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Abstract

In this paper, we connect the deep learning literature with non-linear factor models and show that

deep learning estimation leads to a substantial improvement in the non-linear factor model literature.

We provide bounds on the expected risk and prove that these upper bounds are uniform over a set of

multiple response variables. We extend our results to an additive model setting and show its connection to

non-linear factor models for financial applications. Compared to traditional factor models which assume

rigid linear relations between the factors and the underlying observed variables, our deep neural network

factor model (DNN-FM) offers major improvements in modeling flexibility. Moreover, we provide a

uniform sample prediction error bound for the unknown functions of factors, and the upper bound does

not depend on the number of factors.

We develop a novel data-dependent estimator of the error covariance matrix in deep neural networks.

The estimator refers to a flexible adaptive thresholding technique which is robust to outliers in the

innovations. We prove that the estimator is consistent in spectral norm. Using this result, we show the

consistency and provide the rates of convergence of the covariance matrix and precision matrix estimators

for asset returns. The rates of convergence of both estimators do not depend on the number of factors.

Hence, our theory leads to new results in the factor model literature due to the fact that an increasing

number of factors in traditional factor models are an impediment to better estimation and prediction.

Except for the precision matrix estimator, all our results are obtained even with a number of assets that

is larger than the time span, where both quantities are allowed to grow.

Various Monte Carlo simulations confirm our large sample findings and reveal superior accuracies of

the DNN-FM in estimating the true underlying functional form which connects the factors and observable

variables, as well as the covariance and precision matrix compared to competing approaches. Moreover,

in an out-of-sample portfolio forecasting application it outperforms in most of the cases alternative port-

folio strategies in terms of out-of-sample portfolio standard deviation and Sharpe ratio.

Keywords: Deep neural networks, feedforward multilayer neural network, sparsity, nonparametric regres-

sion, covariance matrix estimation, factor models

1 Introduction

The Great Financial Crisis 2008/09 and the COVID-19 Crisis 2020/21 revealed major problems and disadvan-

tages of existing models for forecasting and policy analysis. Especially during periods with high uncertainties
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these models commonly cause large prediction errors and lead to misleading policy recommendations. Recent

research developments indicate that machine learning methods suit better in these circumstances: they can

measure non-linear structures and sudden changes in the relations between economic variables. Deep neural

networks, i.e., artificial neural networks with many hidden layers, as part of the most important machine

learning techniques nowadays, received increasing attention in statistics and economics over the recent years.

Their usefulness has been shown on several complex machine learning problems that concern e.g., natural

language processing and image recognition. A detailed overview of applications of deep neural networks on

observed data can be found e.g., in Schmidhuber (2015) and the literature cited therein. More recently,

Gu et al. (2021) develop a non-linear conditional asset pricing model based on an extended autoencoder

incorporating latent factors that depend on asset characteristics and illustrate its superiority in terms of

lowest pricing errors compared to standard methods commonly used in the finance literature.

In light of the advantages of deep neural networks in terms of prediction accuracy compared to traditional

econometric models testified in various empirical studies and research fields, there is an increasing interest in

analyzing their large sample properties. Important theoretical contributions that deal with the approximation

properties of deep neural networks in the nonparametric regression framework are provided e.g., by Schmidt-

Hieber (2020), Farrell et al. (2021) and Kohler and Langer (2021). For a rich class of composition based

functions which include (generalized) additive models, Schmidt-Hieber (2020) shows that sparse deep neural

networks do not suffer from the curse of dimensionality in contrast to traditional nonparametric estimation

methods and achieve minimax rate of convergence in expected risk under the squared loss. While Schmidt-

Hieber (2020) and the corresponding working paper version Schmidt-Hieber (2017) rely on the rectifier linear

unit (ReLU) activation function in the deep neural network to derive the large sample properties, Bauer and

Kohler (2019) also illustrate that deep neural networks with a smooth activation function, i.e., the sigmoidal

activation function, avoid the curse of dimensionality in the nonparametric regression framework.

In this paper, we investigate the theoretical properties of feedforward multilayer neural networks (multi-

layer perceptron) with ReLU activation function and sparsely connected units in multivariate nonparamet-

ric regression models. Our modeling framework builds upon the research contributions of Schmidt-Hieber

(2020) and offers convenient theoretical generalizations and extensions. Specifically, we relax the distribu-

tional assumption on the innovations in Schmidt-Hieber (2020) from standard normally distributed errors

to subgaussian noise which enhances the theoretical scope of the deep neural network to a broader range of

data generating processes.

Moreover, we contribute to the deep learning literature with uniform results on the expected estimation

risk. More precisely, we analyze the properties of the deep neural network estimator in case of incorporating a

potential set of J response variables compared to the current deep learning research that refers to univariate

responses. Our results provide bounds on the expected risk and show that these upper bounds are uniform

over the J variables. Hence, our model framework offers considerable extensions in terms of functional

composition of the true underlying model and estimation. In fact, we allow for different unknown functional

forms in the nonparametric regression model across each variable. The advantage of concentrating on the

theoretical framework of Schmidt-Hieber (2020) lies in its applicability to factor models. We extend our deep

learning results to an additive model setting and show its connection to factor models in finance. Compared

to traditional static factor models, our deep learning factor model framework enhances the model flexibility,

allows for measuring potential non-linear patterns in the data and avoids the curse of dimensionality when

the number of factors increases with the number of variables in the system.

Linear factor models are helpful in understanding the behavior of asset returns. Fan et al. (2011) and

Fan et al. (2013) use observed and unobserved linear factors in a static factor model framework to measure

large asset portfolios. They show that linear factor models combined with a sparse error covariance matrix
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can be used to consistently estimate the precision matrix of asset returns even in high dimensions. These

two papers are benchmarks in the literature and provide an important contribution in merging the factor

models literature with the high-dimensional statistics literature. Fan et al. (2016) show that in case of

an ”almost” block diagonal covariance matrix of the errors, a sparse precision matrix of the innovations

can exist, and can be used in linear factor models. Fan et al. (2021) propose factor models with a sparse

regression structure. They build a test for analyzing the entries in the covariance matrix of the residuals

estimated based on principal component regression. A key paper in the factor model literature is provided by

Gagliardini et al. (2016). They analyze risk premia in large portfolios by introducing a structural model that

can be tied to factor models. Gagliardini et al. (2019) propose a test for omitted factors in factor models by

assessing the corresponding residuals which make the technical analysis challenging. Gagliardini et al. (2020)

provide conditional factor models and analyze the risk premia when the number of assets in the portfolio is

dominating its time span. Shrinkage methods that are tied to factor models have also been proposed in the

literature. Linear shrinkage models are introduced in Ledoit and Wolf (2003) and Ledoit and Wolf (2004)

for estimating the covariance matrix of asset returns and are applied to portfolio optimization. Recently,

Ledoit and Wolf (2017) provide a non-linear shrinkage estimator and show its superiority in out-of-sample

portfolio performance compared to the linear shrinkage based estimation. This is an important finding

testifying that the flexibility of non-linear models can substantially improve the forecast performance. The

non-linear method involves increasing the small eigenvalues, decreasing the large eigenvalues of a covariance

matrix of asset returns, and optimizing a loss function by selecting a non-linear shrinkage function. Ao

et al. (2019) show that choosing the weights of a portfolio with the lasso approach, and applying the method

for estimating the mean return and variance of the portfolio leads to a consistent estimation of these two

quantities. Ao et al. (2019) illustrate that they can convert a difficult constrained optimization problem into

a feasible unconstrained portfolio optimization where the lasso estimation is crucial.

Recently, there is an increasing attention on factor models with deep learning methods. A major study

is conducted by Fan et al. (2022) and tries to understand asset returns by conditional time varying factor

models. The factor loadings are represented by nonparametric functions, and the authors use a structural

model to decompose the predictors as risk-related and mispricing-related. They propose a three step method

using deep learning to estimate the nonparametric spot asset returns, apply local averages to estimate the long

term asset returns and rely on local principal components to estimate the factor loadings. They also develop

the asymptotic theory to obtain the out-of-sample prediction of the risk. Chen et al. (2021) concentrate on

a structural model and analyze asset prices with deep learning. They provide an empirical study showing

that with a no-arbitrage condition as criterion, their method outperforms benchmark models.

Moreover, machine learning methods are also used to understand the cross-section of asset returns.

Freyberger et al. (2020) fit an additive non-linear factor model to explain expected asset returns. The non-

linear factor model is estimated by an adaptive group lasso, and the authors show that linear factor models

overfit the data. In an empirical study based on data of the US stock market, the authors illustrate that

the return to risk ratio of a portfolio constructed by a non-linear factor model can be considerably higher

compared to the one resulting from a linear factor model. This is an important finding highlighting the key

role of measuring potential non-linearities in the data. Giglio and Xiu (2021) analyze a linear factor model

with omitted factors. They develop a three step method to estimate risk premia by principal component

analysis with two-pass regressions. Bianchi et al. (2021) analyze the bond market with machine learning

techniques. Callot et al. (2021) show that risks of large portfolios can be estimated consistently based on

nodewise regression. Moreover, the authors illustrate that the approach performs very well in terms of risk

and return prediction in practice.

Traditional factor models, as in Fama and French (1993) or Fan et al. (2011) assume rigid linear rela-
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tions between the factors and the underlying observed variables. Especially during crisis periods, however,

economic time series follow non-linear relations and are subject to sudden changes. Hence, the linearity

assumption of standard factor models would be inappropriate to measure time series with these patterns.

The structure of our deep neural network factor model (DNN-FM) mitigates this limitation and allows for

measuring non-linear and complex dynamic relations between the factors and economic variables. Our theo-

retical elaboration provides convergence results for the covariance and precision matrix estimators based on

the sparse deep neural network. Moreover, we show that the convergence rate is not affected by the number

of included factors which potentially increases with the number of variables in the asset space. Hence, the

DNN-FM estimator avoids the curse of dimensionality and provides major improvements in modeling flexi-

bility compared to traditional factor models. In fact, the convergence rate of the corresponding covariance

matrix estimator based on traditional factor models is affected by the number of factors and hence, may

severely deteriorate in high-dimensional asset spaces with an increasing number of factors.

In order to obtain an estimate of the data covariance matrix based on the DNN-FM, we require a con-

sistent estimate for the residual covariance matrix. For this purpose, we develop a novel data-dependent

covariance matrix estimator of the innovations in deep neural networks. The estimator refers to a flexi-

ble adaptive thresholding technique which is robust to outliers in the innovations. We elaborate on the

consistency of the estimator in l2-norm under rather mild assumptions.

The favorable large sample properties of the DNN-FM are confirmed by our Monte Carlo study based on

various simulation designs. Specifically, the DNN-FM consistently determines the true underlying function

connecting the factors and observable variables, as the number of periods increases. Further, its estimators for

the covariance and precision matrix of the returns are as well consistent. Compared to competing approaches,

as e.g., the traditional static factor model which are sensitive to an increase of the number of factors d (i.e.,

their error rate deteriorate as d increases), the convergence rates of the DNN-FM estimators are stable

against an increasing number of factors. Hence, the DNN-FM avoids the curse of dimensionality compared

to standard factor models. Moreover, in most cases, the simulation results demonstrate the superior accuracy

in estimating the unknown functional form linking the factors and the observed time series, as well as the

corresponding covariance and precision matrix.

In an out-of-sample portfolio forecasting application based on assets constituents of the S&P 500 stock

index and concentrating on a global minimum variance portfolio setting, we show that the DNN-FM is

superior in most cases to compared to competing portfolio estimators that are commonly used in the litera-

ture. More precisely, it often leads to the lowest out-of-sample portfolio standard deviation and avoids large

changes in the portfolio constellation. Consequently, it provides low portfolio turnover rates and prevents

high transaction costs. This generally leads to the highest out-of-sample Sharpe rations across different asset

spaces compared to the competing methods when transaction costs are taken into account. The superiority

in forecasting precision is particularly pronounced during turbulent times, such as during the Great Financial

Crisis of 2008/09 and the COVID-19 Crisis. Hence, the flexibility of the deep learning estimator thus allows

for capturing strong changes and high uncertainties in financial time series during volatile periods.

The remainder of the paper is organized as follows. In Section 2, we introduce the sparse deep neural

network framework used for estimating nonparametric regressions and provide our main theoretical findings.

Section 3 extends the results to an additive model setting applied to factor models in financial applications

and elaborates on the convergence results. In Section 4, we introduce a novel estimator for the covariance

and precision matrix for the idiosyncratic errors of the deep neural network factor model by means of a

robust adaptive threshold estimator and prove its consistency. Moreover, we elaborate on the consistency

of the corresponding covariance matrix estimator of the returns in Section 5, while Section 6 introduces the

precision matrix estimator of the returns based on the DNN-FM and shows the consistency of the estimator.
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Details on the implementation are discussed in Section 7. In Section 8, we present Monte-Carlo evidence on

the finite sample properties of our new sparse deep neural network factor model in estimating the unknown

function which connects the factors with the observable variables, as well as the corresponding covariance

and precision matrix. In Section 9 we analyze the empirical performance of our approach in an out-of-

sample portfolio forecasting exercise. Section 10 summarizes the main findings. The proofs are provided in

the Appendix A. For a generic n × 1 vector, v, ∥v∥n := 1
n

∑n
i=1 v

2
i . For a generic matrix A, ∥A∥l2 , ∥A∥l∞

represent the spectral norm, and maximum row sum norm, respectively, as defined on pp. 345-346 in Horn

and Johnson (2013). Furthermore ∥A∥∞ is the sup norm which is the maximum absolute value element of

the matrix A.

2 Deep Learning

In this section, we extend the deep learning results of Schmidt-Hieber (2020) from Gaussian noise to sub-

gaussian noise and analyze the properties of deep neural networks (i.e., neural networks with many hidden

layers) incorporating a large set of response variables. Moreover, in the next sections we use our framework

in an additive model setting and apply it to factor models in finance.

Assume the following nonparametric regression model for j = 1, · · · , J

Yj,i = f0,j(Xi) + uj,i, (1)

where Yj,i denotes the i-th observation of the j-th response variable, the regressors Xi are iid across i =

1, · · · , n, including observed variables of dimension d× 1, and each Xi ∈ [0, 1]d. J and n correspond to the

number of response variables and the number of observations, respectively. Let uj,i be subgaussian noise,

and iid across i = 1, · · · , n, with zero mean, and variance as one,1 for all j = 1, · · · , J . Define the J × J

covariance matrix of the errors as Σu := Euiu
′
i, where ui := (u1,i, · · · , uj,i, · · · , uJ,i)′ is a J × 1-dimensional

vector. f0,j(.) is an unknown function linking the regressors to the response variables. For each j = 1, · · · , J ,
it may be of a different functional form, however f0,j(.) : [0, 1]d → R. Moreover, we assume that uj,i

is independent of Xi for a given j. In order to estimate f0,j(.) with deep learning, we need to specify a

structural form on f0,j(.). More precisely, we impose f0,j(.) to be a composition of several functions with

lower dimensions which exhibit Hölder smoothness. To break the curse of dimensionality that may arise

from a large number of regressors, d, we require a similar model structure as in the theoretical framework of

Schmidt-Hieber (2020). The results of Schmidt-Hieber (2020) are path breaking in nature due to overcoming

the curse of dimensionality. Specifically, he shows that compared to traditional nonparametric estimators,

the convergence of deep learning methods in expected risk is unaffected by d. In addition to the composite

structure for f0,j(.), we use deep learning as in Schmidt-Hieber (2020) to estimate f0,j(.). We benefit from

newly developed s-sparse deep neural networks. In the following, we define the deep learning architecture.

2.1 Multilayer Neural Networks

We rely on multilayer (deep) feedforward neural networks to estimate the unknown function f0,j(.). The

”Deepness” in the neural network arises from using multiple hidden layers to estimate f0,j(.), for j =

1, · · · , J . ”Learning” comes from estimating and correcting the errors in the network parameters via an

algorithm (i.e., stochastic gradient descent) which will be described in more detail in Section 7 dealing with

the implementation issues. Further information can be also found e.g., in Goodfellow et al. (2016). We

1A variance of one is chosen to simplify the proofs. However, it can be a positive constant as well.
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are concerned about the statistical properties of deep learning, specifically multilayer feedforward neural

networks. In the following, we briefly describe their structural architecture. As usual in nonparametric

problems, we start with the regressors, Xi and need to determine the response Yj,i. In order to achieve

that we have to estimate the unknown function f0,j(.) in (1) connecting Xi with Yj,i. The deep learning

approach puts forward L hidden layers between the input layer containing the regressors and the output layer

incorporating the response. Hence, f0,j(.) will be estimated in L ≥ 1 hidden layers. A given hidden layer

is composed of pl hidden units, with l = 1, · · · , L. These units are transformed by an activation function:

σ : R→ R at each layer. We impose a rectifier linear unit (ReLU) activation function for σ

σ(x) = max(x, 0),

which censors all negative real numbers to zero, and keeps all positive. The choice of this activation function

is motivated by several factors. First, the partial derivative of the ReLU function is either zero or one, which

facilitates computations. Moreover, the ReLU activation can pass a signal without any change through all

layers, i.e., it has the projection property. For each j = 1, · · · , J , we assume the same number of layers L.

Moreover, we assume the same number of units at each layer for j = 1, · · · , J . However, for each j, the

sparsity structure of the network can be different. In other words, even though the number of layers and the

number of units that are fitted are the same, the number of nonzero parameters (network weights) in each

layer can be different, for each j = 1, · · · , J .
We define the network architecture by the parameters (L, p), where the number of hidden layers L

represents the depth of the neural network, and p constitutes the width of the network. Specifically, p =

(p0, p1, · · · , pL, pL+1)
′ which is a L + 2 vector, where p0 is the number of input variables and pL+1 defines

the number of units in the output layer. The remaining quantities p1, · · · , pL, represent the number of units

in the layers 1, · · · , L, respectively. In this paper, we impose one output variable, hence pL+1 = 1. We define

the shifted activation function as the pl × 1 vector

σvl := [σ(z1 − v1), · · · , σ(zpl − vpl)]
′,

where zl are the input variables of layer l. In order to describe the network, f : Rp0 → R, x → f(x), we

specify the input layer, hidden layers and output relation using the following simplistic structure

f(x) =WLσvLWL−1σvL−1
· · ·W1σv1W0x,

where Wl denotes the pl+1 × pl-dimensional weight matrix at the l-th layer, for l = 0, 1, · · · , L, and vl ∈ Rpl

is the l-th shift vector, for l = 1, · · · , L. The network functions are built by matrix-vector multiplication in

a sequential manner and are transformed based on the non-linear activation function σ(.). The columns of

the weight matrix Wl denote the number of weights corresponding to the input dimension of layer l and the

rows represent the number of weights in the following layer l + 1.

Layer l = 0 represents the input layer which incorporates the observed regressors Xi. The layers l =

1, · · · , L are hidden layers, whereas l = L + 1 represents the output layer. The inputs/regressors are of

dimension p0 = d, and the output layer is uni-dimensional. Let W represent the total number of parameters

that are optimized in the neural network. Then

W =

L∑
l=0

(pl + 1)pl+1 − pL+1,

6



Input layer Output layer

x2

x1

y

Hidden layers

Figure 1: Graphical representation of a multilayer feedforward neural network with two hidden layers, two
regressors, one response and three units at each hidden layer.

where we set pL+1 = 1. Our paper allows for W > n, hence, the number of weights in the neural network

can exceed the number of observations of the underlying variables.

In the following, we provide a simple example of a multilayer feedforward neural network illustrated in the

directed acyclic graph in Figure 1. The neural network incorporates two regressors d = 2 and one response.

Moreover, it contains two hidden layers (L = 2) with three units at each hidden layer, i.e., p1 = p2 = 3.

The first connection arises from the regressors which are collected in the input layer to the first hidden

layer. Each regressor is forwardly connected with each unit in the first layer. Moreover, at each hidden unit

the regressors are multiplied with the corresponding weights and an intercept is added. Hence, for the first

unit in the first hidden layer three parameters need to be estimated. The remaining units follow an identical

structure. In addition, we apply the ReLU activation function to each unit. In our example, nine parameters

have to estimated in total, and three ReLU units are applied in the first hidden layer. In a second step,

each unit in the first hidden layer is connected with each unit in the second hidden layer. More specifically,

the outputs from the first hidden layer are used as inputs to each unit at the second hidden layer. Each of

those inputs is multiplied with the corresponding weights, an intercept is added and the the ReLU activation

function is applied. For our example, we need to estimate 12 parameters, formed by three weights and an

intercept at each unit in second hidden layer. Finally, in the output layer, we use the least squares loss

and regress Yi on all three responses from the second hidden layer. This adds three additional parameters

that have to be estimated. Hence, in total we need to estimate 24 parameters, if the regressor vector Xi is

2× 1-dimensional and if we incorporate two hidden layers with three units each.

2.2 S-sparse Deep Neural Networks

In this part, we introduce s-sparse deep neural networks which are a subset of multilayer feedforward neural

networks. Schmidt-Hieber (2020) introduces them in equation (4) of his paper and requires two important

restrictions. First, the parameters will be bounded by one, and second the network will be sparse. The first

restriction can be formally depicted as follows: For each j = 1, · · · , J

max
0≤l≤L

[∥Wl∥∞ ∨ ∥vl∥∞] ≤ 1. (2)

This restriction is necessary to ensure the applicability of the neural networks in practice. Statistical

results using large parameters/weights are usually not observed, see Goodfellow et al. (2016). To be specific,

Schmidt-Hieber (2020) and Zhong et al. (2022) argue that computational algorithms use random, nearly

orthogonal matrices as initial weights. Hence, the initial weights are bounded by one, and the model training

leads to trained weights which are close to the initial values. Therefore, it seems reasonable to set a bound

of one for the weights.
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In the next step, we introduce our sparsity assumption which is crucial to prevent any overfitting caused

by a probable large number of parameters to be estimated in each layer, as discussed in p. 1352 of Zhong

et al. (2022). Let ∥Wl∥0 and ∥vl∥0 denote the number of nonzero entries of Wl and vl, respectively. The

s-sparse deep neural networks are given by the following equation, subject to (2)

Fj(L, p, sj) := {fj(·) :
L∑
l=0

∥Wl∥0 +
L∑
l=1

∥vl∥0 ≤ sj , max
1≤j≤J

|fj(·)| ≤ F}, (3)

where the output dimension is one and the functions are uniformly bounded by the positive constant

F . Clearly, the sparsity is different for each Fj(L, p, sj). In order to simplify the notation, we repre-

sent Fj(L, p, sj) as Fj in what follows. The sparsity structure imposed on the neural network weights are

additionally valuable for the consistency of the of deep learning estimators compared to model specifications

that only rely on the implicit regularization introduced by the stochastic gradient decent algorithm during

the computational stage. This point is conjectured explicitly, and an example is provided on p. 1916 of

Schmidt-Hieber (2020). To obtain a sparse structure, pruning the weights is another solution as illustrated

by Zhong et al. (2022). Note that Kohler and Langer (2021) show that deep learning error bounds can be

obtained without sparsity and bounded weights but with a truncated least squares function.

2.3 Composite True Function

In the following, we incorporate smoothness restrictions and a composite form to estimate the true function

f0,j(.) by s-sparse deep neural networks. For each j = 1, · · · , J

f0,j(.) = gq,j(.) ◦ gq−1,j(.) ◦ · · · ◦ g1,j(.) ◦ g0,j(.), (4)

where f0,j(.) is a composition of q+1 functions. Let h = 0, · · · , q, gh,j : [ah, bh]dh → [ah+1, bh+1]
dh+1 . Hence,

each gh,j has m = 1, · · · , dh + 1 components:

gh,j = (gh1,j , · · · , ghm,j , · · · , ghdh+1,j)
′.

At each ghm,j we assume that it depends on maximal th number of variables. In other words, each

ghm,j is a th variate function itself. To give an example, for any j (suppressing j only here for clarity), let

f0(x1, x2, x3) = g1(.)◦g0(.) = g11(g01(x1, x3), g02(x2, x3)), with g1 = g11, d2 = 1, g0 = (g01(x1, x3), g02(x2, x3)),

such that d0 = 3, t0 = 2 and d1 = t1 = 2. Note that d0 shows the dimension of the input variables. However,

both g01, g02 depend on only 2 variables, hence t0 = 2. We always demand that th ≤ dh. This restriction

is crucial, and is available in additive models which we thoroughly analyze in the subsequent sections. The

previous example is taken from p. 1880 of Schmidt-Hieber (2020).

We impose the following smoothness restrictions on ghm,j . Let βf denote the largest integer strictly

smaller than β. A function has Hölder smoothness index β if all partial derivatives up to order βf exist

and are bounded, and the partial derivatives of order βf are β − βf Hölder. We impose that each ghm,j has

Hölder smoothness βh. Also remember that ghm,j has th variables, so each ghm,j ∈ Cβhth ([ah, bh]
th ,Kh) and

Cβhth ([ah, bh]
th ,Kh) is the ball of βh Hölder functions with radius Kh defined as

Cβhth ( [ah, bh]
th ,Kh) := [ghm,j : [ah, bh]

th → R :∑
α:∥α∥1<βh

∥∂αghm,j∥∞ +
∑

α:∥α∥1=βf

sup
x,y∈[ah,bh]

th ,x ̸=y

∥∂αghm,j(x)− ∂αghm,j(y)∥1
∥x− y∥β−βf∞

≤ Kh.]
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So we can have different flexible composite functions, where the smoothness will be the same for each

m = 1, · · · , dh+1, j = 1, · · · , J , but differ across h. We impose the following for the true function, f0,j ∈
G(q, d, t, β,K) with

G(q, d, t, β,K) := {f0,j = gq,j ◦ gh,j ◦ · · · ◦ g0,j : gh,j = (ghm,j)
dh+1
m=1 : [ah, bh]

dh → [ah+1, bh+1]
dh+1

ghm,j ∈ Cβhth ([ah, bh]
th ,K), for some |ah|, |bh| ≤ K}. (5)

We define d := (d0, · · · , dh, · · · , dq+1)
′, t := (t0, · · · , th, · · · , tq), β := (β0, · · · , βh, · · · , βq)′. There are two

key terms to be defined: the effective smoothness index

β∗
h := βhΠ

q
l=h+1(βl ∧ 1),

and the rate which will be used in prediction error estimation

ϕn := max
h=0,··· ,q

n
−2β∗h

2β∗
h
+th .

2.4 Estimator

We define the estimator as the empirical minimizer, with Fj representing the s-sparse deep neural network

in (2) and (3) as follows

f̂j(Xi) ∈ argmin
fj(Xi)∈Fj

n∑
i=1

(Yj,i − fj(Xi))
2.

Let Ef0,j represent the expectation with respect to a sample generated by f0,j(.). We evaluate the out-

of-sample performance of s-sparse deep neural networks. We assume that X has the same distribution as

Xi, but is independent from the sample (Xi, Yj,i) across i and given j. In the following, we want to evaluate

the prediction error

R(f̂j(X), f0,j(X)) := Ef0,j [(f̂j(X)− f0,j(X))2].

For this, we formalize an assumption about the data.

Assumption 1. Assume that uj,i are iid zero mean with unit variance across i = 1, · · · , n with subgaussian

distribution and Orlicz norm, max1≤j≤J ∥uj,i∥ψ2
:= Cψ which is a positive constant. Let the minimum

eigenvalue of the covariance matrix of the errors be: Eigmin(Σu) ≥ c > 0, where c is a positive constant.

Xi are iid across i = 1, · · · , n, independent from uj,i, for each j, and the model is defined by (1).

Assumption 2. Let f̂j(.) ∈ Fj satisfy (2) and (3).

Assumptions 1 and 2 are used to derive an oracle inequality which is provided by Lemma A.3. Assumption

1 is a subgaussian noise extension of the gaussian noise assumption imposed in Schmidt-Hieber (2020).

Assumption 2 is similarly used as in Schmidt-Hieber (2020) to describe the sparse neural network architecture.

Assumption 3. Assume f0,j(.) is a composite function generated by equation (4), and f0,j(.) ∈ G(q, d, t, β,K),

for each j = 1, · · · , J .

Define s̄ := max1≤j≤J sj , and s̃ := min1≤j≤J sj .

Assumption 4. Let f̂j(.) ∈ Fj satisfy

(i) F ≥ max(K, 1),
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(ii)
q∑

h=0

log2(4th ∪ 4βh) log2n ≤ L ≤ Cnϕn,

(iii) nϕn ≤ Cmin1≤l≤L pl,

(iv) C0nϕn log n ≤ s̃ ≤ s̄ ≤ Cnϕn log n, with C0 < C, where both are positive constants.

Assumptions 3 and 4 are used to approximate the true function, f0,j(.) by the sparse deep learning

estimator f̂j . Assumption 3 specifies the true composite function. Assumptions 4(i)-(ii) put an upper bound

on the functions, and specify the number of layers L. The number of layers is an increasing function of n, and

the optimal number of layers is shown in Remark 1 on the Remarks for Theorem 1, depicted after Theorem

1. The number of units at each layer is specified in Assumption 4(iii) which provides a lower bound of this

quantity. Hence, the number of units increases with n, and form a wide layer. The sparsity restriction is

specified in Assumption 4(iv). Given the specification of the rate ϕn, the sparsity assumption shows that

s̄/n→ 0. Assumptions 3 and 4 are directly taken from Schmidt-Hieber (2020). In the following, we provide

the upper bound on the risk for our functions that are estimated by deep learning.

Theorem 1. Under Assumptions 1-4, for a large positive constant C > 0

(i)

max
1≤j≤J

R(f̂j(X), f0,j(X)) ≤ CϕnL log2 n.

(ii)

max
1≤j≤J

E

 1

n

n∑
i=1

(f̂j(Xi)− fj(Xi))
2

 ≤ CϕnL log2 n.

Remarks.

1. To minimize the right side in Theorem 1 set L = O(log2n), in which case the right side is

max
1≤j≤J

R(f̂j(X), f0,j(X)) ≤ Cϕn log
3 n.

2. In order to obtain a good function approximation, we need a large number of layers, and the number of

units at each hidden layer cannot be small. These restrictions are specified in Assumption 4. However,

for a better prediction we require fewer layers as observed by our result in Theorem 1. Hence, there is

a tradeoff in the selection of the number of layers. The deepness of the neural network is needed but

the issue becomes how deep? Theorem 5 in Schmidt-Hieber (2020) makes the point for deep layers to

obtain a better function approximation. At each hidden layer we can have at least nϕn units, hence

there is a lower bound to obtain a finer function approximation by deep neural networks.

3. Sparsity can be achieved by active regularization at each layer through elastic net penalization, or an

iterative pruning approach as suggested by p. 1882, and p. 1917 of Schmidt-Hieber (2020), respectively.

Lemma 5 of Schmidt-Hieber (2020) combined with our Lemma A.3 shows that the sparsity in the

network parameters at each layer is essential for a better prediction. Implicit regularization in stochastic

gradient descent algorithm will not be sufficient, and consistency may be not possible as shown in pp.

1916-1917 of Schmidt-Hieber (2020).
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4. Our result further shows that the upper bound is uniform over j = 1, · · · , J . This is due to Assumption

4(iv). Moreover, we also allow that the true functional forms are different. However, they have the

same Hölder smoothness. In case of deep learning estimators, we have the same number of layers and

units for each estimate but their sparsity pattern can vary.

3 Additive Models and Factor Models

In the finance literature, asset returns, Yj,i, for asset j, and time period i, are governed by common factors.

The following model is used in Fan et al. (2011)

Yj,i =

d∑
m=1

bj,mXm,i + uj,i, (6)

for all j = 1, · · · , J , where J represents the number of assets in the portfolio, and i = 1, · · · , n denotes

the time span of the portfolio. The number of factors is d and the factors are observed. Xm,i represents

the m-th factor at time period i, and bj,m depicts the factor loading corresponding to the j-th asset and

m-th factor. The model described above defines a linear relation between the factors and returns through

the factor loadings. However, a more flexible relationship between the asset returns and factors can be put

forward through the additive model described in Section 2.3. Instead of the linear model specification in (6),

we assume that the returns evolve through the following model

Yj,i = f0,j(Xi) + ui,j , (7)

with

f0,j(Xi) :=

d∑
m=1

fj,m(Xm,i),

where f0,j(.) represents the true but unknown function relating the factors Xi := (X1i, · · · , Xm,i, · · · , Xd,i)
′ :

d× 1 to the returns for each asset. fj,m(.) corresponds to the unknown function of factor Xm,i for the m-th

factor at time period i. Hence, even though the underlying factor is the same, the functional forms are

different across the assets. The model specification (7) enhances the flexibility in the relationship between

the factors and assets to a large extend, compared to the rigid all linear additive formulae (6).

Note that Freyberger et al. (2020) also use a non-linear model with firm characteristics to explain asset

returns. The authors rely on the adaptive group lasso approach and benefit from the sparsity structure in the

model. We want to estimate f0,j(.) with sparse deep learning, for each j = 1, · · · , J . The additive-flexible

model (7) is related to Section 4 and equation (12) of Schmidt-Hieber (2020). We can specify the true

function f0,j(.) as the composite of two functions as follows

f0,j(.) = g1,j(.) ◦ g0,j(.), (8)

where

g0,j(.) := [g0,j,1(.), · · · , g0,j,m(.), · · · , g0,j,d(.)]′ := [fj,1(.), · · · , fj,m(.), · · · , fj,d(.)]′,

which is a d× 1-dimensional vector. Then

g1,j(Xi) :=

d∑
m=1

g0,j,m(Xm,i) :=

d∑
m=1

fj,m(Xm,i).
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The following notation is also used on pp. 1884-1885 of Schmidt-Hieber (2020) and we adopt it to our

specification. The sum above is valid for X : d × 1 as well. These last definitions show that, d0 = d, t0 =

1, d1 = t1 = d, d2 = 1 in (4). The dimension of g0,j(.) is d, however each scalar function is used in a sum of d

terms. See that g0,j : [0, 1]
d → Rd, and g1,j(.) : R

d → R. Suppose that fj,m ∈ Cβ1 ([0, 1],K) for m = 1, · · · , d.
It follows that

f0,j : [0, 1]
d g0,j→ [−K,K]d

g1,j→ [−Kd,Kd].

For any γ > 1, g1,j(Xi) ∈ Cγd ([−K,K]d, (K + 1)d), and set the dimension of inputs d, d, in each composite

function g0,j , g1,j and output dimension 1, as d̃ := (d, d, 1) with d0 = d, d1 = d, d2 = 1, and t̃ = (1, d). Last,

set the smoothness indicators for each composite as β̃ := (β, (β ∨ 2)d) for g0, g1, respectively. Also define a

positive constant c1 > 0.

In the following, we introduce modified versions of Assumptions 3 and 4 for additive factor models. We

use equations (5) and (8) for the notation below.

Assumption 5.

f0,j ∈ G(1, d̃, t̃, β̃, (K + 1)d),

and

Assumption 6.

F ≥ (K + 1)d,

L = O(log2n),

n1/(2β+1) ≤ C min
1≤l≤L

pl,

C0n
1/(2β+1) log n ≤ s̃ ≤ s̄ ≤ Cn1/(2β+1) log n,

In the following, we provide a maximal inequality based on Theorem 1.

Theorem 2. Under Assumptions 1-2, 5-6

P

 max
1≤j≤J

1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 ≥ rn1 + rn2

 ≤ 1

Jc
2
1

,

with rates rn1 = O(n
−2β
2β+1 log3 n) and rn2 = O(

√
log J/n).

Remarks.

1. An important aspect concerns the consistency of the deep neural network estimator which is not

affected by number of factors, d. This is due to additive structure of the model, the novel proofs

in Schmidt-Hieber (2020) and our proof for the subgaussian noise in Theorem 1. The rates rn1 and

rn2 correspond to the rate of convergence of the deep learning risk and the rate following because of

considering J assets in a portfolio, respectively.

2. Theorem 2 is a new result and shows how the size of the portfolio and the number of factors affect

the deep learning estimate of the true underlying function that relates the factors to the returns. Our

result extends Schmidt-Hieber (2020) to the estimation of multiple functions, and analyzes the sample

prediction error rather than its expected value. Hence, we obtain the additional rate rn,2 due to

estimation of J functions.
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3. We can specify which rate may be the slowest among rn,1 and rn,2. Suppose that J = exp(na1) and

0 < a1 < 1. We obtain rn,2 as the slowest one as long as (a1 − 1)/2 > −2β/(2β+1) which is true with

β ≥ 1/2. Hence, regardless of 0 < a1 < 1, when β ≥ 1/2, we have the rate rn,2 with J = exp(na1).2 If

we consider J = a2n and 0 < a2 ≤ C <∞, then with β > 1/2, we obtain a2n = O(rn,2). A similar logic

as in case of J = a2n applies also to the case of J = na3 , with a3 > 0. Note that if β < 1/2, it is not

clear which rate will be slowest. The rate depends on the tradeoff between the smoothness coefficient

β, and the number of assets J .

4 Covariance and Precision Matrix Estimate for Errors

In this section, we analyze the large sample properties of the error covariance and precision matrix estimates

based on the sparse deep neural network. We start with denoting σj,k := (Σu)j,k as the (j, k)-th element of

the Σu matrix, with j = 1, · · · , p, k = 1, · · · , p. The following assumption sets a restriction on J . Moreover,

it constrains the minimal absolute covariance of the errors to be positive, and bounded away from zero

uniformly in n.

Assumption 7.

(i) √
log J/n→ 0.

(ii)

min
1≤j≤J,1≤k≤j

E|uj,iuk,i − σj,k| ≥ c > 0.

In Lemma 1 we provide two maximal inequalities: the first one for estimation of covariance matrix for

errors with infeasible sample average via Bernstein’s inequality, and the second one provides a centered

absolute version of the first maximal inequality.

Lemma 1. Under Assumption 1, with positive constants C, c2 > 0, and with sufficiently large n3

(i)

P

 max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

uj,iuk,i − Euj,iuk,i| ≥ C

√
log J√
n

 ≤ 2

Jc2
.

(ii)

P

 max
1≤j≤J

max
1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

|uj,iuk,i − σj,k| − E|uj,iuk,i − σj,k|

∣∣∣∣∣∣ > C

√
log J√
n

 ≤ 2

Jc2

In what follows, we establish novel asymptotic results on deep learning residuals. As far as we know, these

will be the first in the literature. Let M > 0 be a large positive constant. Moreover, define the expression

a2n := rn1 + rn2 = O(max(rn1, rn2)). (9)

2We can have a more precise result with rate rn2 as the rate of convergence if we know a1, and if β > 1−a1
2(1+a1)

3To be specific, a sufficiently large n means that n ≥ C2

C4
ψ

log J for Lemma 1.
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The results provided in Lemma 2 are new for residuals based on deep learning estimators in factor models.

Define C∗ ≥ (2C + 1) > 0, C∗∗ ≥ (3C + 1) > 0 to be positive constants.

Lemma 2. Under Assumptions 1,2,5-7(i)

(i)

P

 max
1≤j≤J

1

n

n∑
i=1

(uj,i − ûj,i)
2 > a2n

 ≤ 1

Jc1
.

(ii)

P

 max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

(ûj,iûk,i − uj,iuk,i)| > C∗an

 ≤ 2

Jc2
.

(iii)

P

 max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

ûj,iûk,i − Euj,iuk,i| > C∗∗(

√
log J

n
+ an)

 ≤ 2

Jc1
+

2

Jc2
.

Note that the results in Lemma 2 are used to obtain the consistency of the covariance and precision

matrix estimators of the returns based on the sparse deep neural network which is illustrated in the upcoming

sections.

In the following, we specify the covariance matrix of the errors and its thresholding counterpart. Define

the covariance matrix of the errors as Σu := Euiu
′
i, with ui := (u1,i, · · · , uj,i, · · · , uJ,i)′ : J × 1. Set

Yi := (Y1,i, · · · , Yj,i, · · · , YJ,i)′ : J × 1. The sample estimator is given by

Σ̂u :=
1

n

n∑
i=1

ûiû
′
i,

where ûi := Yi − f̂(Xi) is the J × 1 vector of residuals based on the deep learning estimator. Also define

the j, k-th element of Σ̂u as σ̂j,k, j = 1, · · · , J, k = 1, · · · , J . We provide a new robust-adaptive threshold

estimator for the error covariance matrix estimation. This is robust to outliers in the data, i.e., it is robust

to large residuals. To that end, define, for j = 1, · · · , J, k = 1, · · · J

θ̂j,k :=
1

n

n∑
i=1

|ûj,iûk,i − σ̂j,k|. (10)

Robust-adaptive thresholding estimator for covariance matrix of errors is Σ̂Thu , which is a J × J matrix, and

the (j, k)-th element in that matrix is

σ̂Thj,k = σ̂j,k1l {|σ̂j,k|≥θ̂j,kωn},

with rate

ωn := C

[√
log J

n
+ an

]
. (11)

Note that definition (10) and our robust-adaptive thresholding estimator are different from the error

covariance estimator of Fan et al. (2011) given in equation (2.5). Specifically, they use a squared term
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instead of the absolute value in the definition of θ̂j,k and their indicator function involves the square-root of

θ̂j,k. The main reason lies in the fact that the adaptive thresholding estimator in Fan et al. (2011) is not

appropriate for the deep learning structure used in this paper. By relying on the absolute value function in

(10), we develop an estimator which is suitable for deep neural networks. At the same time, we can efficiently

handle outliers in the innovations.

Define the sparsity pattern in the covariance matrix of the errors as

sn := max
1≤j≤J

J∑
k=1

1l {σj,k ̸=0},

where sn represents the maximum number of nonzero elements across the rows of the error covariance matrix.

We provide our theorem about consistency of the adaptive thresholding estimator for the error covariance

matrix, by using the deep learning residuals in factor models.

Theorem 3. Under Assumptions 1,2,5-7 then with C2 > 0, c1 > 0, c2 > 0 both positive constants

(i)

P
(
∥Σ̂Thu − Σu∥l2 ≤ C2ωnsn

)
≥ 1−O(

1

Jmin(c1,c2)
).

(ii) Furthermore, if ωnsn = o(1) as an additional assumption then with probability at least 1−O( 1
J2 )

Eigmin(Σ̂Thu ) ≥ Eigmin(Σu)/2,

and

∥[Σ̂Thu ]−1 − Σ−1
u ∥l2 ≤ C2ωnsn.

Remarks.

1. Note that if β > 1/2, we have ωn = O(
√
rn,2) = O

((
log J
n

)1/4)
. Hence, the smoothness coefficient

plays a crucial role. The rate may change with β < 1/2, see Remark 3 in the Remarks on Theorem 2.

2. Theorem 3.1 of Fan et al. (2011) provides a rate of snd
√
log J/n for their estimator of the error

covariance matrix in linear factor models. Hence, with a larger number of factors d, β > 1/2 and if

d(log J/n)1/4 → ∞, our deep learning estimator yields a faster rate.

5 Covariance Matrix Estimator for the Returns

In this section, we show that the covariance matrix of the returns can be estimated consistently based on

the sparse deep neural network estimator. We start with specifying the covariance matrix of the returns and

the corresponding estimator. In that respect, for each i = 1, · · · , n

Yi = f0(Xi) + ui,

with Yi := (Y1,i, · · · , Yj,i, · · · , YJ,i)′ : J × 1,

f0(Xi) := (f0,1(Xi), · · · , f0,j(Xi), · · · , f0,J(Xi))
′ : J × 1.
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and ui := (u1,i, · · · , uj,i, · · · , uJ,i)′ : J × 1. We also know the structure

f0,j(Xi) =

d∑
m=1

fj,m(Xm,i).

The covariance matrix of the returns is given by

Σy := Σf +Σu.

We define the covariance matrix for the functions of the factors first.

Σf := E[(f0(Xi)− Ef0(Xi))(f0(Xi)− Ef0(Xi))
′],

which is a p× p matrix. The (j, k)-th element of Σf is

Σfj,k := E[(f0,j(Xi)− Ef0,j(Xi))(f0,k(Xi)− Ef0,k(Xi))] = E[f0,j(Xi)f0,k(Xi)]− E[f0,j(Xi)]E[f0,k(Xi)].

The estimator for the covariance matrix of the function of factors is defined as follows

Σ̂f :=
1

n

n∑
i=1

(f̂(Xi)− f̄(Xi))(f̂(Xi)− f̄(Xi))
′,

with f̄(Xi) :=
1
n

∑n
i=1 f̂(Xi) which is J × 1 vector, and

f̂(Xi) := (f̂1(Xi), · · · , f̂j(Xi), · · · , f̂J(Xi))
′ : J × 1.

We obtain the following Lemma that proofs the consistency of the estimate for the covariance matrix of

the functions of factors in a non-linear model. As far as we know, this is a new result in the deep learning

literature. Moreover, we allow for J > n.

Lemma 3. Under Assumptions 1,2,5-7

∥Σ̂f − Σf∥∞ = Op(an).

Note that the estimator for the covariance matrix of returns is given by

Σ̂y := Σ̂f + Σ̂Thu .

We establish the following theorem for the consistency of the covariance matrix of returns based on the sparse

deep neural network. To the best of our knowledge this is a novel result in the deep learning literature.

Theorem 4. Under Assumptions 1,2,5-7

∥Σ̂y − Σy∥∞ = Op(ωn) = Op(an).

Remarks.

1. Theorem 4 allows for J > n, and shows that the rate of convergence is not affected by number of

factors d. Hence, it avoids the curse of dimensionality.
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2. The sparsity of the error covariance matrix does not play any role in the estimation error, i.e., the

estimation error is not affected by sn.

3. Remark 3 of the Remarks on Theorem 2 applies here as well. With β > 1/2, and J = exp(na1), J =

a2n, J = na3 , 0 < a1 < 1, 0 < a2 ≤ C <∞, a3 > 0, we have the rate, with ωn = O(an)

ωn = O(
√
rn2

) = O

((
log J

n

)1/4
)
.

4. Theorem 3.2(ii) of Fan et al. (2011) provides the error rates for the covariance matrix of returns, in

the linear factor model with an OLS based estimation of the factors, as max(d(log J)
1/2

n1/2 , d
2(logn)1/2

n1/2 ).

Hence, compared to the rate of our deep learning estimator in Remark 3, as long as d(log J/n)1/4 →
∞, d2

n1/4

logn1/2

log J1/4 → ∞ we achieve a faster rate due to the avoidance of the number of factors in the

convergence rate of the estimator of our error covariance matrix.

6 Precision Matrix Estimator for the Returns

In this section, we provide an explicit formula for the precision matrix for the returns. We start with

providing three assumptions that are essential for the theoretical elaboration.

Assumption 8.

(i)

Eigmax(Σu) ≤ Cδn,

with C > 0 is a positive constant, and δn → ∞ with n→ ∞ and δn/J → 0 with n→ ∞, J → ∞.

(ii)

0 ≤ rn ≤ Eigmin(Σf ) ≤ Eigmax(Σf ) ≤ c3J,

with c3 > 0 a positive constant, and rn → 0, with n→ ∞, or rn = 0.

(iii) Σ−1
u Σf is symmetric.

Assumption 9. J2ωnsn → 0.

Assumption 8(i) is standard in large J > n asymptotics, and used in the literature, for the matrices

Σu : J × J , and Σf : J × J . Hence, the maximum eigenvalue of the covariance matrix of errors is growing

with J at the rate δn but slower than J itself. In that sense we control the rate of the noise. Moreover,

the maximum eigenvalue of the covariance matrix of the factors is upper bounded by a multiple of J . This

is also an extension of the linear-additive factor models in Fan et al. (2011) to flexible non-linear-additive

factor models considered here. The minimum eigenvalue of the covariance matrix of the factors is either

zero, or local to zero, reflecting the large dimensional problems resulting in singularity-near-singularity. 4

Assumption 8(iii) is technical in nature and helps us to derive a lower bound on minimum eigenvalue of a

specific matrix in Lemma A.6(i). As an example, if Σ−1
u and Σf are commuting this assumption is satisfied,

see p. 604, Fact 7.6.16 of Bernstein (2018). Also a common commuting type of matrices are block diagonal

matrices with conformable blocks, as illustrated in section 0.7.7 of Horn and Johnson (2013). A good example

provides a large J × J block diagonal matrix, where the zero blocks will be of a small dimension compared

to the entire matrix, and the zero blocks in each matrix will be at the same position.

4We thank Yuan Liao for pointing us the possible nonsingular nature of non-linear factor models in large dimensions.
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Assumption 9 restricts J << n, unlike in all the results of the previous Theorems in this paper. The

main reason is the lower bound on the minimum eigenvalue of covariance matrix of the functions of factors.

Now we provide a formula for the inverse of the sum of two J × J-dimensional square matrices, where

J < n, A is a nonsingular matrix, and B can be any square matrix

(A+B)−1 = A−1 −A−1B(I +A−1B)−1A−1, (12)

which is from p. 349, Fact 3.20.8 of Bernstein (2018). Set A = Σu and B = Σf . Since Σy = Σf +Σu, where

Σu is a nonsingular matrix, we obtain the following expression for the precision matrix of the returns

Σ−1
y = Σ−1

u − Σ−1
u Σf [IJ +Σ−1

u Σf ]−1Σ−1
u . (13)

It is important to note that even with Σf being singular, the inverse, Σ−1
y exists. In the same way, since

Σ̂Thu is nonsingular, with probability approaching one as illustrated in Lemma A.7(ii), the estimate for the

precision matrix of the returns based on the sparse deep neural network is

Σ̂−1
y = (Σ̂Thu )−1 − (Σ̂Thu )−1Σ̂f [IJ + (Σ̂Thu )−1Σ̂f ]−1(Σ̂Thu )−1. (14)

In linear factor models as in Fan et al. (2011) or Caner et al. (2022), it is possible to apply the Sherman-

Morrison-Woodbury formula which involves inverting a d×d matrix, where d is the number of factors which

is constant. However, in our formula we have the inversion of a J × J matrix in (14), and J < n, J/n → 0

when n → ∞ in Section 6. By using the symmetry of a product of a certain matrix in Assumption 8(iii),

and the sparsity Assumption 9 we can invert this J × J matrix. The details are provided in Lemma A.6.

Hence, this proof provides novel results. In the following, we provide our theorem on the consistency of the

precision matrix of the returns.

Theorem 5. Under Assumptions 1,2,5-9

∥Σ̂−1
y − Σ−1

y ∥l2 = Op(J
2ωnsn) = op(1).

Remarks.

1. This is a new result that provides a consistent deep learning based non-linear factor model estimate of

the precision matrix of the returns. It is important to note that this estimation error does not depend

on the number of factors. However, it is affected by the sparsity (sn), the number of assets J , and the

estimation error rate ωn which is used for the estimator of the error covariance matrix. Hence, we can

only allow for J << n, but still J → ∞ when n→ ∞.

2. We can compare this rate with Theorem 3.2 of Fan et al. (2011). Their rate is dsn
√
log J/n, with d

denoting the number of factors, which are growing. Since they assume that the maximum eigenvalue

of the errors is finite, in their case the quantity δn = O(1), and not diverging. With a diverging δn,

Lemma B.4(ii) of Fan et al. (2011) changes to the rate O(δn/J) from O(1/J). This results in a precision

matrix of returns estimation error rate of dδ2nsn
√
log J/n in Theorem 3.2(ii) of Fan et al. (2011).

If β > 1/2, the rate of our deep learning estimator is J2ωnsn = O(J2sn[
log J
n ]1/4). As long as

d
δ2n
J2 [

log J
n ]1/4 → ∞, we achieve a better rate since

dδ2nsn
√

log J/n

J2sn[
log J
n ]1/4

→ ∞.

3. Another paper of interest is Caner et al. (2022). They analyze Sharpe-Ratios for large dimensional

portfolios via a feasible weighted nodewise regression. They allow for increasing number of factors,
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d, but assume sparsity of the precision matrix of errors. In the case of block-diagonal matrices, the

sparsity of the covariance matrix of the errors is the same as in the precision matrix of errors. Since

their paper also allows for an increasing maximum eigenvalue δn → ∞, their consistency and the rate of

the precision matrix of returns are comparable in case of a block-diagonal covariance matrix of errors.

Theorem 2 of Caner et al. (2022) has the estimation error rate for the precision matrix for returns as

snδ
2
nd

5/2 max(snλn, s
1/2
n d1/2

√
log J/n),

with λn = O

(
max

[
d2s̄

1/2
n

log J
n ,

√
log J
n

])
as the tuning parameter for lasso in the nodewise regression.

In the case of a large number of factors λn = O(d2s̄
1/2
n

log J
n ).

In case of β > 1/2, our rate is

snJ
2(log J/n)1/4.

If d9/2s
3/2
n (log J/n)3/4

δ2n
J2 ≥ 1, our deep learning estimator achieves a better rate. This result is plausible

with large number of factors, or with a less parsimonious structure in the covariance matrix of the errors.

7 Implementation

In the following, we discuss the implementation details of our sparse deep neural network factor model

(DNN-FM) which are crucial for the model performance. In order to optimally exploit the advantages in

enhanced model flexibility of the DNN-FM compared to traditional factor models, it is necessary to avoid

the overfitting of the DNN-FM which is associated with the rich model parametrization. Following Schmidt-

Hieber (2020) and Gu et al. (2021), we adopt different modeling strategies which are commonly used in the

literature to counteract any overfitting.

In order to train and validate our model on different sets of data, we split our data into two distinct

subsets which correspond to the training and validation dataset, respectively. This data division is essential

to reduce the overfitting. More precisely, only the data in the training set is used to estimate the DNN-FM

for a specific set of hyperparameters. The validation set serves as proxy for an out-of-sample test of the

model and is used to optimize the hyperparameters. In our implementation, we use the first 80% of data for

training the model, whereas the remaining 20% are used for the model validation.

Moreover, we make use of regularization techniques to obtain more parsimonious models by reducing the

effective number of parameters to be estimated in the neural network. Specifically, we augment the objective

function by a l1-norm penalty on the weights of the neural network which sets elements of the weight matrices

to zero. Hence, the l1-norm penalty induces sparsity in the parameters of the neural network and allows for

disregarding uninformative weights. The strength of the penalty is controlled by a tuning parameter, which

we select based on the validation set. Furthermore, we use Dropout, introduced by Srivastava et al. (2014)

as a second technique to reduce overfitting in the neural network. The Dropout technique randomly disables

a prespecified number of units and their corresponding connections in each layer of the neural network

during the training process. This reduces the occurrence of complex co-adaptations between the units on

the training data. These co-adaptations generally lead to a close adjustment of the neural network to the

training data which compromises its ability to generalize to new data that has not been seen during training.

Hence, Dropout mitigates this problem and improves the out-of-sample performance. In our implementation,

we randomly disable 20% of the units in each layer during the training process. As a third regularization

technique, we adopt early stopping. During each step of an iterative optimization algorithm (e.g., stochastic
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gradient decent (SGD)) the neural network parameters are adjusted such that the fitting error based on

the training data is minimized. While the training error decreases in each iteration, this is not true for

the validation error which is used as a proxy for the out-of-sample error. Early stopping keeps track of the

validation error and terminates the optimization as soon as the validation error starts to increase.

In order to optimize the DNN-FM, we refer to the adaptive moment estimation algorithm (Adam)

introduced by Kingma and Ba (2014) which offers an efficient adaptation of the stochastic gradient decent

(SGD) algorithm. More precisely, compared to SGD it provides an adaptive learning rate by using the

information of the first and second moments of the gradient.

We estimate the covariance matrix of the residuals of the DNN-FM based on our novel thresholding

procedure introduced in Section 4. Specifically, we use θ̂j,kωn as threshold quantity, where θ̂j,k is specified

in (10) and ωn is set to 3
√

log J
n . This choice for the threshold is a lower bound enhancing the sparsity in

the estimator, such that our threshold error covariance matrix estimator is positive semi-definite in each

occasion in the simulation studies and the empirical application.5

8 Simulation Evidence

In this section, we present simulation evidence on the finite sample properties of the sparse multilayer

neural network in estimating linear and non-linear nonparametric regression models as introduced in (1). In

addition, we analyze the precision in estimating the covariance and precision matrix of the underlying data

Σy and Σ−1
y .

8.1 Monte Carlo designs and Models

For our simulation experiments, we consider the following data generating process (DGP) which is used to

evaluate our theoretical findings of Theorems 2, 4 and 5

yj,i =

d∑
m=1

1l {m is even}βm,jXm,i + 1l {m is odd}βm,jX
2
m,i + uj,i, (15)

where 1l {·} defines an indicator function that is equal to one if the boolean argument in braces is true.

Moreover, the coefficients βm,j and the explanatory variables Xm,i are drawn from the standard normal

distribution, for m = 1, · · · d, j = 1, · · · , J and i = 1, · · · , n.6

For the innovations uj,i, we consider two different specifications:

1. For the first specification, we draw uj,i, for j = 1, · · · , J , i = 1, · · · , n from the standard normal

distribution. Hence, the innovations are cross-sectionally uncorrelated and the corresponding error

covariance matrix Σu is diagonal.

2. For the second specification, we allow for cross-sectional correlations between the innovations and

5We tried different specifications for ωn which amount to a lower multiplying constant of the rate
√

log J
n

, i.e., a constant

smaller than three, and lead in most of the cases to similar results as our final choice for ωn. However, in rare occasions a lower
threshold quantity resulted in a singular threshold error covariance matrix estimator due to a possibly low sparsity pattern in
Σ̂Th

u . Therefore, we fix the constant to three which leads to a well-defined covariance estimator in all simulations and empirical
applications.

6We run the same study with fixed coefficients βm,j and obtain similar results as in the random coefficients design. Therefore,
we omitted these simulation results, however they can be obtained from the authors upon request.
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generate those according to the following process which is similar to DGP used in Bai and Liao (2016)

u1,i = e1,i, u2,i = e2,i + a1e1,i, u3,i = e3,i + a2e2,i + b1e1,i,

uj,i = ej,i + aj−1ej−1,i + bj−2ej−2,i + cj−3ej−3,i, for j = 4, · · · , J,
(16)

where ej,i are iid N(0, 1), for j = 1, · · · , J , i = 1, · · · , n and aj , bj , cj are independently drawn from

0.5 N(0, 1), for j = 1, · · · , J . Based on (16), the covariance matrix of the innovations Σu is a banded

matrix.

Compared to the standard static factor model specification, the process in (15) additionally incorporates

non-linearities through the term βm,jX
2
m,i. Hence, we expect that the traditional static factor model es-

timated with principal component analysis may have greater difficulties in capturing these non-linearities

compared to our sparse neural network.

In order to verify the robustness of our simulation results, we consider a second Monte Carlo design

which relies on a similar DGP as in Farrell et al. (2021). Specifically, we simulate the data according to the

following process

Y = α′X + β′ψ(X) + u, , (17)

where X is drawn from N(0, 1) and the idiosyncratic innovations follow the process in (16). Moreover, ψ(·)
denotes a non-linear transformation function which incorporates second-degree polynomials and pairwise

interactions. Hence, this simulation design extends the non-linear influence of X on the response compared

to the first design in (15). The coefficient matrices α and β are both of dimension d × J and drawn from

U(−1, 1) and U(−0.5, 0.5), respectively. The time dimension n is set to 60, 120 and 240 for all simulations.

Moreover, we consider several dimensions for J and d. Specifically, J ∈ {50, 100, 200} and d ∈ {1, 3, 5, 7}.
The number of replications is 500.

We compare the precision of our deep neural network factor model (DNN-FM) with methods that are

commonly used in the literature. The following models are included in the simulation study.

� SFM-POET: The static factor model with observed factors, where the covariance matrix of the idiosyn-

cratic errors is estimated based on the principal orthogonal complement thresholding method (POET)

from Fan et al. (2013).

� DNN-FM: Our non-linear nonparametric factor model estimated based on the s-sparse deep neural

network.

� L-LW: The linear shrinkage estimator of Ledoit and Wolf (2003).

� NL-LW: The non-linear shrinkage estimator of Ledoit and Wolf (2017).

� SF-NL-LW: The single factor non-linear shrinkage estimator of Ledoit and Wolf (2017).

8.2 Simulation results

The simulation results for the first Monte Carlo design in (15) with uncorrelated innovations u are illus-

trated in Tables 1 to 3. Table 1 provides the results of the static linear factor model with observed factors

(SFM-POET) and our deep learning factor model (DNN-FM) in estimating the unknown true function∑d
m=1 1l {m is even}βm,jXm,i + 1l {m is odd}βm,jX

2
m,i in (15) which connects the factors X with the response

variables Y . The linear (L-LW) and non-linear (NL-LW, SF-NL-LW) shrinkage estimators of Ledoit and
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Table 1: Simulation results - First Monte Carlo design, uncorrelated errors
Function estimation

d n J SFM-POET DNN-FM d n J SFM-POET DNN-FM

1

60 50 7.49 3.35

5

60 50 6.70 2.85
60 100 8.71 4.04 60 100 7.32 3.42
60 200 8.37 4.70 60 200 9.09 5.47
120 50 5.53 2.47 120 50 6.88 2.61
120 100 8.98 3.84 120 100 7.50 3.39
120 200 11.30 5.28 120 200 8.17 4.60
240 50 6.60 2.61 240 50 5.95 2.12
240 100 8.23 3.61 240 100 6.07 2.31
240 200 10.00 4.54 240 200 7.32 3.67

3

60 50 5.12 2.08

7

60 50 5.87 2.68
60 100 9.32 4.36 60 100 7.10 3.72
60 200 9.51 5.33 60 200 8.57 5.75
120 50 7.42 2.82 120 50 5.96 2.22
120 100 7.62 3.06 120 100 7.29 3.50
120 200 7.96 3.88 120 200 6.88 4.43
240 50 4.77 1.58 240 50 6.30 2.30
240 100 7.03 2.83 240 100 7.13 2.95
240 200 7.50 3.73 240 200 7.87 3.43

Note: The quantities in table relate to the error metric used in Theorem 2 and cor-
respond to the maximum difference between the estimated function and true function
(
∑d

m=1 1l {m is even}βm,jXm,i + 1l {m is odd}βm,jX
2
m,i) in (15), for j = 1, · · · , J .

Wolf (2003) and Ledoit and Wolf (2017), respectively, only provide estimates for the covariance and preci-

sion matrix of the returns. For this reason, these methods are not included in Table 1.

The quantities in Table 1 relate to the error metric used in Theorem 2 and correspond to the maximum

difference between the estimated and true function. The results indicate that our DNN-FM uniformly

provides more precise function estimates compared to the SFM-POET. Consequently, the DNN-FM is better

suited for measuring non-linear transformations of the observed factors and complex transferring mechanisms

between the factors and the observed variables. As predicted by the theory, the estimation error of the DNN-

FM gets closer to zero as n increases, e.g., for d = 7 and J = 200, the error rate decreases from 5.75 (n = 60)

to 3.43 (n = 240). Hence, the DNN-FM is able to consistently estimate the true underlying function. This

result is valid for different dimensions of the number of factors d and number of variables J . Moreover, the

error rates of SFM-POET are sensitive to an increase in the number of factors and occasionally rise as d gets

large. In contrast to that the error rates of the DNN-FM are in most of the cases unaffected by an increase

of d, e.g., for n = 240, J = 200, the error rate gradually decreases from 4.54 (d = 1) to 3.43 (d = 7). This

result is in line with the theory in Theorem 2.

Table 2 illustrates the simulation results for estimating the true covariance matrix of the data Σy based

on the first Monte Carlo design with uncorrelated innovations. The quantities in the table refer to the error

metric used in Theorem 4 which corresponds to the maximum matrix norm of the difference between the

estimated covariance matrix Σ̂y and Σy. The results indicate that our DNN-FM offers in most of the cases

the most precise covariance matrix estimates compared to the competing approaches. Specifically, it provides

the lowest estimation error and converges faster to zero as n increases, e.g., for d = 7, J = 200, the error

rates gradually decrease from 1.36 (n = 60) to 1.13 (n = 240). The only exception is given by the case when

the data generating process incorporates one factor (d = 1). For this case, the linear shrinkage estimator of

Ledoit and Wolf (2003) (L-LW) and the non-linear shrinkage estimators of Ledoit and Wolf (2017) (NL-LW,

SF-NL-LW) provide precise estimates of the covariance matrix and lead to lower or similar error rates as

DNN-FM. The picture changes as soon as the number of factors increases. While the DNN-FM is unaffected
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Table 2: Simulation results - First Monte Carlo design, uncorrelated errors
Covariance matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 2.48 2.04 1.58 1.51 1.58
60 100 3.10 2.65 1.85 1.77 1.75
60 200 3.62 3.28 2.23 2.13 2.04
120 50 2.58 1.99 1.59 1.55 1.64
120 100 3.21 2.62 1.89 1.86 1.93
120 200 3.79 3.28 2.20 2.15 2.21
240 50 2.64 1.78 1.58 1.57 1.62
240 100 3.28 2.32 1.91 1.89 1.93
240 200 3.87 2.89 2.21 2.19 2.38

3

60 50 1.59 1.37 1.80 1.66 1.75
60 100 1.88 1.69 2.14 1.97 2.00
60 200 2.20 2.12 2.54 2.35 2.33
120 50 1.64 1.33 1.70 1.62 1.69
120 100 1.96 1.64 2.00 1.91 2.00
120 200 2.29 2.05 2.41 2.30 2.35
240 50 1.69 1.22 1.65 1.61 1.63
240 100 2.02 1.48 1.96 1.91 1.94
240 200 2.34 1.82 2.29 2.23 2.32

5

60 50 1.21 1.09 1.80 1.65 1.72
60 100 1.45 1.33 2.16 1.97 2.01
60 200 1.72 1.68 2.53 2.30 2.30
120 50 1.25 1.05 1.68 1.60 1.67
120 100 1.49 1.29 2.04 1.95 2.01
120 200 1.74 1.65 2.38 2.26 2.30
240 50 1.29 0.98 1.61 1.56 1.60
240 100 1.54 1.18 1.97 1.93 1.98
240 200 1.80 1.42 2.30 2.24 2.31

7

60 50 1.06 0.95 1.74 1.58 1.68
60 100 1.24 1.12 2.10 1.91 1.94
60 200 1.38 1.36 2.43 2.20 2.18
120 50 1.05 0.92 1.66 1.57 1.63
120 100 1.23 1.09 1.96 1.87 1.93
120 200 1.37 1.32 2.33 2.22 2.23
240 50 1.09 0.89 1.59 1.55 1.58
240 100 1.27 1.00 1.88 1.84 1.89
240 200 1.43 1.13 2.25 2.19 2.25

Note: The quantities in the table refer to the error metric used in Theorem 4 which
corresponds to the maximum matrix norm of the difference between the estimated
covariance matrix Σ̂y and Σy . The deep neural network factor model (DNN-FM)
is compared to the static factor model with observed factors and POET estimator
from Fan et al. (2013) (SFM-POET), the linear shrinkage estimator of Ledoit and
Wolf (2003) (L-LW), the non-linear shrinkage estimator (NL-LW) and the single
factor non-linear shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

by increase of d, i.e., the error rates generally decrease, the error rates of the linear and non-linear shrinkage

methods occasionally increase. Moreover, the SFM-POET is uniformly outperformed by our DNN-FM. This

result reinforces the conclusion that the rigid linear relationship of the SFM-POET is too restrictive for

measuring more complex relations as in (15).

Table 3 provides the results of estimating the true data precision matrix Σ−1
y . The quantities in the

table represent the error metric of Theorem 5 which measures the spectral norm of the difference between

the estimated and true precision matrix. The results indicate that the DNN-FM consistently estimates the

true precision matrix as n increases, e.g., for d = 7, J = 200, the error rates rapidly decrease from 2.09

(n = 60) to 0.52 (n = 240) which is in line with the theory in Theorem 5. Moreover, it generally outperforms

SFM-POET across different sample size combinations and number of factors.
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Table 3: Simulation results - First Monte Carlo design, uncorrelated errors
Precision matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 1.78 1.72 20.22 1.77 5.64
60 100 2.16 2.09 40.59 2.02 4.61
60 200 2.73 2.64 50.98 1.91 5.35
120 50 1.26 1.16 11.25 1.19 3.71
120 100 1.50 1.47 33.63 1.57 4.54
120 200 1.88 1.89 63.20 1.94 4.15
240 50 1.05 0.97 5.59 1.15 2.62
240 100 1.19 1.18 14.16 1.58 3.31
240 200 1.90 1.50 52.83 2.01 4.56

3

60 50 2.15 1.72 15.91 1.83 11.05
60 100 2.46 1.65 30.12 2.45 13.47
60 200 3.08 1.98 48.14 3.36 17.12
120 50 1.62 1.08 11.70 2.04 8.84
120 100 1.77 1.14 26.22 2.85 11.45
120 200 2.10 1.38 52.72 3.91 14.70
240 50 1.45 0.74 7.58 2.20 6.45
240 100 1.50 0.82 17.14 3.01 8.88
240 200 1.64 1.01 44.01 3.98 11.53

5

60 50 2.02 1.73 10.04 2.12 14.47
60 100 2.22 1.62 19.33 2.84 19.65
60 200 2.93 1.78 32.66 4.29 27.10
120 50 1.79 1.20 8.97 2.63 11.79
120 100 1.77 1.04 19.92 3.71 16.34
120 200 1.95 1.23 36.85 4.83 22.22
240 50 1.70 0.80 7.09 3.02 8.76
240 100 1.67 0.60 16.19 4.16 12.64
240 200 1.66 0.52 35.45 5.40 17.39

7

60 50 2.16 2.33 5.61 2.21 15.44
60 100 2.27 2.11 13.11 3.16 24.16
60 200 2.35 2.09 21.52 4.73 32.15
120 50 1.90 1.65 5.72 3.04 13.79
120 100 1.94 1.47 14.59 4.40 20.73
120 200 1.88 1.51 26.84 5.97 28.33
240 50 1.81 1.11 5.45 3.73 10.44
240 100 1.81 0.75 13.62 5.25 15.65
240 200 1.78 0.52 28.45 8.05 22.28

Note: The quantities in the table represent the error metric of Theorem 5 which
measures the spectral norm of the difference between the estimated and true pre-
cision matrix. The deep neural network factor model (DNN-FM) is compared to
the static factor model with observed factors and POET estimator from Fan et al.
(2013) (SFM-POET), the linear shrinkage estimator of Ledoit and Wolf (2003) (L-
LW), the non-linear shrinkage estimator (NL-LW) and the single factor non-linear
shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

It is important to note that our DNN-FM is not affected by an increase of the number of included factors,

as predicted by our theory. Specifically, the error rates are either hardly changing or decreasing as d increases.

E.g., for n = 240, J = 200, the error rate decreases from 1.50 (d = 1) to 0.52 (d = 7). In contrast to that

the precision of the competing approaches is very much affected by an increase of d and leads to rising error

rates, e.g., for n = 240, J = 200, the error rates of SFM-POET increase from 1.64 (d = 3) to 1.78 (d = 7).

In addition, the results show that L-LW, NL-LW and SF-NL-LW lead to high error rates in terms of the

spectral norm. Only for d = 1, the non-linear shrinkage estimator (NL-LW) provides similar results as the

DNN-FM. Nevertheless, both NL-LW and SF-NL-LW are inconsistent for different specifications of d.

The simulation results for the first Monte Carlo design in (15) with correlated innovations u are illustrated

in Tables 4 to 6. Generally, the error rates for all considered approaches are slightly worse compared
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Table 4: Simulation results - First Monte Carlo design, correlated errors
Function estimation

d n J SFM-POET DNN-FM d n J SFM-POET DNN-FM

1

60 50 9.50 4.72

5

60 50 6.85 3.15
60 100 9.04 5.29 60 100 9.02 5.05
60 200 10.55 6.97 60 200 9.78 6.49
120 50 6.42 3.61 120 50 5.87 2.46
120 100 6.99 4.25 120 100 7.07 3.60
120 200 11.67 6.72 120 200 7.46 4.63
240 50 6.45 3.34 240 50 6.39 2.48
240 100 8.33 4.48 240 100 7.83 3.49
240 200 9.95 5.48 240 200 7.38 4.07

3

60 50 6.50 3.06

7

60 50 6.03 2.92
60 100 9.62 4.72 60 100 8.57 4.86
60 200 7.35 5.03 60 200 8.13 5.49
120 50 6.51 2.79 120 50 6.84 2.75
120 100 8.57 3.94 120 100 6.76 3.17
120 200 8.03 4.57 120 200 7.51 5.06
240 50 7.00 2.82 240 50 5.40 2.03
240 100 7.63 3.41 240 100 6.56 3.06
240 200 7.84 4.22 240 200 8.23 4.06

Note: The quantities in table relate to the error metric used in Theorem 2 and cor-
respond to the maximum difference between the estimated function and true function
(
∑d

m=1 1l {m is even}βm,jXm,i + 1l {m is odd}βm,jX
2
m,i) in (15), for j = 1, · · · , J .

to the first design with uncorrelated innovations which is to be expected due to the more complex data

generating process. Nevertheless, the overall conclusion is qualitatively similar to the one that we obtain with

uncorrelated innovations. Specifically, the DNN-FM consistently determines the true unknown functional

form in (15) and provides consistent estimates for the corresponding covariance and precision matrices as n

increases. Specifically, Table 4 shows e.g., for d = 7, J = 200 a decrease in the error rates of the DNN-FM

from 5.49 to 4.06 as n increases from 60 to 240 which confirms a consistent estimation of the unknown

functional form. The results in Tables 4 and 6 lead to a similar conclusion for the covariance and precision

matrix estimation. More precisely, for d = 7, J = 200, and an increase of n from 60 to 240, the error

rates of the DNN-FM diminish from 1.33 to 1.10 and 2.01 to 0.81, for the covariance and precision matrix

estimators, respectively. Moreover, the error rates of the DNN-FM are generally unaffected by an increase

of the number of included factors d. Especially, for the precision matrix estimation this is not the case for

the competing approaches. Specifically, Table 6 shows e.g., for n = 240, J = 100, an increase in the error

rates of SFM-POET from 1.45 (d = 1) to 1.76 (d = 7) and NL-LW deteriorates from 5.69 (d = 1) to 7.80

(d = 7). In contrast to that the convergence of the DNN-FM is stable with respect to d, i.e., the error rates

are 1.39 for d = 1 and decreases to 1.00 for d = 7.

Compared to the experiment with uncorrelated innovations, where the NL-LW method lead to similar

error rates in the precision matrix estimation as our DNN-FM, for d = 1, the precision of NL-LW is largely

distorted if the errors contain cross-sectional correlations. It is important to note that the advantage in

estimation precision of the DNN-FM compared to the competing approaches is even more pronounced with

correlated innovations. This leads to the conclusion that our newly developed robust estimator for the

covariance matrix of the innovations, provided in Section 4, is well suited for capturing remaining cross-

sectional correlations in the errors.

In order to verify the robustness of the results from the first simulation design, we analyze in the following

the Monte Carlo results for the second simulation design in (17) which incorporates linear, as well as non-

linear effects and pairwise interactions in X on the dependent variable Y . The results are provided in the
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Table 5: Simulation results - First Monte Carlo design, correlated errors
Covariance matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 2.14 1.74 1.39 1.27 1.31
60 100 2.59 2.25 1.60 1.52 1.70
60 200 3.18 2.89 1.92 1.77 1.86
120 50 2.21 1.70 1.34 1.28 1.29
120 100 2.68 2.21 1.59 1.53 1.57
120 200 3.27 2.85 1.93 1.80 1.99
240 50 2.25 1.54 1.34 1.30 1.31
240 100 2.73 1.98 1.58 1.54 1.54
240 200 3.33 2.53 1.93 1.82 1.84

3

60 50 1.45 1.28 1.64 1.60 1.65
60 100 1.74 1.57 2.01 1.84 1.96
60 200 2.01 1.95 2.29 2.18 2.40
120 50 1.53 1.24 1.57 1.53 1.55
120 100 1.81 1.54 1.89 1.86 1.89
120 200 2.08 1.89 2.17 2.14 2.25
240 50 1.57 1.14 1.51 1.51 1.51
240 100 1.85 1.39 1.84 1.78 1.79
240 200 2.14 1.68 2.13 2.11 2.13

5

60 50 1.14 1.04 1.67 1.49 1.53
60 100 1.38 1.27 2.02 1.85 1.88
60 200 1.57 1.55 2.32 2.17 2.21
120 50 1.16 1.00 1.58 1.50 1.51
120 100 1.40 1.24 1.92 1.82 1.84
120 200 1.60 1.52 2.21 2.15 2.18
240 50 1.21 0.94 1.55 1.49 1.49
240 100 1.45 1.12 1.86 1.81 1.80
240 200 1.64 1.30 2.14 2.14 2.16

7

60 50 1.00 0.92 1.70 1.51 1.56
60 100 1.17 1.08 2.03 1.85 1.88
60 200 1.36 1.33 2.44 2.19 2.19
120 50 1.00 0.90 1.60 1.48 1.49
120 100 1.18 1.06 1.89 1.84 1.86
120 200 1.35 1.30 2.31 2.18 2.20
240 50 1.03 0.85 1.55 1.47 1.48
240 100 1.21 0.96 1.84 1.82 1.82
240 200 1.39 1.10 2.22 2.17 2.17

Note: The quantities in the table refer to the error metric used in Theorem 4 which
corresponds to the maximum matrix norm of the difference between the estimated
covariance matrix Σ̂y and Σy . The deep neural network factor model (DNN-FM)
is compared to the static factor model with observed factors and POET estimator
from Fan et al. (2013) (SFM-POET), the linear shrinkage estimator of Ledoit and
Wolf (2003) (L-LW), the non-linear shrinkage estimator (NL-LW) and the single
factor non-linear shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

Tables 7 to 9. The simulation results are qualitatively similar to the ones that we obtain for the first Monte

Carlo design. Specifically, Table 7 shows that the DNN-FM consistently estimates the true functional form

α′X + β′ψ(X) in (17) as n increases. Moreover, it generally provides more precise estimates than the SFM-

POET, showing that the DNN-FM is better suited to capture non-linear transformations in the observed

factors.

Table 7 illustrates the error rates in terms of the maximum matrix norm of the different approaches in

estimating the true covariance matrix. The results are similar to the first simulation design. In fact, the

DNN-FM offers consistent estimates of the covariance matrix and uniformly outperforms the SFM-POET

for different combinations of d, n and J . Moreover, it leads to more precise estimates compared to the linear

and non-linear shrinkage estimators of Ledoit and Wolf (2003), for d > 1. For d = 1, L-LW achieves a similar
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Table 6: Simulation results - First Monte Carlo design, correlated errors
Precision matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 1.71 1.85 10.41 3.50 12.02
60 100 1.94 1.99 19.72 2.61 4.75
60 200 2.15 2.14 32.37 2.15 4.33
120 50 1.44 1.52 7.07 4.22 6.40
120 100 1.61 1.69 17.02 6.11 22.51
120 200 1.77 1.82 37.78 2.88 4.18
240 50 1.32 1.21 4.47 3.92 4.99
240 100 1.45 1.39 10.27 5.69 8.52
240 200 1.71 1.70 30.75 17.82 34.06

3

60 50 2.28 2.15 9.41 4.11 8.26
60 100 2.33 2.15 18.75 3.98 8.87
60 200 2.65 2.13 32.05 3.66 9.52
120 50 1.69 1.76 7.41 5.40 8.19
120 100 1.83 1.76 16.15 5.57 15.98
120 200 2.08 1.77 35.47 4.66 9.02
240 50 1.54 1.43 4.92 5.32 6.87
240 100 1.65 1.52 11.09 8.65 10.91
240 200 1.81 1.64 29.22 7.55 24.69

5

60 50 2.04 2.17 6.92 4.53 8.72
60 100 2.29 1.99 13.75 4.80 11.32
60 200 2.64 1.89 23.30 4.73 13.17
120 50 1.69 1.56 5.80 5.84 8.74
120 100 1.84 1.53 13.23 5.75 11.82
120 200 1.99 1.44 27.06 5.66 12.11
240 50 1.62 1.24 4.41 6.19 7.82
240 100 1.68 1.29 10.02 7.76 11.36
240 200 1.74 1.23 24.28 7.09 15.67

7

60 50 2.17 2.37 5.36 5.84 9.07
60 100 2.26 2.14 10.60 5.60 12.63
60 200 2.62 2.01 16.78 5.72 15.43
120 50 1.83 1.70 4.95 6.42 9.42
120 100 1.84 1.55 10.74 6.54 11.71
120 200 1.96 1.59 20.61 6.62 14.19
240 50 1.74 1.23 3.95 6.58 8.37
240 100 1.76 1.00 9.10 7.80 11.24
240 200 1.75 0.81 20.12 10.50 17.64

Note: The quantities in the table represent the error metric of Theorem 5 which
measures the spectral norm of the difference between the estimated and true pre-
cision matrix. The deep neural network factor model (DNN-FM) is compared to
the static factor model with observed factors and POET estimator from Fan et al.
(2013) (SFM-POET), the linear shrinkage estimator of Ledoit and Wolf (2003) (L-
LW), the non-linear shrinkage estimator (NL-LW) and the single factor non-linear
shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

precision as our DNN-FM and in most cases offers better performance compared to the remaining competing

methods. Furthermore, we observe that the error rates of the DNN-FM are not affected if the number of

factors increases which is in accordance with our theory. The simulation results for estimating the precision

matrix are outlined in Table 9. The error rates in the terms of the spectral norm are in most of the cases

lower for the DNN-FM, followed by the SFM-POET. Moreover, the DNN-FM provides consistent estimates

of the precision matrix. Compared to the first simulation design there is a slight difference concerning the

sensitivity to an increase of the number of factors. Specifically, the error rates of the DNN-FM slightly rise as

d increases, especially if the number of temporal observations is small. This might be due to the DGP used

for the second simulation design in (17) which by incorporating pairwise interactions in X is not perfectly

conforming with the model setting of the DNN-FM. Moreover, the sensitivity to an increase in d vanishes as
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Table 7: Simulation results - Second Monte Carlo design, correlated errors
Function estimation

d n J SFM-POET DNN-FM d n J SFM-POET DNN-FM

1

60 50 6.21 5.32

5

60 50 5.39 3.87
60 100 7.94 7.06 60 100 6.30 4.58
60 200 9.06 8.83 60 200 6.72 5.81
120 50 5.97 5.31 120 50 5.30 3.54
120 100 6.94 6.28 120 100 5.75 4.54
120 200 8.51 8.34 120 200 6.99 6.02
240 50 5.64 4.97 240 50 4.88 3.22
240 100 7.23 6.40 240 100 5.74 4.35
240 200 8.62 8.19 240 200 6.75 6.16

3

60 50 5.58 4.07

7

60 50 5.60 4.03
60 100 6.35 5.20 60 100 6.77 5.16
60 200 8.01 7.09 60 200 7.77 6.79
120 50 5.10 3.70 120 50 4.98 3.38
120 100 6.61 5.15 120 100 5.78 4.57
120 200 7.11 6.19 120 200 7.19 6.47
240 50 4.99 3.61 240 50 4.80 3.29
240 100 5.81 4.51 240 100 5.63 4.35
240 200 6.89 6.04 240 200 7.06 6.19

Note: The quantities in table relate to the error metric used in Theorem 2 and correspond
to the maximum difference between the estimated function α̂′X + β̂′ψ̂(X) and true function
α′X + β′ψ(X) in (17).

soon as the relative difference between the number of variables J and d gets larger (i.e., n = 240, J = 200)

which is in line with our theory. Nevertheless, the estimation of the competing approaches is still largely

affected by increase of d.
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Table 8: Simulation results - Second Monte Carlo design, correlated errors
Covariance matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 0.82 0.66 0.71 0.62 0.74
60 100 0.90 0.76 0.83 0.78 0.94
60 200 0.97 0.87 0.93 0.96 1.12
120 50 0.80 0.56 0.55 0.50 0.58
120 100 0.87 0.64 0.63 0.63 0.71
120 200 0.94 0.73 0.67 0.80 0.86
240 50 0.80 0.49 0.43 0.40 0.45
240 100 0.87 0.57 0.49 0.50 0.57
240 200 0.93 0.62 0.52 0.64 0.66

3

60 50 0.68 0.62 0.88 0.73 0.83
60 100 0.75 0.67 1.06 0.89 1.03
60 200 0.85 0.76 1.20 0.99 1.20
120 50 0.62 0.55 0.77 0.69 0.74
120 100 0.68 0.60 0.91 0.82 0.89
120 200 0.75 0.67 1.01 0.91 1.04
240 50 0.60 0.50 0.71 0.67 0.69
240 100 0.66 0.54 0.81 0.78 0.81
240 200 0.73 0.57 0.93 0.87 0.94

5

60 50 0.63 0.59 1.00 0.82 0.91
60 100 0.70 0.62 1.15 0.95 1.07
60 200 0.79 0.66 1.32 1.10 1.23
120 50 0.51 0.53 0.90 0.81 0.85
120 100 0.58 0.55 1.02 0.92 0.97
120 200 0.63 0.57 1.16 1.06 1.12
240 50 0.49 0.49 0.84 0.80 0.82
240 100 0.55 0.50 0.95 0.90 0.93
240 200 0.60 0.49 1.09 1.04 1.08

7

60 50 0.59 0.58 0.96 0.78 0.88
60 100 0.68 0.58 1.16 0.95 1.06
60 200 0.77 0.59 1.36 1.12 1.22
120 50 0.47 0.51 0.86 0.77 0.81
120 100 0.52 0.50 1.04 0.94 0.98
120 200 0.57 0.51 1.21 1.11 1.15
240 50 0.43 0.42 0.80 0.76 0.78
240 100 0.47 0.45 0.96 0.91 0.93
240 200 0.51 0.43 1.15 1.10 1.12

Note: The quantities in the table refer to the error metric used in Theorem 4 which
corresponds to the maximum matrix norm of the difference between the estimated
covariance matrix Σ̂y and Σy . The deep neural network factor model (DNN-FM)
is compared to the static factor model with observed factors and POET estimator
from Fan et al. (2013) (SFM-POET), the linear shrinkage estimator of Ledoit and
Wolf (2003) (L-LW), the non-linear shrinkage estimator (NL-LW) and the single
factor non-linear shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).
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Table 9: Simulation results - Second Monte Carlo design, correlated errors
Precision matrix estimation

d n J SFM-POET DNN-FM L-LW NL-LW SF-NL-LW

1

60 50 1.30 1.22 2.50 2.98 5.52
60 100 1.42 1.30 3.73 1.44 2.00
60 200 1.48 1.31 4.81 1.21 1.91
120 50 1.14 0.99 2.16 2.82 3.14
120 100 1.23 1.07 3.88 7.87 9.63
120 200 1.27 1.16 6.07 1.46 1.80
240 50 1.08 0.79 1.58 2.35 2.46
240 100 1.16 0.88 3.08 3.56 3.91
240 200 1.20 0.99 6.54 9.70 19.11

3

60 50 1.77 1.88 2.33 2.18 2.99
60 100 1.88 1.90 3.48 1.97 2.66
60 200 1.97 1.75 4.64 1.85 2.74
120 50 1.52 1.53 2.03 2.79 3.09
120 100 1.64 1.64 3.67 3.10 3.07
120 200 1.72 1.62 5.90 2.08 2.61
240 50 1.41 1.29 1.57 2.58 2.77
240 100 1.53 1.45 3.17 3.88 4.01
240 200 1.62 1.49 6.66 3.95 5.73

5

60 50 1.95 2.30 2.10 2.59 3.97
60 100 2.08 2.15 2.75 2.40 2.97
60 200 2.16 1.88 3.45 2.45 3.16
120 50 1.60 1.83 1.79 2.78 3.03
120 100 1.75 1.83 2.80 3.10 3.69
120 200 1.84 1.67 4.22 2.59 3.05
240 50 1.46 1.55 1.40 2.48 2.63
240 100 1.61 1.62 2.59 3.21 3.69
240 200 1.70 1.50 5.04 3.86 4.13

7

60 50 1.96 2.40 1.94 2.84 3.17
60 100 2.17 2.21 2.50 2.63 3.13
60 200 2.24 1.83 3.00 2.82 3.45
120 50 1.56 1.85 1.69 2.66 2.88
120 100 1.75 1.81 2.41 5.20 6.90
120 200 1.84 1.59 3.28 3.17 3.55
240 50 1.40 1.54 1.33 2.27 2.35
240 100 1.58 1.58 2.11 3.77 3.96
240 200 1.68 1.43 3.68 4.19 3.85

Note: The quantities in the table represent the error metric of Theorem 5 which
measures the spectral norm of the difference between the estimated and true pre-
cision matrix. The deep neural network factor model (DNN-FM) is compared to
the static factor model with observed factors and POET estimator from Fan et al.
(2013) (SFM-POET), the linear shrinkage estimator of Ledoit and Wolf (2003) (L-
LW), the non-linear shrinkage estimator (NL-LW) and the single factor non-linear
shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

30



9 Empirical Application

In order to verify the practical validity of the DNN factor model, we investigate its efficiency for estimating

high-dimensional empirical portfolios.

In an out-of-sample portfolio forecasting experiment, we compare the performance of the global minimum

variance portfolio (GMVP) strategy based on the covariance matrix estimated by the sparse multilayer

neural network as illustrated in Section 3 with popular alternative portfolio strategies commonly used in the

literature. As we are mainly interested in analyzing the empirical quality of the covariance matrix estimator,

we concentrate on the estimation of GMVP weights which are solely a function of the covariance matrix of

the asset returns.

9.1 Data and illustration of the forecasting experiment

For our analysis we use the excess returns of stocks of the S&P 500 index which were constituents of the

index on December 31, 2021. The excess returns are constructed by subtracting the corresponding one-month

Treasury bill rate from the asset returns. We compare the forecasting results for asset returns on monthly

frequency, where we use the prices available at the end of the corresponding month to calculate the returns.

For our forecasting experiment, we consider two different time periods.

1. Period 1: January 1986 - December 2019: The first sample period yields n = 407 monthly return

observations and 227 assets are available for the entire sample.

2. Period 2: January 1986 - December 2021: The second period yields n = 431 return observations for

227 assets. Compared to the first sample period, the second period incorporates the COVID-19 Crisis

2020/21 and allows us to analyze the effect of this turbulent episode on the forecasting performance of

the considered methods.

We conduct an out-of-sample forecasting experiment based on a rolling window approach with an in-

sample size of ten years which corresponds to nI = 120 monthly observations. Specifically, at any investment

date h, we use for the most recent 120 monthly returns for the estimation. Based on the estimated portfolio

weights ω̂h, we compute the out-of-sample portfolio return for period h+1 as r̂pfh+1 = ω̂′
hrh+1. In the following

step, we shift the in-sample window by one observation, estimate the portfolio weights ω̂h+1 for investment

period h+1 and compute the out-of-sample portfolio return r̂pfh+1. This procedure is repeated until we reach

the end of the sample. Hence, for the first period we obtain a series of n− nI = 287 out-of-sample portfolio

returns, whereas for the second sample period we retain 311 out-of-sample portfolio returns. All portfolios

are updated on a monthly basis.

This result is used to calculate the average out-of-sample portfolio return and variance as follows

µ̂ =
1

n− nI

n−1∑
h=nI

r̂pfh+1 and σ̂2 =
1

n− nI − 1

n−1∑
h=nI

(
r̂pfh+1 − µ̂

)2
In order to evaluate the performance of the approaches for different asset dimensions, we consider the

following portfolio sizes: J ∈ {50, 100, 200}. Specifically, at the investment date h, we select the largest J

assets, as measured by their market value which have a complete return history over the most recent nI

periods, similar to Ledoit and Wolf (2017).

In addition, we investigate the portfolio performance in the presence of transaction costs. Following Li
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(2015), we calculate the out-of-sample excess returns with transaction costs according to

r̂pf,tch+1 = ω̂′
hrh+1 − c

(
1 + ω̂′

hrh+1

) J∑
j=1

|ω̂h+1,j − ω̂+
h,j |,

where ω̂+
h,j = ω̂h,j(1+ rh+1,j)/(1+ r

pf
h+1) is the portfolio weight of the j-th asset before rebalancing and c are

the proportional transaction costs which we set to 50 basis points per transaction as adopted by DeMiguel

et al. (2007). Based on the previous definitions, we define the mean and variance of the excess portfolio

returns with transaction costs as

µ̂tc =
1

n− nI

n−1∑
h=nI

r̂pf,tch+1 and σ̂2,tc =
1

n− nI − 1

n−1∑
h=nI

(
r̂pf,tch+1 − µ̂tc

)2
.

Moreover, we determine the portfolio turnover by

PT =
1

n− nI

n−1∑
h=nI

J∑
j=1

|ω̂h+1,j − ω̂+
h,j |.

To evaluate the portfolio performance of each method, we concentrate on the annualized out-of-sample

standard deviation (SD), average return (AV) and Sharpe ratio (SR). Moreover, we analyze the average

out-of-sample Portfolio Turnover (PT). SD corresponds to σ̂, σ̂tc, AV is µ̂, µ̂tc, denoting the out-of-sample

results without transaction costs, and with transaction costs, respectively. SR is calculated by AV/SD.

In the following, we provide an overview of the approaches which we incorporate in the empirical study:

� EW: The equally weighted portfolio.

� DNN-FM: Our non-linear s-sparse deep neural network factor model. In order to implement our

method, we use the Fama-French three factors by Fama and French (1993) as observed factors.

� POET: The principal orthogonal complement thresholding covariance matrix estimator from Fan et al.

(2013), with latent factors and the number of factors is estimated based on the IC1 criterion by Bai

and Ng (2002).

� FF3F: The Fama-French three factor model introduced by Fama and French (1993).

� L-LW: The linear shrinkage estimator of Ledoit and Wolf (2003).

� NL-LW: The non-linear shrinkage estimator of Ledoit and Wolf (2017).

� SF-NL-LW: The single factor non-linear shrinkage estimator of Ledoit and Wolf (2017).

9.2 Out-of-sample portfolio results

The annualized out-of-sample portfolio results for the first sample period which excludes the COVID-19 Crisis

2020/21 are illustrated in Table 10. Our DNN-FM provides the lowest out-of-sample standard deviation if

the asset dimension J is smaller than the in-sample size nI of 120 months. For J = 200 the linear and non-

linear shrinkage estimators of Ledoit and Wolf (2003), Ledoit and Wolf (2017) lead to slightly lower portfolio

standard deviations. Given the results of our theory and the simulation results, this outcome is anticipated, as

DNN-FM offers the best performance when nI > J . If we consider the out-of-sample SR without transaction

costs, the DNN-FM outperforms the competing approaches for large portfolio dimensions, i.e., J ≥ 100. For
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Table 10: Out-of-sample portfolio application results for the first sample

Period 1: January 1986 - December 2019
Without transaction costs

Model EW DNN-FM POET FF3F L-LW NL-LW SF-NL-LW

J = 50

SD 0.143 0.136 0.143 0.142 0.145 0.146 0.144
AV 0.067 0.075 0.067 0.068 0.081 0.082 0.083
SR 0.464 0.555 0.467 0.476 0.556 0.560 0.576
PT 0.071 0.175 0.075 0.083 0.378 0.374 0.375

J = 100

SD 0.144 0.133 0.145 0.140 0.140 0.141 0.139
AV 0.069 0.077 0.064 0.070 0.057 0.061 0.059
SR 0.479 0.582 0.446 0.503 0.409 0.430 0.426
PT 0.073 0.243 0.121 0.098 0.537 0.516 0.535

J = 200

SD 0.145 0.138 0.142 0.140 0.132 0.134 0.132
AV 0.086 0.117 0.082 0.089 0.091 0.089 0.090
SR 0.592 0.852 0.577 0.636 0.689 0.666 0.680
PT 0.066 0.437 0.235 0.107 0.546 0.483 0.470

Period 1: January 1986 - December 2019
With transaction costs

Model EW DNN-FM POET FF3F L-LW NL-LW SF-NL-LW

J = 50

SD 0.143 0.136 0.143 0.142 0.145 0.146 0.144
AV 0.062 0.065 0.062 0.063 0.058 0.059 0.060
SR 0.435 0.478 0.436 0.441 0.399 0.406 0.420

J = 100

SD 0.144 0.132 0.144 0.140 0.140 0.141 0.139
AV 0.064 0.062 0.057 0.065 0.025 0.029 0.027
SR 0.449 0.472 0.396 0.467 0.179 0.210 0.194

J = 200

SD 0.145 0.137 0.142 0.140 0.132 0.133 0.132
AV 0.082 0.091 0.068 0.082 0.058 0.060 0.061
SR 0.565 0.663 0.476 0.591 0.440 0.448 0.466

Note: The deep neural network factor model (DNN-FM) is compared to the equally
weighted portfolio (EW), the POET estimator of Fan et al. (2013) (POET), the three
factor model of Fama and French (1993) (FF3F), the linear shrinkage estimator of
Ledoit and Wolf (2003) (L-LW), the non-linear shrinkage estimator (NL-LW) and the
single factor non-linear shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

low asset dimensions (J = 50) it leads to a similar performance as L-LW, NL-LW and SF-NL-LW in terms of

SR. However, it is important to note that the linear and non-linear shrinkage estimators generate the highest

portfolio turnovers across the considered approaches. When transaction costs are taken into account, the

DNN-FM offers the highest SR for all portfolio dimensions. This is mainly due to high out-of-sample returns

and a relative low portfolio turnover which is for low dimensions only slightly higher compared to methods

with less complex model structures as FF3F and POET. The general better performance of the DNN-FM

compared to FF3F testifies the advantage of measuring non-linear relations in high-dimensional portfolios

based on deep neural networks compared to models which solely allow for capturing linear effects.

The annualized results for the second sample period which incorporates the COVID-19 Crisis are reported

in Table 11. Overall the results are very similar to the ones obtained for the first sample period without

COVID-19 Crisis. However, as anticipated, the recent turbulent period in 2020/21 leads to a general increase
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Table 11: Out-of-sample portfolio application results for the second sample

Period 2: January 1986 - December 2021
Without transaction costs

Model EW DNN-FM POET FF3F L-LW NL-LW SF-NL-LW

J = 50

SD 0.147 0.140 0.147 0.145 0.148 0.150 0.148
AV 0.076 0.088 0.078 0.078 0.097 0.099 0.099
SR 0.520 0.632 0.528 0.534 0.654 0.659 0.665
PT 0.072 0.180 0.083 0.084 0.383 0.376 0.377

J = 100

SD 0.147 0.137 0.146 0.143 0.143 0.145 0.142
AV 0.078 0.088 0.076 0.079 0.073 0.078 0.073
SR 0.528 0.638 0.517 0.553 0.509 0.536 0.517
PT 0.073 0.250 0.135 0.101 0.544 0.555 0.569

J = 200

SD 0.150 0.144 0.144 0.144 0.135 0.136 0.135
AV 0.093 0.120 0.085 0.095 0.099 0.098 0.098
SR 0.619 0.836 0.589 0.659 0.735 0.720 0.724
PT 0.067 0.449 0.245 0.112 0.557 0.485 0.471

Period 2: January 1986 - December 2021
With transaction costs

Model EW DNN-FM POET FF3F L-LW NL-LW SF-NL-LW

J = 50

SD 0.147 0.139 0.147 0.145 0.148 0.150 0.148
AV 0.072 0.077 0.073 0.073 0.074 0.076 0.076
SR 0.490 0.555 0.495 0.499 0.499 0.508 0.512

J = 100

SD 0.147 0.137 0.146 0.143 0.142 0.143 0.141
AV 0.073 0.072 0.067 0.073 0.040 0.044 0.039
SR 0.498 0.529 0.462 0.511 0.280 0.306 0.275

J = 200

SD 0.150 0.143 0.144 0.143 0.134 0.136 0.135
AV 0.089 0.093 0.070 0.088 0.065 0.069 0.069
SR 0.593 0.650 0.486 0.613 0.487 0.505 0.514

Note: The deep neural network factor model (DNN-FM) is compared to the equally
weighted portfolio (EW), the POET estimator of Fan et al. (2013) (POET), the three
factor model of Fama and French (1993) (FF3F), the linear shrinkage estimator of
Ledoit and Wolf (2003) (L-LW), the non-linear shrinkage estimator (NL-LW) and the
single factor non-linear shrinkage estimator (SF-NL-LW) of Ledoit and Wolf (2017).

in out-of-sample portfolio volatility for all considered methods and portfolio dimensions. Nevertheless, the

DNN-FM leads to the lowest SD for nI > J which is even more pronounced compared to the first sample

period. This indicates that the DNN-FM can compensate the large volatility during the COVID-19 Crisis.

Moreover, when transaction costs are taken into account it leads to the highest SR for all portfolio dimensions.

In order to verify the robustness of our results and to analyze the evolution of the out-of-sample portfolio

standard deviations during crisis periods, we also consider the forecasting results for sub-periods. Specifically,

we evaluate the performance of the considered methods for a gradual increase of the out-of-sample period.

The results are illustrated in Figure 2, where panels (a) and (b) refer to the first sample without COVID-

19 Crisis and panels (c) and (d) correspond to the second sample including the COVID-19 Crisis. The

outcome at a specific period t incorporates the out-of-sample returns until t (e.g., the SD in December 2011

incorporates the out-of-sample returns from January 1996 until December 2011). The graphs illustrate that
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(c) Second sample and J = 50
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(d) Second sample and J = 100

Figure 2: SD for different sub-periods

the advantage of the DNN-FM in lowest portfolio SD compared to the competing approaches are especially

pronounced during and after the Great Financial Crisis 2008/09 and the COVID-19 Crisis 2020/21. These

results confirm that our deep learning method is well suited for capturing high volatilities during turbulent

episodes. We chose FF3F instead of POET for the linear factor model method, and SF-NL-LW for the

shrinkage methods instead of L-LW and NL-LW, since FF3F and SF-NL-LW generally performed better

among the competing methods in terms of SD in Tables 10 and 11.

10 Conclusions

In this paper, we contribute to the theoretical understanding of the advantages in predictive power of

modern deep neural networks. Specifically, we analyze the large sample properties of feedforward multilayer

neural networks (multilayer perceptron) in multivariate nonparametric regression models. Our theoretical

elaboration generalizes and extends the deep learning results of Schmidt-Hieber (2020). In particular, we

relax the distributional assumption on the innovations in Schmidt-Hieber (2020) from Gaussian errors to

subgaussian noise which enhances the scope of our theoretical results in deep neural networks. Moreover,

we provide uniform results on the expected estimation risk that are novel to the deep learning literature.

We adopt the deep neural network to an additive model setting and apply the framework to factor models
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for finance applications. The deep neural network factor model (DNN-FM) allows to measure flexible linear

and non-linear interactions between the considered time series and underlying factors. We develop a novel

data-dependent estimator of the covariance matrix of the residuals in the DNN-FM which is necessary to

construct a robust estimator for the data covariance matrix. The estimator is based on a flexible adaptive

thresholding method which is robust to outliers in the innovations. We prove that the adaptive thresholding

estimator is consistent under the l2-norm. In addition, we provide consistency results of the corresponding

covariance and precision matrix estimators based on the sparse DNN-FM. It is important to note that the

convergence rates of the estimators are unaffected by the number of included factors. Hence, compared

to the traditional factor models that impose a rigid linear relationship between the factors and considered

variables, our deep neural network factor model considerably enhances the model flexibility.

In the Monte Carlo study, we analyze the finite sample properties of our DNN-FM using various simulation

designs. The results confirm our large sample findings. Specifically, the DNN-FM consistently estimates the

true underlying non-linear functional form which connects the observed factors with the considered time

series, as the number of temporal periods increases. Moreover, the corresponding covariance and precision

matrix estimators based on the DNN-FM are consistent as well. The simulation results further verify that

the convergence rates of the DNN-FM estimators are independent of the number of incorporated factors.

In contrast to that, competing methods are more sensitive to the design of the data generating process and

their error rates are negatively affected if the number of included factors increases.

In an out-of-sample portfolio application, we investigate the efficiency of the DNN-FM in predicting high-

dimensional empirical portfolios in a global minimum variance portfolio setting and compare the performance

to alternative approaches that are commonly used in the literature. The forecasting results show that our

DNN-FM leads to the lowest out-of-sample portfolio standard deviation when the number of periods is

larger than the number of assets. At the same time, it provides a low portfolio turnover. This results in

the highest out-of-sample Sharpe ratio across different portfolio sizes compared to all alternative estimators

when transaction costs are taken into account. Moreover, the results illustrate that the advantage of the

DNN-FM in terms of lowest portfolio standard deviation is especially pronounced during volatile periods,

such as during the COVID-19 Crisis.
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Appendix

A Proofs

We start with the proof of Theorem 1.

Proof of Theorem 1.

(i) The proof of Theorem 1(i) depends on two crucial steps. Step 1 is an oracle inequality, and Step 2 is

the smooth function approximation by s-sparse deep neural networks.

In the following, we outline the steps, and then show the proof. Step 1 is subdivided into two parts.

Step 1a will be our oracle inequality with subgaussian noise. Step 1a consists of Lemma A.1-A.3. Our

Lemma A.1 is the subgaussian counterpart of Lemma C.1 in the Supplement of Schmidt-Hieber (2020), and

our Lemma A.2 provides a bound for the noise term which is described in (A.1) below. Lemma A.2 is the
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subgaussian counterpart of inequality (II) on p. 10 in the Supplement of Schmidt-Hieber (2020). Our Lemma

A.3 is the subgaussian counterpart of Lemma 4 in Schmidt-Hieber (2020). The proofs for gaussian noise in

Schmidt-Hieber (2020) do not carry over in a simple way to the subgaussian case, hence we provide Lemma

A.1-A.3 here. Step 1b provides an upper bound for the covering numbers for the functions in the sparse

neural network. Step 2 is a function approximation result that directly carries over from Schmidt-Hieber

(2020) with a minor extension.

STEP 1a. Before we start with the proof, we should note that the main technical issue is to obtain a

bound for

E

 2

n

n∑
i=1

uj,if̂j(Xi)

 . (A.1)

We are interested in the following term which will be crucial for the bound in (A.1). LetMj be a positive

integer for each j = 1, · · · , J . For m = 1, · · · ,Mj , j = 1, · · · , J

ηm,j :=

∑n
i=1 uj,i[fm,j(Xi)− f0,j(Xi)]

n1/2∥fm,j(Xi)− f0,j(Xi)∥n
, (A.2)

which is shown on p. 13 in the Supplement of Schmidt-Hieber (2020). fm,j(.) is defined as an approximation

for the estimator, where

∥f̂j(Xi)− fm,j(Xi)∥∞ ≤ δ, (A.3)

for j = 1, · · · , J,m = 1, · · · ,Mj , with δ > 0. For our purposes, we will rewrite (A.2) as

ηm,j =

∑n
i=1 uj,i[fm,j(Xi)− f0,j(Xi)]√∑n
i=1(fm,j(Xi)− f0,j(Xi))2

=

n∑
i=1

uj,i∆m,j(Xi), (A.4)

where

∆m,j(Xi) :=
fm,j(Xi)− f0,j(Xi)√∑n
i=1[fm,j(Xi)− f0,j(Xi)]2

,

See that, for each m, j
n∑
i=1

∆m,j(Xi)
2 =

∑n
i=1[fm,j(Xi)− f0,j(Xi)]

2∑n
i=1[fm,j(Xi)− f0,j(Xi)]2

= 1. (A.5)

Note that given uj,i as zero-mean, with variance 1, and iid subgaussian errors, which are independent of Xi

across i = 1, · · · , n, Eηm,j = 0, varηm,j = 1, for each m = 1, · · · ,Mj . Set the Orlicz norm for the errors

max
1≤j≤J

∥uj,i∥ψ2
= Cψ <∞.

Now we state the following Lemma. Lemma A.1 is for subgaussian noise, and extends from the Gaussian

error assumption in Lemma C.1 of Schmidt-Hieber (2020).

Lemma A.1. Under Assumptions 1-2, for each j = 1, · · · , J

E max
1≤m≤Mj

η2m,j ≤ C1 logMj + 2,

with C1 = max(3, C2
ψ/c), c > 0, and c is a positive constant.
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Proof of Lemma A.1. Define Zj := max1≤m≤Mj η
2
m,j . For a given j we have

Zj ≤
Mj∑
m=1

η2m,j , (A.6)

and

EZj ≤
Mj∑
m=1

Eη2m,j =Mj , (A.7)

via zero mean and unit variance for ηm,j . We show the proof for Mj ≥ 4. The proof for Mj ≤ 3 is a simple

algebraic inequality which does not use the distribution of uj,i, and is shown in Schmidt-Hieber (2020), also

will be shown at the end of the proof here. Note that for t > 0

P [η21,j ≥ t] = P [|η1,j | ≥
√
t] = 2P [η1,j ≥

√
t].

For any Tj > 0

EZj =

∫ ∞

0

P [Zj ≥ t]dt ≤ Tj +

∫ ∞

Tj

P [Zj ≥ t]dt

≤ Tj +Mj

∫ ∞

Tj

P [η21,j ≥ t]dt, (A.8)

where we use Lemma 1.2.1-Integral identity of Vershynin (2019), since Zj is nonnegative for the equality in

(A.8), and we use the union bound for the last inequality and (A.6). In (A.8) consider by the definition of

η1,j in (A.4)

∫ ∞

Tj

P [η21,j ≥ t]dt =

∫ ∞

Tj

P [|η1,j | ≥
√
t]dt =

∫ ∞

Tj

P [|
n∑
i=1

uj,i∆1,j(Xi)| ≥
√
t]dt. (A.9)

Now we use the General Hoeffding inequality, Theorem 2.6.3 of Vershynin (2019), since conditional on

Xi uj,i∆1,j(Xi) is subgaussian, and uj,i is independent from ∆1,j(Xi) across i, for a given j. For a positive

constant c > 0, we have

P

| n∑
i=1

uj,i∆1,j(Xi)| ≥
√
t

 ≤ 2 exp

(
−ct

C2
ψ∥∆1,j(Xi)∥22

)
= 2 exp

(
−ct
C2
ψ

)
,

by (A.5) for the last equality. Now substitute this last inequality in (A.8)

EZj ≤ Tj + 2Mj

∫ ∞

Tj

exp

(
−ct
C2
ψ

)
dt

= Tj + 2Mj

C2
ψ

c
exp

(
−cTj
C2
ψ

)

=

(
C2
ψ

c

)
logMj + 2Mj

C2
ψ

c

1

Mj
=
C2
ψ

c
(logMj + 2), (A.10)

where we use Tj =
C2
ψ

c logMj for the second equality. Combine (A.10) with the case of 1 ≤Mj ≤ 3 on p. 14

in the proof of Lemma C.1 in the Supplement of Schmidt-Hieber (2020) which is EZj ≤Mj ≤ 3 logMj + 1
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to have the desired result.

Q.E.D.

Now we provide another lemma, that will bound the noise given Lemma A.1. This is an extension of the

noise bound (II) on p. 10 in the Supplement of Schmidt-Hieber (2020), from gaussian error to subgaussian

error. Note that we set Mj = Nn,j(δ,Fj , ∥.∥∞) which are the covering numbers for the s-sparse deep neural

network Fj . We condition on logMj ≤ n. The case when logMj ≥ n will be discussed at the end of proof

of Theorem 1. First, we set the in-sample prediction error as:

R̂n(f̂j(Xi), f0,j(Xi)) := E

 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))
2

 . (A.11)

The following noise bound is the extension of (II) on p. 10 in the Supplement of Schmidt-Hieber (2020), from

gaussian noise to subgaussian noise. The proof technique for Lemma A.2 is the same as in Schmidt-Hieber

(2020), given our new Lemma A.1. To simplify the notation we set Nn,j := Nn,j(δ,Fj , ∥.∥∞).

Lemma A.2. Under Assumptions 1-2, with logNn,j ≤ n, for all j = 1, · · · , J

∣∣∣∣∣E
[
2

n
uj,if̂j(Xi)

]∣∣∣∣∣ ≤ (2 + 2
√
C1 + 2)δ + 2

√
R̂n(f̂j(Xi), f0,j(Xi))(C1 logNn,j + 2)

n
.

Proof of Lemma A.2. Note that by (C.5) in the Supplement Appendix of Schmidt-Hieber (2020) we

obtain the first inequality below∣∣∣∣∣E
[
2

n
uj,if̂j(Xi)

]∣∣∣∣∣ ≤ 2δ +
2

n1/2
E
[
(∥f̂j(Xi)− f0,j(Xi)∥n + δ)|ηm,j |

]
≤ 2δ +

2

n1/2
(R̂n(f̂j(Xi), f0,j(Xi))

1/2 + δ)
√
C1 logNn,j + 2, (A.12)

where for the second inequality we use the Cauchy-Schwartz inequality, with Eη2m,j ≤ Emax1≤m≤Mj η
2
m,j ,

and Lemma A.1. Note that since we assume logNn,j ≤ n,

2

n1/2
δ
√
C1 logNn,j + 2 ≤ 2δ

√
C1 + 2. (A.13)

Then by (A.12) and (A.13) we obtain

∣∣∣∣∣E
[
2

n
uj,if̂j(Xi)

]∣∣∣∣∣ ≤ (2 + 2
√
C1 + 2)δ + 2

√
R̂n(f̂j(Xi), f0,j(Xi))(C1 logNn,j + 2)

n
. (A.14)

Q.E.D.

Now we provide an oracle inequality which is the extension of Lemma 4 of Schmidt-Hieber (2020) from

Gaussian noise to subgaussian noise. Moreover, we extend the result to maximum of J functions.

Lemma A.3. Under Assumptions 1,2, and

{f0,j(.)} ∪ Fj ⊂ {fj(.) : [0, 1]d → [−F, F ]}, for some F ≥ 1,
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with covering numbers

Nn,j ≥ 3 for all δ ∈ (0, 1],

then for each j = 1, · · · , J

max
1≤j≤J

R(f̂j , f0,j) ≤ 4

[
max
1≤j≤J

inf
f0,j∈Fj

E[(fj(X)− f0,j(X))2]

+
4F 2

n
[C2 max

1≤j≤J
logNn,j + 74] + C3δF

]
,

for constants C2 ≥ 18, C3 ≥ 58. These last two constants are derived from the constant C1 ≥ 3, and explained

in the proof.

Remark. Note that in subgaussian case of Lemma 4 of Schmidt-Hieber (2020), he has 18 in front of the

covering numbers, since C1 ≥ 3 we have C2 := 2C1 + 12 ≥ 18. Our second constant in the second term is

74 and larger than 72 in Lemma 4 of Schmidt-Hieber (2020), so there is a price to pay for a more general

result in our case, but these differences will not matter when n → ∞. Also in front of δF , Lemma 4 of

Schmidt-Hieber (2020) has 32 as a contant, and we have at least 58. Clearly the Orlicz norm plays a key

role in our bound, since C1 = max(3,
C2
ψ

c ), and Cψ represents maximum of the Orlicz norm (ψ2) of the noise.

Also we impose ϵ = 1 in Lemma 4 of Schmidt-Hieber (2020) to simplify the notation.

Proof of Lemma A.3. Our proof of Lemma A.3 has the structure of (III) on p. 11 in the Supplement

of Schmidt-Hieber (2020). The main difference arises from our results in Lemma A.1-A.2. We start with the

case of logNn,j ≤ n, for j = 1, · · · , J . The other case will be discussed at the end. By the definition of f̂j(.)

E

 1

n

n∑
i=1

(Yj,i − f̂j(Xi))
2

 ≤ E

 1

n

n∑
i=1

(Yj,i − fj(Xi))
2

 . (A.15)

Since Xi ≡ X, we have

E∥fj(Xi)− f0,j(Xi)∥2n = E[fj(X)− f0,j(X)]2. (A.16)

Also by assumption

Euj,ifj(Xi) = 0. (A.17)

By the model, Yj,i in (1)

E

 1

n

n∑
i=1

(uj,i − (f̂j(Xi)− f0,j(Xi)))
2

 ≤ E

 1

n

n∑
i=1

(uj,i − (fj(Xi)− f0,j(Xi)))
2

 .
Then by rearranging, simplifying and using (A.11), (A.16) and (A.17) we obtain

R̂n(f̂j(Xi), f0,j(Xi)) ≤ E

 2

n

n∑
i=1

uj,if̂j(Xi)

+ E[fj(X)− f0,j(X)]2. (A.18)

By Lemma A.2

R̂n(f̂j(Xi), f0,j(Xi)) ≤ E[fj(X)− f0,j(X)]2

+ (2 + 2
√
C1 + 2)δ + 2

√
R̂n(f̂j(Xi), f0,j(Xi))(C1 logNn,j + 2)

n
.
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For positive real numbers, a, b, d set

a = R̂n(f̂j(Xi), f0,j(Xi)), b =
√
(C1 logNn,j + 2)/n,

d = E[fj(X)− f0,j(X)]2 + (2 + 2
√
C1 + 2)δ.

If |a| ≤ 2
√
ab+ d then a ≤ 2d+ 4b2 which implies, with F ≥ 1

R̂n(f̂j(Xi), f0,j(Xi)) ≤ 2

[
inf
fj∈Fj

E[fj(X)− f0,j(X)]2
]
+ (2 + 2

√
C1 + 2)2δ + F 2 4(C1 logNn,j + 2)

n
. (A.19)

Next, we use the upper bound in the inequality (I) on p. 10 in the Supplement of Schmidt-Hieber (2020),

which uses only the iid structure of the data Yi, Xi across i, but relates the risk to its empirical version

R(f̂j(X), f0,j(X)) ≤ 2

[
R̂n(f̂j(Xi), f0,j(Xi)) +

2F 2

n
(12 logNn,j + 70) + 26δF

]
.

Taking maximum over j = 1, · · · , J and using (A.19) we get

max
1≤j≤J

R(f̂j(X), f0,j(X)) ≤ 4[ max
1≤j≤J

inf
fj∈Fj

E[fj(X)− f0,j(X)]2]

+ [26 + (8 + 8
√
C1 + 2)]δF + 4F 2 (12 + 2C1)max1≤j≤J logNn,j + 74

n
.

Set C2 := 12 + 2C1, C3 ≥ 58 ≥ 26 + (8 + 8
√
C1 + 2), with C1 ≥ 3. (Also we have an empirical minimizer

as estimator so in the proof of Lemma 4 of Schmidt-Hieber (2020), his term ∆n = 0).

Case of logNn,j ≥ n is shown in Schmidt-Hieber (2020) and will be repeated here with added uniformity

over j. Since

max
1≤j≤J

R(f̂j(X), f0,j(X)) ≤ 4F 2,

upper bound here follows in that case.

Q.E.D.

Step 1b. Next, we need to find upper bounds on the covering numbers. First, Lemma 5 of Schmidt-

Hieber (2020) with Remark 1 and proof of Theorem 2 in Schmidt-Hieber (2020) puts an upper bound on

logNn,j in our Lemma A.3 and it is not related to uj,i data distribution, and the upper bound in Theorem

2 of Schmidt-Hieber (2020) is the same here. Let C4 > 0 be a positive constant

max
1≤j≤J

logNn,j ≤ C4 max
1≤j≤J

[
(sj + 1) log(n(sj + 1)Ld)

]
= C4(s̄+ 1) log(n(s̄+ 1)Ld),

where we use p0 = d, pL+1 = 1 in our notation, where p0 is the input dimension, and pL+1 is the output

dimension in Schmidt-Hieber (2020). We extend the result of Schmidt-Hieber (2020) to uniform over j =
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1, · · · , J functions. Then

max1≤j≤J logNn,j
n

≤ C4(s̄+ 1) log[n(s̄+ 1)Ld]

n
=
C4(s̄+ 1) log[ nL

nL−1 (s̄+ 1)L dL

dL−1 ]

n

=
C4(s̄+ 1)L log[ n

n1−1/L (s̄+ 1) d
d1−1/L ]

n
. (A.20)

Then by Assumption 4, s̄ ≤ C4nϕn log n we have

s̄+ 1 ≤ C ′nϕn log n. (A.21)

where C ′ is another positive constant. Next, we have

n
1
Lϕn log n = n

1
Ln−2β∗

h/(2β
∗
h+th) log n→ 0,

by Assumption 4, L ≥
∑h
i=0 log2(4th ∪ 4βh)log2n ≥ 2. Since d is constant and using (A.21) and the last

result above, with a large positive constant C ′′,

log[
n

n1−1/L
(s̄+ 1)

d

d1−1/L
] ≤ log[(n)C ′n1/Ld1/Lϕn log n] ≤ C ′′ log n. (A.22)

So substitute (A.21)-(A.22) into (A.20)

max1≤j≤J logNn,j
n

≤ C ′′Lϕn log
2 n. (A.23)

Step 2. Next, we consider function approximation. Since

inf
fj∈Fj

E[fj(X)− f0,j(X)]2] ≤ inf
f∗
j ∈Fj

∥f∗j (X)− f0(X)∥2∞,

by (26) of Schmidt-Hieber (2020) with C ′′′ a positive constant

inf
f∗
j ∈Fj

∥f∗j (X)− f0(X)∥2∞ ≤ C ′′′ϕn,

we get

max
1≤j≤J

inf
f∗
j ∈Fj

∥f∗j (X)− f0(X)∥2∞ ≤ C ′′′ϕn, (A.24)

since right hand side of the previous inequality, the one before (A.24) does not depend on j. Now combine

(A.23)(A.24) in Lemma A.3 to have the desired result, with δ = 1/n, and F ≥ 1 and function have same

smoothness parameters and dimensions of βh, th regardless of j = 1, · · · , J . C replaces C ′′, C ′′′.

(ii) Apply (A.20)-(A.24) to the right side of (A.19) to get the desired result, or by using Xi being iid,

and X ≡ Xi for all i = 1, · · · , n, and Theorem 1(i)

max
1≤j≤J

E

 1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2

 = max
1≤j≤J

E
[
[f̂j(X)− f0,j(X)]2

]
≤ CϕnL log2 n.

Q.E.D.

Proof of Theorem 2. This is not a trivial extension from Theorem 1 since we have J functions to
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estimate, and it is not obvious which concentration inequality and how to use them in the proof. Here our

maximal inequality result in (A.28) can also apply to other estimation problems in high dimensions.

Since for all i = 1, · · · , n, j = 1, · · · , J

|f̂j(Xi)− f0,j(Xi)| ≤ 2F,

we have by (2.11) of Wainwright (2019) or one-sided version of p. 454 of Wainwright (2019), with t > 0

P

 1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 − E[f̂j(Xi)− f0,j(Xi)]

2 ≥ t

 ≤ exp(
−nt2

32F 4
).

Using the union bound, with t1 > 0

P

 max
1≤j≤J

 1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 − E[f̂j(Xi)− f0,j(Xi)]

2

 ≥ t1

 ≤ exp(log J − −nt21
32F 4

). (A.25)

Choose t1 = (
√
32F 2)

√
t2 + log J/n with choice of t = c1

√
log J/n in (A.25)

P

 max
1≤j≤J

 1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 − E[f̂j(Xi)− f0,j(Xi)]

2

 ≥
√
32F 2

√
(c21 + 1) log J/n

 ≤ 1

Jc
2
1

.

(A.26)

Then note that by defining Zj :=
∑n
i=1[f̂j(Xi)− f0,j(Xi)]

2, Zj ≥ 0, we see that

max
1≤j≤J

[Zj − EZj ] ≥ max
1≤j≤J

[Zj − max
1≤j≤J

EZj ] = max
1≤j≤J

Zj − max
1≤j≤J

EZj . (A.27)

(A.27) implies that we can change the left side term of the probability in (A.26) and get the following

maximal inequality

P

 max
1≤j≤J

1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 − max

1≤j≤J

1

n

n∑
i=1

E[f̂j(Xi)− f0,j(Xi)]
2 ≥

√
32F 2

√
(c21 + 1) log J/n


≤ 1

Jc
2
1

.

(A.28)

So, use Theorem 1(ii) in the second term on the left side of the probability in (A.28) with rn1 :=

Cn−2β/(2β+1) log3 n, rn2 :=
√
32F 2

√
(c21 + 1) log J/n definitions

P [ max
1≤j≤J

1

n

n∑
i=1

[f̂j(Xi)− f0,j(Xi)]
2 ≥ rn1 + rn2] ≤

1

Jc
2
1

.

Q.E.D.

Proof of Lemma 1.

(i) Since uj,i are independent sub Gaussian and multiple of sub Gaussian random variable are sub

exponential uj,iuk,i, and centered version is also subexponential by p. 31-32 of Vershynin (2019), then we
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can benefit from Corollary 2.8.3 of Vershynin (2019), and providing a union bound

P

 max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

uj,iuk,i − Euj,iuk,i| ≥ t

 ≤ J22 exp

(
−cmin(

t2

C4
ψ

,
t

C2
ψ

)n

)
,

with C as a positive constant. Then the right side upper bound probability simplifies

J22 exp

(
−cmin(

t2

C4
ψ

,
t

C2
ψ

)n

)
= exp

(
log 2J2 − cmin(

t2

C4
ψ

,
t

C2
ψ

)n

)
.

Set t = C
√
log J/n, with sufficiently large n, (n1/2 ≥ (C/C2

ψ)(log J)
1/2) we have t2/C4

ψ ≤ t/C2
ψ, we only

analyze

J22 exp

(
−cmin(

t2

C4
ψ

,
t

C2
ψ

)n

)
= exp

(
log 2J2 − c

t2n

C4
ψ

)
.

Set c2 : cC2/C4
ψ − 2 > 0 to have

log 2 + 2 log J − c
C2

C4
ψ

log J = log(
2

Jc2
).

This provides the desired result.

Q.E.D.

(ii) First, uj,iuk,i−Euj,iuk,i is subexponential random variables across i = 1, · · · , n by Lemma 2.7.7 and

p. 32 of Vershynin (2019). Then |uj,iuk,i − Euj,iuk,i| is subexponential by Proposition 2.7.1 of Vershynin

(2019), and by p. 32 of Vershynin (2019) |uj,iuk,i − Euj,iuk,i| − E|uj,iuk,i − Euj,iuk,i| is subexponential.

Then apply Lemma 1(i) proof above.

Q.E.D.

Proof of Lemma 2. (i) Clearly, uj,i − ûj,i = f̂j(Xi)− f0,j(Xi). Then we simplify the problem as

max
1≤j≤J

1

n

n∑
i=1

(uj,i − ûj,i)
2 = max

1≤j≤J

1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))
2. (A.29)

Apply Theorem 2 to get the result.

Q.E.D.

(ii) Use triangle inequality by seeing ûj,i = ûj,i − uj,i + uj,i, and in the same way for ûk,i, and Cauchy-

Schwartz inequality for the second inequality below

44



max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

(ûj,iûk,i − uj,iuk,i)| ≤ max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

(ûj,i − uj,i)(ûk,i − uk,i)|

+ 2 max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

uj,i(ûk,i − uk,i)|

≤ max
1≤j≤J

1

n

n∑
i=1

(ûj,i − uj,i)
2

+ 2

√√√√ max
1≤j≤J

1

n

n∑
i=1

u2j,i

√√√√ max
1≤j≤J

1

n

n∑
i=1

(ûj,i − uj,i)2.

Then apply Lemma 1(i), Assumption 1, and Lemma 2(i) to get the result, since max1≤j≤J Eu
2
j,i ≤ C <∞,

and a2n + 2Can ≤ C∗an with Assumption 7(i).

Q.E.D.

(iii) By triangle inequality

max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

ûj,iûk,i − Euj,iuk,i| ≤ max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

(ûj,iûk,i − uj,iuk,i)|

+ max
1≤j≤J

max
1≤k≤J

| 1
n

n∑
i=1

(uj,iuk,i − Euj,iuk,i)|.

Then Lemma 1(i), and Lemma 2(ii) above provides the result with Assumption 7(i) and C∗∗ ≥ 3C + 1.

Q.E.D.

The proof of Theorem 3 uses the following lemma and this will be used to in robust adaptive thresholding

covariance matrix estimator.

Lemma A.4. Under Assumptions 1,2,5-7, with c1 > 0, c2 > 0 both positive constants

P

(
CL ≤ min

1≤j≤J,1≤k≤J
θ̂j,k ≤ max

1≤j≤J,1≤k≤J
θ̂j,k ≤ Cu

)
≥ 1−O(

1

Jmin(c1,c2)
),

with CU := max1≤j≤J,1≤k≤J |σj,k|+max1≤j≤J σj,j <∞, and CL := min1≤j≤J,1≤k≤J E|uj,iuk,i − σj,k| =
c > 0.

Proof of Lemma A.4.

Define the following events, that we condition our proof, and C ′′ > 0 is a positive constant

A1 := { max
1≤k≤J

max
1≤j≤J

|σ̂j,k − σj,k| ≤ C ′′(

√
log J

n
+ an)},

A2 := { max
1≤j≤J

1

n

n∑
i=1

(ûj,i − uj,i)
2 ≤ a2n}.

A3 := { max
1≤j≤J

| 1
n

n∑
i=1

u2j,i − σj,j | ≤ C
√

log J/n}.
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A4 := { max
1≤j≤J

max
1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

|uj,iuk,i − σj,k| − E|uj,iuk,i − σj,k|

∣∣∣∣∣∣ ≤ C

√
log J

n
}.

and then we will relax the condition and get the probabilistic result. We start with the upper bound. By

using the triangle inequality

max
1≤j≤J

max
1≤k≤J

θ̂j,k = max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|ûj,iûk,i − σ̂j,k| ≤ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|ûj,iûk,i − σj,k|

+ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|σj,k − σ̂j,k|

= max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|ûj,iûk,i − σj,k|+ max
1≤j≤J,1≤k≤J

|σj,k − σ̂j,k|. (A.30)

Then condition on the event A1, and use it in second term on the right side of (A.30)

max
1≤j≤J,1≤k≤J

|σj,k − σ̂j,k| ≤ C ′′(
√
log J/n+ an) = o(1), (A.31)

where the asymptotic negligibility is by Assumption 7. Consider the first term on the right side of (A.30).

max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|ûj,iûk,i − σj,k| ≤ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|(ûj,i − uj,i)(ûk,i − uk,i)|

+ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|(ûj,i − uj,i)(uk,i)|

+ max
1≤j≤J

max
1≤k≤J

n∑
i=1

|(uj,i)(ûk,i − uk,i)|

+ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|uj,iuk,i − σj,k|. (A.32)

Consider the first term on the right side of (A.32) via Cauchy-Schwartz inequality

max
1≤j≤J

max
1≤k≤J

n∑
i=1

|(ûj,i − uj,i)(ûk,i − uk,i)| ≤

√√√√ max
1≤j≤J

1

n

n∑
i=1

(ûj,i − uj,i)2

√√√√ max
1≤k≤J

1

n

n∑
i=1

(ûk,i − uk,i)2 ≤ a2n,

(A.33)

by event A2. Consider the second term on the right side of (A.32)

max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|(ûj,i − uj,i)(uk,i)| ≤

√√√√ max
1≤j≤J

1

n

n∑
i=1

(ûj,i − uj,i)2

√√√√ max
1≤k≤J

1

n

n∑
i=1

u2k,i

≤ an

{
max

1≤k≤J
σk,k + C

√
log J

n

}1/2

, (A.34)

where we use Cauchy-Schwartz for the first inequality, and we use events A2 ∩A3. Same analysis applies to

third term on the right side of (A.32). Consider the fourth term on the right side of (A.32)
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max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|uj,iuk,i − σj,k| ≤ max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|uj,iuk,i|+ max
1≤j≤J,1≤k≤J

|σj,k|. (A.35)

Use Cauchy-Schwartz inequality

max
1≤j≤J

max
1≤k≤J

1

n

n∑
i=1

|uj,iuk,i| ≤

√√√√ max
1≤j≤J

1

n

n∑
i=1

u2j,i

√√√√ max
1≤k≤J

1

n

n∑
i=1

u2k,i

≤ [ max
1≤j≤J

σj,j + C

√
log J

n
]1/2[ max

1≤k≤J
σk,k + C

√
log J

n
]1/2 (A.36)

via event A3. Combine (A.33)-(A.36) in (A.32) on A1 ∩ A2 ∩ A3

max
1≤j≤J,1≤k≤J

1

n

n∑
i=1

|ûj,iûk,i − σj,k| ≤ a2n + 2an[ max
1≤j≤J

σj,j + C

√
log J

n
]1/2 + max

1≤j≤J,1≤k≤J
|σj,k|

+ [ max
1≤j≤J

σj,j + C

√
log J

n
]1/2[ max

1≤k≤J
σk,k + C

√
log J

n
]1/2. (A.37)

Since an = o(1) by Assumption 7

max
1≤j≤J,1≤k≤J

θ̂j,k ≤ max
1≤j≤J,1≤k≤J

|σj,k|+ max
1≤j≤J

σj,j + o(1). (A.38)

See that by defining CU := max1≤j≤J,1≤k≤J |σj,k|+max1≤j≤J σj,j <∞ and using Lemma 1-2 we have

P (A1 ∩ A2 ∩ A3) ≥ 1− 3

Jc1
− 4

Jc2
.

We analyze the lower bound in our problem. We condition on the events A1,A2,A3,A4. Then we relax

this assumption at the end of the proof here. We start with the following triangle inequality and use θ̂j,k

definition

1

n

n∑
i=1

|uj,iuk,i − σj,k| ≤ 1

n

n∑
i=1

|uj,iuk,i − ûj,iûk,i|+
1

n

n∑
i=1

|ûj,iûk,i − σ̂j,k|+
1

n

n∑
i=1

|σ̂j,k − σj,k|

≤ 1

n

n∑
i=1

|uj,iuk,i − ûj,iûk,i|+ θ̂j,k + max
1≤j≤J,1≤k≤J

|σ̂j,k − σj,k|. (A.39)

The term on the left side of (A.39) is lower bounded by

1

n

n∑
i=1

|uj,iuk,i − σj,k| ≥ E|uj,iuk,i − σj,k| − C

√
log J

n

≥ c− C

√
log J

n
, (A.40)

where the first inequality is by event A4 and iid nature of errors, and the second inequality is by Assumption

7. Then analyze the right side of (A.39) by event A1

max
1≤j≤J,1≤k≤J

|σ̂j,k − σj,k| ≤ C ′′(

√
log J

n
+ an). (A.41)
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Consider the first term on the right side of (A.39) by triangle inequality and (A.33)-(A.34) on A2 ∩ A3

max
j,k

1

n

n∑
i=1

|uj,iuk,i − ûj,iûk,i| ≤ max
j,k

1

n

n∑
i=1

|(ûj,i − uj,i)(ûk,i − uk,i)|+max
j,k

1

n

n∑
i=1

|(ûj,i − uj,i)(uk,i)|

+ max
j,k

1

n

n∑
i=1

|(uj,i)(ûk,i − uk,i)|

≤ a2n + an{ max
1≤j≤J

σj,j + C
√
log J/n}1/2

+ an{ max
1≤k≤J

σk,k + C
√
log J/n}1/2. (A.42)

Combine (A.40)-(A.42) in (A.39),

min
1≤j≤J

min
1≤k≤J

θ̂j,k ≥ c− C

√
log J

n
− C ′′an − C ′′

√
log J/n− a2n

− an{ max
1≤j≤J

σj,j + C
√
log J/n}1/2 − an{ max

1≤k≤J
σk,k + C

√
log J/n}1/2

= c− o(1),

by an = o(1),
√
log J/n = o(1) by Assumption 7. Since we condition on ∩4

l=1Al

P (∩4
l=1Al) ≥ 1− 3

Jc1
− 6

Jc2
,

by Lemmata 1-2.

Q.E.D.

Proof of Theorem 3.

(i) Define bn := C ′′(
√

log J
n + an), with CCL > 2C ′′ > 0 we get

CLωn > 2bn, (A.43)

by (11).

Next define

B1 := { max
1≤k≤J

max
1≤j≤J

|σ̂j,k − σj,k| ≤ C ′′(

√
log J

n
+ an)},

B2 := { min
1≤k≤J

min
1≤j≤J

θ̂j,kωn > 2bn},

B3 := { max
1≤k≤J

max
1≤j≤J

θ̂j,k ≤ CU}.

Define also the event E : {∩3
l=1Bl}. Note that under E, with bn definition

|σ̂j,k| ≥ ωnθ̂j,k implies |σj,k| ≥ bn, (A.44)

since

bn + |σj,k| ≥ |σ̂j,k| ≥ ωnθ̂j,k > 2bn.

and

|σ̂j,k| < ωnθ̂j,k implies |σj,k| < bn + CUωn, (A.45)
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via

ωnCU ≥ ωnθ̂j,k > |σ̂j,k| > |σj,k| − bn.

Let ∥A∥l2 be the spectral norm of matrix A.Then

∥Σ̂Thu − Σu∥l2 ≤ max
1≤j≤J

J∑
k=1

|σ̂j,k1l {|σ̂j,k|≥ωnθ̂j,k} − σj,k|

≤ max
1≤j≤J

J∑
k=1

|σ̂j,k − σj,k|1l {|σ̂j,k|≥ωnθ̂j,k}

+ max
1≤j≤J

J∑
k=1

|σj,k|1l {|σ̂j,k|<ωnθ̂j,k}

≤ max
1≤j≤J

J∑
k=1

|σ̂j,k − σj,k|1l {|σj,k|≥bn} + max
1≤j≤J

J∑
j=1

|σj,k|1l {|σj,k|<bn+CUωn}

≤ bnsn + (bn + CUωn)sn ≤ (CL + CU )ωnsn = C2ωnsn

where the first inequality is due to ∥A∥l2 ≤ ∥A∥l∞ for matrix norms, with A being a symmetric matrix, and

the third inequality is by (A.44)(A.45), and the fourth inequality is by B1 and the sparsity definition, and

the last inequality is due to (A.43). The last equality is C2 := CL + CU .

Note that by (A.43)

P (B2) = P ( min
1≤j≤J,1≤k≤J

θ̂j,kωn > 2bn) = P ( min
1≤j≤J,1≤k≤J

θ̂j,k >
2bn
ωn

) ≥ P ( min
1≤j≤J,1≤k≤J

θ̂j.k > CL).

Then by Lemma A.4, and Lemma 2(iii) we have

P [E] ≥ 1−O(
1

Jmin(c1,c2)
).

Q.E.D.

(ii) Given Eigmin(Σu) ≥ c > 0, and (i), the proof follows exactly as in proof of Theorem 2.1(ii) of Fan

et al. (2011).

Q.E.D.

Proof of Lemma 3.

There are three steps in this proof.

Step 1.

We start with definitions. From the definition of the covariance matrix, we can simplify the estimator

for the covariance matrix for function of factors

Σ̂f =
1

n

n∑
i=1

f̂(Xi)f̂(Xi)
′ − f̄(Xi)f̄(Xi)

′,

where (j, k) th element can be written as

Σ̂fj,k =
1

n

n∑
i=1

f̂j(Xi)f̂k(Xi)− f̄j(Xi)f̄k(Xi), (A.46)
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with f̄j(Xi) :=
1
n

∑n
i=1 f̂j(Xi), f̄k(Xi) :=

1
n

∑n
i=1 f̂k(Xi). Now define the infeasible covariance matrix esti-

mator for function of factors

Σ̄f :=
1

n

n∑
i=1

[f0(Xi)− f̄0(Xi)][f0(Xi)− f̄0(Xi)]
′ =

1

n

n∑
i=1

f0(Xi)f0(Xi)
′ − f̄0(Xi)f̄0(Xi)

′, (A.47)

with f̄0(Xi) :=
1
n

∑n
i=1 f0(Xi) : J × 1, and

f0(Xi) := (f0,1(Xi), · · · , f0,j(Xi), · · · , f0,J(Xi))
′ : J × 1.

The (j, k) th element of Σ̄f is

Σ̄fj,k :=
1

n

n∑
i=1

f0,j(Xi)f0,k(Xi)− f̄0,j(Xi)f̄0,k(Xi),

with f̄0,j(Xi) :=
1
n

∑n
i=1 f0,j(Xi), and f̄0,k is defined in the same way, k th asset replacing j th asset.

Step 2.

Now we start with the following triangle inequality.

∥Σ̂f − Σf∥∞ ≤ ∥Σ̂f − Σ̄f∥∞ + ∥Σ̄f − Σf∥∞. (A.48)

In (A.48) we start with the first term on the right side and use definitions (A.46)(A.47) with triangle

inequality

∥Σ̂f − Σ̄f∥∞ ≤ max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f̂j(Xi)f̂k(Xi)−
1

n

n∑
i=1

f0,j(Xi)f0,k(Xi)

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣( 1n
n∑
i=1

f̂j(Xi))(
1

n

n∑
i=1

f̂k(Xi))− (
1

n

n∑
i=1

f0,j(Xi))(
1

n

n∑
i=1

f0,k(Xi))

∣∣∣∣∣∣ .(A.49)
Step 2a.

In (A.49) we consider the first right side term, by using f̂j(Xi) = [f̂j(Xi) − f0,j(Xi)] + f0,j(Xi), and

repeating the same for f̂k(Xi) and triangle inequality

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑

i=1

f̂j(Xi)f̂k(Xi)−
1

n

n∑
i=1

f0,j(Xi)f0,k(Xi)

∣∣∣∣∣∣
≤ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑

i=1

(f̂j(Xi)− f0,j(Xi))(f̂k(Xi)− f0,k(Xi))

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑

i=1

(f̂j(Xi)− f0,j(Xi))(f0,k(Xi))

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑

i=1

(f0,j(Xi))(f̂k(Xi)− f0,k(Xi))

∣∣∣∣∣∣ . (A.50)
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Next consider the first right side term in (A.50), by Cauchy-Schwartz inequality

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

(f̂j(Xi)− f0,j(Xi))(f̂k(Xi)− f0,k(Xi))

∣∣∣∣∣∣ ≤ max
1≤j≤J

√√√√ 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))2

× max
1≤k≤J

√√√√ 1

n

n∑
i=1

(f̂k(Xi)− f0,k(Xi))2

= Op(a
2
n), (A.51)

where the rate is by Theorem 2, and a2n := max(rn1, rn2). In the same way as in (A.51) via Cauchy-Schwartz

inequality, consider the second term on the right side of (A.50)

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

(f̂j(Xi)− f0,j(Xi))(f0,k(Xi))

∣∣∣∣∣∣ ≤ max
1≤j≤J

√√√√ 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))2

× max
1≤k≤J

√√√√ 1

n

n∑
i=1

f0,k(Xi)2 = Op(an), (A.52)

where we use Theorem 2 and uniformly bounded functions f0,k(Xi) in Theorem 2 statement for the rate.

Next we use the same analysis for the third term on the right side of (A.50) and combine (A.51)(A.52) in

(A.50) to have

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f̂j(Xi)f̂k(Xi)−
1

n

n∑
i=1

f0,j(Xi)f0,k(Xi)

∣∣∣∣∣∣ = Op(an). (A.53)

Step 2b. We consider the second term on the right side of (A.49). Add and subtract 1

n

n∑
i=1

f̂j(Xi)

 1

n

n∑
i=1

f̂k(Xi)

 −

 1

n

n∑
i=1

f0,j(Xi)

 1

n

n∑
i=1

f0,k(Xi)


=

 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))

 1

n

n∑
i=1

(f̂k(Xi)− f0,k(Xi))


+

 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))

 1

n

n∑
i=1

f0,k(Xi)


+

 1

n

n∑
i=1

(f̂k(Xi)− f0,k(Xi))

 1

n

n∑
i=1

f0,j(Xi)

 . (A.54)

In (A.54) by l1, l2 norm inequality we get

1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi)) ≤
1

n

n∑
i=1

|(f̂j(Xi)− f0,j(Xi))| ≤

√√√√ 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))2.

The same analysis is applied to 1
n

∑n
i=1(f̂k(Xi) − f0,k(Xi)). The first term on the right side of (A.54) can
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be upper bounded as

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))

 1

n

n∑
i=1

(f̂k(Xi)− f0,k(Xi))

∣∣∣∣∣∣ ≤ max
1≤j≤J

√√√√ 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))2

× max
1≤k≤J

√√√√ 1

n

n∑
i=1

(f̂k(Xi)− f0,k(Xi))2

= Op(a
2
n), (A.55)

by Theorem 2. Then in (A.54)

max
1≤j≤j,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))

 1

n

n∑
i=1

f0,k(Xi)

∣∣∣∣∣∣ ≤ max
1≤j≤J

√√√√ 1

n

n∑
i=1

(f̂j(Xi)− f0,j(Xi))2

× max
1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f0,k(Xi)

∣∣∣∣∣∣
= Op(an), (A.56)

by Theorem 2 and uniformly bounded f0,k(Xi) by Assumption. Same analysis in (A.56) applies to third

term on the right side of (A.54) hence combine (A.55)(A.56) in (A.54)

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

f̂j(Xi)

 1

n

n∑
i=1

f̂k(Xi)

−

 1

n

n∑
i=1

f0,j(Xi)

 1

n

n∑
i=1

f0,k(Xi)

∣∣∣∣∣∣ = Op(an). (A.57)

Use (A.53)(A.57) in (A.49) to have

∥Σ̂f − Σ̄f∥∞ = Op(an). (A.58)

Step 2c. In (A.48) consider the second term on the right side

∥Σ̄f − Σf∥∞ ≤ max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f0,j(Xi)f0,k(Xi)− E[f0,j(Xi)f0,k(Xi)]

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣( 1n
n∑
i=1

f0,j(Xi))(
1

n

n∑
i=1

f0,k(Xi))− E[f0,j(Xi)]E[f0,k(Xi)]

∣∣∣∣∣∣ . (A.59)

Take the first term on the right side of (A.59)

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f0,j(Xi)f0,k(Xi)− E[f0,j(Xi)f0,k(Xi)]

∣∣∣∣∣∣ = Op(

√
log J

n
), (A.60)

by the proof of Lemma 1 (i) since f0,j(Xi), f0,k(Xi) are uniformly bounded (subgaussian) hence their product

is subexponential. Consider the second term on the right side of (A.59) by adding and subtracting, and

triangle inequality
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max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣( 1n
n∑

i=1

f0,j(Xi))(
1

n

n∑
i=1

f0,k(Xi))− E[f0,j(Xi)]E[f0,k(Xi)]

∣∣∣∣∣∣
≤ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f0,j(Xi)− E[f0,j(Xi)])

 1

n

n∑
i=1

(f0,k(Xi)− E[f0,k(Xi)])

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f0,j(Xi)− E[f0,j(Xi)])

E[f0,k(Xi)]

∣∣∣∣∣∣
+ max

1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f0,k(Xi)− E[f0,k(Xi)])

E[f0,j(Xi)]

∣∣∣∣∣∣ . (A.61)

In (A.61) consider the first term on the right side

max
1≤j≤J,1≤k≤J

|

 1

n

n∑
i=1

(f0,j(Xi)− E[f0,j(Xi)])

 ×

 1

n

n∑
i=1

(f0,k(Xi)− E[f0,k(Xi)])

 |

≤ max
1≤j≤J

∣∣∣∣∣∣ 1n
n∑

i=1

(f0,j(Xi)− E[f0,j(Xi)])

∣∣∣∣∣∣
× max

1≤k≤J

∣∣∣∣∣∣ 1n
n∑

i=1

(f0,k(Xi)− E[f0,k(Xi)])

∣∣∣∣∣∣ . (A.62)

By Hoeffding inequality in (2.11) of Wainwright (2019), since our functions are uniformly bounded (sub-

gaussian), then taking the union bound with t2 = 2F
√

log 2J/n

P

 max
1≤j≤J

∣∣∣∣∣∣ 1n
n∑
i=1

f0,j(Xi)− Ef0,j(Xi)

∣∣∣∣∣∣ ≥ t2

 ≤ 2J exp

(
−2n

4F 2
(t22)

)

=
1

2J
. (A.63)

Second term on the right side of (A.62) is handled in the same way as in (A.63) hence

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f0,j(Xi)− E[f0,j(Xi)])

 1

n

n∑
i=1

(f0,k(Xi)− E[f0,k(Xi)])

∣∣∣∣∣∣ = Op

(
log J

n

)
. (A.64)

Since our functions are uniformly bounded we have E|f0,k(Xi)| ≤ F , second term on the right side of (A.61)

uses (A.63)

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣
 1

n

n∑
i=1

(f0,j(Xi)− E[f0,j(Xi)])

E[f0,k(Xi)]

∣∣∣∣∣∣ = Op

(√
log J

n

)
. (A.65)

Third term on the right side of (A.61) follows the same analysis in (A.65) above hence via second term on
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the right side of (A.59) and the analysis in (A.62)-(A.65)

max
1≤j≤J,1≤k≤J

∣∣∣∣∣∣( 1n
n∑
i=1

f0,j(Xi))(
1

n

n∑
i=1

f0,k(Xi))− E[f0,j(Xi)]E[f0,k(Xi)]

∣∣∣∣∣∣ = Op

(√
log J

n

)
. (A.66)

Step 3. Use (A.60) and (A.66) in (A.59) to have

∥Σ̄f − Σ∥∞ = Op

(√
log J√
n

)
. (A.67)

Since rate an := max(
√
rn1,

√
rn2) is always slower than

√
log J/n combine (A.58) and (A.67) in (A.48) to

have

∥Σ̂f − Σ∥∞ = Op (an) .

Q.E.D.

Proof of Theorem 4. Clearly by definitions of Σ̂y,Σy,

∥Σ̂y − Σy∥∞ ≤ ∥Σ̂f − Σf∥∞ + ∥Σ̂Thu − Σu∥∞. (A.68)

In the inequality above we analyze the second right side term, using the technique as in the proof of Theorem

3. In that sense we have the following definitions, σj,k := Euj,iuk,i, and by bn = C ′′(
√
log J/n+ an)

B1 := { max
1≤k≤J

max
1≤j≤J

|σ̂j,k − σj,k| ≤ bn},

B2 := { min
1≤k≤J

min
1≤j≤J

θ̂j,kωn > 2bn},

B3 := { max
1≤k≤J

max
1≤j≤J

θ̂j,k ≤ CU}.

Define also the event E : {∩3
l=1Bl}. Under event E

∥Σ̂Thu − Σu∥∞ = max
1≤j≤J

max
1≤k≤J

|σ̂j,k1l {|σ̂j,k|≥ωnθ̂j,k} − σj,k|

≤ max
1≤j≤J

max
1≤k≤J

|σ̂j,k − σj,k|1l {|σ̂j,k|≥ωnθ̂j,k}
+ max

1≤j≤J
max

1≤k≤J
|σj,k|1l {|σ̂j,k|<ωnθ̂j,k}

≤ max
1≤j≤J

max
1≤k≤J

|σ̂j,k − σj,k|1l {|σj,k|≥bn} + max
1≤j≤J

max
1≤k≤J

|σj,k|1l {|σj,k|<bn+CUωn}

≤ bn + (bn + CUωn) ≤ (CL + CU )ωn,

where the first equality is the definition, and the second inequality is by (A.44)(A.45), and the third inequality

is by B1 definition, and the last inequality is by (A.43). Following the proof of Theorem 3

P (E) ≥ 1−O(1/Jmin(c1,c2)),

so

∥Σ̂Thu − Σu∥∞ = Op(ωn).
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Then using Lemma 3, and since ωn = O(
√
log J/n+ an) = O(an) we have by the last result in (A.68)

∥Σ̂y − Σy∥∞ = Op(ωn) = Op(an).

Q.E.D.

Consistency of Estimate of Precision Matrix of Returns

This part of the Appendix analyzes the estimate for the precision matrix of the returns based on our

sparse deep neural network. We need several Lemmata to begin with. Our results in this part of the paper

only allow J << n.

Lemma A.5. Under Assumptions 1,2,5-9

∥(Σ̂Thu )−1Σ̂f − Σ−1
u Σf∥l2 = Op(Jωnsn).

Proof of A.5. First by adding and subtracting and triangle inequality

∥(Σ̂Thu )−1Σ̂f − Σ−1
u Σf∥l2 ≤ ∥[(Σ̂Thu )−1 − Σ−1

u ][Σ̂f − Σf ]∥l2
+ ∥[(Σ̂Thu )−1 − Σ−1

u ]Σf∥l2 + ∥Σ−1
u (Σ̂f − Σf )∥l2 . (A.69)

In the following, we analyze each term separately. See that

∥[(Σ̂Thu )−1 − Σ−1
u ][Σ̂f − Σf ]∥l2 ≤ ∥[(Σ̂Thu )−1 − Σ−1

u ]∥l2∥[Σ̂f − Σf ]∥l2
≤ J∥[(Σ̂Thu )−1 − Σ−1

u ]∥l2∥[Σ̂f − Σf ]∥∞
= JOp(ωnsn)Op(an), (A.70)

by norm inequality that ties the spectral norm to the ∥.∥∞ norm on p. 365 of Horn and Johnson (2013),

and by Theorem 3, and Lemma 3. Then in (A.69) consider

∥[(Σ̂Thu )−1 − Σ−1
u ]Σf∥l2 ≤ ∥[(Σ̂Thu )−1 − Σ−1

u ]∥l2∥Σf∥l2
= Op(ωnsn)O(J), (A.71)

by Theorem 3 and Assumption 8 ∥Σf∥l2 = Eigmax(Σf ) = O(J). Next, on the right side of (A.69)

∥Σ−1
u (Σ̂f − Σf )∥l2 ≤ ∥Σ−1

u ∥l2∥Σ̂f − Σf∥l2 ≤ J∥Σ−1
u ∥l2∥Σ̂f − Σf∥∞ = Op(Jan), (A.72)

where we use Lemma 3, and norm inequality that ties the spectral norm to the ∥.∥∞ norm on p. 365 of Horn

and Johnson (2013), and

∥Σ−1
u ∥l2 = Eigmax(Σ−1

u ) =
1

Eigmin(Σu)
≤ 1

c
<∞. (A.73)

by Assumption 1. Note that an → 0, and ωnsn → 0 by Assumption 9, since ωnsn = sn(
√
log J/n+an) > an.

Hence, the rate in (A.71) is the slowest.
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Q.E.D.

Lemma A.6. Under Assumptions 1,2,5-9, with rn → 0 or rn = 0, with δn → ∞

(i) ∥∥∥∥[IJ +Σ−1
u Σf

]−1
∥∥∥∥
l2

= O(
δn

δn + rn
) = O(1).

(ii) ∥∥∥∥[IJ + (Σ̂Thu )−1Σ̂f
]−1
∥∥∥∥
l2

= Op(
δn

δn + rn
) = Op(1).

Proof of Lemma A.6.

(i) We start the proof with the following eigenvalue inequality in Abadir and Magnus (2005) which is on

p. 344 as Exercise 12.40a, with a proof, for the symmetric matrices A and B

Eigmin(A+B) ≥ Eigmin(A) + Eigmin(B). (A.74)

Now apply (A.74) with A = IJ , B = Σ−1
u Σf in the first inequality below

Eigmin(IJ +Σ−1
u Σf ) ≥ Eigmin(IJ) + Eigmin(Σ−1

u Σf )

≥ 1 + Eigmin(Σ−1
u )Eigmin(Σf )

= 1 +
1

Eigmax(Σu)
Eigmin(Σf )

≥ 1 +
rn
Cδn

, (A.75)

where the second inequality follows from Fact 10.22.23 in Bernstein (2018) on p. 809, and the remaining

derivations follow from Assumptions 8-9. Note that

Eigmax[(IJ +Σ−1
u Σf )−1] =

1

Eigmin[(IJ +Σ−1
u Σf )]

= O(
1

1 + rn
δn

) = O(
δn

δn + rn
).

(ii)

∥
[
IJ + (Σ̂Thu )−1Σ̂f

]
−
[
IJ +Σ−1

u Σf
]
∥l2 = ∥(Σ̂Thu )−1Σ̂f − Σ−1

u Σf∥l2 = Op(Jωnsn),

by Lemma A.5. Then by Assumption 9, Jωnsn → 0, and Assumption 8(ii), 1 + rn/Cδn → 1 or exactly 1

depending on rn, and via Lemma A.1(i) of Fan et al. (2011)

P
[
Eigmin(IJ + (Σ̂Thu )−1Σ̂f ) ≥ 0.5[1 + rn/Cδn]

]
≥ P

[
∥
[
IJ + (Σ̂Thu )−1Σ̂f

]
−
[
IJ +Σ−1

u Σf
]
∥l2 ≤ 0.5[1 + rn/Cδn]

]
≥ 1− o(1).
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So by Lemma A.1(ii) of Fan et al. (2011)∥∥∥∥[IJ + (Σ̂Thu )−1Σ̂f )
]−1
∥∥∥∥
l2

= Op(
δn

δn + rn
) = Op(1),

since either δn
δn+rn

= 1, or δn
δn+rn

→ 1 by Assumption 8(ii).

Q.E.D.

Lemma A.7. Under Assumptions 1,2,5-9

(i)

∥Σ̂f∥l2 = Op(J).

(ii)

∥(Σ̂Thu )−1∥l2 = Op(1).

Proof of Lemma A.7.

(i)

∥Σ̂f∥l2 ≤ ∥Σ̂f − Σf∥l2 + ∥Σf∥l2
≤ [J∥Σ̂f − Σf∥∞] + ∥Σf∥l2
= Op(Jan) +O(J) = Op(J),

by p. 365 of Horn and Johnson (2013), tying the ∥.∥l2 spectral norm to the ∥.∥∞ norm, and via Lemma 3,

and Assumption 9 which implies an → 0, by ωn = O(an) and Assumption 8(ii).

(ii)

∥(Σ̂Thu )−1∥l2 ≤ ∥(Σ̂Thu )−1 − Σ−1
u ∥l2 + ∥Σ−1

u ∥l2
= Op(ωnsn) +O(1)

= Op(1),

by Theorem 3, Assumption 9 implies ωnsn → 0, and

∥Σ−1
u ∥l2 = Eigmax(Σ−1

u ) =
1

Eigmin(Σu)
≤ 1

c
<∞,

by Assumption 1. Q.E.D.

Proof of Theorem 5

First define

Ĝ := [IJ + (Σ̂Thu )−1Σ̂f ]−1. (A.76)

G := [IJ +Σ−1
u Σf ]−1. (A.77)
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Note that by Lemma A.6 and the definitions (A.76), (A.77)

∥Ĝ∥l2 = Op(1). (A.78)

∥G∥l2 = O(1). (A.79)

Then by the equations (13) and (14) we obtain

∥Σ̂−1
y − Σ−1

y ∥l2 ≤ ∥(Σ̂Thu )−1 − Σ−1
u ∥l2 + ∥(Σ̂Thu )−1Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1

u ΣfGΣ−1
u ∥l2 . (A.80)

First we consider the second term on the right-hand side in (A.80). One issue concerns the simplification of

that term such that we can benefit from the previously introduced Lemmata. In that respect, we add and

subtract Σ−1
u Σ̂f Ĝ(Σ̂Thu )−1 and use the triangle inequality to gather

∥(Σ̂Thu )−1Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1
u ΣfGΣ−1

u ∥l2 ≤ ∥[(Σ̂Thu )−1Σ̂f − Σ−1
u Σ̂f ]Ĝ(Σ̂Thu )−1∥l2

+ ∥Σ−1
u Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1

u ΣfGΣ−1
u ∥l2 . (A.81)

Take the second term in (A.81) add and subtract Σ−1
u Σf Ĝ(Σ̂Thu )−1 and use the triangle inequality to

obtain

∥Σ−1
u Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1

u ΣfGΣ−1
u ∥l2 ≤ ∥Σ−1

u (Σ̂f − Σf )Ĝ(Σ̂Thu )−1∥l2
+ ∥Σ−1

u Σf Ĝ(Σ̂Thu )−1 − Σ−1
u ΣfGΣ−1

u ∥l2 . (A.82)

Take the second term on the right side of (A.82), add and subtract Σ−1
u Σf ĜΣ−1

u and via triangle inequality

we get

∥Σ−1
u Σf Ĝ(Σ̂Thu )−1 − Σ−1

u ΣfGΣ−1
u ∥l2 ≤ ∥Σ−1

u Σf Ĝ(Σ̂Thu )−1 − Σ−1
u Σf ĜΣ−1

u ∥l2
+ ∥Σ−1

u Σf ĜΣ−1
u − Σ−1

u ΣfGΣ−1
u ∥l2 . (A.83)

Combine (A.82) and (A.83) in (A.81) which yields

∥(Σ̂Thu )−1Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1
u ΣfGΣ−1

u ∥l2 ≤ ∥[(Σ̂Thu )−1 − Σ−1
u ]Σ̂f Ĝ(Σ̂Thu )−1∥l2

+ ∥Σ−1
u (Σ̂f − Σf )Ĝ(Σ̂Thu )−1∥l2

+ ∥Σ−1
u Σf Ĝ[(Σ̂Thu )−1 − Σ−1

u ]∥l2
+ ∥Σ−1

u Σf (Ĝ−G)Σ−1
u ∥l2 . (A.84)

In the following, we compute the rates for each term on the right side of (A.84). Consider the first term

on the right side of (A.84)

∥[(Σ̂Thu )−1 − Σ−1
u ]Σ̂f Ĝ(Σ̂Thu )−1∥l2 ≤ ∥[(Σ̂Thu )−1 − Σ−1

u ]∥l2∥Σ̂f∥l2∥Ĝ∥l2∥(Σ̂Thu )−1∥l2
= Op(ωnsn)Op(J)Op(1)Op(1) = Op(Jωnsn) = op(1), (A.85)

by Theorem 3, Lemma A.7, (A.78) and the last equality is by Assumption 9. Analyze the second term on

the right side of (A.84)
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∥Σ−1
u (Σ̂f − Σf )Ĝ(Σ̂Thu )−1∥l2 ≤ ∥Σ−1

u ∥l2∥(Σ̂f − Σf )∥l2∥Ĝ∥l2∥(Σ̂Thu )−1∥l2
≤ ∥Σ−1

u ∥l2 [J∥(Σ̂f − Σf )∥∞]∥Ĝ∥l2∥(Σ̂Thu )−1∥l2
= O(1)Op(Jan)Op(1)Op(1) = Op(Jan) = op(1), (A.86)

by (A.73), by the inequality tying the spectral norm to the ∥.∥∞ norm in p. 365 of Horn and Johnson

(2013), Lemma 3, Lemma A.6(ii)-Ĝ definition in (A.76) and (A.78), Lemma A.7(ii), and the last equality is

by Assumption 9. Consider the third term on the right side of (A.84)

∥Σ−1
u Σf Ĝ[(Σ̂Thu )−1 − Σ−1

u ]∥l2 ≤ ∥Σ−1
u ∥l2∥Σf∥l2∥Ĝ∥l2∥[(Σ̂Thu )−1 − Σ−1

u ]∥l2
= O(1)O(J)Op(1)Op(ωnsn) = Op(Jωnsn) = op(1), (A.87)

by (A.73), Lemma A.6(ii)- Ĝ definition in (A.76) and (A.78), Theorem 3 with Assumptions 8-9.

The fourth term on the right side of (A.84) is

∥Σ−1
u Σf (Ĝ−G)Σ−1

u ∥l2 ≤ ∥Σ−1
u ∥2l2∥Σ

f∥l2∥Ĝ−G∥l2
≤ ∥Σ−1

u ∥2l2∥Σ
f∥l2∥Ĝ∥l2∥G∥l2∥(Σ̂Thu )−1Σ̂f − Σ−1

u Σf∥l2
= O(1)O(J)Op(1)O(1)Op(Jωnsn) = Op(J

2ωnsn) = op(1), (A.88)

where we use the definitions of Ĝ and G in (A.76) and (A.77) with (A.78) and (A.79)

∥Ĝ−G∥l2 ≤ ∥Ĝ∥l2∥G∥l2∥(IJ + (Σ̂Thu )−1Σ̂f )− (IJ +Σ−1
u Σf )∥l2 ,

to get the second inequality on the right side of (A.88). For the rates we use (A.73), Lemma A.5, A.6 and

Assumptions 8-9. By the definition of ωn, we obtain ωn = O(
√
log J/n + an) = O(an). Hence, the slowest

rate among (A.85)-(A.88) is (A.88). Then by (A.80) we have

∥Σ̂−1
y − Σ−1

y ∥l2 ≤ ∥(Σ̂Thu )−1 − Σ−1
u ∥l2

+ ∥(Σ̂Thu )−1Σ̂f Ĝ(Σ̂Thu )−1 − Σ−1
u ΣfGΣ−1

u ∥l2
= Op(ωnsn) +Op(J

2ωnsn) = Op(J
2ωnsn) = op(1),

by Theorem 3 and (A.88).

Q.E.D.
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