of the volatility surface is

provided in Section O.2 of the Online Appendix.

Risk-free rate proxies

To compute excess returns and all of the option-based measures, we need a risk-free

rate proxy that matches the investment horizon. It can be computed for different

horizons at a daily frequency using the zero curve provided by OptionMetrics.

However, like any data supplied by OptionMetrics, the zero curve is not available

before January 1996. We therefore employ the Treasury bill rate as a risk-free rate

proxy for earlier periods.

3.2 Empirical implementations

In the following we provide information about the hyperparameter configurations of

the statistical models, the construction of the vector of state variables zit, and the

long and short training schemes.

As mentioned previously, our machine learning approaches employ four popular

statistical models: the ANN, RF, GBRT, and ENet. The first three were identified

by GKX as the most appropriate for the task at hand. The ENet is included as

an instance of penalized regression because of the less demanding hyperparameter
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tuning.9 The hyperparameter configurations for these models are listed in Table 1.

[Insert Table 1 about here]

The selection of features collected in the vector zit follows GKX, such that we use

the 91 stock-level variables (included in the vector cit) and their interactions with the

eight macro predictors (included in the vector xt). Formally, zit is comprised of the

vector (1, x′t)
′ ⊗ cit, augmented with industry dummies, such that altogether we have

91 × 9 + 72 = 891 features.10

The implementation of the sequential validation procedure mentioned in Section

2.1 is illustrated in Figure 2 (long training scheme). It shows that the length of the

training period increases from 10 years initially to 31 years; the 12-year validation

period shifts forward by one year with every new test sample. There are S=22

out-of-sample years with the final one-year predictions made in December 2017 for

December 2018. For every sample and statistical model, hyperparameter tuning is

performed at the one-month and one-year forecast horizon. When considering the

one-month horizon, the number of test samples increases to S=23, because monthly

forecasts are possible during the year 2018. Details on the hyperparameter tuning

are provided in Appendix A.4.11

[Insert Figure 2 about here]

The basic setup remains the same when considering the hybrid approaches.

However, the training and validation procedure changes because of the delayed

availability of the OptionMetrics data beginning January 1996. We therefore consider

9 We assume that the reader has some familiarity with these approaches, which are covered by
Hastie et al. (2017).

10 In principle, it would also be possible to explicitly consider the time series of macroeconomic
variables, as proposed by Chen et al. (2021). In line with GKX, we choose to focus on the last
observation of these series instead.

11 While our implementation of the machine learning approaches draws on GKX, it deviates in
some respects. Section O.3 of the Online Appendix provides a detailed juxtaposition.
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the alternative, short training scheme illustrated in Figure 3; it is used for the theory

assisted by ML and ML with theory features strategies.

[Insert Figure 3 about here]

The short training scheme reduces the initial training period to one year and the

validation period comprises 1 year instead of 12. With this configuration, we can

retain a sufficiently large number of out-of-sample years, comparable to the long

training scheme.

To establish a benchmark for the performance of the hybrid approaches, we also

train the models using the original feature set and the short training scheme. A

comparison with the long training results is interesting for another reason too: It

allows us to study how important the length of the training period is and to assess

the effect of the length of the validation period.

3.3 Performance assessments

We compare the alternative approaches to measure stock risk premia by assessing

their out-of-sample forecast performance. This represents a useful criterion, because

the different methodologies provide approximations of the conditional expected excess

return, which is the MSE-optimal prediction. The smaller the MSE, the better the

approximation of the stock risk premium. We consider forecasts with horizons of one

month (30 calendar days) and one year (365 calendar days), issued at an end-of-month

and daily frequency, respectively.

Following Welch and Goyal (2008), we rely on a performance measure that relates

the MSE of a model’s out-of-sample forecast to that of a benchmark. We use the

zero forecast for that purpose, which has the appeal of providing a parameter-free

alternative and comparability across studies. More specifically, the performance
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criterion is the pooled predictive R2 given by:

R2
oos = 1 −

∑t∑i (Rei
t,T − R̂ei

t,T )2

∑t∑i (Rei
t,T )

2 , (3.1)

where R̂ei
t,T denotes the respective forecast/risk premium estimate. The calculation is

based solely on observations included in the S test sample years that were not used

for training or validation.

To study performance over time, we also compute the predictive R2 for each of

the test samples separately:

R2
oos,s = 1 −

∑i∑t (Rei
t,T − R̂ei

t,T )
2 ⋅ 11[t ∈ S(s)]

∑i∑t (Rei
t,T )

2 ⋅ 11[t ∈ S(s)]
s = 1,2, . . . , S, (3.2)

where S(s) denotes the set of time indices of forecast sample s, such that 11[t ∈ S(s)] is

equal to 1 if the observation at period t belongs to the sample year s, and 0 otherwise.

For the assessment of statistical significance, we report the p-values associated with

a test whether a model has no explanatory power over the zero forecast; formally,

the null hypothesis that E(R2
oos,s) ≤ 0. To construct a convenient test statistic,

we take the mean of the R2
oos,s across the test samples, R2

oos = 1
S ∑

S
s=1R

2
oos,s, and

compute its standard error σ̂(R2
oos), using a Newey-West correction to account for

serial correlation. Provided that a central limit theorem applies, and assuming

that E(R2
oos,s) = 0, the t-statistic R2

oos/σ̂(R2
oos) is approximately standard normally

distributed, such that a one-sided p-value can be provided.12

As an alternative to the R2
oos in Equation (3.1), we also consider the time-series

R2 used by Chen et al. (2021), which accounts for the fact that the number of stocks

12 The Diebold-Mariano test employed by GKX to gauge differences in forecast performances is
constructed in a similar vein. We provide p-values associated with this test in Section O.4 of the
Online Appendix.
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in period t (Nt) can change over time:

EVoos = 1 −
∑t 1

Nt
∑Nt
i=1 (Rei

t,T − R̂ei
t,T )2

∑t 1
Nt
∑Nt
i=1 (Rei

t,T )
2 . (3.3)

As this study is ultimately concerned with approximating stock risk premia, both

the level and cross-sectional properties of the excess return predictions should be

taken into account for performance assessment. However, the R2
oos can be dominated

by the forecast error in levels, potentially masking the cross-sectional explanatory

power of a model. To explicitly account for this dimension of return predictability,

we use the following measures: First, we compute a cross-sectional out-of-sample R2

similar to those advocated by Maio and Santa-Clara (2012) and Bryzgalova et al.

(2021):

XSoos = 1 −
VarN(ε̂iT )
VarN(Rei

T )
, (3.4)

where VarN(⋅) stands for the cross-sectional variance across the N sample stocks; ε̂iT

and Rei
T are the stock-specific time-series averages of Rei

t,T − R̂ei
t,T and Rei

t,T , respectively.

Second, we assess cross-sectional performance by forming decile portfolios based

on the respective model’s excess return predictions and comparing predicted and

realized mean excess returns across approaches. If an approach delivers sensible risk

premium estimates then a) the mean predicted excess returns and mean realized

excess returns of the prediction-sorted portfolios should align, and b) there should be

sizable variation in the mean realized excess returns across these portfolios. Besides

graphical assessments and rank correlations, we also compare the annualized Sharpe

ratios of zero-investment portfolios long in the decile portfolio of stocks with the

highest excess return prediction and short in that with the lowest. The Sharpe ratio

accounts for the desideratum that the cross-sectional differentiation of the mean

realized excess returns should be achieved by a small variation over the years of the
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test sample.

The machine learning models are trained on data at a monthly frequency. Ac-

cordingly, the respective excess return forecasts are updated once at the end of

each month. Forecasts at these same dates are also available using the option-based

approaches, which additionally can provide risk premium estimates at higher fre-

quencies, up to daily. To facilitate comparisons at a daily frequency, we retain the

most recent ML-based risk premium estimate until an update becomes available

by the end of the next month. For example, the estimate of an annual horizon

stock risk premium in mid-April 2015 corresponds to the last available estimate

calculated at the end of March 2015. For the ML with theory features strategy, the

hybrid model’s daily estimate employs the statistical model (trained on monthly

data) endowed with the prevailing end-of-month firm- and macro-level features and

daily updated theory-based measures. Similarly, the adaption of the theory assisted

by ML approach combines the theory-based daily risk premium estimate with the

prevailing end-of-month ML-based residual approximation.

4 Empirical Results

4.1 Comparison at monthly and annual horizons

One-month horizon

Table 2 contains the results for the one-month horizon; in Panel A, the forecasts are

issued at a daily frequency, whereas in Panel B, they are issued monthly (end-of-

month). Among the machine learning approaches in Panel B, only the ANN achieves

a positive predictive R2 (0.2%); the same R2
oos is delivered by the theory-based
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MW.13 Evaluating the daily MW forecasts, we find that the predictive R2 increases

to 0.9%, which represents the only instance in which we can reject the hypothesis

that E(R2
oos,s) ≤ 0 at significance levels below 5%. For a daily forecast frequency, the

ANN achieves an R2
oos of 0.5%, the highest among the machine learning approaches.14

[Insert Table 2 about here]

The comparatively good performance of the theory-based approach is corroborated

by a complementary analysis based on the data that Chabi-Yo et al. (2021) used to

introduce their alternative option-based risk premium estimate,15 and which contain

their estimates at the one-month and one-year horizons. Although the universe of

stocks is different, there is an overlap with our study. When we conduct an analysis

at the intersection of firms and dates, it yields a monthly R2
oos of 1% implied by

Chabi-Yo et al.’s (2021) method (daily forecast frequency). For this merged sample,

the predictive R2 produced by MW remains unchanged (0.9%); the R2
oos of the

machine learning approaches do not improve.

[Insert Figure 4 about here]

The relative advantages of the theory-based paradigm are also evident in Figure

4. Panel A (monthly forecast frequency) and conspicuously Panel B (daily) both

show that MW yields a better alignment of the prediction-sorted portfolios. The

rank correlation between mean predicted and mean realized excess returns is 0.96,

13 To avoid a cluttered exposition, we focus in the main text on reporting and interpreting the
R2

oos results. Section O.4 of the Online Appendix includes extended tables that also report
XSoos and EVoos. It can be seen that R2

oos and EVoos take on very similar values, and while the
level of XSoos is somewhat smaller, its pattern across approaches corresponds to that of R2

oos.
Accordingly, the conclusions obtained by using the alternative performance measures remain the
same.

14 A monthly predictive R2 of about 1% may appear small, but it is actually higher than any
reported by GKX. Their ANNs yield monthly predictive R2 between 0.3% and 0.7%, depending
on the universe of stocks and ANN architecture.

15 We are grateful to Grigory Vilkov for providing access to these data.
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whereas that implied by the ANN is 0.56 (monthly forecast frequency). Figure 4 also

shows that the variation of the mean realized excess returns across prediction-sorted

portfolios is favorably wider using MW than the variation implied by the ANN. This

result is reflected in the Sharpe ratios of the zero investment portfolios (cf. Table 2),

which are 0.30 (monthly forecast frequency) and 0.37 (daily) for MW, compared with

0.28 (monthly) and 0.26 (daily) for the ANN.16 Overall, these findings indicate that

at the one-month horizon, care is needed when investing in machine learning-based

methods; their superiority over the theory-based paradigm is by no means a given.

An alternative conclusion might refer to the sample period and universe of stocks,

for which the task at hand might be more difficult for machine learning. Compared

with GKX, we consider fewer stocks for training and validation, and the training

begins in a later year, both of which are factors that could prevent the machine

learning approaches from reaching their full potential.

One-year horizon

Most of these concerns can be alleviated by a review of Table 3, which shows the

results for the one-year horizon. Contrasting Panels A and B, we observe that it

matters little whether we use daily or monthly forecasts, so we simply focus on the

latter in the following discussion.

[Insert Table 3 about here]

Compared with the one-month horizon results, the annual predictive R2 increase

by an order of magnitude; the R2
oos delivered by MW is about 9%. The results

in Table 3 mitigate any concerns that the present selection of stocks constitutes a

more difficult environment for machine learning approaches or that their training is

16 Tables 2 and 3 also show that, in terms of predictive R2, KT is less successful. Yet, regarding
prediction-sorted portfolios, KT and MW are equivalent. Both achieve cross-sectional differenti-
ation through risk-neutral variances var∗t (R

i
t,T ). Thus, the prediction-sorted portfolios include

the same stocks and yield the same mean realized excess returns and Sharpe ratios.
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flawed. For example, the ANN achieves an annual R2
oos notably higher than those

reported by GKX.17 Furthermore, MW, GBRT, and the ANN perform comparably

well, with R2
oos ranging between 8.8% and 10.6% and p-values for the hypothesis that

E(R2
oos,s) ≤ 0 ranging from 3.5% to 5.1%.18 Notably smaller predictive R2 and higher

p-values are implied by the ENet and KT; that is, not all option-based and machine

learning approaches perform equally well.

[Insert Figure 5 about here]

In terms of predictive R2, the RF stands out, delivering an annual R2
oos of 19.5%

with a p-value of 0.2%. The good RF results are confirmed by the favorable alignment

and cross-sectional variation in realized mean excess returns of the prediction decile

portfolios (cf. Panel C of Figure 5), and the highest Sharpe ratio of the long-short

portfolio among the approaches considered. We thus conclude that at the one-year

horizon, there exists a machine learning method that offers a comparative advantage

over the theory-based approach.19

Time-series variation

The time-series variation of the predictive R2 is illustrated in Figure 6. In Panel

A, we present a comparison of MW with the random forest, the best-performing

machine learning method; the other approaches are in Panel B. The R2
oos,s values

depicted in Figure 6 refer to the year the forecast was issued. For example, the

annual predictive R2 associated with the year 2008 is based on forecasts issued from

January to December 2007.

17 Depending on the selection of stocks, they report annual predictive R2 for ANNs that range
from 3.4% to 5.2%.

18 A complementary analysis using data provided by G. Vilkov yields very similar annual predictive
R2 values for MW and Chabi-Yo et al.’s (2021) alternative approach.

19 As mentioned in Section 3.3, the R2
oos can be dominated by the forecast error in levels, whereas

the Sharpe ratio captures purely cross-sectional aspects. Hence, it is not necessary for R2
oos and

the Sharpe ratio to point into the same direction in terms of favored approaches.
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[Insert Figure 6 about here]

The volatility of the R2
oos,s values indicated by Figure 6 is not surprising; the

years 1996-2018 represent a period rife with crises and crashes. These events have a

notable effect on the standard deviations of the predictive R2 in Tables 2 and 3. We

observe that at the one-year horizon, the impact of the build-up and burst of the

so-called dot-com bubble is more pronounced than that of the 2008 financial crisis.

Both theory-based and machine learning approaches yield large negative annual R2
oos,s

values associated with forecasts issued during 2000 and 2001. Panel A in Figure

6 also illustrates how the RF achieves its improvement over MW at the one-year

horizon.

4.2 Hybrid approaches and short training

Next, we assess the potential of hybrid strategies that combine the theory-based and

machine learning paradigms. Table 4 indicates the promise of this idea: Although

theory-based and machine learning forecasts covary positively, the correlations are

not strong, so the two approaches seem to account for different components of the

stock risk premium.

[Insert Table 4 about here]

Short-training effects and ML with theory features

Any hybrid methodology must accommodate the late availability of the OptionMetrics

data. As discussed previously, we deal with this issue by applying the short-training

scheme in Figure 3. Tables 5 (one-month horizon) and 6 (one-year horizon) present

two sets of machine learning results obtained by short training. The first uses the

same 891 features as selected for long training. The second, referred to as ML with

theory features, results from adding the two option-based stock risk premium measures
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(according to MW and KT) and Martin’s (2017) lower bound of the expected market

return. The following discussion contains an assessment of the incremental effects of

applying the short-training scheme and including the theory-based features.20

[Insert Table 5 about here]

We have already seen that at the one-month horizon, most of the machine learning

approaches do not perform well. Table 5 shows that the results worsen when applying

the short-training scheme. All MLPs, including the ANN, now yield a negative

predictive R2. Their standard deviations increase, and the Sharpe ratios of the

long-short portfolios decline. The segments labeled ML with theory features in Table

5 reveal that this deterioration is not mitigated by the inclusion of theory-based

features. Using MW to obtain risk premium estimates remains the preferred strategy

at the one-month horizon.

[Insert Table 6 about here]

Table 6 shows that the short-training effects are more ambiguous with regard to

end-of-month issued forecasts with a one-year horizon. While the ENet now performs

poorly, the ANN benefits from short training: Its R2
oos increases from 9% (long

training) to 14%, with a p-value of 0.4%. In contrast, short training reduces the

RF’s predictive R2 from 19.1% (long training) to 12.4%, accompanied by increases

of the standard deviation and p-value. However, Panel A of Figure 7, which depicts

the time-series variation of the predictive R2, shows that the adverse effects of short

training on the RF are mitigated as the training sample grows. At the start of the

sequential validation procedure, there are only a few years of observations available

20 Comparing Table 5 with Table 2, we note that the theory-based results only change because
the out-of-sample evaluation period is shorter. The years 1996 and 1997 are excluded to ensure
comparability with the short-trained MLPs.
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for training. When the dot-com crisis confronts such an RF, it results in a sharp

decline of the R2
oos,s associated with the one-year forecasts issued in the year 2000.

This drop causes the increase of the time-series standard deviation and p-value

compared with the long-trained RF.21 As the training sample grows, the performance

of the short-trained RF improves and reaches, near the end of the sample period,

the level of its long-trained counterpart.

[Insert Figure 7 about here]

Table 6 also shows that the machine learning with theory features strategy yields

a positive effect only when using the RF. Though the improvement is moderate

for end-of-month-issued forecasts – the R2
oos increases from 12.4% to 14.6%, and

the Sharpe ratio increases from 0.59 to 0.62 – we note that the augmentation with

theory features helps the short-trained RF improve the 2008 crisis year forecasts (cf.

Figure 7).

[Insert Table 7 about here]

Table 7 suggests that the ML with theory features strategy is more rewarding

for forecasts at a daily frequency, and in particular when using the RF. Augmented

with daily theory-based features, the RF’s predictive R2 increases from 9.0% to

18.6%, while also reducing the time-series variation across test samples. Considering

that the pure theory-based (MW) R2
oos amounts to 9.5%, this hybrid approach

makes particularly good use of the additional data. The highest Sharpe ratio of the

long-short portfolio in the field of competitors corroborates this conclusion.

Theory assisted by machine learning

21 Figure 7 shows that this drop is much less pronounced for the short-trained ANN, which explains
the smaller standard deviation and p-value in Table 6.
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For our implementation of the theory assisted by machine learning strategy we rely

on Martin and Wagner’s (2019) approach to measuring stock risk premia (MW for

short), which explicitly starts from the basic asset pricing equation, the keystone of

financial economics. MW is empirically not unsuccessful, and we propose building on

it, as a basis, to model only that which theory cannot account for – the approximation

errors – by applying machine learning techniques.

[Insert Figure 8 about here]

The segment labeled theory assisted by ML in Table 6 contains the results obtained

from applying this idea.22 We observe that not all machine learning assistance

improves the performance of the theory-based approach; the ENet even drives the

R2
oos into a negative domain. GBRT yield a moderate improvement, whereas the

ANN and RF are more successful. Their support increases the baseline MW R2
oos by

5.1 percentage points (MW+ANN) and 7 percentage points (MW+RF), respectively.

The standard deviations of the predictive R2 grow, but Figure 8 shows that this

increase is mainly due to the short-training effect, which in turn is reflected in

the harsh drop of the R2
oos,s associated with the year 2000 forecasts, which we also

identified for the short-trained RF. By zooming in on more recent forecast samples,

we observe that with an increasing training sample size, the performance of the

MW+RF hybrid matches that of the long-trained RF.

The prediction decile plots in Figure 9 show that the alignment of mean predicted

and realized excess returns of the prediction-sorted portfolios is particularly good for

the MW+RF approach and that the variation of the mean realized excess returns

across the prediction-sorted portfolios is favorably high. Consistently, RF assistance

increases the Sharpe ratio for the long-short portfolio from 0.37 (pure MW) to 0.65,

22 Short-trained MLPs do not perform well at the one-month horizon, and when using them to
account for the approximation errors of MW, we find no improvement. We therefore discuss in
detail only the one-year horizon results.
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as reported in Table 6. For daily forecasts rather than forecasts issued at the end of

the month, these conclusions remain the same (cf. Table 7).

[Insert Figure 9 about here]

These results lead to the conclusion that at the one-year horizon, the MW+RF

approach qualifies as a promising alternative for the task of quantifying stock risk

premia. This hybrid strategy also has the appeal of effectively combining theory

with measurement.

4.3 Feature importance and a disaggregated analysis

We also investigate how the importance of features with respect to stock risk premia

might differ between pure machine learning and theory assisted by machine learning.

We consider both pure RF and the MW+RF hybrid and focus on the one-year

horizon with end-of-month issued forecasts. To gauge a feature’s importance by the

reduction of the predictive R2 induced, we use a disruption of the temporal and

cross-sectional alignment of the feature with the prediction target. This disruption

is implemented by replacing the feature’s observed values by 0 when computing

the predictive R2. We compute the importance measure on the test samples, and

report the size of the induced R2
oos reduction.23 Figures 10 (RF) and 11 (MW+RF)

illustrate the results.

[Insert Figures 10 and 11 here]

23 Alternatively, it is possible to compute the importance measure on the training samples and
provide a relative measure of feature importance, as done by GKX. Moreover, feature importance
could be assessed by randomly drawing a feature from the empirical distribution instead of
replacing it by 0. We prefer the present approach for its straightforward interpretability. Another
approach to assess the importance of features is based on the absolute gradient of the loss
function with respect to each feature respectively, which is very convenient in the context of
neural networks (cf. Chen et al., 2021), but not suitable for all machine learning techniques.
Shapley additive explanations (cf. Lundberg and Lee, 2017) would be well suited to account
for dependencies between features, but are computationally infeasible given our number of
characteristics.
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A comparison of Figures 10 and 11 reveals that the conclusions regarding the

relative importance of features remain the same, regardless of whether the RF

serves to assist the theory-based approach or is applied for its original use. The

pattern is similar in both applications. With respect to stock-level variables, the

established return predictive signals (RPS) are most important: The book-to-market

ratio ranks first (along with other valuation ratios), followed by variables associated

with liquidity (dollar trading volume, Amihud illiquidity), and then momentum

indicators (industry momentum and 12-month momentum). None of the other more

than 80 stock level features is among the top four. The revival of the classic RPS,

and in particular the conspicuous role of the book-to-market ratio, is noteworthy.

In GKX’s study, the short-term price reversal dominated the feature importance

at the one-month horizon, whereas the book-to-market ratio remained nondescript.

The consistent feature importance in both applications – RF and MW+RF – may

seem surprising, because MW already accounts for a considerable part of the excess

return variation. We might have expected that modeling the approximation error

of the theory-based approach would reveal other important features. But it is the

familiar triad – valuation ratio, liquidity, and momentum – that dominates in both

applications.

A corresponding conclusion arises from an analysis of the importance of the

market-wide variables (Panels B in Figures 10 and 11). In both uses of the RF, the

Treasury bill rate is the most important variable. Its conspicuous role highlights the

relevance of asset pricing approaches that adopt Merton’s (1973) suggestion to use

short-term interest rates as state variables in variants of the intertemporal CAPM

(e.g., Brennan et al. (2004), Petkova (2006), Maio and Santa-Clara (2017)), as well as

preference-based asset pricing models that motivate a short-term interest rate-related
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risk factor, as in Lioui and Maio (2014).24

The feature importance results provide the foundation for a disaggregated analysis,

for which we form portfolios by sorting stocks into quintiles according to key charac-

teristics associated with valuation ratios, liquidity, and momentum. As suggested by

the previous results, we choose book-to-market and earnings-to-price as valuation

ratios; for liquidity, we use dollar trading volume and Amihud’s illiquidity measure.

Momentum portfolios are based on 12-month and industry momentum.25 The sorting

of stocks into quintile portfolios on the basis of the respective characteristic gets

renewed each month. We also form 10 industry portfolios based on one-digit SIC

codes. For each quintile and industry portfolio and each approach of interest – MW,

pure machine learning (ANN and RF), and theory assisted by machine learning

(MW+RF and MW+ANN) – we compute the annual R2
oos according to Eq. (3.2).

[Insert Table 8 about here]

The results in Table 8 generally corroborate the conclusions of the aggregated

analysis and also reveal the following detailed insights: For all portfolios based

valuation ratios, we observe an improvement of the theory-based method by machine

learning assistance. Moreover, the hybrid approaches are preferred across all quintile

portfolios. MW+RF is particularly successful in quintiles 2 to 5, and MW+ANN

is optimal in quintile 1. For all momentum portfolios, machine learning assistance

improves the performance of the theory-based approach. For momentum quintiles

1 to 4, MW+RF is the preferred strategy. For momentum quintile 1, pure ANN

and MW+ANN perform better. Regarding the liquidity-sorted portfolios, machine

24 We also check whether feature importance differs when we measure the effect of an exclusion of
a feature on the cross-sectional performance, measured by the Sharpe ratio of the long-short
portfolio. The conclusions remain qualitatively the same as when we use the predictive R2.
Details of this analysis are available in Section O.4 of the Online Appendix.

25 We report the results for quintile portfolios based on other characteristics in Section O.4 of the
Online Appendix.
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learning assistance again improves the theory-based results, but we note that MW+RF

does not perform well on the high liquidity portfolios. The explanation is that the

short training effect that we discussed previously has the strongest effect on the

performance of both RF and MW+RF in the high liquidity portfolios.26 The pure

ANN, less affected by short training, delivers more consistent performance across

liquidity portfolios. Nevertheless, a hybrid strategy is preferred over pure machine

learning for four (dollar trading volume), respectively three (Amihud illiquidity)

quintile portfolios.

Panel B of Table 8 shows that for all industry portfolios, RF assistance improves

the performance of MW; the ANN assistance does so in seven of ten cases. With the

exception of one of the sector portfolios for which the pure ANN is preferred, the

hybrid strategies yield the highest predictive R2. In addition, MW+RF is preferred in

seven of ten sector portfolios, and MW+ANN is preferred in two. The complementary

advantage of the two hybrid approaches is thus a recurring result.

5 Conclusion

In this study, we took two diverging paths to measure stock risk premia in an attempt

to assess and reconcile the opposing philosophies that underlie them. The comparison,

at one-month and one-year investment horizons, reveals that the theory/option-based

method offers an advantage at the shorter horizon, especially if stock risk premium

estimates are to be delivered at higher frequencies. At the one-year horizon, the

picture is more complex. Of the four machine learning methods considered in this

study, one delivers weaker performance than the theory-based strategy (elastic net),

two are comparable (gradient boosted regression trees and artificial neural networks),

26 For more details, refer to Section O.4 of the Online Appendix, which contains time series plots
of the predictive R2 corresponding to Figure 6. They illustrate the short training effect broken
down by quintile portfolios based on Amihud illiquidity.
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and one (random forest) offers the best results. To achieve this performance, a

sufficiently long training period is required though.

Noting the concerns regarding the use of agnostic machine learning procedures

in a theoretically well-developed discipline like finance, we put forth a methodology

that takes Martin and Wagner’s (2019) theory-based approximate formula for the

stock risk premium as its basis and then applies machine learning to account for the

approximation error. Although a pure theory-based method remains the preferred

choice at the one-month horizon, the empirical performance of this theory assisted by

machine learning approach at the one-year horizon is encouraging. Using a random

forest, the theory-based component provides 57% of the hybrid model’s explana-

tory power in terms of the predictive R2; 43% is attributable to machine learning

assistance. The conclusion that such a supportive use of machine learning captures

fundamental components of stock risk premia is supported by the conspicuous role

of valuation ratios and liquidity indicators in an analysis of feature importance. A

disaggregated analysis based on stock portfolios sorted according to these character-

istics corroborates the expediency of the proposed hybrid approach. We view it as a

promising alternative for bringing together the diverging paths in finance.
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A Appendix

A.1 Theory-based stock risk premium formulas

This section provides details for the stock risk premium formulas in Equations (2.2)

and (2.3) and the nature of the approximation residuals ait,T and ξit,T . We delineate

the assumptions and rationales behind their omission, which provide the theory-based

approximation formulas in Equations (2.5) and (2.6).

Martin and Wagner’s (2019) derivations originate from the basic asset pricing

equation, with a focus on the gross return of a portfolio with maximal expected

log return (Rg
t,T ). This growth-optimal return has the unique property among gross

returns that its reciprocal is an SDF, such that mt,T = 1/Rg
t,T . Using this SDF to

price the payoff X i
t,T = Ri

t,T ⋅R
g
t,T gives:

Et(mt,T ⋅X i
t,T ) = Et(Ri

t,T ) =
1

Rf
t,T

E∗
t (Ri

t,T ⋅R
g
t,T ), (A-1)

where the ∗ notation indicates that the expected value is computed with respect

to the risk-neutral measure. Division by Rf
t,T and subtracting E∗

t (Ri
t,T /R

f
t,T ) ×

E∗
t (R

g
t,T /R

f
t,T ) = 1 (the price of any gross return is 1) yields:

Et(
Ri
t,T

Rf
t,T

) = 1 + cov∗t (
Ri
t,T

Rf
t,T

,
Rg
t,T

Rf
t,T

). (A-2)

An orthogonal projection under the risk-neutral measure of Ri
t,T /R

f
t,T on Rg

t,T /R
f
t,T

and a constant gives:

Ri
t,T

Rf
t,T

= αit,T + βit,T ⋅
Rg
t,T

Rf
t,T

+ uit,T , (A-3)
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where the moment conditions E∗
t (uit,T ) = 0 and E∗

t (uit,T ⋅R
g
t,T ) = 0 define the projection

coefficients

βit,T =
cov∗t (

Ri
t,T

Rf
t,T

,
Rg

t,T

Rf
t,T

)

var∗t (
Rg

t,T

Rf
t,T

)
,

and αit,T = 1 − βit,T . Inserting these insights into Equation (A-2) produces:

Et(
Ri
t,T

Rf
t,T

) = 1 + βit,T ⋅ var∗t (
Rg
t,T

Rf
t,T

). (A-4)

Moreover, Equation (A-3) implies:

var∗t (
Ri
t,T

Rf
t,T

) = (βit,T )2 ⋅ var∗t (
Rg
t,T

Rf
t,T

) + var∗t (uit,T ). (A-5)

To make these results practically usable, Martin and Wagner (2019) propose to

linearize (βit,T )2 ≈ 2βit,T − k, which for k = 1 amounts to a first-order Taylor approxi-

mation at βit,T = 1. Using this approximation and inserting it into Equation (A-4)

(for k = 1) removes the dependence on βit,T ,

Et(
Ri
t,T

Rf
t,T

) ≈ 1 + 1

2
var∗t (

Ri
t,T

Rf
t,T

) + 1

2
var∗t (

Rg
t,T

Rf
t,T

) − 1

2
var∗t (uit,T ). (A-6)

The term neglected on the right-hand side of Equation (A-6) due to the linearization

is −var∗t (R
g
t,T /R

f
t,T )(βit,T − 1)2. The approximation thus should be reasonable for

stocks whose βit,T is close to 1.

Using wjt , the weight of stock j in a market index with gross return Rm
t,T , Martin

and Wagner (2019) perform a value-weighting of Equation (A-6) to obtain:

Et(
Rm
t,T

Rf
t,T

) ≈ 1 + 1

2
∑
j

wjtvar∗t (
Rj
t,T

Rf
t,T

) + 1

2
var∗t (

Rg
t,T

Rf
t,T

) − 1

2
∑
j

wjt ⋅ var∗t (uit,T ). (A-7)
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Subtracting Equation (A-7) from (A-6) removes the dependence on the unobservable

optimal growth portfolio, such that

Et(Ri
t,T ) ≈ Et(Rm

t,T ) +
Rf
t,T

2
[var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wjt ⋅ var∗t (
Rj
t,T

Rf
t,T

)]

−
Rf
t,T

2
(var∗t (uit,T ) −∑

j

wjt ⋅ var∗t (u
j
t,T )). (A-8)

Keeping track of the approximation error due to the linearization, we note that the

term that is omitted on the right-hand side of Equation (A-8) is

κit,T = − 1

2Rf
t,T

var∗t (R
g
t,T ) ⋅

⎡⎢⎢⎢⎢⎣
(βit,T − 1)2 −∑

j

wjt ⋅ (βit,T − 1)2

⎤⎥⎥⎥⎥⎦
.

To account for the first term on the right-hand side of Equation (A-8), Martin

and Wagner (2019) draw on a result by Martin (2017), who derives a lower bound

for the expected return of a market index. His starting point is again the basic

asset pricing Equation (2.1), which can be written in terms of the price of the payoff

(Ri
t,T )2 using an add-and-subtract strategy:

Et(Ri
t,T ) −R

f
t,T = (Et[mt,T ⋅ (Ri

t,T )2] −Rf
t,T ) − (Et[mt,T ⋅ (Ri

t,T )2] −Et(Ri
t,T )). (A-9)

The first term on the right-hand side of Equation (A-9) can be related to a risk-

neutral variance, and the second term to a covariance under the physical measure,

such that

Et(Ri
t,T ) −R

f
t,T = 1

Rf
t,T

var∗t (Ri
t,T ) − covt(mt,T ⋅Ri

t,T ,R
i
t,T ). (A-10)

As noted in the main text, Kadan and Tang (2020) use Equation (A-10) for their

quantification and approximation of stock risk premia.
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Martin (2017) argues that for an asset return that qualifies as a market return

proxy (denoted Rm
t,T ), it should be the case that

ξt,T = covt(mt,T ⋅Rm
t,T ,R

m
t,T ) < 0. (A-11)

Intuitively, an investor’s marginal rate of intertemporal substitution should be

negatively correlated with any portfolio that qualifies as a market index. Accordingly,

Et(Rm
t,T ) −R

f
t,T ≥ 1

Rf
t,T

var∗t (Rm
t,T ). (A-12)

Assuming that the inequality (A-12) is binding, we can use it with Equation (A-8),

which yields:

Et(Ri
t,T ) −R

f
t,T ≈ Rf

t,T ⋅ [var∗t (
Rm
t,T

Rf
t,T

) + 1

2
{var∗t (

Ri
t,T

Rf
t,T

) −∑
j

wjt ⋅ var∗t (
Rj
t,T

Rf
t,T

)}]

−
Rf
t,T

2
⋅ [var∗t (uit,T ) −∑

j

wjt ⋅ var∗t (u
j
t,T )], (A-13)

where the approximative formula in Equation (A-13) omits the term κit,T − ξt,T on

the right-hand side. Equation (2.2) thus results from

ait,T = κit,T − ξt,T − ζ it,T , (A-14)

where

ζ it,T = 1

2
Rf
t,T ⋅ [var∗t (uit,T ) −∑

j

wjt ⋅ var∗t (u
j
t,T )]. (A-15)

Working with the abbreviated formula in Equation (2.5) thus entails three approx-

imations: (1) the linearization of (βit,T )2, (2) the assumption that Martin’s (2017)
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lower bound for the expected return of the market is binding, and (3) the assumption

that the residual variances var∗t (uit,T ) are very similar across stocks, such that ζ it,T is

negligibly small in absolute terms.

A.2 Construction of the database (details)

Detailed information on how we identify HSPC in Compustat, CRSP, and Option-

Metrics and how we retrieve information from these databases is provided in Section

O.3 of the Online Appendix. Section O.6 explains how to access the Python programs

that we use for this purpose.

The starting point for HSPC identification is Compustat. The number of HSPC

we can trace in Compustat during the period of March 1964 to December 2018, is

depicted in Panel A of Figure 12. We successfully recover many of the Compustat-

identified HSPC also in CRSP, in particular after October 1974, the first month used

for training the MLPs.

[Insert Figure 12 about here]

Panel A in Figure 12 shows that the matching procedure can identify a large fraction

of the Compustat-identified HSPC also in OptionMetrics. The approximation formula

in Equation (2.5) indicates that the higher the coverage of index stocks, the better the

theory-based approach should perform, whereas a poor match adds another source of

approximation error. The coverage rate that we achieve with our procedure is higher

than that reported by Martin and Wagner (2019). Averaged over the respective

sample periods, we succeed in recovering 483/500 HSPC; Martin and Wagner’s (2019)

coverage ratio is 451/500. Panel B of Figure 12 shows that the true S&P 500 market

capitalization is closely tracked by that of the HSPC identified in Compustat, CRSP,

and OptionMetrics.
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A.3 Theory-based, stock-level, and macro-level variables

Table 9 give a description of the variables used in this study. The content from Panel

B1 is obtained from Table A.6 in GKX. The stock-level features are retrieved using

the SAS program kindly provided by Jeremiah Green that we update and modify

for our purposes. These variables are originally used for the study by Green et al.

(2017).

[Insert Table 9 about here]

A.4 Hyperparameter tuning and computational details

We adapt the search space for the hyperparameters of each machine learning model

to the requirements of our restricted sample. In particular, GKX set the maximum

depth of each tree in their random forest to 6. We increase this upper boundary to

30, which improves the validation results, especially at the one-year horizon. We

also extend the search space for the elastic net’s L1-ratio, which in GKX is fixed

at 0.5, to allow for a more flexible combination of L1- and L2-penalization. For

the gradient boosted regression trees, we limit the number of trees to the interval

[2,100], increase the maximum tree depth to 3, and extend the interval for the

learning rate to [0.005, 0.12]. In the case of the neural networks, we switch from the

seed value-based ensemble approach advocated by GKX to dropout regularization, in

combination with a structural ensemble approach, such that each neural network in

the ensemble can have a different architecture. Ensemble methods have proven to be

the gold standard in many machine learning applications, because they can subsume

the different aspects learned by each individual model within a single prediction.

However, creating ensembles can become prohibitively expensive if the number

of sample observations is large and/or each individual model is highly complex.
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Srivastava et al. (2014) address this issue by proposing dropout regularization, which

retains the capability of neural networks to learn different aspects of the data while

also being computationally more efficient than the standard ensemble approach. We

also introduce a maximum weight norm for each hidden layer. By applying both

dropout regularization and a structural ensemble approach with ten different neural

networks per ensemble, we seek to combine the best of both worlds. Compared to

GKX, we also reduce the batch size; a smaller batch size typically improves the

generalization capabilities of a model that is trained with stochastic gradient descent

(cf. Keskar et al., 2017). For a detailed comparison of the hyperparameter search

spaces, refer to Table 1 in the main text and Table A.5 in GKX.

We implement our machine learning procedures using Python’s scikit-learn ecosys-

tem. To train neural networks, we rely on Python’s deep learning library Keras

with the Tensorflow backend. Although scikit-learn also supports the training of

neural networks, it is less flexible than Keras and lacks some degrees of freedom

in the construction of network architectures. To achieve maximum parallelization

during our extensive hyperparameter search, we combine scikit-learn with the parallel

computing environment Dask. Computations are performed on a high performance

computing cluster.

A.5 Alternative feature transformation

Discussion

As described in the main text, we apply standard mean-variance or robust median-

interquartile range scaling to the firm characteristics zit, pooling across i and t.

To prevent future information from leaking into the validation and test sets, the

transformation of a feature within those sets is based on the mean, variance, median,

and interquartile range in the associated training sets. In contrast, GKX scale firm
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characteristics to the interval [−1, 1] period-by-period using cross-sectional ranks, as

advocated by Freyberger et al. (2020). More specifically, they transform their set of

firm characteristics according to

c̃it = 2 ⋅ rank(cit)
Nt + 1

− 1, (A-16)

where Nt is the number of sample firms in period t.27 The macroeconomic features

xt are not scaled, because for the individual time series there is no cross-section on

the basis of which a rank transformation could be performed. As a consequence, the

set of combined firm-level and macro features originates from

z̃it = (1, x′t)′ ⊗ c̃it. (A-17)

Which feature scaling strategy is more suitable for the present application? The rank

transformation in (A-16) invokes the idea of portfolio sorting, the hallmark of which

is that “[one is] typically not interested in the value of a characteristic in isolation, but

rather in the rank of the characteristic in the cross section” (Freyberger et al., 2020,

pp. 16-17). In the same vein, Kozak et al. (2020) argue that by transforming firm

characteristics according to their rank, they can focus on the “purely cross-sectional

aspect of return predictability.” However, the present study does not exclusively

focus on the cross-section, but is also concerned with the level of stock risk premia.

Using rank-transformed features, one cannot account for structural changes in the

level of firm characteristics.28

Kelly et al. (2019) and Gu et al. (2021), point out that the rank transformation

27 GKX give no indications as to their treatment of stocks that are tied in the ranking. We assume
that they rank tied stocks as in Kozak et al. (2020) by assigning the average rank to each of the
stocks.

28 An obvious thing to note is that without scaling the macro features, the z̃it are not elements of
[−1,1].
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renders models less susceptible to outliers. However, Kelly et al. (2019) also report

that the “results are qualitatively unchanged” compared to those obtained without

rank transformation. Da et al. (2022) arrive at a similar conclusion, reporting that

the rank transformation “barely changes any follow-up results.” As we aim at finding

the model that delivers MSE-optimal excess return predictions, the question of how

to transform and scale firm characteristics is ultimately a matter of out-of-sample

forecast performance (cf. Freyberger et al., 2020). Accordingly, we leave it up to the

validation process whether to apply standard or robust scaling, noting that the latter

mitigates the issue of outlier susceptibility.

To investigate whether our conclusions from the main analysis are affected by the

chosen feature transformation strategy, we perform a supplementary analysis using

rank-transformed firm-level features according to (A-16) and (A-17). We thereby

acknowledge the code of conduct for research in empirical finance formulated by

Arnott et al. (2019).

Results using rank-transformed firm-level features

Table 10 contains the long training results for both horizons. It is the counterpart of

Panels B of Tables 2 and 3 from the main analysis.

[Insert Table 10 about here]

At the one-month horizon (Panel A of Table 10), RF and GBRT perform worse

than the zero forecast, while ANN and ENet benefit from using rank transformed

features. Compared to the main analysis, the predictive R2 increase from 0.2% to

0.4% in case of the ANN and, quite conspicuously, from -0.3% to 0.5% in case of

the ENet. Figure 13 depicts the results for prediction-sorted portfolios. It should be

compared with Figure 4, the counterpart from the main analysis. The plots confirm

the conclusion that the theory-based approach is difficult to beat at the one-month

horizon, but also that the ENet is emerging as a new competitor.
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[Insert Figure 13 about here]

Panel B of Table 10 shows that at the one-year horizon ENet, GBRT, and ANN

by and large maintain their performance levels from the main analysis (cf. Panel

B of Table 3). The ENet’s R2
oos increases from 5.5% to 6.9%, the predictive R2 of

ANN (from 9.0% to 8.1%) and GBRT (from 10.6% to 9.7%) decrease. In terms of

R2
oos, the RF is not as conspicuous as in the main analysis. The R2

oos decreases from

19.5% to 9.6%, but with a Sharpe ratio of 0.67 (increasing from 0.58), the RF is the

best approach when prediction-sorted portfolios are used for performance assessment.

The ANN is ranked second with a Sharpe ratio of 0.63 (increasing from 0.50) and a

favorable alignment of the prediction-sorted portfolios (see Figure 14, the counterpart

of Figure 5 from the main analysis).

[Insert Figure 14 about here]

As can be seen in Table 11 – which should be compared to Table 5 from the

main analysis – the short training effect is somewhat mitigated at the one-month

horizon. Although still negative, the predictive R2 delivered by the machine learning

approaches no longer tend to extremes. As in the main analysis, the inclusion of

theory features does not improve the one-month horizon results.

[Insert Table 11 about here]

At the one-year horizon with short training, our assessment of the model perfor-

mances does not differ substantially from that of the main analysis (compare Table

12 with Table 6).

[Insert Table 12 about here]
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In terms of R2
oos and Sharpe ratio, the RF is the preferred model. Its R2

oos

increases from 12.4% to 15% and the Sharpe ratio of 0.59 remains unchanged. The

ANN ranks second according to both criteria, with an R2
oos of 11.5% (down from

14.1% in the main analysis) and a Sharpe ratio of 0.50 (up from 0.47). As in the main

analysis, GBRT (deteriorating) and ENet (though notably improving) are no strong

competitors. Table 12 further shows that the inclusion of theory features does not

improve the performance of the machine learning models, at least when a monthly

forecast frequency is considered.The conclusions regarding the theory assisted by ML

strategy also hold with rank-transformed features, insofar as the predictive R2 of

9.1% and the Sharpe ratio of 0.37 delivered by MW are notably improved by RF

assistance. The MW+RF hybrid delivers an R2
oos of 13.0%, a Sharpe ratio of 0.58,

and a favorable alignment of the prediction-sorted portfolios (see Figure 15). Similar

to the main analysis, the ANN assistance proves useful, too (the R2
oos of MW+RF is

11.2%, the Sharpe ratio is 0.45), while GBRT or ENet assistance does not.

[Insert Figure 15 about here]

Overall, we find that the conclusions of the main analysis are also supported

when using rank-transformed firm-level features.

A.6 Online Appendix

The contents of the Online Appendix are accessible at

https://drive.google.com/file/d/1kXeAq42zXkv5hqd5kS7AKxXXEmhxio_x/

view?usp=sharing.

The Online Appendix is comprised of the following sections:
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O.1 explains details regarding the construction of the database, in particular, on

how to achieve the identification and selection of S&P 500 constituents, and

on how the merge of Compustat, CRSP, and OptionMetrics data is performed.

O.2 explains in detail the use of the OptionMetrics volatility surface when computing

risk-neutral variances.

O.3 provides a juxtaposition of our implementation of the machine learning proce-

dures with that by GKX, and explains where and why we deviate.

O.4 reports the results when applying a Diebold-Mariano test for significant differ-

ences in the forecast performances, and when using alternative performance

measures. There are also a feature importance analysis that focuses on the

cross-sectional performance of MW and MW+RF based on Sharpe ratios in-

stead of predictive R2 and additional results pertaining to the disaggregated

analysis.

O.5 provides access to our program code in order to enable reproduction studies:

Python and SAS programs for the extraction and management of data, the

computation of the theory-based measures, as well as the training of machine

learning models.
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Figure 1: Proportion of non-missing observations for each stock-level feature and year. This figure
illustrates, for each of the stock-level features used in the machine learning approaches, the proportion of non-missing
firm-date observations per year. The sample period ranges from 1964 to 2018, and the features are sorted from top to
bottom in ascending order, according to their average proportion of non-missing observations. The darker the color,
the more observations are available. The lighter the color, the less observations are available. All white indicates
100% missing values, the darkest blue means no missing values. The red vertical line indicates the year 1974, which
is the first year that we use in the long training scheme described in Figure 2. Because of the excessive amount of
missing values, we exclude the variables real estate holdings and secured debt from the empirical analysis.
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Real estate holdings
Secured debt
R&D-to-sales

R&D-to-market capitalization
Accrual volatility

Cash flow volatility
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Growth in long term net operating assets
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Corporate investment
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Cash holdings
Earnings volatility

Return on assets
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Working capital accruals

Percent accruals
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Abnormal earnings announcement volume
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Cash flow-to-price ratio
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Cash productivity
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Operating profitability
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Dollar trading volume

Growth in long-term debt
12-month momentum
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Share turnover

Volatility of liquidity - Dollar trading volume
Volatility of liquidity - Share turnover

Illiquidity
Zero trading days
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Return volatility
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Dollar market value
1-month momentum
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Figure 2: Long training scheme. The figure depicts the annual horizon variant of the long training scheme.
The data range from October 1974 to December 2017. The training period (red/dark grey) initially spans 10 years
and increases by one year after each validation step. Each of the 22 validation steps delivers a new set of parameter
estimates. Each validation window (gold/light grey) covers 12 years and is rolled forward with a fixed width, followed
by one year of out-of-sample testing (checkered blue).
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θ̂3
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Figure 3: Short training scheme. The figure depicts the annual horizon variant of the short training scheme.
The data range from January 1996 to December 2017. The training period (red/dark grey) initially spans one year
and increases by one year after each validation step. Each of the 20 validation steps delivers a new set of parameter
estimates. Each validation window (gold/light grey) covers one year, followed by one year of out-of-sample testing
(checkered blue).

ϑ̂1

ϑ̂2

ϑ̂3

⋮

ϑ̂20

2y 20y

53



Figure 4: Prediction-sorted portfolios, one-month horizon: long training. The stocks are sorted into
deciles according to the one-month horizon excess return prediction implied by the respective approach, and realized
excess returns are computed for each portfolio. The prediction-sorted portfolios are formed either at the end of each
month or daily. The four panels plot the predicted against realized portfolio excess returns (in %), averaged over
the sample period. The numbers indicate the rank of the prediction decile. The rank correlation between predicted
and realized excess returns in each panel is Kendall’s τ . Approaches considered are MW (Panel A), an ANN (Panel
C), and RF (Panel D). Panel B shows the MW results when the prediction-sorted portfolios are formed at a daily
frequency. The out-of-sample period ranges from January 1996 to November 2018. Machine learning results are
based on the long training scheme depicted in Figure 2.
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Figure 5: Prediction-sorted portfolios, one-year horizon: long training. The stocks are sorted into deciles
according to the one-year horizon excess return prediction implied by the respective approach, and realized excess
returns are computed for each portfolio. The prediction-sorted portfolios are formed either at the end of each month
or daily. The four panels plot predicted against realized portfolio excess returns (in %), averaged over the sample
period. The numbers indicate the rank of the prediction decile. The rank correlation between predicted and realized
excess returns in each panel is Kendall’s τ . Approaches considered are MW (Panel A), an ANN (Panel C), and
RF (Panel D). Panel B shows the MW results when the prediction-sorted portfolios are formed at a daily frequency.
The out-of-sample period ranges from January 1996 to December 2017. Machine learning results are based on the
long training scheme depicted in Figure 2.
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Figure 6: Time series of predictive R2, one-year horizon: long training. The figure depicts the R2
oos,s

time series based on annual test samples. The forecast horizon is one year; the prediction frequency is monthly
(end-of-month). The out-of-sample period ranges from January 1996 to December 2017. Panel A contrasts the MW
results with the RF, which in terms of R2

oos is the best among the machine learning approaches. Panel B shows the
R2

oos,s time series of the remaining approaches. The machine learning results are obtained using the long training
scheme depicted in Figure 2.

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−60

−40

−20

0

20

40

R
2 oo
s,
s
×

10
0

Panel A

MW RF

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−160

−120

−80

−40

0

40

R
2 oo
s,
s
×

10
0

Panel B

ENet

KT

ANN

GBRT

56



Figure 7: Time series of predictive R2, one-year horizon: theory-based vs. machine learning with
and without theory features. The figure depicts the R2

oos,s time series based on annual test samples. The
forecast horizon is one year; the prediction frequency is monthly (end-of-month). The out-of-sample period ranges
from January 1998 to December 2017. The machine learning results are obtained using the short training scheme
depicted in Figure 3. For a comparison, we also display the R2

oos,s for MW and the long-trained RF from Panel A
of Figure 6.
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Figure 8: Time series of predictive R2, one-year horizon: MW+RF vs. pure RF (long-training) vs.
MW. The figure depicts the R2

oos,s time series based on annual test samples for the MW+RF hybrid (theory assisted
by machine learning). The forecast horizon is one year; the prediction frequency is monthly (end-of-month). The
out-of-sample period ranges from January 1998 to December 2017. The MW+RF results are based on the short
training scheme depicted in Figure 3. For a comparison, we also display the R2

oos,s for MW and the long-trained
RF from Panel A of Figure 6.
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Figure 9: Prediction-sorted portfolios, one-year horizon: theory assisted by machine learning ap-
proaches. The stocks are sorted into deciles according to the one-year horizon excess return prediction implied by
the respective approach, and realized excess returns are computed for each portfolio. The prediction-sorted portfo-
lios are formed at the end of each month. The two panels plot predicted against realized portfolio excess returns (in
%), averaged over the sample period. The numbers indicate the rank of the prediction decile. The rank correlation
between predicted and realized excess returns in each panel is Kendall’s τ . Approaches considered are MW assisted
by an ANN (MW + ANN, Panel A) and MW assisted by RF (MW+RF, Panel B). The out-of-sample period ranges
from January 1998 to December 2017. Results are based on the short training scheme depicted in Figure 3.
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Figure 10: Feature importance, one-year horizon: random forest (short training). The figure depicts
feature importance (Panel A: firm-level features, Panel B: macro-level features) for the RF. The forecast horizon
is one year; the prediction frequency is end-of-month. A feature’s importance is measured by the reduction of the
predictive R2 that is induced by setting the feature’s values in the test samples to 0. In both panels, the features
are sorted in descending order of importance. Panel A focuses on the ten most important firm-level features. The
dashed vertical line, included for reference, represents the R2

oos that is obtained without setting any feature’s values
to 0. The out-of-sample period ranges from January 1998 to December 2017. Results are based on the short training
scheme depicted in Figure 3.
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Figure 11: Feature importance, one-year horizon: MW+RF. The figure depicts feature importance (Panel
A: firm-level features, Panel B: macro-level features) for the MW assisted by RF strategy. The forecast horizon
is one year; the prediction frequency is end-of-month. A feature’s importance is measured by the reduction in R2

that is induced by setting the feature’s values in the test samples to 0. In both panels, the features are sorted in
descending order of importance. Panel A focuses on the ten most important firm-level features. The dashed vertical
line, included for reference, represents the R2

oos that is obtained without setting any feature’s values to 0. The
out-of-sample period ranges from January 1998 to December 2017. Results are based on the short training scheme
depicted in Figure 3.
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Figure 12: Identification of S&P 500 constituents. The figure illustrates the ability to detect historical
S&P 500 constituents according to the implemented identification strategy. Panel A presents the coverage of HSPC
achieved at different stages of the data processing. The line in light grey refers to the HSPC found in Compustat.
The blue line shows for how many of these constituents it is possible to find stock price information in CRSP. The
red line starting in 1996 illustrates for how many HSPC it is also possible to find information in OptionMetrics.
Panel B depicts the aggregate market capitalization for each of these three groups of HSPC.
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Figure 13: Prediction-sorted portfolios, one-month horizon: long training, rank transformation. The
stocks are sorted into deciles according to the one-month horizon excess return prediction implied by the respective
approach, and realized excess returns are computed for each portfolio. The prediction-sorted portfolios are formed
either at the end of each month or daily. The four panels plot the predicted against realized portfolio excess
returns (in %), averaged over the sample period. The numbers indicate the rank of the prediction decile. The rank
correlation between predicted and realized excess returns in each panel is Kendall’s τ . Approaches considered are
MW (Panel A), ENet (Panel C), and RF (Panel D). Panel B shows the MW results when the prediction-sorted
portfolios are formed at a daily frequency. The out-of-sample period ranges from January 1996 to November 2018.
The features are rank-scaled as described in Appendix A.5. Machine learning results are based on the long training
scheme depicted in Figure 2.
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Figure 14: Prediction-sorted portfolios, one-year horizon: long training, rank transformation. The
stocks are sorted into deciles according to the one-year horizon excess return prediction implied by the respective
approach, and realized excess returns are computed for each portfolio. The prediction-sorted portfolios are formed
either at the end of each month or daily. The four panels plot predicted against realized portfolio excess returns (in
%), averaged over the sample period. The numbers indicate the rank of the prediction decile. The rank correlation
between predicted and realized excess returns in each panel is Kendall’s τ . Approaches considered are MW (Panel
A), an ANN (Panel C), and RF (Panel D). Panel B shows the MW results when the prediction-sorted portfolios are
formed at a daily frequency. The out-of-sample period ranges from January 1996 to December 2017. The features
are rank-scaled as described in Appendix A.5. Machine learning results are based on the long training scheme
depicted in Figure 2.
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Figure 15: Prediction-sorted portfolios, one-year horizon: theory assisted by machine learning ap-
proaches (rank transformation). The stocks are sorted into deciles according to the one-year horizon excess
return prediction implied by the respective approach, and realized excess returns are computed for each portfolio.
The prediction-sorted portfolios are formed at the end of each month. The two panels plot predicted against realized
portfolio excess returns (in %), averaged over the sample period. The numbers indicate the rank of the prediction
decile. The rank correlation between predicted and realized excess returns in each panel is Kendall’s τ . Approaches
considered are MW assisted by an ANN (MW + ANN, Panel A) and MW assisted by RF (MW+RF, Panel B).
The out-of-sample period ranges from January 1998 to December 2017. The features are rank-scaled as described
in Appendix A.5. Results are based on the short training scheme depicted in Figure 3.
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Table 1: Hyperparameter search space. This table shows the hyperparameter search space and the Python
packages used for both long and short training. Parameter configurations not listed here correspond to the
respective default settings.

Panel A: ENet Panel B: RF

Package: Package:
Scikit-learn (SGDRegressor) Scikit-learn (RandomForestRegressor)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
L1-L2-penalty: {x ∈ R ∶ 10−5 ≤ x ≤ 10−1} Number of trees: 300
L1-ratio: {x ∈ R ∶ 0 ≤ x ≤ 1} Max. depth: {x ∈ N ∶ 2 ≤ x ≤ 30}

Max. features: {x ∈ N ∶ 2 ≤ x ≤ 150}

Optimization:
Stochastic gradient descent
Tolerance: 10−4

Max. epochs: 1,000
Learning rate: 10−4/t0.1

Random search: Random search:
Number of combinations: 1,000 Number of combinations: 500

Panel C: GBRT Panel D: ANN

Package: Package:
Scikit-learn (GradientBoostingRegressor) Tensorflow/Keras (Sequential)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
Number of trees: {x ∈ N ∶ 2 ≤ x ≤ 100} Activation: TanH (Glorot), ReLU (He)
Max. depth: {x ∈ N ∶ 1 ≤ x ≤ 3} Hidden layers: {1,2,3,4,5}
Max. features: {20,50,All} First hidden layer nodes: {32,64,128}
Learning rate: {x ∈ R ∶ 5 × 10−3 ≤ x ≤ 1.2 × 10−1} Network architecture: Pyramid

Max. weight norm: 4
Dropout rate: {x ∈ R ∶ 0 ≤ x ≤ 0.5}
L1-penalty: {x ∈ R ∶ 10−7 ≤ x ≤ 10−2}

Optimization:
Adaptive moment estimation
Batch size: {100,200,500,1,000}
Learning rate: {x ∈ R ∶ 10−4 ≤ x ≤ 10−2}
Early stopping patience: 6
Max. epochs: 50
Batch normalization before activ.
Number of networks in ensemble: 10

Random search: Random search:
Number of combinations: 300 Number of combinations: 1,000
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Table 2: Performance comparison, one-month horizon: long training. The table reports predictive R2,
their standard deviation and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin and
Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches and the four machine learning models. The
standard deviation of the R2

oos,s × 100 (Std Dev) is calculated based on the annual test samples. The SR refer to
a zero-investment strategy long in the portfolio of stocks with the highest excess return prediction and short in
the portfolio of stocks with the lowest excess return prediction. The p-values are associated with a test of the null
hypothesis that the respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. For Panel A,
the one-month horizon forecasts are issued at a daily frequency. For Panel B, the one-month horizon forecasts are
issued at the end of each month. The out-of-sample testing period starts in January 1996 and ends in November
2018. The machine learning results are obtained using the long training scheme depicted in Figure 2.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.9 2.3 0.008 0.37
KT −0.5 5.3 0.530 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet 0.0 2.9 0.072 0.07
ANN 0.5 3.1 0.038 0.26
GBRT 0.3 2.9 0.036 0.29
RF −0.5 3.8 0.215 0.15

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.2 3.2 0.154 0.30
KT −1.8 6.9 0.704 0.30

M
a
ch

in
e

L
ea

rn
in

g ENet −0.3 3.5 0.161 0.00
ANN 0.2 3.5 0.096 0.28
GBRT −0.6 4.2 0.248 0.20
RF −1.6 5.2 0.435 0.13
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Table 3: Performance comparison, one-year horizon: long training. The table reports predictive R2,
their standard deviation and statistical significance, and the annualized SR (SR) implied by Martin and Wagner’s
(2019) and Kadan and Tang’s (2020) theory-based approaches and the four machine learning models. The standard
deviation of the R2

oos,s × 100 (Std Dev) is calculated based on the annual test samples. The SR refer to a zero-
investment strategy long in the portfolio of stocks with the highest excess return prediction and short in the portfolio
of stocks with the lowest excess return prediction. The p-values are associated with a test of the null hypothesis that
the respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. For Panel A, the one-year
horizon forecasts are issued at a daily frequency. For Panel B, the one-year horizon forecasts are issued at the end
of each month. The out-of-sample testing period starts in January 1996 and ends in December 2017. The machine
learning results are obtained using the long training scheme depicted in Figure 2.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 9.1 16.0 0.040 0.38
KT 3.5 47.5 0.675 0.38

M
a
ch

in
e

L
ea

rn
in

g ENet 4.0 19.5 0.201 0.35
ANN 8.2 17.6 0.029 0.49
GBRT 9.9 19.9 0.039 0.36
RF 18.2 22.6 0.003 0.56

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 8.8 16.3 0.051 0.37
KT 3.1 47.6 0.694 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet 5.5 18.5 0.125 0.36
ANN 9.0 19.0 0.028 0.50
GBRT 10.6 20.5 0.035 0.36
RF 19.5 23.6 0.002 0.58
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Table 4: Forecast correlations. The table reports Pearson correlation coefficients for the out-of-sample forecasts
of the theory-based approaches (Martin and Wagner (2019); Kadan and Tang (2020)) and the four machine learning
models with the long training scheme depicted in Figure 2. Panel A refers to a forecast horizon of one month with a
testing period from January 1996 to November 2018. Panel B refers to a forecast horizon of one year and a testing
period from January 1996 to December 2017. All forecasts are issued at the end of each month.

Panel A: One-month horizon

ANN RF GBRT ENet KT

MW 0.01 0.25 0.32 −0.06 0.98
KT 0.02 0.25 0.31 −0.04
ENet 0.32 0.70 0.45
GBRT 0.11 0.82
RF 0.22

Panel B: One-year horizon

ANN RF GBRT ENet KT

MW 0.19 0.33 0.34 0.00 0.98
KT 0.20 0.32 0.35 0.02
ENet 0.69 0.49 0.57
GBRT 0.70 0.72
RF 0.59
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Table 5: Performance comparison, one-month horizon: theory-based vs. machine learning approaches
vs. hybrid approach. The table reports predictive R2, their standard deviation and statistical significance, and
the annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-
based approaches, the four machine learning models, and a hybrid approach in which the theory-consistent forecasts
serve as additional features in the machine learning models (ML with theory features). The standard deviation
of the R2

oos,s × 100 (Std Dev) is calculated based on the annual test samples. The SR refer to a zero-investment
strategy long in the portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks
with the lowest excess return prediction. The p-values are associated with a test of the null hypothesis that the
respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. For Panel A, the one-month
horizon forecasts are issued at a daily frequency, and for Panel B, the one-month horizon forecasts are issued at
the end of each month. The out-of-sample testing period starts in January 1998 and ends in November 2018. The
machine learning results are obtained using the short training scheme depicted in Figure 3.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.8 2.4 0.017 0.37
KT −0.7 5.5 0.590 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet −4.0 8.1 0.844 0.33
ANN −2.7 5.0 0.864 0.22
GBRT −22.6 30.7 0.884 0.12
RF −5.4 7.8 0.924 −0.04

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet −3.0 6.4 0.870 0.46
ANN −30.7 68.7 0.853 0.20
GBRT −10.7 21.5 0.844 0.37
RF −3.0 5.8 0.868 0.17

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.1 3.4 0.206 0.32
KT −2.0 7.2 0.739 0.32

M
a
ch

in
e

L
ea

rn
in

g ENet −4.0 8.6 0.840 0.21
ANN −3.1 5.0 0.853 0.13
GBRT −29.5 57.7 0.860 0.15
RF −8.4 15.1 0.869 0.00

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet −3.2 7.1 0.790 0.29
ANN −36.0 69.5 0.859 0.07
GBRT −25.6 53.1 0.855 0.20
RF −7.6 13.3 0.871 0.01
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Table 6: Performance comparison, one-year horizon, monthly forecast frequency: theory-based vs.
machine learning approaches vs. hybrid approaches. The table reports predictive R2, their standard devia-
tion and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and
Kadan and Tang’s (2020) theory-based approaches and the four machine learning models. Results of two hybrid
approaches, one in which the theory-consistent forecasts serve as additional features in the machine learning models
(ML with theory features), and another in which the machine learning models are trained to account for the approx-
imation residuals of MW (Theory assisted by ML), are also reported. The standard deviation of the R2

oos,s × 100
(Std Dev) is calculated based on the annual test samples. The SR refer to a zero-investment strategy long in the
portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks with the lowest excess
return prediction. The p-values are associated with a test of the null hypothesis that the respective forecast has
no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. All results refer to a one-year forecast horizon and use
the out-of-sample testing period January 1998 to December 2017. All forecasts are issued monthly (end-of-month).
The machine learning results are obtained using the short training scheme depicted in Figure 3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 9.1 17.1 0.072 0.37
KT 3.1 49.9 0.706 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet −31.6 153.6 0.873 0.36
ANN 14.1 18.1 0.004 0.47
GBRT 10.3 36.6 0.308 0.45
RF 12.4 45.1 0.329 0.59

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet −32.6 160.3 0.868 0.36
ANN 14.1 19.7 0.013 0.57
GBRT 9.7 39.7 0.356 0.42
RF 14.6 42.3 0.244 0.62

T
h
eo

ry
a
ss

is
te

d
b
y

M
L

MW+ENet −38.2 192.9 0.885 0.45
MW+ANN 14.2 25.8 0.073 0.51
MW+GBRT 9.2 45.2 0.440 0.40
MW+RF 16.1 50.6 0.259 0.65
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Table 7: Performance comparison, one-year horizon, daily forecast frequency: theory-based vs. ma-
chine learning approaches vs. hybrid approaches. The table reports predictive R2, their standard deviation
and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and
Kadan and Tang’s (2020) theory-based approaches and the four machine learning models. Results of two hybrid
approaches, one in which the theory-consistent forecasts serve as additional features in the machine learning models
(ML with theory features), and another in which machine learning models are trained to account for the approxi-
mation residuals of MW (Theory assisted by ML), are also reported. The standard deviation of the R2

oos,s × 100
(Std Dev) is calculated based on the annual test samples. The SR refer to a zero-investment strategy long in the
portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks with the lowest
excess return prediction. The p-values are associated with a test of the null hypothesis that the respective forecast
has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. All results refer to a one-year forecast horizon and
use the out-of-sample testing period January 1998 to December 2017. All forecasts are issued daily. The machine
learning results are obtained using the short training scheme depicted in Figure 3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 9.5 16.8 0.057 0.37
KT 3.4 49.8 0.689 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet −35.5 140.9 0.898 0.36
ANN 12.0 18.7 0.032 0.45
GBRT 8.8 36.9 0.394 0.44
RF 9.0 46.1 0.462 0.56

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet −27.4 138.6 0.861 0.38
ANN 16.1 20.0 0.005 0.58
GBRT 11.6 38.5 0.308 0.44
RF 18.6 39.9 0.126 0.67

T
h
eo

ry
a
ss

is
te

d
b
y

M
L

MW+ENet −41.2 176.6 0.902 0.45
MW+ANN 12.8 26.3 0.154 0.50
MW+GBRT 8.2 47.1 0.522 0.40
MW+RF 14.1 51.9 0.355 0.62
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Table 8: Disaggregated performance comparison, one-year horizon, monthly forecast frequency. To
obtain the results in Panel A, we sort the sample stocks into quintiles, according to the size of stock-specific
valuation ratios (book-to-market and earnings-to-price), liquidity (Amihud illiquidity and dollar trading volume),
and momentum (industry and 12-month). The sorting is renewed each month, taking into account the availability
conditions outlined in Section 3. The pooled R2

oos × 100 according to Equation (3.2) is reported for each quintile
portfolio and the approaches of interest, namely, MW, pure ML (ANN and RF), and theory assisted by machine
learning (MW+RF and MW+ANN). Panel B shows the pooled R2

oos × 100 for each of the 10 industry portfolios
based on the one-digit SIC code. The machine learning results are obtained using the short training scheme depicted
in Figure 3.

Panel A: R2
oos × 100 for quintile portfolios

Book-to-market Earnings-to-price
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

V
al

u
at

io
n

ra
ti

os

MW 8.1 7.1 8.7 9.1 12.6 8.9 7.3 8.8 10.1 11.6
ANN 14.7 17.1 11.9 14.0 12.1 13.1 14.6 16.8 13.4 14.1
RF 6.7 16.2 9.4 17.8 15.4 8.0 13.0 17.7 16.1 16.7
MW+ANN 14.9 15.7 10.8 13.4 14.9 13.1 13.8 16.7 14.5 15.5
MW+RF 8.9 19.0 13.4 21.8 21.4 10.1 17.0 22.4 20.4 22.5

Dollar trading volume Amihud illiquidity
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

L
iq

u
id

it
y

MW 15.7 10.5 10.2 6.2 −0.9 −1.0 4.1 7.3 10.7 14.9
ANN 17.2 13.1 14.5 15.8 8.0 8.2 12.4 12.8 16.0 16.5
RF 21.8 16.0 16.8 14.0 −11.3 −8.9 4.8 12.4 19.4 20.1
MW+ANN 19.6 13.9 15.7 16.2 2.9 4.1 10.2 12.7 17.3 18.7
MW+RF 27.5 20.0 20.7 17.1 −11.2 −7.5 8.1 15.1 23.3 25.0

12-month momentum Industry momentum
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

M
om

en
tu

m MW 13.9 9.4 7.5 5.9 5.8 7.7 11.1 10.3 10.3 6.4
ANN 13.9 11.1 14.8 13.2 15.9 13.0 17.4 15.3 14.0 10.8
RF 15.2 12.7 13.1 15.3 7.2 13.1 18.9 19.6 11.1 0.5
MW+ANN 17.0 10.8 13.1 12.2 14.3 11.9 17.8 16.1 16.2 9.5
MW+RF 21.4 18.1 16.3 18.4 7.4 15.6 23.4 23.6 17.5 1.8

Panel B: R2
oos × 100 for industry portfolios (one digit SIC code)

0 1 2 3 4 5 6 7 8 9

MW 6.6 5.4 11.9 8.0 9.0 8.7 12.0 8.0 16.9 2.1
ANN 23.9 12.7 12.2 15.8 16.6 8.1 12.0 17.3 3.6 12.9
RF 29.3 15.6 10.8 13.2 16.5 7.7 11.9 11.4 9.5 15.2
MW+ANN 22.7 8.3 13.4 14.3 19.2 8.6 15.6 16.5 11.0 18.4
MW+RF 31.6 18.1 14.6 16.0 22.5 12.5 18.1 12.4 21.5 12.6
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Table 9: Variable description. The table contains information on the variables used for the empirical analysis. Panel
A covers the theory/option-based risk premium measures proposed by Martin and Wagner (2019), Kadan and Tang (2020),
and Martin (2017). The information in Panels B1 and B2 is taken from Table A.6 in Gu et al. (2020). For each variable, the
table reports its debut in finance literature (author(s), year, journal), from which database it can be constructed (source),
and at which frequency it is reported (freq.). For the stock-level features, we also supply the name of the respective variable
used in the SAS program supplied by Jeremiah Green. The updated and modified program is provided in the Online
Appendix, and can be used to trace the construction of each variable. The names of the macro-level variables come from
Amit Goyal’s original data files.

Panel A: Theory-
based variables

Source Freq. Author(s) Year Jnl.

MW Compustat,
CRSP, Option-
Metrics

Daily Martin & Wagner 2019 JF

KT Compustat,
CRSP, Option-
Metrics

Daily Kadan & Tang 2019 RFS

Lower bound market
equity premium

Compustat,
CRSP, Option-
Metrics

Daily Martin 2017 QJE

Panel B1: Stock-
level variables

Code name Source Freq. Author(s) Year Jnl.

1-month momentum mom1m CRSP Monthly Jegadeesh & Tit-
man

1993 JF

6-month momentum mom6m CRSP Monthly Jegadeesh & Tit-
man

1993 JF

12-month momentum mom12m CRSP Monthly Jegadeesh 1990 JF
36-month momentum mom36m CRSP Monthly Jegadeesh & Tit-

man
1993 JF

Abnormal earnings an-
nouncement volume

aeavol Compustat,
CRSP

Quarterly Lerman, Livnat &
Mendenhall

2007 WP

Absolute accruals absacc Compustat Annual Bandyopadhyay,
Huang & Wirjanto

2010 WP

Accrual volatility stdacc Compustat Quarterly Bandyopadhyay,
Huang & Wirjanto

2010 WP

Asset growth agr Compustat Annual Cooper, Gulen &
Schill

2008 JF

Beta beta CRSP Monthly Fama & MacBeth 1973 JPE
Beta squared betasq CRSP Monthly Fama & MacBeth 1973 JPE
Bid-ask spread baspread CRSP Monthly Amihud & Mendel-

son
1989 JF

Book-to-market bm Compustat,
CRSP

Annual Rosenberg, Reid &
Lanstein

1985 JPM

Capital expenditures
and inventory

invest Compustat Annual Chen & Zhang 2010 JF

Cash flow-to-debt cashdebt Compustat Annual Ou & Penman 1989 JAE
Cash flow-to-price cfp Compustat Annual Desai, Rajgopal &

Venkatachalam
2004 TAR

Cash flow volatility stdcf Compustat Quarterly Huang 2009 JEF
Cash holdings cash Compustat Quarterly Palazzo 2012 JFE
Cash productivity cashpr Compustat Annual Chandrashekar &

Rao
2009 WP

Change in 6-month mo-
mentum

chmom CRSP Monthly Gettleman &
Marks

2006 WP

Change in inventory chinv Compustat Annual Thomas & Zhang 2002 RAS
Change in shares out-
standing

chcsho Compustat Annual Pontiff &
Woodgate

2008 JF

Change in tax expense chtx Compustat Quarterly Thomas & Zhang 2011 JAR
Convertible debt indi-
cator

convind Compustat Annual Valta 2016 JFQA

Corporate investment cinvest Compustat Quarterly Titman, Wei & Xie 2004 JFQA
Current ratio currat Compustat Annual Ou & Penman 1989 JAE

Table 9 continued . . .
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Table 9 continued . . .

. . . Code name Source Freq. Author(s) Year Jnl.

Debt capacity/firm
tangibility

tang Compustat Annual Almeida &
Campello

2007 RFS

Depreciation/PP&E depr Compustat Annual Holthausen & Lar-
cker

1992 JAE

Dividend initiation divi Compustat Annual Michaely, Thaler &
Womack

1995 JF

Dividend omission divo Compustat Annual Michaely, Thaler &
Womack

1995 JF

Dividend-to-price dy Compustat Annual Litzenberger & Ra-
maswamy

1982 JF

Dollar market value mve CRSP Monthly Banz 1981 JFE
Dollar trading volume dolvol CRSP Monthly Chordia, Sub-

rahmanyam &
Anshuman

2001 JFE

Earnings announce-
ment return

ear Compustat,
CRSP

Quarterly Kishore, Brandt,
Santa-Clara &
Venkatachalam

2008 WP

Earnings-to-price ep Compustat Annual Basu 1977 JF
Earnings volatility roavol Compustat Quarterly Francis, LaFond,

Olsson & Schipper
2004 TAR

Employee growth rate hire Compustat Annual Bazdresch, Belo &
Lin

2014 JPE

Financial statement
score (q)

ms Compustat Quarterly Mohanram 2005 RAS

Financial statements
score (a)

ps Compustat Annual Piotroski 2000 JAR

Gross profitability gma Compustat Annual Novy-Marx 2013 JFE
Growth in capital ex-
penditures

grcapx Compustat Annual Anderson &
Garcia-Feijoo

2006 JF

Growth in common
shareholder equity

egr Compustat Annual Richardson, Sloan,
Soliman & Tuna

2005 JAE

Growth in long term
net operating assets

grltnoa Compustat Annual Fairfield,
Whisenant &
Yohn

2003 TAR

Growth in long-term
debt

lgr Compustat Annual Richardson, Sloan,
Soliman & Tuna

2005 JAE

Idiosyncratic return
volatility

idiovol CRSP Monthly Ali, Hwang &
Trombley

2003 JFE

(Amihud) Illiquidity ill CRSP Monthly Amihud 2002 JFM
Industry momentum indmom CRSP Monthly Moskowitz & Grin-

blatt
1999 JF

Industry sales concen-
tration

herf Compustat Annual Hou & Robinson 2006 JF

Industry-adjusted
book-to-market

bm ia Compustat,
CRSP

Annual Asness, Porter &
Stevens

2000 WP

Industry-adjusted cash
flow-to-price ratio

cfp ia Compustat Annual Asness, Porter &
Stevens

2000 WP

Industry-adjusted
change in asset
turnover

chatoia Compustat Annual Soliman 2008 TAR

Industry-adjusted
change in employees

chempia Compustat Annual Asness, Porter &
Stevens

1994 WP

Industry-adjusted
change in profit mar-
gin

chpmia Compustat Annual Soliman 2008 TAR

Industry-adjusted %
change in capital exp.

pchcapx ia Compustat Annual Abarbanell &
Bushee

1998 TAR

Leverage lev Compustat Annual Bhandari 1988 JF
Maximum daily return maxret CRSP Monthly Bali, Cakici &

Whitelaw
2011 JFE

Number of earnings in-
creases

nincr Compustat Quarterly Barth, Elliott &
Finn

1999 JAR

Table 9 continued . . .
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Table 9 continued . . .

. . . Code name Source Freq. Author(s) Year Jnl.

Number of years since
first Compustat cover-
age

age Compustat Annual Jiang, Lee & Zhang 2005 RAS

Operating profitability operprof Compustat Annual Fama & French 2015 JFE
Organizational capital orgcap Compustat Annual Eisfeldt & Pa-

panikolaou
2013 JF

% change in current ra-
tio

pchcurrat Compustat Annual Ou & Penman 1989 JAE

% change in deprecia-
tion

pchdepr Compustat Annual Holthausen & Lar-
cker

1992 JAE

% change in gross mar-
gin - % change in sales

pchgm pchsale Compustat Annual Abarbanell &
Bushee

1998 TAR

% change in quick ratio pchquick Compustat Annual Ou & Penman 1989 JAE
% change in sales - %
change in A/R

pchsale pchrect Compustat Annual Abarbanell &
Bushee

1998 TAR

% change in sales - %
change in inventory

pchsale pchinvt Compustat Annual Abarbanell &
Bushee

1998 TAR

% change in sales - %
change in SG&A

pchsale pchxsga Compustat Annual Abarbanell &
Bushee

1998 TAR

% change sales-to-
inventory

pchsaleinv Compustat Annual Ou & Penman 1989 JAE

Percent accruals pctacc Compustat Annual Hafzalla, Lund-
holm & Van
Winkle

2011 TAR

Price delay pricedelay CRSP Monthly Hou & Moskowitz 2005 RFS
Quick ratio quick Compustat Annual Ou & Penman 1989 JAE
R&D increase rd Compustat Annual Eberhart, Maxwell

& Siddique
2004 JF

R&D-to-market capi-
talization

rde mve Compustat Annual Guo, Lev & Shi 2006 JBFA

R&D-to-sales rd sale Compustat Annual Guo, Lev & Shi 2006 JBFA
Real estate holdings realestate Compustat Annual Tuzel 2010 RFS
Return on assets roaq Compustat Quarterly Balakrishnan, Bar-

tov & Faurel
2010 JAE

Return on equity roeq Compustat Quarterly Hou, Xue & Zhang 2015 RFS
Return on invested cap-
ital

roic Compustat Annual Brown & Rowe 2007 WP

Return volatility retvol CRSP Monthly Ang, Hodrick,
Xing & Zhang

2006 JF

Revenue surprise rsup Compustat Quarterly Kama 2009 JBFA
Sales growth sgr Compustat Annual Lakonishok,

Shleifer & Vishny
1994 JF

Sales-to-cash salecash Compustat Annual Ou & Penman 1989 JAE
Sales-to-inventory saleinv Compustat Annual Ou & Penman 1989 JAE
Sales-to-price sp Compustat Annual Barbee, Mukherji,

& Raines
1996 FAJ

Sales-to-receivables salerec Compustat Annual Ou & Penman 1989 JAE
Secured debt indicator securedind Compustat Annual Valta 2016 JFQA
Share turnover turn CRSP Monthly Datar, Naik & Rad-

cliffe
1998 JFM

Sin stocks sin Compustat Annual Hong & Kacper-
czyk

2009 JFE

Tax income-to-book in-
come

tb Compustat Annual Lev & Nissim 2004 TAR

Volatility of liquidity
(dollar trading vol.)

std dolvol CRSP Monthly Chordia, Sub-
rahmanyam &
Anshuman

2001 JFE

Volatility of liquidity
(share turnover)

std turn CRSP Monthly Chordia, Sub-
rahmanyam, &
Anshuman

2001 JFE

Working capital accru-
als

acc Compustat Annual Sloan 1996 TAR
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Table 9 continued . . .

. . . Code name Source Freq. Author(s) Year Jnl.

Zero trading days zerotrade CRSP Monthly Liu 2006 JFE

Panel B2: Macro-
level variables

Code name Source Freq. Author(s) Year Jnl.

Book-to-market ratio b/m Amit Goyal Monthly Welch & Goyal 2008 RFS
Default yield spread dfy Amit Goyal Monthly Welch & Goyal 2008 RFS
Dividend-price ratio dp Amit Goyal Monthly Welch & Goyal 2008 RFS
Earnings-price ratio eq Amit Goyal Monthly Welch & Goyal 2008 RFS
Net equity expansion ntis Amit Goyal Monthly Welch & Goyal 2008 RFS
Stock variance svar Amit Goyal Monthly Welch & Goyal 2008 RFS
Term spread tms Amit Goyal Monthly Welch & Goyal 2008 RFS
Treasury bill rate tbl Amit Goyal Monthly Welch & Goyal 2008 RFS
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Table 10: Performance comparison, monthly forecast frequency: long training, rank transformation.
The table reports predictive R2, their standard deviation and statistical significance, and the annualized Sharpe
ratios (SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches and
the four machine learning models. The standard deviation of the R2

oos,s × 100 (Std Dev) is calculated based on the
annual test samples. The SR refer to a zero-investment strategy long in the portfolio of stocks with the highest
excess return prediction and short in the portfolio of stocks with the lowest excess return prediction. The p-values
are associated with a test of the null hypothesis that the respective forecast has no explanatory power over the zero
forecast, E(R2

oos,s) ≤ 0. For Panel A, the forecast horizon is one month and for Panel B, it is one year. In both
panels, forecasts are issued at the end of each month. The out-of-sample testing period starts in January 1996 and
ends in November 2018. The features are rank-scaled as described in Appendix A.5. The machine learning results
are obtained using the long training scheme depicted in Figure 2.

Panel A: one-month horizon

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.2 3.2 0.154 0.30
KT −1.8 6.9 0.704 0.30

M
a
ch

in
e

L
ea

rn
in

g ENet 0.5 3.5 0.073 0.65
ANN 0.4 3.4 0.053 0.34
GBRT −0.8 4.3 0.300 0.37
RF −0.8 4.8 0.294 0.17

Panel B: one-year horizon

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 8.8 16.3 0.051 0.37
KT 3.1 47.6 0.694 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet 6.9 22.5 0.174 0.49
ANN 8.1 22.1 0.097 0.63
GBRT 9.7 23.1 0.086 0.49
RF 9.6 43.3 0.361 0.67
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Table 11: Performance comparison, one-month horizon, monthly forecast frequency: theory-based
vs. machine learning approaches vs. hybrid approach, rank transformation. The table reports predictive
R2, their standard deviation and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin
and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches, the four machine learning models,
and a hybrid approach in which the theory-consistent forecasts serve as additional features in the machine learning
models (ML with theory features). The standard deviation of the R2

oos,s × 100 (Std Dev) is calculated based on the
annual test samples. The SR refer to a zero-investment strategy long in the portfolio of stocks with the highest
excess return prediction and short in the portfolio of stocks with the lowest excess return prediction. The p-values
are associated with a test of the null hypothesis that the respective forecast has no explanatory power over the zero
forecast, E(R2

oos,s) ≤ 0. The one-month horizon forecasts are issued at the end of each month. The out-of-sample
testing period starts in January 1998 and ends in November 2018. The features are rank-scaled as described in
Appendix A.5. The machine learning results are obtained using the short training scheme depicted in Figure 3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 0.1 3.4 0.206 0.32
KT −2.0 7.2 0.739 0.32

M
a
ch

in
e

L
ea

rn
in

g ENet −0.1 2.8 0.277 0.26
ANN −0.1 2.9 0.163 0.04
GBRT −2.5 5.3 0.914 0.17
RF −4.7 8.3 0.898 −0.06

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet −0.1 2.8 0.277 0.26
ANN −0.2 3.0 0.214 0.15
GBRT −8.5 15.9 0.926 0.19
RF −5.7 9.8 0.943 −0.11
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Table 12: Performance comparison, one-year horizon, monthly forecast frequency: theory-based vs.
machine learning approaches vs. hybrid approaches, rank transformation. The table reports predictive
R2, their standard deviation and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin
and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches and the four machine learning models.
Results of two hybrid approaches, one in which the theory-consistent forecasts serve as additional features in the
machine learning models (ML with theory features), and another in which the machine learning models are trained to
account for the approximation residuals of MW (Theory assisted by ML), are also reported. The standard deviation
of the R2

oos,s × 100 (Std Dev) is calculated based on the annual test samples. The SR refer to a zero-investment
strategy long in the portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks
with the lowest excess return prediction. The p-values are associated with a test of the null hypothesis that the
respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. All results refer to a one-year
forecast horizon and use the out-of-sample testing period January 1998 to December 2017. All forecasts are issued
monthly (end-of-month). The features are rank-scaled as described in Appendix A.5. The machine learning results
are obtained using the short training scheme depicted in Figure 3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se

d MW 9.1 17.1 0.072 0.37
KT 3.1 49.9 0.706 0.37

M
a
ch

in
e

L
ea

rn
in

g ENet 4.3 25.3 0.388 0.49
ANN 11.5 22.2 0.048 0.50
GBRT 6.5 30.9 0.521 0.39
RF 15.0 35.4 0.186 0.59

M
L

w
it

h
th

eo
ry

fe
a
tu

re
s

ENet 4.3 25.3 0.385 0.49
ANN 11.1 23.5 0.096 0.45
GBRT 6.1 32.8 0.596 0.42
RF 14.0 35.7 0.236 0.57

T
h
eo

ry
a
ss

is
te

d
b
y

M
L

ENet 8.6 31.4 0.331 0.47
ANN 11.2 27.7 0.183 0.45
GBRT 6.2 38.7 0.548 0.40
RF 13.0 42.4 0.320 0.58
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