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1 Introduction

Research on market microstructure has flourished over the past two decades as a consequence

of increased accessibility of high frequency data and significant improvements in computational

technologies. One big strand in microstructure studies has focused on identifying factors that

influence asset prices and examining how prices evolve in reaction to new information. Previous

research has documented that trade attributes, such as direction and volume, and bid-ask spreads

are important pieces of information that drive the price formation process (Hasbrouck, 1988,

1991a,b). In particular, unexpected trades result in a persistent impact on security prices; the

larger the volume of a trade and/or the wider the bid-ask spread, the bigger the price adjustment.

Time of trade arrivals has also been shown to play an important role in explaining price dy-

namics. Theoretical studies by Diamond and Verrecchia (1987) and Easley and O’Hara (1992)

highlight the informativeness of trade arrival times and their joint determination with the process

of trade generation and price formation. Specifically, Diamond and Verrecchia (1987) hypothesize

that long time intervals between trades, or, equivalently, low levels of trading activities, are sig-

nals of bad news being revealed to the market, which subsequently lead to a decrease in prices.

Meanwhile, Easley and O’Hara (1992) relate long trade durations to a lack of news events and

show that trading intensity is positively dependent on the proportion of informed investors in the

market. Consequently, the longer the time between trades, the narrower the bid-ask spread and

the smaller the price adjustment. Dufour and Engle (2000) lend support to these theories by

empirically showing that more frequent trade arrivals or shorter trade durations induce not only

stronger positive autocorrelation of trade directions but also a quicker convergence of prices to the

equilibrium level. Likewise, higher trading intensity leads to higher price volatility (Engle, 2000)

and strengthens the positive dependence of price volatility on trade sizes (Xu et al., 2006).

Despite the theoretical suggestion of the joint determination of trade durations and other vari-

ables such as prices and trade attributes (e.g. Diamond and Verrecchia, 1987, Easley and O’Hara,

1992), Dufour and Engle (2000), Engle (2000) and Xu et al. (2006) all assume that trade dura-

tions are strictly exogenous. That is, the time between trades is assumed to be only dependent

upon previous durations but independent of past trajectories of prices and trade attributes. Nev-

ertheless, Dufour and Engle (2000) conduct a formal test of the validity of the strict exogeneity
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assumption (which is often imposed on durations in previous studies) and find that it is strongly

rejected. They suggest that “incorporating [the] feedback effects of returns, trades and volume

on time durations may improve the in-sample performance of the model” (p. 2496). Although

they do not pursue the relaxation of this assumption, these authors emphasize the importance of

endogenizing trade durations since it “could ultimately provide more accurate impulse response

functions” (p. 2496), i.e. it could enable a more accurate assessment of the price impact of trades.

Motivated by the Dufour and Engle’s suggestion, the current paper aims to build a model for

returns, trade characteristics (signs and volumes) and durations that relaxes the strong exogeneity

assumption of trade durations, and we use this framework to examine how trades impact prices

when trade arrival times are endogenous.

Our econometric framework is built upon the general modeling approach of Engle (2000) that

decomposes the joint distribution of trade durations and other variables of interest such as returns

and trade attributes into the product of the marginal density of durations and the conditional

density of the other variables. By incorporating the past histories of returns, trade characteristics

and durations into both the marginal and conditional densities, we allow for feedback effects

amongst these variables in the joint system. In particular, we follow Hasbrouck (1991a) and

Dufour and Engle (2000) in modeling returns and trade characteristics with a vector autoregression

(VAR) that is non-linearly related to trade durations. Meanwhile, we model durations in two

ways, both of which take into account the dependence of durations on lagged returns and trade

characteristics. The first way is to make durations another endogenous variable that evolves

according to an autoregressive structure similar to returns and trade attributes in the VAR system,

which is a natural extension of Hasbrouck’s (1991a) framework to endogenize trade durations. The

second way is to employ an autoregressive conditional duration (ACD) model for durations that

incorporates past returns and trade characteristics.

There is a small but growing body of literature that accommodates the endogeneity of trade

durations in a multivariate system (Grammig and Wellner, 2002, Manganelli, 2005, Renault and

Werker, 2011, Pelletier and Zheng, 2013, Renault et al., 2014, Wei and Pelletier, 2015). Unlike these

studies whose main objective is to examine the interdependence between duration and volatility

(i.e. the second moment of returns), this chapter focuses on the dynamics of the first moment of

returns. In addition, our proposed nonlinear VAR model incorporates trade direction, which is
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shown to be an important determinant of the price formation process (Hasbrouck, 1991a, Dufour

and Engle, 2000, Barclay et al., 2003) but which is often excluded from the aforementioned studies

due to its binary nature (i.e. trade direction can only take two values: 1 if a trade is a purchase and

-1 if it is a sale). Our work also differs from another related work by Russell and Engle (2005) in that

instead of studying discrete tick-size price changes with an autoregressive conditional multinomial

model, we examine returns - a widely-used and continuous relative measure of price changes which

facilitates comparison amongst stocks of different capitalizations.

We apply the proposed model to study the role of durations and trade attributes in the process

of price formation for Australian banking stocks. In addition, we investigate how the Reserve

Bank of Australia (RBA) interest rate announcements affect the arrival time and the price im-

pact of trades in these stocks. Effectively, the release of monetary policy news is treated as an

exogenous event to the joint framework on which we condition our analysis. We focus on banking

stocks because they are liquid and very sensitive to interest rate news. With the joint model,

we examine several important issues in the microstructure literature. The first issue relates to

theoretical predictions about the endogeneity of trade durations and their informativeness about

price dynamics (e.g. Easley and O’Hara, 1992). Specifically, are durations correlated with prices

and trade attributes, and if so, how? Also, how do trade durations affect the adjustment of secu-

rity prices to new information? The second issue concerns how the occurrence of exogenous news

events such as RBA announcements affect the trade generation and price formation processes. Do

interest rate announcements intensify the trading frequency and the price impact of trades? The

third issue compares the relative importance of durations and trade attributes (signs and volumes)

to price dynamics. Although there are theoretical justifications and empirical evidence of the in-

formativeness of both trade arrival times and trade attributes about price adjustment, there is

little guidance, either theoretical or empirical, on which of the two possess a bigger informational

content. In this paper, we empirically investigate whether durations or trade characteristics play

a dominant role in explaining the behavior of prices.

Our study contributes to the literature in several ways. First, we provide a general model to

study the dynamics of returns jointly with durations and trade characteristics that relaxes the

strict exogeneity of durations that is often assumed in previous studies. We find that durations

are not only correlated but also jointly determined with trade attributes and returns, supporting
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Easley and O’Hara’s (1992) theory. Specifically, while larger price adjustments tend to increase

future trade durations (which is consistent with Admati and Pfleiderer (1988), Grammig and

Wellner (2002)), larger past trading volumes tend to shorten the durations of incoming transactions

(which supports Easley and O’Hara (1992), Manganelli (2005), Nowak and Anderson (2014)). In

conformance with Dufour and Engle (2000), shorter durations strengthen the price impact and the

positive autocorrelation of trades.

Second, we provide evidence that monetary policy announcements affect the trading intensity

and the price impact of trades in banking stocks. Our work differs from most existing studies

that investigate how financial markets react to interest rate news because (i) we study how the

news impacts trading frequency, in addition to how it impacts returns; and (ii) our study is

conducted using tick-by-tick transaction data which helps avoid a loss of information that might

bias the analysis (Engle, 2000, Russell and Engle, 2005), whereas most previous studies employ

data of lower frequencies such as 5 minutes (e.g. Smales, 2012), daily (Bomfim, 2003, Gasbarro

and Monroe, 2004, Kim and Nguyen, 2008), or monthly (Bernanke and Kuttner, 2005, Diggle and

Brooks, 2007, Bjørnland and Leitemo, 2009). Using a dataset for major Australian banking stocks,

we find that trades transacted within one minute around the RBA announcements have shorter

durations and larger impacts on prices. Conditioning on an average history prior to the RBA

announcements, the cumulative price impact of an unexpected trade is higher (lower) when the

trade occurs faster (slower) if durations are endogenous, yet it stays unchanged if durations are

treated as exogenous. The latter result highlights the importance of endogenizing trade durations,

confirming Dufour and Engle’s (2000) suggestion that allowing for the endogeneity of time between

trades could provide a more accurate picture of how trades drive prices.

Third, to the best of our knowledge, this is the first study to compare the relative informa-

tiveness of durations and trade attributes (signs and volumes) about the price formation process.

Using the generalized forecast error variance decomposition (GFEVD) proposed by Lanne and

Nyberg (2016), we find that shocks to durations contribute significantly less to the forecast error

variance (FEV) of returns than other trade attribute shocks. The relative importance of duration

shocks to returns is less than 9% while that of other trade attribute innovations is typically above

50%. The contributions of both shocks to the returns’ FEV are larger on days with interest rate

releases, and that of duration shocks is also larger when durations are endogenously modeled. The
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results suggest that although they carry important informational content about prices (Easley and

O’Hara, 1992, Dufour and Engle, 2000), trade durations play a minor role in explaining the price

dynamics compared to trade attributes (signs and volumes).

Our findings are potentially of interest to market participants and policy makers because they

shed light on how quickly new information, for example interest rate news, is processed and how,

how this news is disseminated and incorporated into security prices, as well as how policy-making

influences this information dissemination process. In addition, as price impact is known to be the

biggest component of trading cost (Keim and Madhavan, 1996, 1998), our findings have relevant

practical implications for designing optimal strategies that minimize the cost of trading in financial

markets.

The rest of the paper is organized as follows. Section 2 introduces a nonlinear VAR framework

for trade arrival times, trade attributes and returns advocated in this study. It also discusses how

the information content of monetary policy announcements is incorporated into the model. Section

3 describes the data. Model estimates and further analyses such as impulse response and forecast

error variance decomposition for Australian banking stocks are presented in Section 4, and Section

5 concludes.

2 A joint model of durations, trade attributes and returns

Transactions data are conventionally characterized by a sequence of their arrival times that follow

a point process and the associated quantities called “marks” that are revealed to the market

at those times (Engle, 2000, Manganelli, 2005, Russell and Engle, 2005). Marks are typically a

vector of random variables such as the price, the direction and the volume of a transaction which,

together with the trade’s arrival time, are assumed to be jointly determined by some unknown

data generating process (DGP). In order to estimate the true joint distribution, Engle (2000)

factorizes it into the product of the conditional density of the marks and the marginal density of

the arrival time, and then proposes a model for each component density. This approach has been

widely utilized in various market microstructure studies such as Grammig and Wellner (2002),

Manganelli (2005), and Russell and Engle (2005).

To formulate the idea of Engle (2000) statistically, let Tt = zt − zt−1 be the time interval,
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measured in seconds, between two successive transactions, where zt denotes the time at which

the t-th trade is executed. At time zt, market participants observe a vector of marks yt. Each

pair (Tt, yt) is assumed to follow a joint distribution f(Tt, yt|It−1;µ), where It−1 denotes the past

information and µ is a vector of parameters underlying the joint process. Engle (2000) decomposes

the joint density f(Tt, yt|It−1;µ) as

f(Tt, yt|It−1;µ) = g(yt|Tt, It−1;µy)× h(Tt|It−1;µT ), (1)

where g(·) denotes the conditional density of the marks yt given the current trade duration Tt, and

h(·) denotes the marginal density of Tt. Prior studies in the literature have primarily focused on

modeling the h(·) function only (e.g. Engle and Russell, 1998, Bauwens and Giot, 2000, Knight and

Ning, 2008, Xu et al., 2011). A few studies that accommodate joint modeling typically assume that

trade durations are strictly exogenous (e.g. Engle, 2000, Dufour and Engle, 2000, Xu et al., 2006).

In other words, these studies assume that the past information set It−1 in the h(·) function only

includes lagged trade durations but excludes the information from previous marks, even though

these studies allow both past durations and marks to be included in the g(·) function.

We relax this strict exogeneity of trade durations by incorporating the past trajectories of

durations and marks into both g(·) and h(·) functions, which explicitly allows for the dynamic in-

terdependence between the variables. The decomposition (??) assumes that there is instantaneous

Granger-causality running from Tt to yt while the latter does not contemporaneously Granger-

cause the former. This is because Tt measures the time interval between the (t − 1)-th and the

t-th transactions and thus potentially conveys relevant information that has been accumulated

during the time period (Easley and O’Hara, 1992), while yt is only realized once the t-th trade is

completed. Therefore, the parameterization (??) appears natural and plausible.

This study aims to develop a joint modeling framework for tick-by-tick returns or quote revi-

sions, trade characteristics (signs and volumes) and trade durations, based on which the effects of

the interest rate announcements on the role of durations and trade characteristics in explaining the

price dynamics will be examined. Thus, the marks of interest include (i) quote revision rt, defined

as the natural logarithmic change in the midquote price following the t-th trade and quoted in

basis points (bps), i.e. rt = 10000 ∗ (ln(qt+1)− ln(qt)), where qt is the midpoint of the bid and ask
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quotes immediately before the t-th trade,1 (ii) trade sign x0
t , which equals 1 (-1) for buyer- (seller-)

initiated transactions, and (iii) signed volume vt, defined as the signed natural logarithm of the

ratio of the actual share volume (Vt) of the t-th trade to the prevailing quoted depth (deptht) at

the best opposite-side quote immediately before that trade,2 i.e. vt = x0
t ln(Vt/deptht). The use

of the volume to depth ratio, rather than the actual share volume, is motivated by work of Chan

and Fong (2000), Engle and Lange (2001), Brogaard et al. (2015), and Pham et al. (2017), who

show that for a given share volume, trades have a bigger impact on prices if the prevailing depths

prior to these trades are smaller (i.e. if the market is less liquid). Thus, a trade is considered big

if it has a large volume to depth ratio, and this measure not only incorporates the effects of trade

sizes, but also market liquidity. We need to model the conditional density of the marks g(·) and

the marginal density of trade durations h(·) to capture the joint distribution of the variables of

interest, and these are discussed in the next subsections.

2.1 Modeling returns and trade attributes given trade durations

Building on Hasbrouck (1991a) and Dufour and Engle (2000), the current study models the joint

dynamics of quote revisions, trade signs and signed volumes, conditional on trade arrival times

(i.e. g(yt|Tt, It−1;µy) where yt = (rt, x
0
t , vt)

′), with the following VAR framework:

rt=α
r+βropent+

p∑
i=1

bri |rt−i|+

{
p∑

i=1

ari rt−i+λ
ropentxt+

p∑
i=0

[γri +δri ln(Tt−i)]xt−i

}
+urt ,

xt=α
x+βxopent+

p∑
i=1

bxi |rt−i|+

{
p∑

i=1

axi rt−i+λ
xopent−1xt−1+

p∑
i=1

[γxi +δxi ln(Tt−i)]xt−i

}
+uxt ,

(2)

where xt = (x0
t , vt)

′; opent is a dummy variable that equals 1 for trades executed within the first

30 minutes of a trading day, and 0 otherwise; α’s, β’s, b’s, a’s λ’s, γ’s, and δ’s are conformable

matrices of coefficients. This VAR framework is similar, but not identical to the original Dufour

and Engle (2000) specification, which only investigates returns rt and trade signs x0
t and includes

components in braces of equation (2). The extension of the original Dufour and Engle (2000) VAR

system to incorporate trading volume is motivated by the findings of Easley and O’Hara (1987),

1Measuring prices as the mid-point of bid and ask quotes is standard practice in the microstructure literature
to circumvent the bid-ask bounce problem (e.g. Hasbrouck, 1988, Manganelli, 2005). The factor of 10,000 enables
returns to be measured in basis points.

2If the t-th trade is a purchase (sale), deptht is defined as the number of shares available at the best ask (bid)
price right before the trade.
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Hasbrouck (1988), O’Hara et al. (2014), among others, that there is a significant price-quantity

relationship. Likewise, the inclusion of |rt−i| is to capture the effects of stock volatility on returns

and trade attributes (e.g. Xu et al., 2006).

In conformance with Hasbrouck (1991a) and Dufour and Engle (2000), the VAR specification

in (2) assumes that conditioning on the time of trade arrivals, there are two sources of information

affecting price dynamics. One is the public or trade-unrelated information, urt , and the other is

the private information induced by unanticipated trades, uxt . These two informational innovations

are assumed to have zero means and to be jointly and serially uncorrelated.3 After observing a

new trade, the market maker learns the information conveyed by the trade and then revises the

quotes to take into account the new information. Thus, the trade contemporaneously affects the

quote revision, but not vice versa. This fact is reflected by the inclusion of the contemporaneous

value of xt in the quote revision equation, and thus it is assumed that E(urtu
x
t ) = 0.

As in Dufour and Engle (2000), the VAR setting in (2) allows the impact of trades on prices

and future transactions to be nonlinearly dependent upon trade durations. Furthermore, trades

transacted at the market open (i.e. first 30 minutes) are allowed to have different impact from those

executed later in the trading day. This time-augmented structure enables one to empirically test

the theoretical conjectures in the microstructure literature that the arrival times of trades possess

an information content that significantly contributes to the price formation and trade generation

processes (Diamond and Verrecchia, 1987, Easley and O’Hara, 1992). In the parameterization (2),

the effects of trades on the price evolution and the autocorrelation amongst transactions that are

contributed by trading intensity are measured by the δ’s, while the additional impact of trades

executed at the beginning of the trading day is quantified by the λ’s. The joint significance of

the δ’s and λ’s will ascertain the informativeness of trade arrival times in driving price dynamics.

We also include the indicator variable opent in each equation to account for additional opening

variations that might come from other sources of information other than trades.

3That is, E(urt ) = 0,E(uxt ) = 0, and E(urtu
r
s) = 0,E(urtu

x
s ) = 0,E(uxt u

x
s
′) = 0 for s 6= t.
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2.2 Modeling trade durations

A critical assumption that Dufour and Engle (2000) impose on their bivariate VAR framework is

that trade arrivals are strongly exogenous; that is, the times of trade arrivals are not influenced

by the past histories of prices and trade characteristics but only depend on previous arrival times.

Although the strict exogeneity assumption of trade durations is often imposed in the duration

modeling literature (e.g. Engle 2000, Xu et al. 2006, Xu et al. 2011, Knight and Ning 2008), it is

too restrictive. Theoretical frameworks of Diamond and Verrecchia (1987) and Easley and O’Hara

(1992) are built on the notion that time durations between trades are correlated with prices and

volumes. Other empirical studies also document that returns, volume and volatility are significant

predictors of trade durations (Engle and Russell, 1997, Manganelli, 2005, Russell and Engle, 2005,

Nowak and Anderson, 2014). Formally testing the strict exogeneity assumption, Dufour and Engle

(2000) also provide strong evidence of its rejection, and thus accentuate the importance of relaxing

it, even though they do not attempt to do so.

The exogeneity test of Dufour and Engle (2000) suggests that trade durations should be treated

as an endogenous variable that needs to be determined concurrently with quote revisions and trade

characteristics. A natural way to endogenize durations is to extend the VAR framework in (2) by

adding another equation for durations as below:4

rt=α
r+βropent+

p∑
i=1

ari rt−i+

p∑
i=1

bri |rt−i|+λropentxt+

p∑
i=0

[γri +δri ln(Tt−i)]xt−i+

p∑
i=1

cri ln(Tt−i)+urt ,

xt=α
x+βxopent+

p∑
i=1

axi rt−i+

p∑
i=1

bxi |rt−i|+λxopent−1xt−1+

p∑
i=1

[γxi +δxi ln(Tt−i)]xt−i+

p∑
i=1

cxi ln(Tt−i)+uxt , (3)

ln(Tt)=αT +βT opent−1+

p∑
i=1

aTi rt−i+

p∑
i=1

bTi |rt−i|+λT opent−1xt−1+

p∑
i=1

[
γTi +δTi ln(Tt−i)

]
xt−i+

p∑
i=1

cTi ln(Tt−i)+uTt ,

where urt , u
x
t and uTt are zero-mean, serially uncorrelated disturbances. Lags of durations,

∑p
i=1 c

T
i ln(Tt−i),

are included in the duration equation to account for the autocorrelation of durations. They are

also incorporated into the quote revision and trade attribute equations to capture the additional

effects of durations. In this so-called “Endo-VAR” specification, trade duration depends not only

upon its lagged values but also upon the past histories of quote changes and trade characteristics

according to an autoregressive structure. The Endo-VAR model, which provides a natural and

nice layout built upon Hasbrouck’s (1991a) framework to investigate the joint dynamics of quote

4We do not include the dummy variable opent, but use opent−1 instead, in the duration equation because opent

can only be observed simultaneously with Tt, and hence it is unknown given the past information It−1.
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revisions, trade attributes and durations, can be estimated consistently by ordinary least squares

(OLS).

An alternative specification of the marginal distribution of trade durations, h(Tt|It−1;µT ), is

similar in spirit to an ACD model proposed by Engle and Russell (1998). These authors show

that the ACD model works well in capturing the dynamic structure of trade durations such as

duration clustering. The ACD model and a wide range of its variations have been utilized in-

tensively in the duration modeling literature (Bauwens and Giot, 2000, Engle, 2000, Fernandes

and Grammig, 2006, Pacurar, 2008). In their analysis, Dufour and Engle (2000) also model time

durations with an ACD setting. However, by assuming that durations are strongly exogenous,

they do not allow the past dynamics of trade attributes and quote changes to enter the conditional

duration specification. The current study relaxes this strict exogeneity assumption by allowing

for the dependence of time durations on lagged values of quote revisions and trade characteristics

within an ACD framework. Specifically, following Engle and Russell (1998) we firstly remove the

deterministic intra-day component of durations using a cubic spline ϕ(t).5 The diurnally adjusted

durations, T̃t = Tt/ϕ(t), are then fitted with the following Weibull ACD (WACD) (p1, p2) model:

T̃t = [φtΓ(1 + 1/θ)] εt, εt
iid∼ Weibull

(
scale =

1

Γ(1 + 1/θ)
, shape = θ

)
, (4)

E(T̃t|It−1, θ) ≡ φtΓ(1 + 1/θ), (5)

ln(φt) = αT +

p1∑
i=1

aTi rt−i +

p1∑
j=1

bTi |rt−i|+
p1∑
i=1

γTi xt−i +

p1∑
i=1

ρi ln(T̃t−i) +

p2∑
i=1

ζi ln(φt−i) + λT opent−1. (6)

We incorporate the opening dummy variable into equation (6) to see if there remains any deter-

ministic opening variation that cannot be fully removed by the diurnalization procedure. Equation

(6) explicitly allows for the effects of the past quote changes and trade attributes on durations.

Following Bauwens and Giot (2000) and Russell and Engle (2005), we employ a logarithmic varia-

tion of the conditional duration equation to ensure the positivity of the conditional expectation of

trade durations, especially when additional explanatory variables are included. With this parame-

terization, the stationarity of the duration series is obtained if and only if
∑p1

j=1 ρj +
∑p2

j=1 ζj < 1.

Replacing the duration equation of the Endo-VAR model with the WACD(p1, p2) model gives

us the following WACD-VAR system:

5The cubic spline we employ is of the form ϕ(t) = β0 + β1zt + β2z
2
t + β3z

3
t +

∑k
j=1 βj+3

[
(zt − cj)3 × Izt>cj

]
,

where zt is the clock time of the t−th trade, cj (j = 1, · · · , k) are the spline knots that we set at 10:30, 11:00, 11:30,
12:00, 12:30, 13:00, 13:30, 14:00, 14:30, 15:00, 15:30, 15:45 since the trading day in our dataset runs from 10:10 to
16:00.
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rt=α
r+βropent+

p∑
i=1

ari rt−i+

p∑
i=1

bri |rt−i|+λropentxt+

p∑
i=0

[γri +δri ln(Tt−i)]xt−i+

p∑
i=i

cri ln(Tt−i)+urt ,

xt=α
x+βxopent+

p∑
i=1

axi rt−i+

p∑
i=1

bxi |rt−i|+λxopent−1xt−1+

p∑
i=1

[γxi +δxi ln(Tt−i)]xt−i+

p∑
i=i

cxi ln(Tt−i)+uxt ,

T̃t=Tt/ϕ(t)=[φtΓ(1+1/θ)]εt,

ln(φt)=αT +

p1∑
i=1

aTi rt−i+

p1∑
i=1

bTi |rt−i|+
p1∑
i=1

γTi xt−i+

p1∑
i=1

ρi ln(T̃t−i)+

p2∑
i=1

ζi ln(φt−i)+λT opent−1.

(7)

The estimation of the WACD-VAR model is obtained by OLS for the marks (i.e. (rt, x
′
t)
′) and by

maximum likelihood for trade durations.

2.3 Modeling the impact of RBA interest rate announcements

Each year, there are eleven scheduled RBA board meetings on the first Tuesday of every month

except in January. Since December 2007, the RBA board’s decision to change or keep the interest

rate has been released to the media at 14:30:00 Australian Eastern Standard Time (GMT + 10)

on the same day of the meeting (Smales, 2012). In order to examine how the RBA target rate

announcements influence the role of durations and trade attributes in the process of price formation

for Australian banking stocks, we modify the Endo-VAR model in (3) and the WACD-VAR model

in (7) to incorporate the information contained by the RBA monetary policy releases. It would

be of interest to examine the effects of the surprise or unexpected component of the news, as in

Balduzzi et al. (2001), Kuttner (2001), Andersen et al. (2003), Kim and Nguyen (2008), Smales

(2012), among others. In these studies, the unexpected news is calculated as the difference between

the actual announcement and the expected component, where the latter is either proxied by the

median analyst forecasts (Balduzzi et al., 2001, Andersen et al., 2003) or inferred from interest rate

futures prices (Kuttner, 2001, Kim and Nguyen, 2008, Smales, 2012). In addition, since news events

are released at some particular point in (calendar) time (e.g. 14:30:00) at which there might not be

any transaction being executed, prior research in the literature normally converts transaction time

or tick-by-tick data into calendar time data by aggregating trades over some fixed time interval

such as a day or 5 minutes to match the occurrence of the news announcements. However, such

an aggregation procedure inevitably results in a loss of information and may potentially bias the

analysis (Engle, 2000, Russell and Engle, 2005), because, as highlighted in the theoretical work by
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Easley and O’Hara (1992) and Diamond and Verrecchia (1987), the existence or absence of each

individual trade is informative about the price formation process.

Our analysis is conducted in transaction time. This circumvents the information loss coming

from trade aggregation, but this makes it difficult to incorporate information that is released

in calendar time at which there are usually no trades (Hamilton and Jordà, 2002, Nowak and

Anderson, 2014). To address this issue, we adopt a simple approach that is along a similar line

to Ederington and Lee (2001) and Nowak and Anderson (2014) to match calendar time with

transaction time. This accounts for the effects of the RBA announcements in our Endo-VAR and

WCAD-VAR specifications by including three announcement indicator variables that record the

occurrence of the news events. These dummies, denoted by beft, arot and aftt, respectively identify

transactions executed five minutes before (i.e. 14:24:30-14:29:30), one minute around (14:29:30-

14:30:30), and ten minutes after (14:30:30-14:40:30) the RBA announcements. The length of the

event windows chosen in this chapter is suggested by Simonsen (2006) and Nowak and Anderson

(2014). The modified models that incorporate the effects of RBA announcements are given by

rt=α
r+βrDt+

p∑
i=1

ari rt−i+

p∑
i=1

bri |rt−i|+λrDt⊗xt+
p∑

i=0

[γri +δri ln(Tt−i)]xt−i+

p∑
i=1

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxDt+

p∑
i=1

axi rt−i+

p∑
i=1

bxi |rt−i|+λxDt−1⊗xt−1+

p∑
i=1

[γxi +δxi ln(Tt−i)]xt−i+

p∑
i=1

cxi ln(Tt−i)+u
x
t , (8)

ln(Tt)=α
T+βTDt−1+

p∑
i=1

aTi rt−i+

p∑
i=1

bTi |rt−i|+λTDt−1⊗xt−1+

p∑
i=1

[
γTi +δTi ln(Tt−i)

]
xt−i+

p∑
i=1

cTi ln(Tt−i)+u
T
t ,

and

rt=α
r+βrDt+

p∑
i=1

ari rt−i+

p∑
i=1

bri |rt−i|+λrDt⊗xt+
p∑

i=0

[γri +δri ln(Tt−i)]xt−i+

p∑
i=1

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxDt+

p∑
i=1

axi rt−i+

p∑
i=1

bxi |rt−i|+λxDt−1⊗xt−1+

p∑
i=1

[γxi +δxi ln(Tt−i)]xt−i+

p∑
i=1

cxi ln(Tt−i)+u
x
t ,

T̃t=Tt/ϕ(t)=[φtΓ(1+1/θ)]εt,

ln(φt)=α
T+

p1∑
i=1

aTi rt−i+

p1∑
i=1

bTi |rt−i|+
p1∑
i=1

γTi xt−i+

p1∑
i=1

ρiln(T̃t−i)+

p2∑
i=1

ζiln(φt−i)+λ
TDt−1,

(9)

where Dt = (opent, beft, arot, aftt)
′, β’s and λ’s are conformable matrices of associated coefficients,

and ⊗ denotes the Kronecker product.6

6Note that Dt⊗xt = (opentx
0
t ,beftx

0
t , arotx

0
t , afttx

0
t , opentvt,beftvt, arotvt, afttvt)

′. The quote revision equation
in models (8) and (9) has the following full expression:

rt=α
r+βropopent+β

r
bebeft+β

r
ararot+β

r
afaftt+

p∑
i=1

ari rt−i+

p∑
i=1

bri |rt−i|+λrx0,opopentx
0
t+λ

r
x0,bebeftx

0
t+λ

r
x0,ararotx

0
t
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3 Data

The current study focuses on all transactions for six major Australian banking stocks, namely ANZ

Banking Group (ANZ), Commonwealth Bank of Australia (CBA), National Australia Bank (NAB),

Westpac Banking Corporation (WBC), Macquarie Group (MQG) and Bendigo and Adelaide Bank

(BEN), in eleven weeks that contain the eleven RBA interest rate announcement days in 2013,

which were Feb 5, Mar 5, Apr 2, May 7, Jun 4, Jul 2, Aug 6, Sep 3, Oct 1, Nov 5 and Dec 3. Of

these eleven announcements, two reported an interest rate fall of 25 basis points (May 7, from 3%

to 2.75% and Aug 6, from 2.75% to 2.5%), and nine reported no changes in the cash rate. In total,

there are 54 days in the sample.7

Most previous empirical microstructure work uses US data. In contrast, we work with Aus-

tralian data provided by the Securities Industry Research Centre of Asia-Pacific (SIRCA). We

choose the Australian market for several reasons. First, unlike the US stock market which has a

high degree of market fragmentation with 11 equity exchanges and many alternative trading sys-

tems (O’Hara, 2015), the Australian stock market is much less fragmented, which enables a more

complete investigation of the joint dynamics of returns, trade attributes and durations. Second,

the information about trade direction (which is shown to be an important determinant of the price

dynamics (Hasbrouck, 1991a, Dufour and Engle, 2000)) is directly available to traders in Australia

but concealed in the US markets. This helps avoid the need to use an indirect procedure to classify

buys and sells such as the widely used Lee and Ready’s (1991) algorithm which has an accuracy

rate of only about 85% (Odders-White, 2000, Lillo et al., 2003). Finally, since the Australian

stock market is a limit order book market and so are most major financial markets around the

globe (Næs and Skjeltorp, 2006, Goettler et al., 2009, Malinova and Park, 2013), our findings may

provide implications for these similarly structured markets.

We collect two datasets from the SIRCA database. The first dataset records details on every

order submitted to the central limit order book, including stock code, order type (order submission,

+λrx0,afafttx
0
t+

p∑
i=0

[
γrx0,i+δ

r
x0,iln(Tt−i)

]
x0
t−i+λ

r
v,opopentvt+λ

r
v,bebeftvt+λ

r
v,ararotvt+λ

r
v,afafttvt

+

p∑
i=0

[
γrv,i+δ

r
v,iln(Tt−i)

]
vt−i+

p∑
i=1

cri ln(Tt−i)+urt .

Full expressions for trade attribute and time duration equations are similarly obtained.
7Normally, there are five trading days in a typical week, so we might expect the sample to consist of 55 days.

However, Apr 1, 2013, the day before the cash rate announcement in April, was Easter Monday on which the market
was closed, which consequently leaves us with a sample of 54 trading days.
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order revision, order cancellation and execution), date and time, order price, order volume (number

of shares), order value (dollar value), and order direction (buy or sell order). We extract information

for all transactions (order executions) in the continuous trading session (from 10:10:00 to 16:00:00)

and discard all trades that are performed in the opening auction (10:00:00-10:10:00). We extract

buyer-initiated and seller-initiated trades based on the directions of the (marketable) orders that

initiate each trade.

The second dataset contains information on the intra-day bid and ask quotes, including stock

code, date, time (precise to the millisecond), and the best bid-ask quotes and volumes in the

limit order book. We remove all observations with negative bid or ask quote, with zero volume,

and with a bid quote higher than ask quote. We merge the transaction data with the bid-ask

quote data to work out the bid-ask midpoint and the prevailing depth before each transaction.

Since one large buy (sell) order can be matched against several orders on the sell (buy) side and

result in multiple transactions, we aggregate trades executed at the same time and initiated by the

same order into one “large” trade by summing up the volumes of the simultaneous trades. This

aggregation approach, which is standard in the literature (see, amongst others, Hasbrouck, 1991a,

Dufour and Engle, 2000, Nowak and Anderson, 2014), leaves us with nearly 900,000 trades for all

six stocks during the sample period. All continuous variables in this chapter are winsorized at the

0.5th and 99.5th quantiles to avoid the effects of outliers.

Table 1 provides the market capitalization, as at the beginning of 2013, and some summary

statistics for the six banking stocks in 11 RBA announcement weeks (Panel A), on 11 RBA an-

nouncement days (Panel B) and on the remaining 43 non-RBA announcement days (Panel C).

For the whole sample, the averages of absolute quote revisions, share volumes, volume to prevail-

ing depth ratios and trade durations, together with the number of transactions, for each stock

are reported. For smaller subsamples (Panels B and C), the summary is further categorized into

five different time intervals, namely opening 30 minutes of the trading day (10:10:00-10:40:00),

5 minutes before the RBA announcement time (14:24:30-14:29:30), one minute around the an-

nouncements (14:29:30-14:30:30), 10 minutes after the announcements (14:30:30-14:40:30), and

the remaining trading period (10:40:00-14:24:30 and 14:40:30-16:00:00). An asterisk (*) signifies

that the average of a quantity of interest in a time interval is statistically significantly different
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from that of the “Remaining” period at a 5% significance level.8

<<INSERT TABLE 1 ABOUT HERE>>

The big four Australian banks, namely CBA, WBC, ANZ and NAB, are much larger and more

heavily traded than the other two banks, with an average trade duration between 5.2 and 6.9

seconds. MQG, despite being relatively small, is traded quite intensively at every 8.3 seconds.

Trades in the smallest stock, BEN, are much more dispersed and occur once in every 24.9 seconds

on average. The majority of transactions in the six banking stocks are of smaller size than the

prevailing quoted depths available right before these trades (which, in theory, should not move the

best bid or ask levels), since the average volume to depth ratios for all stocks are significantly less

than unity. This is consistent with an observation by Dufour and Engle (2000) and Pham et al.

(2017) that the majority of trades in their samples do not result in any quote revisions. For all

stocks, an average transaction has a volume of 78.8 to 244.8 shares and moves quotes by 0.65 to

2.63 basis points (bps) (see Panel A). In general, the summary statistics are in agreement with the

conventional wisdom that trades in more liquid stocks are more frequent and have less impact on

prices (e.g. Dufour and Engle, 2000, Lillo et al., 2003).

More interesting features are observed when the whole sample is partitioned into RBA and

non-RBA announcement days, as shown in Panels B and C. In both subsamples, stocks are traded

much more frequently at the market open than during the reference (“Remaining”) time period.

Moreover, trades performed in the first 30 minutes of the day have significantly larger sizes and

volume to depth ratios and result in bigger price adjustments. This observation is in conformance

with Anand et al. (2005), Bloomfield et al. (2005), and Duong et al. (2009), who show that higher

trading intensity observed at the market open is driven by an increased engagement of informed

investors whose transactions, according to Easley and O’Hara’s (1992) theory, normally have a

large volume and big impact on prices.

On the eleven days when the RBA announces its monetary policy stance, trades are performed

with very short durations during the one minute around the announcement time (see Panel B).

With the exception of stock BEN regarding time durations, such trades have remarkably smaller

8Strictly speaking, reference made to the release time of the monetary policy decisions, such as “before”,
“around” and “after” the announcements, is only applicable to days on which such decisions are announced. How-
ever, to obtain an overall picture of how the cash rate announcements affect trades and prices, we also examine the
same time windows on the non-RBA announcement days as those on the announcement days.

15



durations, larger volumes, larger volume to depth ratios and bigger price impact than those trans-

acted in the reference period, and even than those executed at the market open in some cases.

Similar features (although less noticeable) are also observed for transactions performed within 10

minutes after the news release in comparison to those in the base period, whereas trades that are

executed during 5 minutes before the announcement often exhibit opposite characteristics. The

summary statistics seem to suggest a relatively tranquil market before the announcement, while

market participants are awaiting the RBA interest rate decision. Near the announcement time,

the market becomes more active and is very active for one minute around the release of the de-

cision, possibly due to the heightened activities of informed investors. The high trading intensity

gradually attenuates as more time elapses after the announcement.

The above trading pattern, however, is not observed on non-RBA announcement days (see Panel

C). In particular, transactions executed during the same time intervals (i.e. between 14:24:30 and

14:40:30) typically have larger durations, smaller volumes, smaller volume to depth ratios and

less price impact than those performed outside these times, with statistical significance realized in

many cases. Most noticeably, trades transacted within one minute around the RBA announcements

typically lead to a price impact that is twice as large as that resulting from trades during the same

time period on a non-RBA day, while their durations are often a half of the latter’s (except for

BEN). The contrasting results between RBA and non-RBA announcement samples suggest that

the release of the RBA monetary policy decisions has significant effects on the dynamic behaviors

of prices, trade attributes and trade arrival times. Such effects are formally investigated in the

next section.

4 Empirical Results

In this section, we empirically investigate the joint dynamics of returns, trade attributes (signs

and volumes), and trade durations for 6 major Australian banking stocks around interest rate

announcements in 2013. We begin with a description of the estimated results for the two joint

models, namely Endo-VAR and WACD-VAR, which are proposed in Section 2 of the current

study (subsection 4.1). We then conduct an impulse response analysis to study how the prices

of the banking stocks change when there are shocks to the joint system and how the reactions
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of prices to the shocks depend on the occurrence of an exogenous monetary policy announcement

(subsection 4.2). We also provide detailed forecast error variance decomposition that compares the

relative importance of trade durations and trade attributes to the explanation of price dynamics

(subsection 4.3).

4.1 Estimation results

4.1.1 Endo-VAR models

We begin with the estimation of the Endo-VAR model (??) for a representative stock NAB and

discuss this in detail before presenting results for the remaining five stocks. Since one of the

main objectives of the current study is to relax the strict exogeneity assumption that is often

imposed on durations in previous studies (e.g. Dufour and Engle, 2000, Engle, 2000, Xu et al.,

2006), we draw attention to the duration equation of the estimated Endo-VAR model, reported

in Table 2 using the whole sample period of eleven RBA announcement weeks. We compute

Student’s t (in parentheses) and Wald statistics using the Newey and West (1994) robust standard

errors, and use bold format to signify statistical significance at a 5% level. As expected, trade

durations are positively and persistently autocorrelated (see coefficients on ln(Tt−i)), which implies

the clustering feature inherent in the duration process: long (short) durations tend to follow long

(short) durations. This stylized fact is widely seen and documented in numerous empirical studies

on durations (Engle and Russell, 1998, Engle, 2000, Russell and Engle, 2005).

<<INSERT TABLE 2 ABOUT HERE>>

The observation that trade durations are correlated with price adjustments and trade attributes

is of particular interest here, given the focus on the possible endogeneity of the time between trades.

We find that the magnitude of price changes or the variation in prices, rather than the direction of

price moves, is informative about the durations of future trades since the coefficients of absolute

returns, |rt−i|, are highly significant, whereas those of raw returns, rt−i, are not. A positive

coefficient sum of past absolute returns implies that larger price adjustments increase future trade

durations. This is in conformance with the predictions from the Admati and Pfleiderer’s (1988)

theoretical model and the empirical findings of Grammig and Wellner (2002) and Wei and Pelletier
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(2015) that show a positive feedback effect of past volatility on future durations. However, it

appears to be inconsistent with Manganelli (2005) and Russell and Engle (2005), who document

an opposite result. If big variation in quote midpoints is interpreted by market participants as a

result of informed trades, then the presence of informed agents in the market might discourage

uninformed investors from trading and reduce the likelihood of trades (Admati and Pfleiderer,

1988, Grammig and Wellner, 2002). Consequently, trade durations might be longer following large

price changes.

Past trading volumes are also an important predictor of the time between trades. Negative

and strongly significant coefficients and coefficient sums of previous trade sizes imply that larger

transactions shorten the duration of incoming trades. This lends support to Easley and O’Hara

(1992), who hypothesize that large trades are more likely to be initiated by informed traders who

always trade to capitalize on new information. Thus, large transactions are likely to lead to higher

trading rates and, consequently, shorter durations. The negative relationship between durations

and trading volumes is also found in previous empirical studies such as Bauwens and Giot (2000),

Manganelli (2005), and Nowak and Anderson (2014).

The positive coefficient on trade sign, x0
t−1, suggests that it takes longer time for a trade to

occur when it is preceded by a purchase than by a sale. Moreover, the positive serial dependencies

of time durations are stronger for buyer-initiated trades but weaker for seller-initiated ones, as

implied by the significantly positive coefficient on x0
t−1 ln(Tt−1). However, the asymmetry in the

autocorrelation of trade durations between buys and sells appears short-lived, and so do the effects

of trade signs on future trade durations, as suggested by the insignificance of the coefficient sums

of x0
t−i ln(Tt−i) and x0

t−i, respectively. While there is evidence that trading intensifies at the market

open, no similar evidence is observed around the RBA announcements since the coefficients on the

RBA announcement dummies and their interactions with trade characteristics are not significant,

even though they are generally of expected signs and are economically meaningful in comparison

with the corresponding coefficients on the opent dummy. This result is surprising, given the clear

pattern shown in Table 1 that durations between trades in stock NAB are significantly shorter

during the one minute around the RBA interest rate releases. Perhaps, however, the unconditional

pattern in trade durations around the RBA announcements simply reflects those in the marks (i.e.

returns and trade attributes) and thus disappears when one conditions on the latter.
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We now examine the dynamics of prices by looking at the equation for quote revisions. The

results are reported in Panel A of Table 3 that uses the whole eleven RBA announcement week

sample. Consistent with previous studies such as Hasbrouck (1991a,b) and Dufour and Engle

(2000), price changes are negatively serially correlated, as indicated by a negative first lag coef-

ficient. Meanwhile, a signed trade positively affects prices in the sense that a buy leads to an

upward adjustment in prices while a sell drags prices down. The price impact of a trade in stock

NAB is influenced by both the direction (x0
t ) and the volume (vt) of the trade, which is consistent

with the findings of Hasbrouck (1991a,b). Immediately following a buy with an average volume

to depth ratio of 0.417 and an average duration of 6.906 seconds (i.e. an average buy, see Table

1), the price of stock NAB is lifted up by 0.984 bps, assuming that the buy is executed during the

reference time period (i.e. not at the market open or during the 16-minute window around an RBA

interest rate announcement).9 Meanwhile, the coefficients on lagged trade signs and lagged vol-

umes are generally negative but are much smaller in magnitude compared to the contemporaneous

coefficients, implying that the cumulative price impact of a buy remains strongly positive.

<<INSERT TABLE 3 ABOUT HERE>>

We find a significant role for the time of trade arrivals in the process of price formation for

stock NAB, lending support to Diamond and Verrecchia (1987), Easley and O’Hara (1992), Dufour

and Engle (2000) and Xu et al. (2006). As implied by the significantly negative contemporaneous

coefficients and coefficient sums of the interactions between trade attributes and durations, the

price impact of a trade is negatively dependent on its duration, suggesting that prices adjust more

following a trade that has a shorter duration. The explanation is that shorter time between trades

or higher trading intensity is inferred by the market maker as a signal of more private news being

released to the market and the increased presence of informed traders to exploit such information

(Easley and O’Hara, 1992, Dufour and Engle, 2000). Since a higher probability of informed trading

discourages liquidity providers, possibly via toxic order flows that adversely select the latter (Easley

et al., 2011, 2012), trades result in larger price adjustments. In addition, there is some positive

direct impact of durations on price changes which suggests that prices tend to adjust upward after

9 0.984 = −0.002︸ ︷︷ ︸
const

+ 1.227︸ ︷︷ ︸
x0
t

− 0.031× ln 6.906︸ ︷︷ ︸
x0
t ln(Tt)

+ 0.219× ln 0.417︸ ︷︷ ︸
vt

− 0.006× ln 0.417× ln 6.906︸ ︷︷ ︸
vt ln(Tt)

. Note that vt is cal-

culated as the signed logarithm of the volume to depth ratio of the t-th transaction.
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a long time interval from a previous trade, as indicated by a positive sum of coefficients on ln(Tt−i).

However, this positive direct dependence is relatively weak and dominated by the negative indirect

influence of durations on prices (which is a portion of the price impact of a trade captured by

the interaction terms x0
t ln(Tt) and vt ln(Tt)), leading to an overall negative relation between price

changes and trade durations, which supports Easley and O’Hara’s (1992) theory.

The price impact of a trade also exhibits a diurnal pattern. Purchases (sales) that are performed

within the first 30 minutes of a trading day raise (reduce) prices markedly more than do those

executed during the reference period, as shown by the positive coefficients on x0
topent and vtopent.

This can be explained by higher trading intensity induced by a larger proportion of informed

traders who are trying to capitalize on relatively more information that has accumulated overnight

being revealed to the market in the early morning (Anand et al., 2005, Bloomfield et al., 2005,

Duong et al., 2009, Pham et al., 2017). Since prices move more with higher informed trading rates,

the price impact of a trade is higher at the beginning of the trading day.

The RBA monetary policy announcements significantly affect the price impact of a trade,

through both sign and size channels. While trades performed within five minutes before the release

of monetary decisions result in a price impact that is statistically indistinguishable from that of

those occurring during the reference time window, trades executed within one minute around the

announcement and during the subsequent ten minutes affect prices significantly more. Practically,

an average buy in stock NAB transacted one minute around (ten minute after) the announcements

immediately raises the quote midpoint by about 1.206 bps (0.239 bps) higher than, or equivalently

2.23 times (1.24 times) as high as, does a similar purchase arriving during the reference time

period.10 Trades around the announcements are even more informative than those at the market

open, suggesting a higher concentration of informed traders during the one minute around the

interest rate releases than at the market open. It appears that informed investors await the interest

rate decisions from the RBA and thus are relatively inactive five minutes before the announcement.

As time draws closer to 14:30:00 - the scheduled release time, more information is revealed, inducing

a higher likelihood of informed traders. The presence of informed market participants is highest

during the one minute around the release, and gradually decreases in the next ten minutes when

10 1.206 = 0.182︸ ︷︷ ︸
arot

+ 1.310︸ ︷︷ ︸
x0
tarot

+ 0.327× ln 0.417︸ ︷︷ ︸
vtarot

, and 0.239 = 0.004︸ ︷︷ ︸
aftt

+ 0.319︸ ︷︷ ︸
x0
taftt

+ 0.096× ln 0.417︸ ︷︷ ︸
vtaftt

. Note that the immedi-

ate price impact of an average buy executed in the reference period is 0.984 bps (see Footnote 9).
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more information is incorporated into prices. Consequently, trades occurring within one minute

around the announcements have the greatest impact on prices.

To further highlight the impact of the monetary announcements on prices of stock NAB, we

re-estimate the return equation of the Endo-VAR model using data on the non-RBA announce-

ment days of our sample only. The results are reported in Panel B of Table 3. On non-RBA

announcement days, the effects of trade characteristics and time durations on quote revisions for

stock NAB remain qualitatively similar to those previously discussed. Differences, however, are

found when looking at the 16-minute window that corresponds to the announcement time period

on the announcement days. On days with no monetary policy releases, trades performed within

the 16-minute period typically have a smaller impact on prices than those executed in the refer-

ence period, reflecting a typical diurnal pattern on a normal day (see Table 1). This result thus

confirms the important information content of the interest rate announcements that significantly

affect prices of stock NAB, which is in agreement with previous findings such as Kim and Nguyen

(2008) and Smales (2012).

Regarding the estimation for trade attributes which is tabulated in Table 4, trades exhibit a

strong positive serial correlation structure, both in terms of direction and volume. This pattern

is typically observed in empirical applications (e.g. Hasbrouck, 1991a, Dufour and Engle, 2000,

Manganelli, 2005), and it suggests a clustering feature inherent in a trade series. In particular,

buyer-initiated (seller-initiated) trades tend to follow buyer-initiated (seller-initiated) trades, and

large (small) transactions tend to induce large (small) transactions. Moreover, there is a signifi-

cant bilateral Granger-causal relationship between trade directions and volumes, as well as strong

Granger-causality running from quote revisions to trade characteristics, which is in conformance

with the findings of Hasbrouck (1991a). Consistent with Dufour and Engle (2000), trade signs be-

come more positively autocorrelated when time durations between trades get shorter, as reflected

in Panel A of Table 4 by a significantly negative coefficient on x0
t−1 ln(Tt−1) at the first lag, even

though the coefficient sum is not significant. Similarly, not only does higher trading intensity or

shorter trade duration induce larger future transactions (see the coefficients on ln(Tt−i) in Panel B

- which is in harmony with Easley and O’Hara’s (1992) theory that predicts a negative association

between trade durations and trading size), but it also strengthens the positive autocorrelation of

trading volumes, as evidenced by the coefficients on vt−i ln(Tt−i) in Panel B.

21



<<INSERT TABLE 4 ABOUT HERE>>

From Tables 2-4, the Ljung-Box statistics suggest that the Endo-VAR model appears to capture

most of the dynamics of the joint system by filtering out most of the serial correlation exhibited

in the raw series. However, there is still significant autocorrelation in the residuals for trade

direction, size and duration. For all four equations, the residuals are not normally distributed, as

shown by large Jarque-Bera statistics. Nevertheless, significant Wald test statistics at a 5% level

again confirm the role of time in explaining the price and trade formation processes.

We now investigate the results for the remaining stocks. Since our main interest is on the

dynamics of prices and trade durations as well as on how the interest rate announcements affect

these quantities, we only report the results for the quote revision and duration equations in Tables

5 and 6 respectively, using the whole sample of eleven RBA announcement weeks. The results for

these stocks’ trade attributes are qualitatively similar to those for stock NAB.

<<INSERT TABLES 5 & 6 ABOUT HERE>>

The dynamic behavior of prices and trade durations for the other Australian banking stocks

is qualitatively similar to that for stock NAB. For example, Table 6 shows that the time between

trades exhibits a persistent positive dependence structure and is positively related to past volatility

while negatively linked to trading volumes (except for WBC). From Table 5, a trade has a significant

impact on prices which is contributed by both trade direction and trading volume channels and

negatively related to trade durations. Trades performed within one minute around the RBA

announcement have higher price impact, although statistical significance is not obtained for WBC.

However, there are some important differences with regard to the duration dynamics shown in

Table 6. First, in contrast to other stocks it takes less (similar) time, instead of more time, for a

trade in stock BEN (MQG) to occur when it is preceded by a purchase rather than a sale. Second,

there is some evidence that time durations for stocks ANZ, WBC and MQG are significantly shorter

within one minute around the RBA monetary policy releases (see the coefficients on arot), which

is consistent with the duration pattern observed in Table 1 and implies a higher concentration of

informed agents around the announcements that consequently increases the probability of trades

in these stocks.
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Overall, we find strong evidence of the endogeneity of trade durations, supporting the theories

of Diamond and Verrecchia (1987) and Easley and O’Hara (1992). In particular, larger past trading

volumes and smaller past volatility tend to shorten subsequent trade durations. Further, the price

impact of a signed trade is positive, contributed by both trade direction and trading volumes, and

negatively related to trade durations. Higher trading intensity or shorter trade duration not only

increases the price impact of a trade but also strengthens the positive serial correlation of trade

characteristics. Moreover, the release of the RBA monetary policy decisions significantly affects

the joint system of trade arrival times and the associated marks of interest, with trades executed

within one minute around the announcement time typically being more informative about prices

(i.e. having a larger price impact) and having shorter durations.

4.1.2 WACD-VAR models

Although the VAR framework is able to capture the internal dynamics of the joint system of

durations and the marks, it does not seem to find changes in the pattern of trade durations

around the interest rate announcements, especially for NAB and CBA. We now examine if the

WACD model, which is widely used in the duration modeling literature, finds evidence of such

changes. The estimated WACD(2,1) models for six Australian banking stocks in eleven RBA

announcement weeks in 2013 are reported in Table 7. Panel A shows the results when the strict

exogeneity assumption of trade durations is imposed (as in Dufour and Engle (2000) and Xu et al.

(2006)), while Panel B reports the results when this assumption is relaxed. From both panels, all

autoregressive parameter estimates for durations and conditional durations are highly significant

and sum up to between 0.938 and 0.994 for all stocks, suggesting that the duration process is

strongly persistent, which is consistent with the results from the estimated Endo-VAR models.

The estimate for the Weibull parameter, θ, ranges between 0.44 and 0.51 and is significantly less

than one. This implies an overdispersed distribution for the time between trades - a stylized fact

typically observed in empirical duration data (Engle and Russell, 1998, Bauwens and Veredas, 2004,

Renault and Werker, 2011, Renault et al., 2014), and it suggests that the use of an exponential

distribution with unit mean (i.e. θ = 1), which implies equi-dispersion, to model trade durations

is deficient.
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<<INSERT TABLE 7 ABOUT HERE>>

From Panel B, most the parameter estimates for trade attributes and absolute returns (a proxy

for volatility) are highly statistically significant, indicating that these variables are important pre-

dictors of trade durations, which in turn invalidates the strict exogeneity assumption of durations

typically imposed in the literature. Consequently, the incorporation of these additional variables

into the conditional duration model improves the log likelihood of the model markedly; and it is

easy to verify that likelihood ratio (LR) tests strongly support the endogenous duration model.

Consistent with the Endo-VAR model, it is the magnitude of price changes, rather than the direc-

tion of price adjustments, that is informative about the (conditional) durations of future trades.

The lag-one coefficients of absolute returns are positive, implying that conditional trade durations

increase with larger price adjustments. However, they are almost offset by the negative lag-two

coefficients, suggesting that conditional trade durations will be higher the larger the change in

quote revisions (i.e. the second order difference in prices). While conditional time durations tend

to be larger if the last trade is a buy than a sell for four stocks ANZ, CBA, NAB and WBC, the

reverse is observed for BEN, and there appears to be no relation between the conditional durations

and trade signs for MQG. However, similar to the effect of quote revisions on durations, it appears

that big changes in the direction of previous trades lengthen future durations. Conversely, larger

trading volumes and bigger volume changes for all stocks (except WBC) induce higher future trad-

ing intensity, and thus reduce time durations, which is in agreement with previous studies such as

Bauwens and Giot (2000), Manganelli (2005) and Nowak and Anderson (2014).

There is evidence that the RBA interest rate announcements have significant impact on trade

durations. In particular, trades in stocks other than BEN that occur within one minute around the

announcement lead to higher future trading intensity, and hence are followed by trades that have

shorter durations. This is in line with the findings of Nowak and Anderson (2014) that airline stocks

in the U.S. are more frequently traded around the release of macroeconomic news. Meanwhile,

the insignificant coefficients of beft−1 and aftt−1, which respectively signify 5 minutes before and

10 minutes after the interest rate release, suggest that there appears to be no information leak

prior to the announcement and the information content of the news release is quickly absorbed

within one minute. There is also evidence that trades performed at the market open have shorter
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conditional durations than those executed at other times, even though trade durations have been

diurnally adjusted using a cubic spline. Thus, it seems that intraday periodicities have not been

totally removed by the spline. In addition, although most of the serial autocorrelation associated

with adjusted trade durations is explained by the conditional duration equation, the residuals of

the model are still strongly autocorrelated. A deeper lag structure may be required.

4.2 Impulse response analysis

We now examine how prices evolve if there are shocks to the trade, duration, and/or return

equation(s) of the system at an event time t. Conditioning on all information up to the transaction

time t − 1, It−1, the best guess of the value of the quote revision h periods after unexpected

shocks to trade attributes, trade durations, and/or returns at time t is its conditional expectation

E (rt+h|εt = ε, It−1) given the shock vector εt, which is (urt , u
x
t
′, uTt )′ if the joint system is Endo-

VAR and (urt , u
x
t
′, εt)

′ if the joint system is WACD-VAR. However, if there is no shock at time t,

the quote revision h periods later is expected to be E (rt+h|It−1). The impact of the unanticipated

trade, duration, and/or return shocks at t on quote revisions after h periods is calculated as the

difference between the two conditional expectations, denoted by Ir(·), when all other current and

future shocks (for rt, xt and Tt) are integrated out. That is,

Ir(h, ε, It−1) = E (rt+h|εt = ε, It−1)− E (rt+h|It−1) , (10)

defines a generalized impulse response function (GIRF) for quote revisions rt which was initially

proposed by Koop et al. (1996). GIRFs generated by a multivariate system typically depend on

the past history It−1 before the system is shocked and the size and sign of the shocks hitting the

system at time t (Koop et al., 1996, Pesaran and Shin, 1998, Lanne and Nyberg, 2016). Since quote

revisions and trade attributes are nonlinearly linked to time durations via either the Endo-VAR

or the WACD-VAR system, the impulse response function specified in (10) is also nonlinear. To

calculate Ir(·), we follow Koop et al. (1996) and Dufour and Engle (2000) to simulate all possible

trajectories for (rt+k, xt+k, Tt+k), k = 0, 1, ..., h that share the same initial information set, It−1,

with and without the shock(s) at t. The impulse response Ir(·) is computed by averaging the

realizations obtained from all trajectories. Steps to compute Ir(·) are described in more details in

Appendix A.
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In the subsequent analysis, we will examine how prices of each stock evolve under the following

two scenarios: (1) there is an unanticipated purchase (i.e. sign shock = +1, while other shocks

including return, volume and duration shocks are integrated out); and (2) there is an unantic-

ipated purchase with a one standard deviation duration shock. We consider both positive and

negative duration shocks in the latter scenario.11,12 In order to see how the release of RBA interest

rate decisions affects prices, we shock the system on days with and without the monetary policy

announcements. Since the GIRFs of a nonlinear system are dependent on the state of the system

at time t− 1 before being shocked (Koop et al., 1996, Pesaran and Shin, 1998, Lanne and Nyberg,

2016) and there are many RBA and non-RBA announcement days in the current sample, we shock

the joint system of quote revisions, trade attributes and trade durations conditioning on a hypo-

thetical average RBA announcement time (RBAAT) and non-RBAAT histories. A hypothetical

average RBAAT (non-RBAAT) history for each stock is defined as an equally weighted average of

all histories right before the interest rate release time, 14:30:00, on the eleven RBA (forty-three

non-RBA) announcement days in the current sample for that stock. Conditioning on the history

and shock vectors, the simulation is conducted for h = 300 steps into the future with N = 10, 000

repetitions.

The cumulative quote changes for stock NAB following an unanticipated purchase with either

(i) no duration shock, (ii) a positive one standard deviation duration shock, or (iii) a negative one

standard deviation duration shock are plotted in Panels (a), (b), and (c) of Figure 1, respectively.13

In addition to reporting the cumulative price impact produced by the Endo-VAR and WACD-VAR

systems, we also chart those for the augmented Dufour and Engle (2000) exogenous-duration VAR

model (i.e. with volume incorporated) for comparison.14 These impulse responses are pictured in

11Since the Endo-VAR system assumes an additive error model for durations, while the WACD-VAR framework
differs and specifies durations with a multiplicative error model, a one standard deviation positive (negative) dura-
tion shock is defined as σ̂T

Endo−V AR (−σ̂T
Endo−V AR) for the former system, but as σ̂T

WACD−V AR (1/σ̂T
WACD−V AR)

for the latter.
12These two scenarios enable us to see how an unexpected buy affects prices if it arrives as quickly as expected,

slower than expected, or more quickly than expected.
13We employ the estimated joint system using the whole sample of eleven RBA announcement weeks in all

simulation experiments.
14The original Dufour and Engle (2000) VAR framework contains only two equations for quote revisions and trade

signs and does not include RBA dummy variables. However, an augmented Dufour and Engle (2000) framework that
incorporates another equation for trading volumes as well as the RBA dummy variables is employed. By allowing
all three systems to have comparable trade attribute information (i.e. sign and size), the differences amongst the
cumulative price impacts obtained from these systems can be attributed to the differences in their treatments of
durations and/or to the effects of RBA announcements. The augmented Dufour and Engle (2000) model is given
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both transaction time and calendar time starting from the conditioning trade that occurs imme-

diately before 14:30:00 of the average RBAAT or non-RBAAT history. To convert the cumulative

price impact from transaction time to calendar time, we follow Dufour and Engle (2000) to exploit

the simulated trade duration series under the “shock” scenario (discussed in Points (A.2) and

(A.3) in the Appendix A) to sample the cumulative quote changes every five seconds, and then we

compute averages.

<<INSERT FIGURE 1 ABOUT HERE>>

Panel (a) of Figure 1 reveals that, for all models, after an unexpected purchase prices initially

increase considerably and then taper off relatively quickly after about 10 transactions or 1 minute.

As expected, prices respond more strongly to the unanticipated buy at around the announcement

time on an average RBA announcement day than at the equivalent time on days when there

is no interest rate release. In particular, while the unanticipated purchase performed around

14:30:00 in the average non-RBAAT history raises prices of stock NAB by about 1.5 bps in the

long run, a twice-as-large permanent price increase (of about 2.7 bps) results from the same trade

in the average RBAAT history, which suggests that trades at around the RBA announcement

time are more informative about the price formation process. The result is consistent with the

fact that there is higher trading intensity (i.e. shorter trade duration) around the release of the

monetary policy news at 14:30:00 on the RBA days than around the corresponding time window

on the non-RBA days (see Table 1). Since a higher trading rate or shorter duration implies a

higher probability of informed traders in the market (Easley and O’Hara, 1992, Dufour and Engle,

2000), trades around RBA announcements have larger impact on prices. For each average history,

there are negligible differences in the cumulative quote revisions produced by three models that

augment the information of trade arrival times, namely the Endo-VAR, WACD-VAR and extended

Dufour and Engle (2000) models. Given that there is no duration shock to the systems and the

by

rt = αr +

5∑
i=1

ari rt−i + λrStxt +

5∑
i=0

[γri + δri ln(Tt−i)]xt−i + urt ,

xt = αx +

5∑
i=1

axi rt−i + λxSt−1xt−1 +

5∑
i=1

[γxi + δxi ln(Tt−i)]xt−i + uxt ,

T̃t = Tt/ϕ(t) = [φtΓ(1 + 1/θ)] εt,

ln(φt) = αT + ρ1 ln(T̃t−1) + ρ2 ln(T̃t−2) + ζ1 ln(φt−1) + λTDt−1.
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main differences amongst these three models lie in their treatment of durations, this result is not

surprising.

The impact on prices when the aforementioned joint systems are disturbed with a duration

shock from an unexpected purchase is depicted in Panels (b) and (c) of Figure 1. Overall, the

comparison of the cumulative quote revisions for stock NAB conditioning on the average RBAAT

and non-RBAAT histories remains qualitatively unchanged in the sense that an unexpected buy

with a duration shock that occurs right before the monetary policy release conveys more infor-

mation about prices and hence has higher price impact than does a comparable buy transacted

on a no-news day. In addition, there are almost no changes to the shape and level of the cumu-

lative GIRFs for quote revisions produced by the three time-augmented VAR systems based on

the average non-RBAAT history, either with or without the duration shock. It appears that the

informativeness of trade durations about prices is negligible for trades executed at around 14:30:00

on non-RBA days, during which the market is relatively tranquil (see Table 1). This lends support

to the Easley and O’Hara (1992) theory which demonstrates that long trade durations neither

imply the appearance of informed traders nor news, and hence they have little impact on prices.

Interestingly, conditioning on the average RBAAT history, the cumulative price impact func-

tions of an unexpected purchase with a duration shock implied by the augmented Dufour and

Engle (2000) model are almost the same as those under no duration shock. Although it highlights

a significant difference in the response of prices to an unanticipated trade that comes from different

trading histories (e.g. active versus inactive histories), the augmented Dufour and Engle (2000)

model seems to suggest a minimal role for duration shocks in explaining prices, once the history

before the shocks has been taken into account. This might be a consequence of the exogeneity

assumption of trade durations imposed by the model.

When the exogeneity of durations is relaxed, we observe some differences in the shape and/or

level of the cumulative quote revisions around the RBA announcements. In particular, when

the duration shock is positive and an unexpected trade arrives slower than expected, the two

endogenous-duration models (i.e. Endo-VAR and WACD-VAR) show an initial surge in the cu-

mulative price impact, followed by a gradual decline to the equilibrium level (which is about 0.9

bps lower than the steady state when there is no duration shock) after about 60 transactions or

about 11 minutes. When the duration shock is negative and an unanticipated trade occurs more
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quickly than expected, prices adjust more strongly according to the Endo-VAR model, with the

accumulation of quote revisions of roughly 3.4 bps in the long run (approximately 0.7 bps higher

than that under no duration shock). Surprisingly, such a large price increase is not observed for the

WACD-VAR system. Generally, the result suggests an overall negative relationship between trade

durations and quote revisions, even after controlling for the history: given the average RBAAT

history, trades possess a richer (poorer) information content about prices when they arrive sooner

(later) than expected, which is in conformance with Easley and O’Hara’s (1992) theory. However,

this result is obtained only when trade durations are endogenously determined.

The cumulative impulse response functions of quote revisions to different shock scenarios for

the remaining banking stocks are plotted in Figure 2. Consistent with the conventional wisdom,

Figure 2 shows that the more liquid a stock, the smaller the price impact of a trade (compare

the scales on the vertical axis of the plots). In general, the long-run price impact functions for

other banking stocks exhibit qualitatively similar features to those for stock NAB. Specifically, the

cumulative quote changes of an unanticipated purchase executed around the RBA announcements

is generally higher than that of a comparable trade occurring at a similar time on a no-news day

(except for stock WBC). Moreover, when there is no duration shock, the differences in the long-run

price impact of an unanticipated purchase produced by the time-augmented VAR models (i.e. the

Endo-VAR, WACD-VAR and extended Dufour and Engle (2000) models) conditioning on the same

history are negligible, except for stock BEN (see the left plots). However, when an unexpected

buy is accompanied by a one standard deviation duration shock, prices typically respond less

(more) strongly (i.e. the long run price impact is lower (higher)) when the shock to durations

is positive (negative) than do they without the duration shock, except for stock MQG (see the

middle (right) plots). This observation is only obtained when one conditions on an average history

for an RBA announcement day and utilizes a joint specification that allows for the endogeneity of

trade durations such as the Endo-VAR or WACD-VAR model.15

<<INSERT FIGURE 2 ABOUT HERE>>

Overall, the impulse response analysis for quote revisions confirms the previous findings in the

literature that the time of trade arrivals conveys important information about prices (Diamond and

15 Note, however, that a negative duration shock leading to higher long-run price impact is only obtained using
the Endo-VAR model.
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Verrecchia, 1987, Easley and O’Hara, 1992) and that trades have a larger price impact when the

time durations between trades are shorter (Easley and O’Hara, 1992, Dufour and Engle, 2000). In

addition, we find that trades transacted around the release of monetary policy news possess more

important information about prices and have larger price impacts than do comparable trades

on non-RBA days. If there is no duration shock to the system, the cumulative price impact

of an unanticipated trade is almost the same, regardless of whether or not trade durations are

endogenously modeled. However, when the unexpected trade is accompanied by a duration shock,

the long-run price impact of the trade whose duration is treated as exogenous is quite different, in

terms of shape and/or level, to that when its duration is endogenously determined. In particular,

after controlling for the trading history prior to the interest rate announcements, the permanent

price impact of a trade is higher (lower) when there is a negative (positive) duration shock if

trade durations are endogenous, and yet it will be almost the same if durations are assumed to be

exogenous.

4.3 Forecast error variance decomposition analysis

The previous impulse response analysis demonstrates that both trade durations and trade at-

tributes convey important information about prices to the market. However, the impulse response

methodology does not directly estimate the relative importance of each trade attribute in the

overall price formation process. We now quantify their relative importance, which helps answer

the question of whether a trade duration contributes more to the process of price formation than

other trade attributes by decomposing the forecast error variance of quote revisions into portions

that are accounted for by innovations in each trade characteristic, including its duration.

Forecast error variance decomposition (FEVD) of a weakly stationary linear VAR model is

often computed from an infinite-order vector moving average (VMA) representation of the model

with orthogonal shocks, assuming that suitable identification restrictions to recover the structural

shocks from the reduced-form errors are available. However, since our Endo-VAR and WACD-

VAR models, as well as the original and volume-augmented Dufour and Engle (2000) models,

are nonlinear multivariate systems for which a VMA equivalent does not exist, the traditional

orthogonalized FEVD cannot be applied. Instead, we employ the generalized FEVD (GFEVD)
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method proposed by Lanne and Nyberg (2016) that mimics the traditional orthogonalized FEVD

by replacing the orthogonal impulse response functions with the GIRFs that are calculated based on

the notion that only one equation of the multivariate system is shocked at a time. By construction

and similar to the traditional orthogonalized FEVD, Lanne and Nyberg’s (2016) GFEVD features

a nice property that the proportions of the forecast error variance of the h-period forecast of a

variable that are accounted for by innovations in all variables in the system always sum to unity,

facilitating the economic interpretation.16 Conditioning on a history It−1, Lanne and Nyberg

(2016) define the contribution of shocks to variable i to the forecast error variance of the h-period

forecast of variable j, denoted by λi→j,It−1(h), in a K-dimensional multivariate system of the form

yt = G(yt−1, yt−2, · · · , yt−p;µ) + ηt, where G(·) is some linear or nonlinear function characterized

by the parameter vector µ, as

λi→j,It−1(h) =

∑h
k=0 Ij(k, ηi,t = δi, It−1)2∑K

i=1

∑h
k=0 Ij(k, ηi,t = δi, It−1)2

, i, j = 1, 2, · · · , K, (11)

and Ij(k, ηi,t = δi, It−1) = E (yj,t+k|ηi,t = δi, It−1) − E (yj,t+k|It−1) , k = 0, 1, 2, · · · , h, is the GIRF

of the j-th variable k periods after a shock at time t of size δi to the i-th variable, given the past

history It−1, where all other contemporaneous and future shocks are integrated out; and K is the

number of variables in the system. The GFEVD is often calculated by averaging λi→j,It−1(h) over

shocks δi that are bootstrapped from the residuals, over all histories It−1. However, if interest

is drawn to a particular subset of shocks and/or histories, the conditional GFEVD can also be

computed.

We note that Lanne and Nyberg’s (2016) GFEVD is different from the efficient price variance

decomposition (Hasbrouck, 1991b) and the information share methodology (Hasbrouck, 1995),

which are widely used in the microstructure literature to compare the information contributions of

different trader groups or different markets to price discovery (e.g. Barclay et al., 2003, Hendershott

and Riordan, 2011, Benos and Sagade, 2016, Brogaard et al., 2018). In both Hasbrouck’s methods,

the observed price or midpoint is written as the sum of an unobserved random walk (which is

equated with the permanent efficient price) and an unobserved stationary component (considered

16Lanne and Nyberg (2016) modify the original GFEVD proposed by Pesaran and Shin (1998) (which was
developed for a linear Gaussian VAR model) to address a shortcoming of the latter that is that the forecast error
variance proportions generally do not add up to 1, as a consequence of the potential contemporaneous correlatedness
amongst the reduced-formed innovations. Moreover, Lanne and Nyberg’s (2016) GFEVD can be applied to any
linear or nonlinear, Gaussian or non-Gaussian model for which GIRFs can be computed.
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as transient noise). The total price discovery is defined as the variance of the efficient price

innovations, whereas the transient disturbance, which might be correlated with the efficient price,

is effectively ignored. Hasbrouck’s methodologies rely on a critical assumption that there exists a

linear stationary VAR that links price changes or returns with other trade-related information

(Hasbrouck, 1991b) or a linear vector error correction model (VCEM) that connects different

price series closely related to a single security (Hasbrouck, 1995). Consequently, Hasbrouck’s price

discovery decomposition can be straightforwardly calculated from a VMA equivalent of the linear

VAR or VECM. However, if the VAR or VECM is nonlinear such that its VMA representation

cannot be obtained, it is not clear how Hasbrouck’s price discovery decomposition can be computed.

In contrast, GFEVD decomposes the forecast error variance (FEV) of a variable, such as

returns, into portions that are accounted for by innovations in each variable of the system. Since

returns are defined as changes in prices, the FEV of returns effectively captures the FEV of both

the efficient price and transient noise, and is consequently different from the variance of the efficient

price innovations. As Lanne and Nyberg’s (2016) GFEVD can be computed for nonlinear VARs

while Hasbrouck’s measures are inapplicable in our context, we employ the former in the subsequent

analysis. However, in order to prevent any confusion with the price discovery literature we interpret

a GFEVD result as the relative informativeness or importance of a variable (e.g. durations) to

another (e.g. returns), as in the traditional FEVD literature, and deliberately avoid saying “the

contribution to the price discovery process”.

Steps to compute the GFEVD, conditioning on the average RBAAT and non-RBAAT histories,

for various multivariate systems discussed in the current study are detailed in Appendix B. The

GFEVD results of quote revisions, conditioning on the average RBAAT history (up to h = 50

future transactions) and the average non-RBAAT history (up to h = 20), for six Australian banking

stocks for the Endo-VAR and WACD-VAR models are reported in Tables 8 and 9, respectively.

Each entry in these tables, reported in %, is computed according to equation (11) by averaging

over M = 1, 000 vectors of shocks bootstrapped from the estimated residuals; for each shock

vector, the GIRF Ij(·) in equation (11) is calculated from N = 1, 000 simulated repetitions. We

also compute the corresponding results for the augmented Dufour-Engle (i.e. with volume) and

original Dufour-Engle (without volume) models for comparison.17

17The specification of the augmented Dufour-Engle model is shown in Footnote 14. Meanwhile, the original
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<<INSERT TABLES 8 & 9 ABOUT HERE>>

From both tables a big proportion of the FEV of returns is accounted for by trade-related

innovations (i.e. shocks to trade attributes and durations) which are often considered private in-

formation in the market microstructure literature. Amongst these sources of private information,

trade direction is found to be the most important factor to explain the price dynamics. Its inno-

vations account for between 22% and 33% of the FEV of returns based on the original Dufour and

Engle (2000) model that does not incorporate the information from trade sizes, and for more than

35% (even above 50% in some cases) of the returns’ FEV according to other models that have

also included trading volumes. This result lends support to Hasbrouck (1991a), Dufour and Engle

(2000), Barclay et al. (2003), and Hendershott and Riordan (2011), who show that trade sign is

an important determinant of the price formation process. Likewise, consistent with the findings

of Easley and O’Hara (1987), Hasbrouck (1988, 1991a), and O’Hara et al. (2014) that there is a

significant price-quantity relationship, shocks to trading volume possess remarkable explanatory

power for the FEV of returns, which ranges between 12% and 31%. Moreover, the inclusion of

trade sizes into a joint system significantly increases the informativeness of trade direction about

the dynamic behavior of prices, possibly due to the correlatedness between trade signs and sizes.

Meanwhile, shocks to durations contribute much less to the FEV of returns than do other trade

attributes’ shocks. The contribution of duration innovations is less than 9% for all stocks and is

typically below 1% in cases where durations are treated as exogenous and/or one conditions on an

average history prior to 14:30:00 on non-RBA days during which the market is relatively tranquil

(see Table 1). On the other hand, the contribution of other trade attributes’ shocks is normally

above 50%. These results suggest that the time between trades is significantly less important in

explaining price dynamics than trade characteristics. Despite this, the informativeness of trade

durations about the price formation process is much higher when durations are endogenously

Dufour-Engle model, which does not include trading volumes and RBA dummy variables, is given by

rt = αr +

5∑
i=1

ari rt−i + λropentx
0
t +

5∑
i=0

[γri + δri ln(Tt−i)]x
0
t−i + urt ,

x0
t = αx +

5∑
i=1

axi rt−i + λxopent−1x
0
t−1 +

5∑
i=1

[γxi + δxi ln(Tt−i)]x
0
t−i + uxt ,

T̃t = Tt/ϕ(t) = [φtΓ(1 + 1/θ)] εt,

ln(φt) = αT + ρ1 ln(T̃t−1) + ρ2 ln(T̃t−2) + ζ1 ln(φt−1) + λT opent−1.

We employ a logarithmic WACD model, rather than a WACD model as in Dufour and Engle (2000), to ensure the
positivity of the conditional durations.
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modeled than when they are treated as exogenous (which is consistent with the results in subsection

4.2), since the proportion of the FEV of quote revisions explained by duration shocks under the

former scenario is many times as high as that under the latter case, especially when one conditions

on the average RBAAT history. This finding is in agreement with theory in Easley and O’Hara

(1992) which demonstrates that the informativeness of trade arrival time about security prices is

related to its correlatedness and joint determination with trading volumes and prices. Duration

shocks have a significantly larger relative contribution to the returns’ FEV in the Endo-VAR model

than in the WACD-VAR model, especially on the RBA announcement days. The reasons for this

might be that durations exhibit a significant nonlinear dynamic behavior (Zhang et al., 2001,

Fernandes and Grammig, 2006), and the Endo-VAR model, which allows for a higher degree of

nonlinearity in the duration dynamics (which includes not only a deeper lag serial dependence of

durations but also interactions between durations and trade attributes) than does the WACD-VAR

model, might better capture this nonlinearity.

We find that the RBA announcements significantly affect the relative importance of durations

and trade attributes to the process of price adjustments for Australian banking stocks. In partic-

ular, shocks to both trade characteristics and durations account for larger proportions of the FEV

of returns on the RBA announcement days than on days without RBA announcements, implying

that trades executed around the interest rate announcements convey more important information,

through both durations and other trade attributes, about prices than trades transacted during a

similar calendar time window on a non-RBA day. Consistent with the findings in previous sub-

sections, this result suggests that trades around the RBA announcements are likely to be initiated

by informed traders and thus are more informative about the price dynamics.

5 Conclusions

This paper relaxes the strict exogeneity assumption of time between trades that is often imposed in

prior studies by proposing a nonlinear VAR model for trade durations, trade characteristics (signs

and volumes) and returns that allows for the feedback effects amongst these variables. Building

upon the general econometric methodology developed by Engle (2000), our proposed model extends

the VAR model in Hasbrouck (1991a) and Dufour and Engle (2000) to study the joint dynamics
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of trades and returns. We apply this model to examine the effects of trade arrival times and other

trade attributes on the price dynamics of Australian banking stocks around the RBA interest

rate announcements. Consistent with Dufour and Engle (2000) and Manganelli (2005), we find

strong evidence to reject the exogeneity of trade durations. The time between trades is positively

dependent on past absolute price changes but negatively related to previous trading volumes.

We also observe that as trading intensifies or trade durations get shorter, trades become more

positively autocorrelated and have a bigger impact on prices, which is in line with the findings of

Dufour and Engle (2000).

Our results show the significant effects of the RBA announcements on the role that durations

and trade characteristics play in explaining the price dynamics. Trades executed within one minute

around the releases of the monetary policy news typically have shorter durations and larger price

impacts. Conditioning on an average before-announcement history, when an unanticipated trade

arrives faster (slower) than on average, its cumulative impact on prices is higher (lower) only

if durations are endogenously modeled. No similar results are found if durations are treated as

exogenous. This result confirms the importance of allowing for the endogeneity of trade durations

that underlies the theoretical model of Easley and O’Hara (1992).

Using Lanne and Nyberg’s (2016) GFEVD methodology, we find that duration shocks ac-

count for a significantly smaller proportion of the forecast error variance of returns than do other

trade attribute shocks. The relative importance of duration innovations to returns is, however,

remarkably higher when durations are endogenously modeled. Moreover, conditioning on RBA

announcements, the contributions of both duration and other trade attribute shocks to the fore-

cast error variance of returns increase. The results indicate that the time between trades is an

important determinant of banking stock prices, especially around the interest rate announcements,

even though it explains the dynamics of prices significantly less than do other trade characteristics.
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Table 1: Descriptive statistics for Australian banking stocks

ANZ CBA NAB WBC MQG BEN

Market cap ($AUD bn) 68.727 100.059 58.555 80.821 12.037 3.420

Panel A: Whole sample
Absolute Quote Revision (bps) 1.033 0.658 1.298 1.127 1.342 2.634
Volume (shares) 207.92 105.90 233.43 244.84 78.86 150.95
Volume/depth 0.370 0.525 0.417 0.460 0.496 0.256
Duration (seconds) 6.139 5.205 6.906 6.756 8.266 24.924
Observations 178,545 211,088 159,316 162,725 132,867 43,958

Panel B: RBA announcement days

Absolute Quote Revision (bps)
Open (10:10:00-10:40:00) 1.615* 1.118* 1.888* 1.527* 2.035* 3.135*
Before (14:24:30-14:29:30) 0.928 0.523 1.037* 0.955 0.975 1.795*
Around (14:29:30-14:30:30) 1.657* 0.898* 2.522* 1.838* 2.000* 4.809*
After(14:30:30-14:40:30) 1.245* 0.742* 1.598* 1.270* 1.482* 2.820
Remaining 0.946 0.576 1.354 1.011 1.143 2.516

Volume (shares)
Open (10:10:00-10:40:00) 258.06* 129.99* 307.76* 279.15* 101.19* 168.77
Before (14:24:30-14:29:30) 202.43 85.18* 231.10 148.10* 51.78* 130.54
Around (14:29:30-14:30:30) 199.43 126.07 273.02 334.26* 83.58 228.24
After(14:30:30-14:40:30) 222.40* 139.25* 248.32 273.02* 91.15* 138.72
Remaining 173.96 106.62 218.21 220.35 66.94 143.74

Volume/depth
Open (10:10:00-10:40:00) 0.480* 0.526* 0.502* 0.429* 0.603* 0.274*
Before (14:24:30-14:29:30) 0.327 0.529 0.354* 0.371 0.386 0.241
Around (14:29:30-14:30:30) 0.496* 0.509 0.531* 0.503* 0.524 0.276
After(14:30:30-14:40:30) 0.400* 0.520 0.460 0.446* 0.470 0.275*
Remaining 0.334 0.491 0.422 0.367 0.441 0.216

Duration (seconds)
Open (10:10:00-10:40:00) 4.710* 4.422* 5.267* 4.836* 5.507* 19.826*
Before (14:24:30-14:29:30) 7.800* 5.826 8.033 8.043 10.607 23.966
Around (14:29:30-14:30:30) 2.856* 3.984* 5.197* 3.660* 3.931* 25.136
After(14:30:30-14:40:30) 5.025* 4.855* 6.339* 5.918* 7.327 23.282
Remaining 6.111 5.594 7.593 7.202 8.157 23.720

Observations
Open (10:10:00-10:40:00) 4,153 4,400 3,728 4,065 3,518 966
Before (14:24:30-14:29:30) 412 549 401 410 320 130
Around (14:29:30-14:30:30) 198 184 132 188 173 37
After(14:30:30-14:40:30) 1,305 1,326 1,000 1,104 882 278
Remaining 31,940 35,204 25,892 27,358 24,186 8,358

Panel C: Non RBA announcement days

Absolute Quote Revision (bps)
Open (10:10:00-10:40:00) 1.579* 1.132* 1.653* 1.652* 2.157* 3.845*
(14:24:30-14:29:30) 0.846* 0.523* 0.994* 0.844* 1.055* 1.897*
(14:29:30-14:30:30) 0.850 0.580 1.106 0.936 1.541 2.210
(14:30:30-14:40:30) 0.869* 0.491* 1.030* 0.906* 1.178 2.231
Remaining 0.960 0.607 1.218 1.067 1.263 2.550

Volume (shares)
Open (10:10:00-10:40:00) 257.29* 136.14* 303.15* 304.85* 103.69* 218.12*
(14:24:30-14:29:30) 169.27* 76.75* 209.86 183.09* 75.99 149.94
(14:29:30-14:30:30) 172.16 86.03 168.93* 267.36 73.40 108.36
(14:30:30-14:40:30) 208.13 102.22 210.87 245.03 77.16 115.95*
Remaining 208.56 101.20 224.65 241.02 77.90 146.72

Volume/depth
Open (10:10:00-10:40:00) 0.461* 0.554* 0.475* 0.469 0.616* 0.350*
(14:24:30-14:29:30) 0.324* 0.489 0.390 0.516 0.473 0.239
(14:29:30-14:30:30) 0.367 0.450* 0.432 0.331* 0.479 0.281
(14:30:30-14:40:30) 0.344 0.501 0.371* 0.626 0.449* 0.273
Remaining 0.364 0.531 0.406 0.479 0.492 0.257

Duration (seconds)
Open (10:10:00-10:40:00) 4.418* 3.943* 4.581* 4.500* 6.241* 23.047*
(14:24:30-14:29:30) 7.965* 6.508* 7.530 8.135* 9.617 23.657
(14:29:30-14:30:30) 7.985* 6.989* 7.466 9.504* 9.727 26.785
(14:30:30-14:40:30) 7.157* 5.983* 7.449 8.303* 10.600* 25.254
Remaining 6.405 5.262 7.137 7.011 8.607 25.654

Observations
Open (10:10:00-10:40:00) 17,350 19,320 16,725 16,985 12,073 3,110
(14:24:30-14:29:30) 1,536 1,868 1,644 1,493 1,292 521
(14:29:30-14:30:30) 322 385 346 283 261 113
(14:30:30-14:40:30) 3,387 4,121 3,317 2,979 2,342 928
Remaining 117,942 143,731 106,131 107,860 87,820 29,517

Continued on next page
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Table 1 – continued from previous page

This table reports summary statistics for six Australian banks. The sample consists of trades occurring between
10:10:00 and 16:00:00 in eleven weeks that contain eleven RBA interest rate announcement days in 2013. Market
capitalization for each stock is at the beginning of 2013. Panels A, B and C respectively provide the summary for the
whole sample (eleven weeks), the eleven RBA announcement days and the remaining non-RBA announcement days.
For the latter two subsamples (Panels B and C), descriptive statistics over different time intervals for absolute quote
revision, volume, volume divided by prevailing depth, duration and number of transactions are reported. These time
intervals include “Open” which covers the first 30 minutes of the trading day (10:10:00-10:40:00), “Before” which
covers 5 minutes before the RBA announcement time (14:24:30-14:29:30), “Around” which covers one minute during
the RBA announcement time (14:29:30-14:30:30), “After” which covers 10 minutes after the RBA announcement time
(14:30:30-14:40:30), and “Remaining” which covers the remaining time of a trading day. Except for “Observations”
and “Market capitalization”, all other numbers are averages. Asterisks (*) denote statistically significant difference
from the averages for the “Remaining” period at a 5% level.
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Table 2: Estimated trade duration equation of the Endo-VAR model for stock NAB in eleven
RBA announcement weeks in 2013

Coef. t-stat Coef. t-stat

const -0.083 (-7.88) vt−1 -0.014 (-4.62)
opent−1 -0.163 (-8.61) vt−2 -0.010 (-3.21)

beft−1 0.082 (0.73)
∑5

i=1 vt−i -0.023 (-4.85)
arot−1 -0.410 (-1.81) vt−1opent−1 -0.027 (-3.21)
aftt−1 -0.120 (-1.55) vt−1beft−1 0.057 (1.02)
rt−1 -0.004 (-1.53) vt−1arot−1 -0.047 (-0.36)
rt−2 0.006 (1.50) vt−1aftt−1 -0.016 (-0.39)∑5

i=1 rt−i -0.002 (-0.28) vt−1 ln(Tt−1) 0.002 (1.77)
|rt−1| 0.281 (80.85) vt−2 ln(Tt−2) -0.002 (-2.23)

|rt−2| -0.204 (-53.39)
∑5

i=1 vt−i ln(Tt−i) 0.004 (1.79)∑5
i=1 |rt−i| 0.029 (4.62) ln(Tt−1) 0.174 (64.72)

x0
t−1 0.030 (2.50) ln(Tt−2) 0.067 (25.01)

x0
t−2 -0.026 (-2.20)

∑5
i=1 ln(Tt−i) 0.342 (70.94)∑5

i=1 x
0
t−i 0.007 (0.39) Adj. R2 0.092 -

x0
t−1opent−1 -0.025 (-0.97) Walddiur 89.8 -
x0
t−1beft−1 0.014 (0.07) Waldtime 7124.0 -
x0
t−1arot−1 0.056 (0.17) Q15,raw 11897.6 -
x0
t−1aftt−1 -0.150 (-1.26) Q15,resid 670.5 -
x0
t−1 ln(Tt−1) 0.007 (2.06) JBresid 10373.8 -
x0
t−2 ln(Tt−2) 0.000 (0.10)∑5
i=1 x

0
t−i ln(Tt−i) 0.010 (1.36)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation
consistent t-statistics (in parentheses) for the trade duration equation of the Endo-VAR model specified in (8) for
stock NAB.

ln(Tt) = αT + βTDt−1 +

p∑
i=1

aTi rt−i +

p∑
i=1

bTi |rt−i|+ λTDt−1 ⊗ xt−1 +

p∑
i=1

[
γTi + δTi ln(Tt−i)

]
xt−i +

p∑
i=1

cTi ln(Tt−i) + uTt .

rt is the logarithmic change in midquotes following the t-th trade. xt is a column vector of trade signs (x0t ,
which equals 1 for buys and -1 for sells) and volumes (vt, defined as the signed logarithm of the ratio of the share
volume to the prevailing quoted depth) of the t-th trade. Tt is the time duration between the (t − 1)-th and
t-th trades. Dt = (opent,beft, arot, aftt)

′ is a vector of four diurnal dummy variables including opent that marks
the first 30 minutes of a trading day (i.e. 10:10:00-10:40:00), and beft, arot and aftt that respectively identify
trades executed 5 minutes before (14:24:30-14:29:30), one minute around (14:29:30-14:30:30), and 10 minutes after
(14:30:30-14:40:30) the RBA announcements. ⊗ denotes the Kronecker product.

The lag length p is set to p = 5. We only report the individual coefficients of the first two lags. Walddiur is the
Wald test statistic associated with the null hypothesis that the coefficients on all diurnal dummies (i.e. opent,
beft, arot and aftt) are jointly zero. Waldtime is the Wald test statistic associated with the null hypothesis that
the coefficients on all diurnal dummies and durations are jointly zero. Q15,raw (Q15,resid) is the Ljung-Box statistic
associated with the null hypothesis of no autocorrelation up to order 15 in the raw (residual) series. JBresid is
the Jarque-Bera statistic associated with the null that the residuals are normally distributed. Bold format denotes
statistical significance at a 5% level.
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Table 3: Estimated return equation of the Endo-VAR model for stock NAB

Panel A: Eleven RBA announcement weeks

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.002 (-0.30) x0
t 1.227 (126.26) vt 0.219 (92.44) ln(Tt−1) 0.000 (-0.06)

opent -0.016 (-0.89) x0
t−1 -0.012 (-1.21) vt−1 -0.004 (-1.69) ln(Tt−2) 0.000 (0.21)

beft -0.039 (-0.42) x0
t−2 -0.045 (-4.48) vt−2 -0.014 (-5.91)

∑5
i=1 ln(Tt−i) 0.010 (2.80)

arot 0.182 (0.58)
∑5

i=0 x
0
t−i 1.099 (70.42)

∑5
i=0 vt−i 0.185 (47.37) Adj. R2 0.178 -

aftt 0.004 (0.05) x0
t opent 0.300 (11.30) vtopent 0.097 (11.27) Walddiur 169.8 -

rt−1 -0.027 (-7.56) x0
tbeft -0.058 (-0.35) vtbeft -0.034 (-0.91) Waldtime 316.8 -

rt−2 0.010 (2.98) x0
t arot 1.310 (3.18) vtarot 0.327 (2.14) Q15,raw 4397.2 -∑5

i=1 rt−i 0.006 (0.73) x0
t aftt 0.319 (2.84) vtaftt 0.096 (2.77) Q15,resid 19.9 -

|rt−1| -0.009 (-2.76) x0
t ln(Tt) -0.031 (-11.16) vt ln(Tt) -0.006 (-8.03) JBresid 37992.9 -

|rt−2| -0.001 (-0.18) x0
t−1 ln(Tt−1) 0.000 (-0.13) vt−1 ln(Tt−1) -0.001 (-1.46)∑5

i=1 |rt−i| -0.009 (-1.58) x0
t−2 ln(Tt−2) 0.004 (1.46) vt−2 ln(Tt−2) 0.000 (0.62)∑5
i=0 x

0
t−i ln(Tt−i) -0.020 (-3.18)

∑5
i=0 vt−i ln(Tt−i) -0.004 (-2.35)

Panel B: Non RBA announcement days

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const 0.003 (0.33) x0
t 1.212 (110.53) vt 0.216 (81.97) ln(Tt−1) 0.002 (0.97)

opent -0.002 (-0.08) x0
t−1 -0.003 (-0.29) vt−1 -0.002 (-0.58) ln(Tt−2) 0.000 (0.18)

beft -0.059 (-1.41) x0
t−2 -0.048 (-4.36) vt−2 -0.016 (-6.22)

∑5
i=1 ln(Tt−i) 0.009 (2.39)

arot 0.105 (1.05)
∑5

i=0 x
0
t−i 1.093 (63.18)

∑5
i=0 vt−i 0.183 (42.57) Adj. R2 0.178 -

aftt 0.081 (2.69) x0
t opent 0.269 (9.29) vtopent 0.088 (9.46) Walddiur 155.6 -

rt−1 -0.031 (-7.81) x0
tbeft -0.203 (-3.13) vtbeft -0.038 (-2.46) Waldtime 272.4 -

rt−2 0.008 (2.14) x0
t arot -0.257 (-1.83) vtarot -0.063 (-1.82) Q15,raw 3683.3 -∑5

i=1 rt−i -0.005 (-0.57) x0
t aftt -0.159 (-3.38) vtaftt -0.042 (-3.41) Q15,resid 21.1 -

|rt−1| -0.007 (-1.97) x0
t ln(Tt) -0.030 (-9.83) vt ln(Tt) -0.006 (-7.00) JBresid 32183.3 -

|rt−2| -0.003 (-0.68) x0
t−1 ln(Tt−1) -0.002 (-0.57) vt−1 ln(Tt−1) -0.001 (-1.65)∑5

i=1 |rt−i| -0.011 (-1.79) x0
t−2 ln(Tt−2) 0.002 (0.79) vt−2 ln(Tt−2) 0.000 (0.36)∑5
i=0 x

0
t−i ln(Tt−i) -0.028 (-3.92)

∑5
i=0 vt−i ln(Tt−i) -0.005 (-2.26)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent t-statistics (in parentheses) for the
return equation of the Endo-VAR model specified in (8) for stock NAB in eleven RBA announcement weeks (Panel A) and on non-RBA announcement days
(Panel B) in 2013.

rt = αr + βrDt +

p∑
i=1

ari rt−i +

p∑
i=1

bri |rt−i|+ λrDt ⊗ xt +

p∑
i=0

[γri + δri ln(Tt−i)]xt−i +

p∑
i=1

cri ln(Tt−i) + urt .

See Table 2 notes for definitions of the variables. In Panel B, beft, arot and aftt are respectively indicator variables identifying trades performed within
14:24:30-14:29:30, 14:29:30-14:30:30 and 14:30:30-14:40:30 time periods (i.e. corresponding time intervals to those on the RBA announcement days).
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Table 4: Estimated trade sign and volume equations of the Endo-VAR model for stock NAB in eleven RBA announcement weeks in 2013

Panel A: Trade sign equation

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const 0.039 (10.46) x0
t−1 0.395 (97.69) vt−1 0.017 (14.87) ln(Tt−1) 0.000 (0.05)

opent 0.029 (4.10) x0
t−2 0.076 (18.78) vt−2 -0.001 (-0.81) ln(Tt−2) 0.001 (0.83)

beft -0.015 (-0.38)
∑5

i=1 x
0
t−i 0.502 (83.68)

∑5
i=1 vt−i -0.004 (-2.36)

∑5
i=1 ln(Tt−i) -0.001 (-0.50)

arot 0.057 (0.69) x0
t−1opent−1 0.030 (3.28) vt−1opent−1 0.014 (4.22) Adj. R2 0.246 -

aftt -0.017 (-0.61) x0
t−1beft−1 0.079 (1.33) vt−1beft−1 0.016 (0.85) Walddiur 41.3 -

rt−1 -0.199 (-139.13) x0
t−1arot−1 0.172 (1.73) vt−1arot−1 0.056 (1.30) Waldtime 239.4 -

rt−2 -0.028 (-21.41) x0
t−1aftt−1 0.028 (0.74) vt−1aftt−1 0.024 (1.64) Q15,raw 19196.9 -∑5

i=1 rt−i -0.217 (-70.17) x0
t−1 ln(Tt−1) -0.005 (-4.59) vt−1 ln(Tt−1) 0.002 (5.96) Q15,resid 393.8 -

|rt−1| -0.008 (-6.29) x0
t−2 ln(Tt−2) 0.001 (1.26) vt−2 ln(Tt−2) 0.002 (4.11) JBresid 4649.9 -

|rt−2| 0.000 (0.15)
∑5

i=1 x
0
t−i ln(Tt−i) -0.002 (-0.99)

∑5
i=1 vt−i ln(Tt−i) 0.004 (5.61)∑5

i=1 |rt−i| -0.008 (-3.72)

Panel B: Trade volume equation

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.232 (-15.81) x0
t−1 -0.239 (-18.79) vt−1 0.183 (38.92) ln(Tt−1) -0.010 (-3.41)

opent -0.087 (-4.45) x0
t−2 -0.022 (-1.70) vt−2 0.080 (18.73) ln(Tt−2) -0.003 (-0.87)

beft -0.090 (-0.55)
∑5

i=1 x
0
t−i -0.151 (-7.80)

∑5
i=1 vt−i 0.442 (58.38)

∑5
i=1 ln(Tt−i) -0.013 (-2.54)

arot -0.103 (-0.56) x0
t−1opent−1 -0.067 (-2.78) vt−1opent−1 -0.054 (-4.57) Adj. R2 0.114 -

aftt 0.189 (2.39) x0
t−1beft−1 -0.332 (-1.64) vt−1beft−1 -0.102 (-1.24) Walddiur 64.4 -

rt−1 0.223 (66.27) x0
t−1arot−1 -0.452 (-2.35) vt−1arot−1 -0.045 (-0.34) Waldtime 136.4 -

rt−2 0.029 (7.74) x0
t−1aftt−1 -0.160 (-1.46) vt−1aftt−1 -0.122 (-2.94) Q15,raw 36259.6 -∑5

i=1 rt−i 0.189 (23.44) x0
t−1 ln(Tt−1) 0.014 (4.30) vt−1 ln(Tt−1) 0.000 (0.12) Q15,resid 1180.6 -

|rt−1| 0.018 (4.62) x0
t−2 ln(Tt−2) -0.004 (-1.23) vt−2 ln(Tt−2) -0.006 (-3.98) JBresid 5230.6 -

|rt−2| 0.011 (2.86)
∑5

i=1 x
0
t−i ln(Tt−i) 0.002 (0.29)

∑5
i=1 vt−i ln(Tt−i) -0.011 (-3.41)∑5

i=1 |rt−i| 0.051 (6.92)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent t-statistics (in parentheses) for the trade
sign and volume equations of the Endo-VAR model specified in (8) for stock NAB.

xt = αx + βxDt +

p∑
i=1

axi rt−i +

p∑
i=1

bxi |rt−i|+ λxDt−1 ⊗ xt−1 +

p∑
i=1

[γxi + δxi ln(Tt−i)]xt−i +

p∑
i=1

cxi ln(Tt−i) + uxt .

See Table 2 notes for definitions of the variables.
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Table 5: Estimated return equation of the Endo-VAR model for banking stocks in eleven RBA
announcement weeks in 2013

ANZ CBA WBC MQG BEN

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.030 (-5.81) 0.005 (1.52) -0.012 (-1.92) 0.014 (1.64) -0.181 (-4.93)
opent Lag 0 0.004 (0.26) 0.026 (2.39) -0.041 (-2.31) 0.029 (1.19) 0.172 (1.59)
beft Lag 0 0.103 (1.06) 0.083 (1.81) 0.148 (1.80) 0.046 (0.53) -0.396 (-0.98)
arot Lag 0 0.158 (1.10) 0.092 (0.70) 0.134 (0.75) -0.262 (-1.15) 1.422 (1.22)
aftt Lag 0 0.027 (0.44) 0.051 (1.42) 0.058 (0.87) 0.030 (0.40) 0.035 (0.11)

rt Lag 1 -0.055 (-15.38) -0.027 (-7.87) -0.050 (-14.42) 0.000 (-0.04) -0.056 (-7.26)
Lag 2 0.005 (1.38) 0.033 (10.05) 0.003 (0.84) 0.027 (7.15) -0.002 (-0.34)
Σ1:p -0.033 (-3.86) 0.072 (10.08) -0.030 (-3.73) 0.076 (9.27) -0.100 (-5.68)

|rt| Lag 1 0.002 (0.54) -0.006 (-1.58) -0.004 (-1.27) -0.012 (-2.77) -0.003 (-0.52)
Lag 2 0.001 (0.24) 0.000 (0.02) 0.000 (-0.01) -0.002 (-0.47) -0.007 (-1.13)
Σ1:p 0.016 (3.36) -0.002 (-0.49) -0.005 (-1.03) -0.011 (-1.75) -0.014 (-1.46)

x0t Lag 0 1.040 (111.11) 0.595 (119.95) 1.085 (106.89) 1.205 (115.19) 3.633 (59.12)
Lag 1 0.048 (5.51) 0.009 (1.95) 0.008 (0.88) -0.038 (-3.73) 0.091 (1.43)
Σ0:p 0.991 (67.57) 0.490 (65.33) 0.958 (61.28) 0.952 (53.76) 3.011 (36.66)

x0topent Lag 0 0.395 (16.11) 0.427 (26.10) 0.334 (12.75) 0.716 (20.34) 0.499 (2.91)
x0tbeft Lag 0 0.152 (1.00) -0.071 (-1.03) -0.042 (-0.22) -0.127 (-0.86) -0.452 (-0.78)
x0tarot Lag 0 0.562 (2.87) 0.410 (3.09) 0.120 (0.39) 0.761 (2.15) 2.993 (2.13)
x0taftt Lag 0 0.262 (2.59) 0.098 (1.52) 0.158 (1.58) 0.269 (2.14) -0.018 (-0.04)
x0t ln(Tt) Lag 0 -0.044 (-16.69) -0.021 (-14.60) -0.034 (-12.11) -0.011 (-3.62) -0.092 (-6.26)

Lag 1 -0.007 (-2.72) 0.002 (1.55) 0.005 (1.93) 0.006 (1.90) -0.005 (-0.33)
Σ0:p -0.056 (-9.62) -0.008 (-2.65) -0.015 (-2.37) 0.008 (1.22) -0.104 (-3.43)

vt Lag 0 0.197 (90.17) 0.129 (93.66) 0.192 (82.66) 0.265 (80.38) 0.566 (50.73)
Lag 1 0.001 (0.28) -0.001 (-0.72) -0.004 (-1.81) -0.007 (-2.24) 0.012 (1.05)
Σ0:p 0.161 (47.40) 0.091 (44.20) 0.152 (41.93) 0.196 (35.39) 0.462 (27.97)

vtopent Lag 0 0.085 (11.12) 0.098 (17.69) 0.092 (11.84) 0.179 (12.78) 0.121 (3.22)
vtbeft Lag 0 0.010 (0.27) -0.020 (-1.16) 0.005 (0.09) -0.029 (-0.66) -0.003 (-0.02)
vtarot Lag 0 0.175 (2.57) 0.111 (2.67) 0.101 (0.92) 0.132 (1.00) 0.519 (1.41)
vtaftt Lag 0 0.075 (2.80) 0.017 (0.94) 0.079 (2.75) 0.143 (2.75) 0.010 (0.10)
vt ln(Tt) Lag 0 -0.011 (-16.24) -0.007 (-16.21) -0.007 (-9.96) -0.009 (-8.13) -0.015 (-5.11)

Lag 1 -0.002 (-2.62) 0.001 (2.02) 0.000 (0.47) 0.002 (2.14) 0.001 (0.49)
Σ0:p -0.015 (-9.76) -0.004 (-3.84) -0.002 (-1.25) 0.000 (-0.03) -0.011 (-1.79)

ln(Tt) Lag 1 0.001 (0.61) 0.003 (2.69) -0.002 (-1.18) 0.005 (2.20) 0.015 (1.66)
Lag 2 0.001 (0.65) 0.000 (0.18) -0.001 (-0.75) 0.000 (-0.15) 0.005 (0.53)
Σ1:p 0.003 (0.91) 0.004 (2.50) -0.003 (-0.95) 0.002 (0.58) 0.045 (3.07)

Adj. R2 0.171 0.161 0.155 0.175 0.192
Walddiur 278.7 702.9 197.5 429.1 27.7
Waldtime 622.0 1038.0 370.6 542.5 88.5
Q15,raw 6221.7 2721.7 4282.3 922.2 1993.8
Q15,resid 23.6 105.2 36.2 34.6 31.0
JBresid 64575.3 208084.3 60180.5 101836.4 19233.0

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent
t-statistics (in parentheses) for the return equation of the Endo-VAR model specified in (8) for stocks ANZ, CBA, WBC,
MQG and BEN.

rt = αr + βrDt +

p∑
i=1

ari rt−i +

p∑
i=1

bri |rt−i|+ λrDt ⊗ xt +

p∑
i=0

[γri + δri ln(Tt−i)]xt−i +

p∑
i=1

cri ln(Tt−i) + urt .

See Table 2 notes for definitions of the variables.
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Table 6: Estimated trade duration equation of the Endo-VAR model for banking stocks in eleven
RBA announcement weeks in 2013

ANZ CBA WBC MQG BEN

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.166 (-18.90) -0.324 (-41.01) -0.054 (-5.84) -0.247 (-21.83) 0.764 (32.47)
opent Lag 1 -0.077 (-4.21) -0.123 (-6.95) -0.171 (-9.20) -0.248 (-10.81) -0.171 (-3.49)
beft Lag 1 0.170 (1.30) 0.126 (1.21) 0.082 (0.60) 0.020 (0.12) 0.083 (0.29)
arot Lag 1 -0.465 (-2.72) -0.228 (-1.43) -0.691 (-4.09) -0.627 (-2.89) 0.504 (1.35)
aftt Lag 1 -0.163 (-2.29) -0.045 (-0.67) -0.105 (-1.36) 0.035 (0.42) 0.037 (0.24)

rt Lag 1 -0.004 (-1.23) 0.004 (0.80) -0.016 (-5.41) 0.003 (0.86) 0.001 (0.53)
Lag 2 -0.002 (-0.41) 0.000 (-0.08) -0.013 (-3.33) 0.011 (2.84) 0.005 (1.52)
Σ1:p -0.005 (-0.53) -0.007 (-0.58) -0.038 (-4.41) 0.023 (2.92) 0.004 (0.50)

|rt| Lag 1 0.234 (62.62) 0.523 (95.31) 0.273 (77.12) 0.337 (84.90) 0.067 (21.71)
Lag 2 -0.204 (-51.01) -0.328 (-54.82) -0.199 (-51.10) -0.171 (-39.93) -0.063 (-19.27)
Σ1:p -0.014 (-2.33) 0.033 (3.85) -0.001 (-0.22) 0.107 (16.07) 0.004 (0.78)

x0t Lag 1 0.038 (3.12) 0.023 (2.41) 0.059 (4.72) -0.018 (-1.42) -0.142 (-4.49)
Lag 2 -0.017 (-1.49) -0.009 (-0.89) 0.036 (3.02) -0.001 (-0.11) -0.119 (-3.84)
Σ1:p 0.020 (1.07) 0.027 (1.86) 0.126 (6.80) -0.003 (-0.15) -0.349 (-7.99)

x0topent Lag 1 -0.031 (-1.18) -0.027 (-1.13) -0.069 (-2.60) -0.022 (-0.76) 0.032 (0.42)
x0tbeft Lag 1 0.413 (1.86) 0.056 (0.30) -0.113 (-0.47) -0.301 (-1.53) -0.137 (-0.30)
x0tarot Lag 1 -0.509 (-2.14) 0.040 (0.16) -0.109 (-0.42) -0.408 (-1.88) -0.563 (-0.88)
x0taftt Lag 1 0.157 (1.32) -0.123 (-1.22) -0.062 (-0.54) 0.070 (0.59) -0.608 (-2.09)
x0t ln(Tt) Lag 1 0.020 (5.71) 0.006 (2.22) 0.009 (2.46) -0.001 (-0.41) 0.017 (2.10)

Lag 2 -0.002 (-0.50) 0.003 (1.01) -0.004 (-1.00) 0.004 (1.25) 0.005 (0.64)
Σ1:p 0.034 (4.64) 0.022 (3.65) 0.007 (0.83) 0.006 (0.75) 0.022 (1.33)

vt Lag 1 -0.015 (-4.89) -0.009 (-2.83) -0.001 (-0.38) -0.040 (-9.05) -0.039 (-6.02)
Lag 2 -0.006 (-1.97) -0.005 (-1.58) 0.003 (1.05) 0.004 (0.92) -0.013 (-2.02)
Σ1:p -0.024 (-4.98) -0.021 (-4.47) 0.013 (2.70) -0.012 (-1.82) -0.043 (-4.57)

vtopent Lag 1 -0.015 (-1.80) -0.019 (-2.10) -0.025 (-3.14) 0.000 (-0.03) -0.023 (-1.26)
vtbeft Lag 1 0.102 (1.82) 0.047 (0.86) -0.023 (-0.36) -0.155 (-2.09) -0.011 (-0.11)
vtarot Lag 1 -0.015 (-0.22) 0.130 (1.38) 0.026 (0.24) -0.092 (-1.16) -0.199 (-1.17)
vtaftt Lag 1 0.064 (1.73) 0.027 (0.78) 0.011 (0.24) -0.003 (-0.06) -0.070 (-1.01)
vt ln(Tt) Lag 1 0.002 (1.43) 0.003 (2.69) -0.001 (-1.10) -0.005 (-3.29) 0.003 (1.30)

Lag 2 0.000 (0.01) 0.004 (3.32) -0.001 (-0.94) 0.004 (2.55) -0.005 (-2.81)
Σ1:p 0.008 (3.71) 0.014 (6.29) -0.001 (-0.46) 0.001 (0.23) -0.007 (-2.03)

ln(Tt) Lag 1 0.180 (70.84) 0.186 (82.23) 0.173 (65.00) 0.173 (60.50) 0.195 (35.99)
Lag 2 0.068 (26.92) 0.073 (31.23) 0.076 (28.66) 0.071 (24.38) 0.099 (18.25)
Σ1:p 0.338 (73.39) 0.387 (97.29) 0.362 (75.05) 0.374 (73.73) 0.422 (45.54)

Adj. R2 0.078 0.100 0.090 0.104 0.099
Walddiur 45.1 64.8 108.8 134.8 22.8
Waldtime 8029.3 12739.5 7862.9 7442.6 3327.9
Q15,raw 14708.3 24311.0 15032.9 14738.9 8677.8
Q15,resid 803.3 1354.4 795.7 1017.0 335.2
JBresid 10445.4 9150.2 12026.2 5882.9 7632.7

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent
t-statistics (in parentheses) for the trade duration equation of the Endo-VAR model specified in (8) for stocks ANZ,
CBA, WBC, MQG and BEN.

ln(Tt) = αT + βTDt−1 +

p∑
i=1

aTi rt−i +

p∑
i=1

bTi |rt−i|+ λTDt−1 ⊗ xt−1 +

p∑
i=1

[
γTi + δTi ln(Tt−i)

]
xt−i +

p∑
i=1

cTi ln(Tt−i) + uTt .

See Table 2 notes for definitions of the variables.
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Table 7: Estimated W-ACD(2,1) models for banking stocks in eleven RBA announcement weeks in 2013

Panel A: Exogenous-duration W-ACD(2,1) model

Stock θ αT aT1 aT2 bT1 bT2 γTx0,1 γTx0,2 γTv,1 γTv,2 ρ1 ρ2 ζ λTop λTbe λTar λTaf Log Lik. Q15,raw Q15,resid

ANZ 0.467 0.013 - - - - - - - - 0.122 -0.108 0.979 -0.002 -0.007 -0.034 0.003 -47118.4 13705.3 2158.5
(0.001) (0.001) - - - - - - - - (0.002) (0.002) (0.001) (0.000) (0.004) (0.007) (0.002) - - -

CBA 0.457 0.017 - - - - - - - - 0.129 -0.107 0.967 -0.001 -0.001 -0.034 0.003 -42621.6 14516.2 1560.0
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.003) (0.001) (0.004) (0.010) (0.002) - - -

NAB 0.477 0.011 - - - - - - - - 0.107 -0.093 0.977 -0.002 0.000 -0.024 0.003 -52905.1 10221.7 1452.8
(0.001) (0.001) - - - - - - - - (0.002) (0.002) (0.002) (0.000) (0.004) (0.010) (0.002) - - -

WBC 0.475 0.014 - - - - - - - - 0.109 -0.082 0.949 -0.002 -0.002 -0.066 -0.001 -53651.8 11006.7 1340.3
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.005) (0.001) (0.007) (0.011) (0.003) - - -

MQG 0.438 0.017 - - - - - - - - 0.115 -0.094 0.968 -0.002 -0.007 -0.038 0.003 -13480.4 9964.4 1116.1
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.002) (0.001) (0.007) (0.010) (0.003) - - -

BEN 0.498 0.012 - - - - - - - - 0.103 -0.082 0.958 -0.001 -0.019 -0.017 0.004 -18768.8 4328.6 683.3
(0.002) (0.001) - - - - - - - - (0.004) (0.004) (0.005) (0.002) (0.014) (0.043) (0.008) - - -

Panel B: Endogenous-duration W-ACD(2,1) model

Stock θ αT aT1 aT2 bT1 bT2 γTx0,1 γTx0,2 γTv,1 γTv,2 ρ1 ρ2 ζ λTop λTbe λTar λTaf Log Lik. Q15,raw Q15,resid

ANZ 0.471 0.012 0.002 0.000 0.176 -0.175 0.019 -0.020 -0.011 0.010 0.125 -0.110 0.977 -0.004 -0.006 -0.041 0.002 -45312.1 13705.3 1759.4
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.002) (0.002) (0.000) (0.004) (0.008) (0.002) - - -

CBA 0.465 0.019 0.007 -0.007 0.411 -0.408 0.022 -0.020 -0.008 0.005 0.133 -0.101 0.949 -0.004 0.001 -0.051 0.001 -38684.3 14516.2 935.7
(0.001) (0.001) (0.003) (0.003) (0.005) (0.005) (0.007) (0.007) (0.002) (0.002) (0.002) (0.003) (0.005) (0.001) (0.006) (0.012) (0.003) - - -

NAB 0.484 0.010 0.000 0.002 0.208 -0.205 0.024 -0.026 -0.010 0.010 0.113 -0.095 0.971 -0.004 0.000 -0.044 0.003 -50127.6 10221.7 1171.8
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.003) (0.003) (0.001) (0.005) (0.011) (0.002) - - -

WBC 0.482 0.016 -0.004 0.006 0.209 -0.210 0.040 -0.035 -0.001 0.001 0.114 -0.078 0.929 -0.003 0.000 -0.091 -0.001 -51071.8 11006.7 928.7
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.004) (0.011) (0.001) (0.009) (0.017) (0.005) - - -

MQG 0.448 0.011 0.007 -0.003 0.255 -0.250 -0.015 0.012 -0.030 0.030 0.118 -0.092 0.958 -0.009 -0.007 -0.050 0.001 -10325.2 9964.4 682.5
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.009) (0.009) (0.003) (0.003) (0.002) (0.003) (0.004) (0.001) (0.008) (0.013) (0.004) - - -

BEN 0.506 0.003 0.001 -0.001 0.054 -0.050 -0.080 0.067 -0.027 0.026 0.109 -0.085 0.953 -0.008 -0.005 -0.077 0.008 -18276.0 4328.6 425.9
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.018) (0.018) (0.004) (0.004) (0.004) (0.005) (0.006) (0.002) (0.014) (0.043) (0.009) - - -

This table reports the estimates and robust standard errors (in parentheses) from the W-ACD(2,1) models in eleven RBA announcement weeks in 2013. Panel A shows the

results for the Dufour and Engle (2000) exogenous-duration model with the following W-ACD specification

T̃t = [φtΓ(1 + 1/θ)]εt,

ln(φt) = αT +

2∑
i=1

ρi ln(T̃t−i) + ζ ln(φt−1) + λTopopent−1 + λTbebeft−1 + λTararot−1 + λTafaftt−1.

Panel B shows the results for the WACD-VAR model (9) with the following W-ACD specification

T̃t = [φtΓ(1 + 1/θ)]εt,

ln(φt) = αT +
2∑
i=1

aTi rt−i +

2∑
i=1

bTi |rt−i|+
2∑
i=1

γTi xt−i +

2∑
i=1

ρi ln(T̃t−i) + ζ ln(φt−1) + λTopopent−1 + λTbebeft−1 + λTararot−1 + λTafaftt−1.

T̃t is the cubic-spline diurnally adjusted duration of the t-th trade. εt
iid∼ Weibull

(
scale = 1

Γ(1+1/θ)
, shape = θ

)
. φtΓ(1 + 1/θ)] is the conditional duration mean of the t-th

trade. opent is a dummy variable for the first 30 minutes of the trading day. rt and |rt| are quote revisions and absolute quote revisions, respectively; xt is a column vector of

trade signs (x0
t , which equals 1 for buys and -1 for sells) and volumes (vt, defined as the signed logarithm of the ratio of the share volume to the prevailing quoted depth) of the

t-th trade. beft, arot and aftt are indicator variables identifying trades that are executed 5 minutes before (14:24:30-14:29:30), one minute around (14:29:30-14:30:30), and 10

minutes after (14:30:30-14:40:30) the RBA announcements. Q15,raw (Q15,resid) is the Ljung-Box statistic associated with the null hypothesis of no autocorrelation up to order 15

in the raw (residual) diurnally adjusted duration series. Bold format denotes statistical significance at a 5% level.
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Table 8: Generalized Forecast Error Variance Decomposition for Returns conditioning on the average RBAAT history

Stock ANZ CBA NAB WBC MQG BEN

Response returns returns returns returns returns returns

Impulse ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur

Horizon

A: Endo-VAR model
0 33.18 43.08 23.65 0.10 30.89 49.51 19.11 0.48 27.16 46.71 25.75 0.38 40.99 35.85 22.52 0.64 31.20 52.49 15.24 1.07 30.20 40.14 25.01 4.66
1 33.93 41.49 24.48 0.11 31.07 48.46 19.90 0.57 28.82 45.05 25.58 0.55 40.69 34.34 23.84 1.14 31.14 51.57 15.48 1.82 31.01 38.25 25.70 5.04
2 33.96 41.46 24.48 0.11 31.02 48.47 19.85 0.66 28.82 44.97 25.55 0.67 40.53 34.10 23.76 1.61 30.94 51.33 15.33 2.40 30.89 38.20 25.53 5.38
3 33.96 41.46 24.47 0.11 30.99 48.47 19.82 0.73 28.79 44.93 25.52 0.77 40.38 33.92 23.68 2.01 30.80 51.02 15.22 2.96 30.86 38.11 25.49 5.54
10 33.94 41.43 24.46 0.18 30.89 48.25 19.74 1.13 28.64 44.61 25.35 1.40 39.58 32.88 23.18 4.35 30.13 49.52 14.76 5.60 30.81 38.06 25.43 5.70
20 33.93 41.41 24.45 0.21 30.84 48.12 19.70 1.34 28.55 44.44 25.26 1.75 38.91 32.01 22.73 6.35 29.67 48.51 14.44 7.38 30.80 38.05 25.43 5.71
40 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.58 31.57 22.49 7.36 29.50 48.14 14.32 8.04 30.80 38.05 25.43 5.72
45 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.58 31.55 22.48 7.39 29.50 48.13 14.32 8.05 30.80 38.05 25.43 5.72
50 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.57 31.55 22.48 7.40 29.50 48.13 14.32 8.05 30.80 38.05 25.43 5.72

B: WACD-VAR model
0 33.25 42.19 24.55 0.01 30.36 49.02 20.59 0.04 28.09 47.78 24.08 0.05 41.07 36.32 22.54 0.07 31.49 54.35 13.97 0.20 27.84 44.25 25.94 1.96
1 33.97 40.66 25.36 0.01 30.57 47.95 21.43 0.05 29.77 46.24 23.90 0.09 40.96 34.99 23.94 0.11 31.57 53.82 14.26 0.35 28.86 41.53 27.36 2.25
2 34.01 40.63 25.35 0.01 30.55 47.99 21.40 0.06 29.79 46.19 23.90 0.11 40.96 34.95 23.95 0.14 31.49 53.86 14.19 0.47 28.76 41.57 27.18 2.49
3 34.01 40.63 25.35 0.01 30.53 48.02 21.38 0.07 29.78 46.19 23.89 0.14 40.94 34.94 23.95 0.17 31.45 53.80 14.17 0.59 28.74 41.48 27.15 2.63
10 34.00 40.62 25.35 0.03 30.50 48.01 21.36 0.13 29.73 46.09 23.85 0.33 40.82 34.81 23.89 0.48 31.32 53.52 14.08 1.09 28.69 41.42 27.09 2.81
20 34.00 40.62 25.35 0.04 30.49 47.98 21.35 0.19 29.70 46.04 23.83 0.42 40.69 34.63 23.82 0.86 31.28 53.42 14.05 1.25 28.69 41.41 27.08 2.82
40 34.00 40.61 25.35 0.04 30.48 47.96 21.34 0.21 29.70 46.03 23.83 0.44 40.60 34.48 23.76 1.16 31.27 53.41 14.05 1.28 28.69 41.41 27.08 2.82
45 34.00 40.61 25.35 0.04 30.48 47.96 21.34 0.22 29.70 46.03 23.83 0.44 40.59 34.47 23.75 1.19 31.27 53.40 14.05 1.28 28.69 41.41 27.08 2.83
50 34.00 40.61 25.34 0.04 30.48 47.96 21.34 0.22 29.70 46.03 23.83 0.44 40.58 34.46 23.75 1.21 31.27 53.40 14.05 1.28 28.69 41.41 27.08 2.83

C: Augmented Dufour-Engle model
0 33.98 40.61 25.41 0.00 29.99 48.97 21.03 0.02 29.62 46.88 23.51 0.00 42.21 34.70 23.09 0.01 32.49 51.31 16.20 0.00 26.32 44.25 29.39 0.04
1 34.68 39.10 26.21 0.00 30.16 47.87 21.95 0.02 31.37 45.24 23.39 0.00 42.04 33.37 24.57 0.01 32.61 50.87 16.51 0.00 27.57 41.61 30.76 0.06
2 34.72 39.07 26.21 0.00 30.14 47.92 21.92 0.02 31.39 45.20 23.40 0.00 42.04 33.35 24.60 0.01 32.55 50.98 16.46 0.01 27.55 41.69 30.68 0.08
3 34.71 39.07 26.21 0.00 30.12 47.96 21.91 0.02 31.39 45.21 23.39 0.00 42.04 33.35 24.60 0.01 32.54 51.00 16.45 0.01 27.55 41.67 30.69 0.09
10 34.71 39.07 26.21 0.01 30.11 47.97 21.89 0.03 31.39 45.21 23.39 0.01 42.04 33.35 24.59 0.01 32.53 51.01 16.44 0.02 27.54 41.67 30.66 0.13
20 34.71 39.07 26.21 0.01 30.11 47.97 21.89 0.04 31.39 45.20 23.39 0.02 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
40 34.71 39.07 26.21 0.01 30.11 47.96 21.89 0.04 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
45 34.71 39.07 26.21 0.01 30.11 47.96 21.89 0.05 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
50 34.71 39.07 26.21 0.01 30.10 47.96 21.89 0.05 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13

D: Original Dufour-Engle model
0 75.75 24.23 - 0.02 71.22 28.77 - 0.01 76.84 23.15 - 0.01 73.28 26.68 - 0.04 68.27 31.73 - 0.00 74.64 25.36 - 0.00
1 75.89 24.09 - 0.02 70.78 29.21 - 0.01 76.98 23.00 - 0.01 73.31 26.65 - 0.04 67.92 32.08 - 0.00 75.09 24.91 - 0.00
2 75.83 24.15 - 0.02 70.64 29.35 - 0.01 76.92 23.07 - 0.01 73.23 26.74 - 0.04 67.82 32.18 - 0.00 75.02 24.97 - 0.00
3 75.79 24.19 - 0.02 70.58 29.41 - 0.01 76.89 23.10 - 0.01 73.21 26.75 - 0.04 67.82 32.18 - 0.00 75.02 24.98 - 0.00
10 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.01 - 0.00
20 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
40 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
45 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
50 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01

This table reports the generalized forecast error variance decomposition (GFEVD) for returns, conditioning on the average RBAAT history, for six Australian banking

stocks in 2013 for 4 models, namely the Endo-VAR, WACD-VAR, Augmented Dufour-Engle (i.e. with volume), and Original Dufour-Engle (without volume) models. Following

the step-by-step procedure described in Appendix B, each entry in the table, reported in %, is calculated according to Equation (11), by averaging over M = 1, 000 vectors of

shocks bootstrapped from the residuals of the corresponding estimated models. For each vector of shocks, the GIRF Ij(·) in Equation (11) is based on N = 1, 000 simulated

realizations. The average RBAAT history is defined as the average of all trading histories right before 14:30:00 on each of eleven RBA days in 2013.
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Table 9: Generalized Forecast Error Variance Decomposition for Returns conditioning on the average non-RBAAT history

Stock ANZ CBA NAB WBC MQG BEN

Response returns returns returns returns returns returns

Impulse ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur

Horizon

A: Endo-VAR model
0 46.94 37.64 15.42 0.00 45.89 40.39 13.71 0.01 51.09 34.87 14.04 0.00 49.68 36.28 14.03 0.00 46.16 40.66 13.18 0.00 42.68 36.56 20.76 0.00
1 47.33 37.00 15.67 0.01 45.77 40.59 13.62 0.02 51.42 34.38 14.19 0.01 49.94 35.89 14.15 0.01 46.06 40.82 13.11 0.02 43.22 35.59 21.17 0.02
2 47.34 36.98 15.67 0.01 45.70 40.69 13.59 0.02 51.43 34.37 14.18 0.01 49.93 35.92 14.14 0.01 46.00 40.91 13.08 0.02 43.22 35.61 21.16 0.02
3 47.34 36.99 15.67 0.01 45.66 40.75 13.57 0.02 51.41 34.40 14.17 0.02 49.92 35.93 14.14 0.01 46.00 40.91 13.08 0.02 43.22 35.59 21.17 0.02
10 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06
15 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06
20 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06

B: WACD-VAR model
0 46.83 37.09 16.08 0.00 43.84 40.92 15.24 0.01 51.43 34.67 13.90 0.00 50.09 35.40 14.50 0.00 46.55 41.14 12.31 0.00 41.16 36.63 22.21 0.00
1 47.23 36.44 16.33 0.00 43.72 41.12 15.15 0.01 51.76 34.20 14.05 0.00 50.37 34.99 14.63 0.01 46.45 41.31 12.24 0.01 41.71 35.62 22.66 0.01
2 47.25 36.42 16.34 0.00 43.66 41.21 15.11 0.01 51.76 34.19 14.05 0.00 50.36 35.01 14.63 0.01 46.39 41.39 12.21 0.01 41.71 35.64 22.65 0.01
3 47.24 36.42 16.33 0.00 43.63 41.27 15.10 0.01 51.74 34.21 14.04 0.01 50.35 35.02 14.62 0.01 46.39 41.39 12.21 0.01 41.71 35.62 22.66 0.01
10 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03
15 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03
20 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03

C: Augmented Dufour-Engle model
0 47.44 37.29 15.27 0.00 46.04 39.92 14.05 0.01 51.01 35.31 13.68 0.00 47.27 37.57 15.16 0.00 44.38 42.64 12.98 0.00 42.60 36.83 20.57 0.00
1 47.83 36.65 15.52 0.00 45.93 40.08 13.99 0.01 51.36 34.80 13.84 0.00 47.54 37.15 15.31 0.00 44.29 42.78 12.93 0.00 43.15 35.84 21.01 0.00
2 47.85 36.63 15.53 0.00 45.88 40.16 13.96 0.01 51.37 34.79 13.84 0.00 47.52 37.17 15.30 0.00 44.24 42.86 12.90 0.00 43.15 35.85 21.00 0.00
3 47.84 36.63 15.52 0.00 45.85 40.21 13.94 0.01 51.35 34.82 13.83 0.00 47.52 37.18 15.30 0.00 44.24 42.86 12.90 0.00 43.15 35.84 21.01 0.00
10 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00
15 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00
20 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00

D: Original Dufour-Engle model
0 77.19 22.81 - 0.00 70.03 29.96 - 0.01 75.12 24.88 - 0.00 75.50 24.50 - 0.01 68.76 31.24 - 0.00 74.45 25.53 - 0.03
1 77.32 22.68 - 0.00 69.59 30.40 - 0.01 75.27 24.73 - 0.00 75.53 24.47 - 0.00 68.42 31.58 - 0.00 74.89 25.08 - 0.02
2 77.26 22.74 - 0.00 69.44 30.55 - 0.01 75.20 24.80 - 0.00 75.44 24.55 - 0.00 68.32 31.68 - 0.00 74.83 25.15 - 0.02
3 77.22 22.77 - 0.00 69.38 30.61 - 0.01 75.17 24.83 - 0.00 75.43 24.57 - 0.00 68.31 31.69 - 0.00 74.82 25.15 - 0.02
10 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.79 25.19 - 0.03
15 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.78 25.19 - 0.03
20 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.78 25.19 - 0.03

This table reports the generalized forecast error variance decomposition (GFEVD) for returns, conditioning on the average non-RBAAT history, for six Australian banking

stocks in 2013 for 4 models, namely the Endo-VAR, WACD-VAR, Augmented Dufour-Engle (i.e. with volume), and Original Dufour-Engle (without volume) models. Following

the step-by-step procedure described in Appendix B, each entry in the table, reported in %, is calculated according to Equation (11), by averaging over M = 1, 000 vectors of

shocks bootstrapped from the residuals of the corresponding estimated models. For each vector of shocks, the GIRF Ij(·) in Equation (11) is based on N = 1, 000 simulated

realizations. The average non-RBAAT history is defined as the average of all trading histories right before 14:30:00 on each of forty-three non-RBA days in the current sample.

49



Figure 1: Impulse response functions for quote revisions of stock NAB
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(b) A positive one standard deviation duration shock
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(c) A negative one standard deviation duration shock

Note: This figure plots the cumulative impulse response of quote revisions after an unexpected buy with either (i) no duration shock
(Panel (a)), (ii) a positive one standard deviation duration shock (Panel (b)), or (iii) a negative one standard deviation duration shock
(Panel (c)). Conditioning on a trade that occurred right before 14:30:00 of an average day on which the RBA made or did not make
announcements (i.e. conditioning on the average RBAAT or non-RBAAT history), we simulate and compute 10,000 impulse response
functions for 300 transactions into the future. Averages of cumulative quote changes at each step are calculated and plotted in both
transaction time (left graphs) and calendar time (right graphs, for the first 4 minutes in Panel (a)) since the conditioning transaction
(i.e. t = −1). Cumulative price impacts obtained from the Endo-VAR model (8) and WACD-VAR model (9) are pictured. We also
chart the cumulative quote changes for the augmented Dufour and Engle (2000) (DE) exogenous-duration VAR model (i.e. with volume
incorporated) for comparison.
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Figure 2: Impulse response functions for quote revisions of banking stocks
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(b) CBA
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(c) WBC

(Figure continued on next page)
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Figure 2 – continued
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MQG: No duration shock
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(d) MQG
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BEN: No duration shock
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(e) BEN

Note: This figure plots the cumulative impulse response of quote revisions after an unexpected buy with either (i) no duration shock

(left plots), (ii) a positive one standard deviation duration shock (middle plots), or (iii) a negative one standard deviation duration

shock (right plots) for 5 Australian banking stocks, namely ANZ, CBA, WBC, MQG and BEN. Conditioning on a trade that occurred

right before 14:30:00 of an average day on which the RBA made or did not make announcements (i.e. conditioning on the average

RBAAT or non-RBAAT history), we simulate and compute 10,000 impulse response functions for 300 transactions into the future.

Averages of cumulative quote changes at each step are calculated and plotted in transaction time since the conditioning transaction

(i.e. t = −1). Cumulative price impacts obtained from the Endo-VAR model (8) and WACD-VAR model (9) are pictured. We also

chart the cumulative quote changes for the augmented Dufour and Engle (2000) (DE) exogenous-duration VAR model (i.e. with volume

incorporated) for comparison.
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Appendices

A Simulation procedure to compute GIRFs

The simulation experiment explained in subsection 4.2 to produce the GIRFs for quote revision rt

is carried out via the following steps.

A.1 Pick a history It−1.

A.2 For a given horizon h, generate a 4×(1+h) matrix of random noise for quote revisions, trade

attributes and time durations. For the Endo-VAR system, the noise series are bootstrapped

from their respective residuals ε̂t since the usual normal assumption is too restrictive, as

implied by the large Jarque-Bera statistics discussed earlier. The bootstrapping avoids the

imposition of unrealistic distributional assumptions on the error terms. The error terms

(of sign and volume equations in particular) are contemporaneously correlated, so we first

transform the correlated ε̂t to contemporaneously uncorrelated residuals, ζ̂t = P−1ε̂t, where P

is the lower Cholesky decomposition of the estimated covariance matrix of εt (i.e. V̂ ar(εt) =

PP ′) (see Koop et al., 1996, Pesaran and Shin, 1996). We retain the serial correlation

inherent in the observed ε̂t (which is also imported to ζ̂t) by applying the stationary bootstrap

procedure proposed by Politis and Romano (1994) with an average block bootstrap length set

to 10 to each element of ζ̂t. We recover ε̂t = P ζ̂t from the draws of ζ̂t. For the WACD-VAR

system, duration innovations are randomly drawn from the estimated Weibull distribution,

while the innovations for quote changes and trade characteristics are drawn using the above

bootstrap method.

A.3 Given It−1, compute Tt, xt, and then rt according to their joint system, using the disturbances

produced in step A.2. Simulated values for (T, x, r) at each period are augmented into the

past information set to compute the next period values until the h-th future period is reached.

This gives a trajectory of (rt+k, xt+k, Tt+k) for k = 0, 1, · · · , h under the “no shock” scenario.

Since the WACD model is applied to diurnally adjusted duration T̃t, after T̃t+k, k = 0, 1, · · · , h
is calculated, these T̃t+k are transformed back to Tt+k, for use in the other equations.

A.4 Shock the joint system at transaction time t with trade, duration, and/or return shocks and

repeat step A.3 using the same set of noise series generated in step A.2.18 At each horizon

k, calculate a realization of Ir(k, ·) as rt+k, shock− rt+k, no shock. The simulated path of Ir(k, ·)
indexed in transaction time can be used directly, and/or converted into calendar time.

A.5 Repeat steps A.3 to A.4 N times, where N is a sufficiently large number. This gives N

realizations of the impulse response I
(l)
r (k, ·) for l = 1, 2, · · · , N . Averaging these realizations

provides an estimate of Ir(k, ·) for k = 0, 1, · · · , h.

18That is, the first vector of the noise series in step A.2 (i.e. at time t), or a part of it, is replaced by the relevant
shocks.
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B Simulation procedure to compute GFEVD

The GFEVD for a multivariate system of quote revisions, trade attributes and trade durations is

calculated via the following steps.

B.1 Pick a history It−1 (i.e. either the average RBAAT or average non-RBAAT history in our

case).

B.2 Draw a shock vector εt from the residuals of the estimated model. This can be done similarly

to step A.2 in subsection 4.2, but without the embedded stationary bootstrap procedure since

only one shock vector is drawn.

B.3 Compute the GIRF Ij(·) in equation (11) associated with each element of the shock vector

drawn in step B.2 for all variables in the multivariate system. This consists of performing

steps A.2 to A.5 in subsection 4.2 but now for all variables. Note that in step A.4 we now

only shock one equation of the system at a time using the relevant element of the shock

vector, and the GIRF Ij(·) corresponding to each shock element is computed for h future

transactions based on N repetitions.

B.4 Use the GIRFs obtained in step B.3 to compute λi→j,It−1(h), h = 0, 1, 2, · · · as in equation

(11) for the particular history and shock.

B.5 Repeat steps B.2 to B.4 M times. Compute the mean of λi→j,It−1(h), h = 0, 1, 2, · · · to

average out the effects of different shock sizes.
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