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Abstract. Understanding the structure of financial markets deals with suit-

ably determining the functional relation between financial variables. In this

respect, important variables are the trading activity, defined here as the number

of trades N , the traded volume V , the asset price P , the squared volatility σ2,

the bid-ask spread S and the cost of trading C. Different reasonings result in

simple proportionality relations (“scaling laws”) between these variables. A ba-

sic proportionality is established between the trading activity and the squared

volatility, i.e., N ∼ σ2. More sophisticated relations are the so called 3/2-law

N3/2 ∼ σPV/C and the intriguing scaling N ∼ (σP/S)2. We prove that these

“scaling laws” are the only possible relations for considered sets of variables by

means of a well-known argument from physics: dimensional analysis. Moreover,

we provide empirical evidence based on data from the NASDAQ stock exchange

showing that the sophisticated relations hold with a certain degree of universal-

ity. Finally, we discuss the time scaling of the volatility σ, which turns out to be

more subtle than one might naively expect.

1. Introduction

Understanding the structure of financial markets is of obvious relevance for traders, investors

and regulators. Among others, the relation between trading activity and price variability

received a lot of attention in the financial literature over the last five decades. The pioneers
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of this field, e.g. Clark [9], Epps and Epps [14] and Tauchen and Pitts [29], defined trading

activity via trading volume and derived a proportionality relation between the trading vol-

ume and the price variability. The rationale behind this definition and the implied relation

is the widely-cited aphorism, “it takes volume to move prices”. We refer to Karpoff [17] for

a survey of these early works on the price-volume relation.

Due to minor empirical evidence for the hypotheses developed in these early approaches,

the volume-based definition of trading activity has been replaced by the number of trades.

This definition is caused by the substantial link between the observed price variability and the

number of trades (see Jones et al. [16], Ané and Geman [4] as well as Dufour and Engle [12]).

For example, Jones et al. [16] find no predictive power in the volume for the price variability

but that the number of trades scales proportionally to the squared volatility. This scaling

relation will be the starting point of our discussion. Building on the aforementioned ideas

numerous other studies followed, e.g. [2, 20]. In particular, let us point out the contribution

by Wyart et al. [30], who argue that the price volatility per trade, i.e., (price) × (volatility)

× (number of trades)−1/2, is proportional to the bid-ask-spread. This connection can be

seen as a somewhat refined version of the relation proposed by Jones et al. [16].

More recently, general relations between financial quantities have been derived based on

the invariance of markets’ microstructure, see Kyle and Obizhaeva [18]. In particular, the

authors postulate a trading invariance principle which (in contrast to the above relations) is

formulated on the latent level of meta-orders.1 Andersen et al. [3] and Benzaquen et al. [6]

confirm empirically that an analogue of this invariance principle holds true for intradaily

observable quantities. The fundamental relation may then be formulated as follows: the

nominal value of the exchanged risk during a period of time, defined as the product (volatil-

ity) × (traded volume) × (price), is proportional to the number of trades to the power

3/2. This so called intraday trading invariance principle and its connection to the relations

proposed by Jones et al. [16] and Wyart et al. [30] is the focus of the present paper.

Our aim is to critically analyze these three relations as well as variants thereof by applying

a method well known from physics: dimensional analysis. It is a tool which allows for the

falsification of a proposed relation, e.g. of the above mentioned formulas for the number of

trades, but not for its verification. This principle is similar in spirit to K. Popper’s approach

to epistemology which in turn is inspired by the classical theory of statistics: There one can

possibly reject a null hypothesis, but never prove it. Similarly, dimensional analysis can only

isolate those functional relations between variables involving certain “dimensions” which do

not violate the obvious scaling invariance of these dimensions. Hence, it a priori rules out

those functional relations which are in conflict with these scaling requirements. But this

does not imply that the identified functional relations, which are in accordance with the

scaling requirements, describe the reality in a reasonable way. This has to be confirmed by

other methods. In the present setting the ultimate challenge is, of course, to fit to empirical

data. To complete the picture, we perform an empirical analysis of the relations described

above and show that the intraday trading invariance principle provides an appropriate fit

to empirical data, but fails to be a “universal law”.

In dimensional analysis one uses the rather obvious argument that a meaningful relation

between quantities involving some “dimensions” should not be affected by the units in which

1A meta-order, also referred to as bet, is a collection of trades originating from the same trading decision

of a single investor.
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these “dimensions” are measured. In the present context the relevant “dimensions” are time,

shares, and money, denoted as T,S and U, respectively. We shall also use an additional

argument, namely “leverage neutrality” as introduced by Kyle and Obizhaeva [19]. We

emphasize that these authors were the first to combine the concepts of “leverage neutrality”

and dimensional analysis. The assumption of leverage neutrality is based on the Modigliani-

Miller theorem (see [23]) and leads to a scaling invariance principle which, mathematically

speaking, is perfectly analogous to the dimensional scaling requirements mentioned above.

The remainder of the paper is structured as follows. In Section 2, we first deduce the

proportionality between the number of trades and the price variability as proposed by Jones

et al. [16] from dimensional arguments. Next, we derive the more involved scaling relations

proposed by Benzaquen et al. [6] as well as Wyart et al. [30], again using dimensional analysis,

and discuss the assumption of leverage neutrality in this context. Having a theoretical

foundation for the discussed relations, we then turn to the empirical analysis in Section 3:

Based on data from the NASDAQ stock market, we show that the relation proposed by

Benzaquen et al. [6] fits the data rather well. In Section 4, we take a closer look at volatility

and analyze implications of different time scalings thereof. We conclude with some empirical

results in this respect. A reminder on the Pi-theorem from dimensional analysis as well as

proofs for all considered relations can be found in the appendix.

2. The trading invariance principle

We are interested in explaining the arrival rate of trades in a given stock measured as

• N = N t+T
t the number of trades within a fixed time interval [t, t + T ] so that N

is measured per units of time. Following the notation from [25], this link between the

variable N and its dimensional unit is therefore given by

[N ] = T−1.

Let us identify the variables (and their dimensions [·]) which are likely to influence the

number of trades N in a given interval [t, t+ T ]. Three obvious candidates are:

• V = V t+Tt the traded volume of the stock during the time interval [t, t+ T ], mea-

sured in units of shares per time

[V ] = S/T.

• P = P t+Tt the average price of the stock in the interval [t, t+T ], measured in units

of money per share

[P ] = U/S.

• σ2 = (σ2)t+Tt = Var (log(Pt+T )− log(Pt)) the variance of the log-price over the time

interval [t, t+ T ]. We assume

[σ2] = T−1.

If the price process (Pt)t≥0 follows, e.g. the Black-Scholes model, see (24), we clearly find the

above scaling [σ2] = T−1 and shall retain this assumption in most of the paper. However,

the scaling of σ2 turns out to be more subtle than it seems at first glance. In Section 4 below,

we shall investigate the implications of a scaling relation [σ2] = T−2H , where H ∈ (0, 1) may
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be different from 1/2. For instance, such a scaling may result from price processes based on

a fractional Brownian motion (BHt )t≥0 with Hurst parameter H ∈ (0, 1), see [22].

Based on these identified dimensions, let us turn to the basic idea of dimensional analysis:

the validity of a considered relation should not depend on whether we measure time T in

seconds or in minutes, shares S in single shares or in packages of hundred shares, and money

U in Euros or in Euro-cents.

Defintion 1 (Dimenisonal invariance). A function h : Rn+ → R+ relating the quantity of

interest U to the explanatory variables W1, . . . ,Wn, i.e,

U = h(W1, . . . ,Wn),

is called dimensionally invariant if it is invariant under rescaling the involved dimensions

(in our case S,T and U).

As a first - and rather naive - approach we analyze the assumption that the three variables

σ2, P and V fully explain the number of trades N .

Proposition 1. Assume that the number of trades N depends only on the three quantities

σ2, P and V , i.e.,

N = g(σ2, P, V ), (1)

where the function g : R3
+ → R+ is dimensionally invariant. Then, there is a constant c > 0

such that the number of trades N obeys the relation

N = c · σ2. (2)

The proof relies on elementary linear algebra and is given in Appendix B below (compare

also the proof of Theorem 1 below which is similar). Recall that relation (2) goes back to

Jones et al. [16].

As mentioned in the introduction, one should read the present “dimensional” argument

in favor of relation (2) as a pure “if. . . then. . . ” assertion: if N really is fully explained by

σ2, P and V and the obvious scaling invariances of S, T and U are satisfied, then (2) is

the only possible relation. As we shall see below, the empirical data does not reconfirm the

validity of (2). In other words, we have to turn the above statement upside down: as (2)

is not reconfirmed by empirical data, the variables σ2, P and V cannot fully explain the

quantity N . It is therefore natural to introduce more/other quantities in order to explain

the number of trades N .

Regarding the uniqueness of the function g in (1), the mathematical reason for the unique

choice of g given by (2) is that we have three scaling relations (pertaining to the invariance

of the “dimensions” S,U and T) as well as the three explanatory variables σ2, P and V .

This leads to three linear equations in three unknowns, yielding a unique solution.

Let us now try to go beyond the scope of relation (1) by considering further explanatory

variables. Motivated by Wyart et al. [30], we consider the following quantity as relevant for

the number of trades N in a given interval [t, t+ T ], additionally to σ2, P and V :

• S = St+Tt the average bid-ask spread in the interval [t, t+ T ], measured in units of

money per share

[S] = U/S.
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Following Benzaquen et al. [6], it is also convenient to alternatively consider the quantity

• C = Ct+Tt the average cost per trade in the interval [t, t+ T ], measured in units of

money

[C] = U.

To visualize things, suppose that for some stock we observe in average during the time

interval [t, t+ T ] an ask price of EUR12.30 and a bid price of EUR12.20 so that the bid-ask

spread S equals 10 cents. If the average trade size in the interval [t, t + T ], denoted by

Q = Qt+Tt , is 500 shares, we obtain that the average cost per trade C = QS is EUR50.

A discussion of the difference between using S rather than C as an explanatory variable

can be found at the end of this section. For now, let us follow Benzaquen et al. [6] for our

derivation of the intraday trading invariance principle and pass to the set σ2, P, V and C of

explanatory variables, i.e.,

N = g(σ2, P, V, C), (3)

for some function g : R4
+ → R+. As we now have four explanatory variables, the three

equations yielded by the scale invariance of the dimensions S,U and T are not sufficient

anymore to imply an (essentially) unique solution for g. In fact, the four explanatory

variables above combined with the three invariance relations pertaining to S, T and U only

yield a general solution of (3) of the form

N = σ2f

(
PV

σ2C

)
, (4)

where f : R+ → R+ is an arbitrary function whose generality cannot be restricted by only

relying on arguments pertaining to dimensional analysis with respect to the three dimen-

sions S, T and U (see Appendix B).

Hence, in order to obtain such a crisp result as in (2), an additional “dimensional invari-

ance” is required. Kyle and Obizhaeva [19] found a remedy: a no-arbitrage type argument,

referred to as “leverage neutrality”.2 This concept is inspired by the findings of Modigliani

and Miller [23] (compare [25]): Consider a stock of a company, and suppose that the company

changes its capital structure by paying dividends or by raising new capital. The Modigliani-

Miller theorem tells us precisely which features of the company are not affected by a change

in the capital structure. This allows us to establish how certain quantities behave when

varying the leverage in terms of the relation between debt and equity of a company.

From a conceptual point of view, the assumption of leverage neutrality gives a constraint

on the behavior of the quantities N, σ2, P, V, C (resp. S) in case of changing the firm’s capital

structure. This constraint can be understood as an additional though synthetic dimension

in our analysis, which we refer to as the Modigliani-Miller “dimension” M. The Modigliani-

Miller “dimension” M of a share of a company is measured in terms of the leverage L, i.e.,

the quantity

L =
total assets

equity
.

2Note that Kyle and Obizhaeva [19] use the argument of leverage neutrality in the context of market

impact. But, of course, the same idea applies in the present situation.
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Multiplying L by a factor A > 1 is equivalent to paying out (1 − A−1) of the equity as

cash-dividends. On the other hand, multiplying L by a factor 0 < A < 1 corresponds to

raising new capital in order to increase the firm’s equity by a factor A−1. Following Kyle

and Obizhaeva [19] as well as [25], we are led to the following assumption:

Leverage Neutrality Assumption ([19, 25]). Scaling the Modigliani-Miller “dimension”

M by a factor A ∈ R+ implies that

• N , V and C (as well as S) remain constant,

• P changes by a factor A−1,

• σ2 changes by a factor A2.

To recapitulate: Setting A = 2 corresponds to paying out half of the equity as dividends so

that each share yields a dividend of (1−A−1)P = P/2. The stock price is, thus, multiplied

by A−1 = 1/2 while the volatility σ is multiplied by A = 2. The remaining quantities

are not affected by changing the leverage, in accordance with the insight of Modigliani and

Miller [23] and the recent work by Kyle and Obizhaeva [19]. The economic reason is that

the value of the assets of the corresponding company and hence the associated risk does not

change.

Defintion 2 (Leverage neutrality). A function h : Rn+ → R+ relating the quantity N to the

explanatory variables σ2, P, V, C and S, i.e,

N = h(σ2, P, V, C, S),

is called leverage neutral if it is invariant when rescaling the Modigliani-Miller dimension

M of the variables N, σ2, P, V, C, S as defined in the assumption above.

We can now derive the following relation, which is the focus of the present paper. It relies

on the basic fact that under the “Leverage Neutrality Assumption” we now find four linear

equations in order to determine four unknowns. Note that Benzaquen et al. [6] coined this

relation the “3/2-law”.

Theorem 1 ((3/2)-law). Suppose the “Leverage Neutrality Assumption” holds and that the

number of trades N depends only on the four quantities σ2, P, V and C, i.e.,

N = g(σ2, P, V, C), (5)

where the function g : R4
+ → R+ is dimensionally invariant and leverage neutral. Then,

there is a constant c > 0 such that the number of trades N obeys the relation

N3/2 = c · σPV
C

. (6)

The proof follows from the general Pi-theorem reviewed in Appendix A. For the conve-

nience of the reader, we also present a direct proof of Theorem 1. Although slightly longish

and repetitive, we hope that it helps the intuition.

Proof of Theorem 1. First, we make the following ansatz for the function g in (5):

g(σ2, P, V, C) = c · (σ2)y1P y2V y3Cy4 , (7)
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where c > 0 is a constant and y1, . . . , y4 are unknown real numbers. Looking at the first

row of Table 1 yields the relation

−y2 + y3 = 0. (8)

Indeed, when passing from counting shares in packages of 100 units rather than in single

units, the number P is replaced by 100P while the number V is replaced by V/100. Since

the function g in (7) is assumed to be dimensionally invariant, g should remain unchanged

by this passage, i.e.,

c ·
(
σ2
)y1

P y2V y3Cy4 = c ·
(
σ2
)y1

(100P )
y2

(
V

100

)y3
Cy4 (9)

which is only possible if (8) holds true. Looking at the other rows of Table 1 we therefore

get the system of linear equations
− y2 + y3 = 0

y2 + y4 = 0

−y1 − y3 = −1

2y1 − y2 = 0

whose unique solution is

y =

(
1

3
,

2

3
,

2

3
,−2

3

)>
, (10)

which gives (6) as one possible solution of (5).

We still have to show the uniqueness of (6). To do so, it is convenient to pass to log-

arithmic coordinates: suppose that there is a function G : R4 → R such that log(N) =

G
(
log(σ2), log(P ), log(V ), log(C)

)
or equivalently,

log(N)−G(X1, X2, X3, X4) = 0, (11)

where we write
(
log(σ2), log(P ), log(V ), log(C)

)
as (X1, X2, X3, X4). We have to show that

G has the form

log(N) = y1X1 + y2X2 + y3X3 + y4X4 + const,

where y1, y2, y3, y4 are given by (10) and const is a real number. Denote by r1 := −e2 + e3
the first row of Table 1, considered as a vector in R4, where (ei)

4
i=1 is the canonical basis of

R4. Similarly as in (9), the first row of Table 1 and dimensional invariance imply that

G
(
log(σ2), log(P ), log(V ), log(C)

)
= G

(
log(σ2), log(P ) + log(100), log(V )− log(100), log(C)

)
.

Clearly we can replace log(100) by any real number. Speaking abstractly, this means that

G : R4 → R must be constant on any straight line parallel to the vector r1. A similar

argument applies to r2 = e2 + e4 and r4 = 2e1 − e2. As regard r3 = −e1 − e3 the situation

is slightly different, as the third row of Table 1 also involves a non-zero entry of N .

The third row of Table 1 and (11) imply that for any λ ∈ R,

G(X1 − λ,X2, X3 − λ,X4) = G(X1, X2, X3, X4)− λ.
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σ2 P V C N

S 0 -1 1 0 0

U 0 1 0 1 0

T -1 0 -1 0 -1

M 2 -1 0 0 0

Table 1: A labelled overview of the dimensions of the quantities P, V, σ2 and C.

Setting const := G(0, 0, 0, 0), we have

G(−λ, 0,−λ, 0) = −λ+ const for all λ ∈ R,

which uniquely determines G on the one-dimensional space spanned by r3 = −e1−e3 in R4.

As we have seen that G also must be constant along each line in R3 parallel to r1, r2 and

r4, and as r1, r2, r3, r4 span the entire space R4, we conclude that there is only one choice

for the function G, up to the constant const = G(0, 0, 0, 0).

For an alternative derivation of relation (6), we pass from considering σ2, the variability

of the relative price changes, to considering σ2
B , the variability of the absolute price changes.

This will allow us to reduce the two explanatory variables σ2 and P to one explanatory

variable σ2
B = σ2P 2. We call σB the Bachelier volatility as it corresponds to Bachelier’s

original model from 1900, see [5]. Recall that the dynamics of the price process (Pt)t≥0 of

the Black-Scholes versus the Bachelier model are

dPt = σPtdWt, (Black-Schloes model) (12)

dPt = σBdWt, (Bachelier model)

where Wt is a standard Brownian motion. Defining σB = σP the two models coincide

remarkably well as long as Pt does not move too much (compare e.g. [28]). We therefore

define

• σ2
B = σ2P 2 the Bachelier volatility in the interval [t, t+T ]. Plugging in the dimensions

[σ2] = T−1 and [P ] = US−1, we obtain

[σ2
B ] = U2S−2T−1.

A glance at Table 2 reveals that σ2
B has Modigliani-Miller dimension M equal to zero (just

as the other variables V,C and N). This enables us to derive the assertion of Theorem

1 by using only the three obvious scaling invariances, but without imposing a priori the

requirement of leverage neutrality.

Corollary 2. Suppose the number of trades N depends only on the three quantities σ2
B , V

and C, i.e.,

N = g(σ2
B , V, C), (13)

where the function g : R3
+ → R+ is dimensionally invariant. Then, there is a constant c > 0

such that the number of trades N obeys the relation

N3/2 = c · σBV
C

. (14)
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σ2
B V C N

S -2 1 0 0

U 2 0 1 0

T -1 -1 0 -1

M 0 0 0 0

Table 2: A labelled overview of the dimensions of the quantities V, σ2
B = σ2P 2 and C.

The proof is analogous to (and even easier than) the above proof. Note that Proposition

1 and Corollary 2 both only rely on the very convincing invariance assumption with respect

to S, T and U, but not on the “Leverage Neutrality Assumption”.

Anticipating that relation (14) gives a superior fit to empirical data than relation (2) we

can draw the following conclusion: the choice of σ2
B , V, C as explanatory variables for the

quantity N is superior to the choice σ2, P, V made in Proposition 1 above.

Here is a “dimensional argument” why we should expect a better result from Corollary

2 as compared to Proposition 1. It follows from the very approach of dimensional analysis

that everything hinges on the assumption that the chosen explanatory variables indeed “fully

explain” the dependent variable. Of course, in reality such an assumption will – at best –

only be approximately satisfied. The art of the game is to find a combination of explanatory

variables which “best” explain the resulting variable. The choice of the variables σ2
B , V, C as

in Corollary 2 automatically implies that the “Leverage Neutrality Assumption” is satisfied

as shown in Table 2. Indeed, the variables σ2
B , V, C as well as N have a zero entry for the

Modigliani-Miller dimension M. Therefore, any function relating these variables is automat-

ically leverage neutral. This is in contrast to the choice of variables σ2, P, V in Proposition

1 as Table 1 reveals that P and σ2 have a non-trivial dependence on M. It follows that

formula (2) does not satisfy the invariance relation dictated by the “Leverage Neutrality

Assumption”.

Finally, we examine the implications of substituting the cost per trade C by its more

common counterpart, the bid-ask spread S, introduced above. In fact, in the present context

it is equivalent to use either C or S as explanatory variables for the number of trades N -

provided that the traded volume V is already one of the explanatory variables. Indeed, we

have the relation C = SQ = SV/N since the average trade size Q in the interval [t, t+ T ] is

given by the traded volume V divided by the number of trades N . Hence, if we know the

functional relation between N and V , we also know the functional relation between N and

Q and can therefore pass from S to C = SQ and vice versa. Thus, we may restate Theorem

1 (and, equivalently, Corollary 2) in terms of the bid-ask spread S rather than the cost per

trade C in the following corollary.

Corollary 3. Suppose that the number of trades N depends only on the three quantities

σ2
B, V and S, i.e.,

N = g(σ2
B , V, S), (15)

where the function g : R3
+ → R+ dimensionally invariant and leverage neutral. Then, there

9



is a constant c > 0 such that the number of trades N obeys the relation

N = c2 ·
(σB
S

)2
. (16)

We observe that the variables σ2
B , V and S again have no Modigliani-Miller dimension M,

i.e., they are invariant under changes of the leverage. Therefore, formula (16) satisfies the

invariance principle given by the “Leverage Neutrality Assumption”. We note again that

given the relations C = SQ = SV/N as well as σ2
B = σ2P 2 the two equations (6) and (16)

are indeed equivalent.

Relation (16) is precisely the one proposed by Wyart et al. [30]. By rearranging the terms,

we find that

S2 = c2 · σ
2
B

N
. (17)

The interpretation is that the squared Bachelier volatility per trade is proportional to the

square of the spread. If we elaborate further on (17), we find that

S

P
= c · σ√

N
. (18)

Without loss of generality, we can determine the price P on the left hand side of (18) as

midquote price, i.e., the average of the best ask- and bid price. Then, S/P refers to the

so called proportional bid-ask spread which can be used to approximate a dealer’s “round

trip” transaction costs. Clearly, the approximate round-trip costs increase in the volatility

of a relative price change and decrease in the trading activity.

Summing up this section, we have seen that the relation N ∼ σ2 proposed by Jones et

al. [16] follows from the restrictive assumption that the number of trades N only depends

on the quantities σ2, P and V as well as dimensional arguments (see Proposition 1). Going

beyond the latter relation, it seems reasonable to include information concerning the bid-ask

spread in our analysis. Depending on whether we choose the trading cost C or the bid-ask

spread S directly, we are led to either the 3/2-law N3/2 ∼ σPV/C proposed by Benzaquen

et al. [6] (see Theorem 1) or to the relation S ∼ σB/
√
N proposed by Wyart et al. [30] (see

Corollary 3). When proving the two latter relations we have seen that the assumption of

leverage neutrality comes into play. Alternatively, we can also consider the product σ2P 2,

rather than σ2 and P separately. This consideration of the “Bachelier volatility” σB = σP

reduces the complexity of the problem inasmuch as the assumption of leverage neutrality is

not needed anymore. Again, the actual validity of any of the above scaling laws should be

confirmed by exhaustive empirical analyses.

3. Empirical evidence

3.1. Degrees of universality and related literature

We now turn to the empirical analysis of relation (2) as well as of the 3/2-law (6). When col-

lecting data for the relevant quantities N , σ2, V , P and C, one has to specify the considered

asset and the considered time period as well as the length T of the time interval over which

the data is aggregated. We cannot expect that the constant c appearing in relations (2)
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resp. (6) is the same for each considered interval and each possible interval length and each

considered asset in either one of the relations. We can only hope that a given relation holds

on average. Based on the nomenclature introduced in Benzaquen et al. [6], we therefore

distinguish the following three degrees of universality attached to the validity of relations

(2) and (6):

1. No universality: The relation holds on average for a fixed asset and a fixed interval

length. However, the constant c varies significantly for different assets and different

interval lengths.

2. Weak universality: The relation holds on average for some assets and some interval

lengths with similar values from the constant c.

3. Strong universality: The relation holds on average for all assets and all interval lengths

with similar values from the constant c.

Note that this distinction does not allow for the possibility that the validity attached to a

given relation changes over time, simply because we consider only one specific time period.

Let us shortly discuss the relevant empirical evidence which can be found in the literature

before turning to our own empirical analysis. Andersen et al. [3] conducted an important

empirical study in the present context. They test the relation

I =
σPV

N3/2
, (19)

where I is independently and identically distributed across assets and time for E-mini S&P

500 futures contract. Neglecting the price P , they show that relation N3/2 ∼ V σ holds when

averaging within and across trading days for this particular asset. In fact, their data fits the

latter relation nearly perfectly compared to the relations V ∼ σ2 resp. N ∼ σ2 proposed

by Tauchen and Pitts [29] resp. Jones et al. [16]. Benzaquen et al. [6] address the same

question by examining eleven additional futures contracts as well as 300 US stocks. Aiming

to confirm that β = 3/2 in the relation Nβ ∼ σPV , they estimate β for each considered

stock individually. They find that β̂ = 1.54 ± 0.11, where the uncertainty here is the root

mean square cross-sectional dispersion. Thus, these authors note that this provides evidence

that the relation N3/2 ∼ σPV holds also on the stock market and not only on the very liquid

futures market. Moreover, they show that the distribution of I in (19) depends significantly

on the studied asset and thus, conclude that relation (19) holds only with weak universality.

As an additional contribution, the authors reveal that the inclusion of the trading cost C is

beneficial in the sense that their proposed invariant I = σPV C−1N−3/2 is almost constant

for different assets.

Finally, let us mention the evidence in the earlier work by Wyart et al. [30]. These authors

show that relation (17) describes the data very well when the right level of aggregation is

chosen. When examining the France Telecom stock, S and σB/
√
N are averaged over two

trading days, while in case of NYSE stocks these quantities are averaged over an entire year.

The constant c in relation (17) is found to lie between 1.2 and 1.6. Moreover, the authors

note that the typical intraday pattern of the considered quantities is in line with (17): The

U-shaped pattern of the volatility σB is explained by the decline of the bid-ask spread S

and an increase of the number of trades N within the trading day.
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3.2. Description of data

Our empirical analysis is based on limit order book data provided by the LOBSTER database

(https://lobsterdata.com). The considered sampling period begins on January 2, 2015

and ends on August 31, 2015, leaving 167 trading days. Among all NASDAQ stocks, d = 128

sufficiently liquid stocks with high market capitalizations are chosen. Stocks are considered

to be “sufficiently liquid” as long as the aggregated variables (defined below) can be reason-

ably treated as continuously distributed, i.e., the empirical distributions of the aggregated

variables do not have points with obviously concentrated mass. Observations made during

the thirty minutes after the opening of the exchange as well as trading halts are removed.

Let us fix an interval length T ∈ {30, 60, 120, 180, 360} min for which a developed hypoth-

esis is tested. For the sake of illustration, set the length of the considered time interval T

to 60min. This interval length balances the tradeoff between sufficient aggregation of the

data on the one hand and some intraday variability on the other hand. As a result, we

are left with n = 1002 non-overlapping time intervals with equal length T = 60min. Let

us concentrate on a specific asset i ∈ {1, . . . , d} (omitting the index i for ease of notation

in the remainder of Section 3.2) and let j ∈ {1, . . . , n} refer to an arbitrary interval. Sup-

pose the trades in the considered interval j arrive at irregularly spaced transaction times

t1, t2, . . . , tNj
. Then,

Nj denotes the number of trades in the interval j,

Qj = N−1j
∑Nj

k=1Qtk denotes the average size of the trades in the interval j, where Qtk
denotes the number of shares traded at time tk,

Vj = Nj ×Qj is the traded volume in the interval j,

Pj = N−1j
∑Nj

k=1 Ptk denotes the average midquote price in the interval j, where Ptk =

(Atk + Btk)/2 and Atk (resp. Btk) denotes the best ask (resp. bid) price after the

transaction at time tk,

σ̂2
j denotes the estimated squared volatility in the interval j,

Sj = N−1j
∑Nj

k=1 Stk denotes the average bid-ask spread in the interval j, where Stk =

Atk −Btk is the bid-ask spread after the transaction at time tk, and

Cj = Qj × Sj is the cost per trade in the interval j.

Note the following four details: Firstly, even though transaction times are recorded on

a nano-second level, a time-stamp tk is recorded L-times (tk1 , . . . , tkL) in the raw dataset

when a market order is executed against L limit orders at time tk. Such a multiple entry

of the same time-stamp enters the number of trades Nj only once (not L-times). The size

Qtk of the trade at time tk is determined by summing the L-records in the dataset Qtk`
,

` = 1, . . . , L, i.e., Qtk =
∑L
`=1Qtk`

. The midquote price Ptk and the bid-ask spread Stk
related to the merged market order of size Qtk are computed as volume-weighted averages

Ptk = Q−1tk

L∑
`=1

Qtk`
Ptk`

and Stk = Q−1tk

L∑
`=1

Qtk`
Stk`

.
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Secondly, the aggregated variables, i.e., the average market order size Qj , the average

midquote price Pj and the average bid-ask spread Sj of interval j, are in fact not computed

by the sample averages as state above. Since simple sample averages are sensitive with

respect to outliers, e.g. huge market orders, Qj , Pj and Sj are based on robust averages.

In detail, we compute trimmed means of Qt1 , . . . , QtNj
, Pt1 , . . . , PtNj

and St1 , . . . , StNj
to

obtain Qj , Pj and Sj respectively. These trimmed means discard the upper 0.5% and

the lower 0.5% of the corresponding ordered data and compute the average based on the

remaining 99% of the data.

Thirdly, the estimated squared volatility σ2
j is computed as realized variance in interval j

σ̂2
j =

Nj∑
k=2

(
log(Ptk)− log(Ptk−1

)
)2
. (20)

The properties of the estimator σ̂2
j are well understood for a variety of models for the

efficient price process (Pt)t≥0. For example, if the dynamics of the efficient price process

follows the stochastic model dPt = σPtdWt, with σ > 0, the estimator σ̂2
j converges weakly

in probability to σ2T (the quadratic variation of the increments of (log(Pt))t≥0) as the

number of transactions within interval j becomes dense (as Nj → ∞). The limit of σ̂2
j ,

however, does not coincide with the quadratic variation of the efficient price process, if

the observed midquote price is contaminated by market microstructure noise. This noise,

for instance, arises from market imperfections such as price discreteness or informational

content in price changes, see [7]. To check the robustness of our analysis with respect to

the presence of market microstructure noise, several results below can likewise be confirmed

by replacing the realized variance by the noise-robust estimator of the quadratic variation

proposed in [15]. It should be noticed that a distortion of the analysis by the bid-ask

bounce is already avoided by considering midquote prices rather than transaction prices.

The interested reader will find a gentle introduction explaining how noisy price observations

erode the realized variance in [1].

Last but not least, note that Benzaquen et al. [6] in fact define the cost per trade by C̃j =

N−1j
∑Nj

k=1QtkStk . This slight difference in the definitions becomes obviously negligible, if

the bid-ask spread Stk is constant over the entire interval j. The results presented below

are robust with respect to the employed version of the cost per trade as we shall see.

3.3. N ∼ σ2 versus N3/2 ∼ σPV/C

To check which of the relations N ∼ σ2 and N3/2 ∼ σPV/C is superiorly supported by

data, we consider for each stock (i = 1, . . . , d) a multiplicative model of the form

Nij = exp(αi)(σ̂
2
ij)

βi

(
PijVij
Cij

)γi
exp(εij) with j = 1, . . . , n, (21)

where εij , j = 1, . . . , n, is an error term that satisfies standard regularity conditions and αi,

βi and γi are unknown real valued parameters. A logarithmic transformation of (21) yields

the linear model

log(Nij) = αi + βi log
(
σ̂2
ij

)
+ γi log

(
PijVij
Cij

)
+ εij . (22)

Since dimensional analysis imposes the restriction βi + γi = 1 on the parameters βi and γi,

the value γi = 0 would imply the relation N ∼ σ2, whereas γi = 2/3 would imply the relation

13
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Figure 1: The logarithmic dependent variable log(N) is plotted versus the logarithmic ex-

planatory variable log(σ̂PV/C) for the fixed interval length T = 60min and the two

stocks AAL and AAPL. The lines indicate the estimated linear relations between

the considered quantities.

N3/2 ∼ σPV/C from Theorem 1. The estimation of the coefficients βi and γi subject to

the restriction βi + γi = 1 therefore allows to infer which of the two discussed relations is

backed by stronger empirical evidence.

Before turning to the constrained estimation of the parameters βi and γi, it deserves to be

emphasized that the functional relation between the logarithmic dependent variable log(Nj)

and the logarithmic explanatory variable log(σ̂ijPijVij/Cij) can be reasonably assumed to

be linear for all stocks i = 1, . . . , d. To conclude this, we have visually inspected the bivariate

point-clouds of dependent and explanatory variable. Figure 1 illustrates this relation for the

stocks of the American Airline Group, Inc. (AAL) and Apple Inc. (AAPL). The remaining

126 stocks show similar patterns.

For each stock (i = 1, . . . , d) and all interval lengths T ∈ {30, 60, 120, 180, 360} min, we

estimate the parameters βi and γi in (22) by ordinary least squares subject to the constraint

βi+γi = 1. The corresponding estimate of interest is denoted by γ̂i. To present the results of

these regressions in an informative and compact way, Figure 2 shows kernel density estimates

of γ̂i across i and for fixed T .

First, let us come to the main result of this section and concentrate on the solid graphs in

Figure 2 referring to the standard setting based on the realized variance σ̂2
ij defined in (20)

and the cost per trade Cij = Qij ×Sij . If the parameter γi of the linear model (22) is equal

to zero, then the underlying variables satisfy the simple relation N ∼ σ2. Similarly, if the

parameter γi is equal to 2/3, then we can conclude that the 3/2-law from Theorem 1 holds.

As seen in Figure 2, the averages of the estimates γ̂i (across i for different T ) are clearly

much closer to 2/3 than to zero for all considered interval lengths T . This result supports

the claim made in Section 2 that there is stronger empirical support for the 3/2-law (or

equivalently for the relation N ∼ (σP/S)2) than for the relation N ∼ σ2.

Regarding the robustness of this insight, we have re-conducted the above regression analy-

sis for two slightly different scenarios. One alternative setting considers replacing the realized

14
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Figure 2: The panels show kernel density estimates across the estimated parameters γ̂i for

different interval lengths T ∈ {30, 60, 120, 180, 360} min.

variance in the linear model (22) by the market microstructure noise robust estimator of the

quadratic variation of [15]. The dashed graphs in Figure 2 are related to density estimates

relying on corresponding parameter estimates γ̂i, i = 1, . . . , d. The second modification of

the initial setting replaces the cost per trade Cj in the linear model (22) by the variant C̃j
of [6]. The dotted graphs in Figure 2 refer to corresponding density estimates. Despite some

deviation in the estimates γ̂i for these two alternative settings from the initial one, the solid,

dashed and dotted graphs document a rather similar pattern among the estimates of the

parameters γi for all interval lengths T ∈ {30, 60, 120, 180, 360} min. These similarities lead

to the conclusion that neither market microstructure noise nor the exact definition of the

cost per trade erode the overall relation between the dependent and explanatory variables.

In the remaining part of the manuscript, we take a closer look on the 3/2-law and try to

find reasonable explanations for the systematic deviations of the estimates γ̂i from 2/3.

3.4. On the universality of the 3/2-law

In order to check the validity and universality of the 3/2-law, N3/2 = c · σPV/C (or equiv-

alently of the relation N = c2 · (σP/S)2), we examine the variation of the constant c across

assets and interval lengths. Hence, we do not rely on the estimators γ̂i computed in Section

3.3. Instead, we compute for a fixed interval length T the quantity

ĉi = n−1
n∑
j=1

CijN
3/2
ij

σ̂ijPijVij
= n−1

n∑
j=1

N
1/2
ij

σ̂ij

Sij
Pij

, for i = 1, . . . , d,

15
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ĉi

D
en

si
ty

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●● ● ●● ●● ●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 3: The left panel shows the computed values for ĉi in dependence of T ∈
{30, 60, 120, 180, 360} min. The right panel shows a kernel density estimate across

the estimates ĉi for fixed T = 120min.

where n is the number of non-overlapping time intervals with equal length T . The left panel

of Figure 3 shows the estimates ĉi for different values of T . Note that the rainbow-color-code

refers to the ordered values of ĉi for T = 120min. As we recover the same rainbow-pattern

also for the other interval lengths T ∈ {30, 60, 180, 360} min, we can conclude that there is

little variation of the estimates ĉi for a fixed stock i across different interval lengths T . This

small variation of ĉi for fixed i and varying T ∈ {30, 60, 120, 180, 360} min endows the 3/2-

law with a certain degree of universality. However, the present cross-sectional dispersion in ĉi
across different assets i, i.e., the fact that depending on the considered stock the estimates

ĉi range from two to five, does not allow awarding the 3/2-law with strong universality.

Thus, we draw the same conclusion as Benzaquen et al. [6] that the 3/2-law holds with weak

universality. For completeness, the kernel density estimate in the right panel of Figure 3

illustrates the distribution of the estimates ĉi, i = 1, . . . , d for T = 120min.

4. A closer look on volatility

We have seen that the volatility σ plays a dominant role in explaining the trading activity

N . The squared volatility σ2 of a given stock during a fixed interval [t, t + T ] was defined

as the variance of the change of the log-price

σ2 := Var (log(Pt+T )− log(Pt)) . (23)

When specifying the definition of σ2 in this way we had in mind the Black-Scholes model,

dPt = Pt (σdWt + µdt) , (24)

where, fixing the normalization T = 1, formula (23) indeed recovers the constant σ in (24).

Going beyond Black-Scholes, consider a price process of the form

Pt = P0 exp

(∫ t

0

σudWu

)
(25)
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where (σt)t≥0 is an arbitrary stochastic process (satisfying suitable regularity conditions). In

this case, formula (23) should, of course, be interpreted conditionally on the sigma-algebra

Ft and we obtain the “Wald identity”

Var (log(Pt+T )− log(Pt)|Ft) = E

(∫ t+T

t

σ2
udu|Ft

)
. (26)

This implies in particular that, as long as we are in the framework of processes of the form

(25), the above chosen scaling

[σ2] = T−1,

is the only reasonable choice.

But let us have a closer look at what we are actually doing here. The above reasoning

tacitly assumes that we are starting from a stochastic model of a price process. The present

situation, however, dictates a different point of view: we start from empirical tick data

observed during the interval [t, t+ T ]. Even when we make the heroic assumption that this

data is accurately modeled, e.g. by the Black Scholes model (24), the number σ2 which we

plug into the formula N = g(σ2, . . . ) can only be an estimator of σ2 obtained from the data

at hand. This implies that, strictly speaking, we should write our formulas as N = g(σ̂2, . . . )

in dependence of the estimated squared volatility σ̂2. The gist of the argument is that for

the purpose of dimensional analysis the scaling which is relevant is that of the estimator

of the volatility rather than that of the true volatility (whatever this is). To be concrete,

suppose that we are given price data (Ptk)k=1,...,N for a grid t ≤ t1 < · · · < tN ≤ t + T in

the interval [t, t+ T ]. An obvious choice for the estimator of the squared volatility, which is

also used in Section 3 above, is

σ̂2 :=

N∑
k=2

(
log(Ptk)− log(Ptk−1

)
)2
. (27)

Clearly, this estimator has the dimension [σ̂2] = T−1 if we suppose that the typical distance

∆tk = tk+1 − tk (in absolute terms) does not depend on whether we measure time in

seconds or in minutes. Hence, for the estimator σ̂2, the hypothesis [σ̂2] = T−1 underlying

the dimensional analysis in Section 2 is satisfied.

However, we can also think of other estimators. Fix H ∈ (0, 1) and define the estimator

σ̂2(H) by

σ̂2(H) :=

(
N∑
k=2

| log(Ptk)− log(Ptk−1
)|1/H

)2H

. (28)

To motivate this estimator, consider the model

Pt = P0 exp(σWH
t ), t ≥ 0, (29)

where σ > 0 is a fixed number and (WH
t )t≥0 is a fractional Brownian motion with Hurst

parameter H, starting at WH
0 = 0. In this case, the estimator σ̂2(H) in (28) is a consistent

estimator for the parameter σ2 in (29). But the estimator σ̂2(H) now scales differently in

time than the quadratic estimator σ̂2 (see [10, 26]), namely

[σ̂2(H)] = T−2H . (30)
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Models for the price process (Pt)t≥0 involving fractional Brownian motion as in (29) have

been proposed, notably by B. Mandelbrot, already more than 50 years ago [21, 22] and there

may be good reasons not to rule them out a priori.

Here is another example where a sub-diffusive behavior of the price process (Pt)t≥0 occurs,

due to a micro-structural effect: the discrete nature of the prices in the real world (compare

Benzaquen et al. [6]; we thank Jean-Philippe Bouchaud for bringing this phenomenon to our

attention). To present the idea in its simplest possible form, suppose that the price process

(P̌t)t≥0 is given by

log(P̌t) = int(Wt),

where (Wt)t≥0 is a standard Brownian motion and int(x) denotes the integer closest to the

real number x, i.e., int(x) = sup{n ∈ Z : n ≤ x + 0.5}. Fix again an interval [t, t + T ] and

consider the quantity

σ̌2 = (σ̌2)t+Tt = Var
(
log(P̌t+T )− log(P̌t)

)
.

For small T > 0, we show in Appendix C that

(σ̌2)t+Tt ≈ c
√
T ,

for some constant c > 0. Hence, if the interval length T is sufficiently small, we recover that

[σ̌2] = T−1/2, rather than the usual scaling in the dimension time, i.e., T−1.

This observation indicates, that if the interval length T is small compared to the width

of the price grid, i.e., the tick value, we observe a sub-diffusive behavior of the price process

even if the “efficient”, unobserved price process is assumed to be a diffusion. We refer to

Robert and Rosenbaum [27] for a detailed discussion of how to account for the discrete

nature of prices. For now, this rough argument should only serve as motivation that there

might be plenty of reasons why the scaling [σ2] = T−1 is, in practical situations, not as

clearly granted as it might seem at first glance.

For all these reasons we drop in this section the convenient dimensional assumption [σ2] =

T−1 and replace it by the subsequent more general assumption.

H-Assumption. There is H ∈ (0, 1) such that the squared volatility estimator σ̂2(H) has

dimension

[σ̂2(H)] = T−2H .

Proposition 2 ((1 +H)-law). Suppose that the “Leverage Neutrality Assumption” as well

as the “H-Assumption” hold true and that the number of trades N depends only on the four

quantities σ̂2(H), P, V and C, i.e.,

N = g(σ̂2(H), P, V, C),

where the function g : R4
+ → R+ is dimensionally invariant and leverage neutral. Then,

there is a constant c > 0 such that the number of trades N obeys the relation

N1+H = c · σ̂(H)PV

C
. (31)

The proof is analogous to the proof of Theorem 1 and is given in Appendix B.

The hypothesis of the above proposition assumes that H ∈ (0, 1) is known a priori. As H

is typically unknown in practical applications, we can therefore ask the following question:

For which H does relation (31) fit the empirical data best? We address this question in the

following subsection.
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Figure 4: The left panel illustrates the Gini-coefficient in dependence of H for T =

30min (solid), T = 60min (long-dashed), T = 120min (dashed), T = 180min

(dashed-dotted) and T = 360min (dotted). The right panel shows the com-

puted values for ĉi(Ĥ) such that Ĥ minimizes the Gini-coefficient for fixed

T ∈ {30, 60, 120, 180, 360} min.

4.1. Empirical evidence under the H-Assumption

According to arguments from dimensional analysis, the constant c and the parameter H

from Equation (31) should at best be identical for all stocks and all interval lengths T . The

empirical results above, however, have revealed cross-sectional dispersion which might be

related to the restrictive assumption [σ̂2] = T−1. This restriction motivates the empirical

exercise of this section: Can we determine an H ∈ (0, 1) in (31) that minimizes the cross-

sectional dispersion across the estimates of c?

Following Proposition 2, we therefore compute the estimates ĉi(H) for different H as

ĉi(H) = n−1
n∑
j=1

N1+H
ij Cij

σ̂ij(H)PijVij
= n−1

n∑
j=1

NH
ij

σ̂ij(H)

Sij
Pij

, for i = 1, . . . , d,

where σ̂2
ij(H) is defined in (28), H ∈ (0, 1). Both variables NH

ij and σ̂ij(H) increase as H

increases, so that it is not obvious how ĉi(H) behaves when H increases. We find empirically

that overall the constant ĉi(H) typically increases in H. Addressing the above question

therefore requires a scale invariant measure for the variation in ĉi(H) such as the Gini-

coefficient which is given by

G(x1, . . . , xn) =
2
∑n
i=1 ix[i]

(n− 1)
∑n
i=1 x[i]

− n+ 1

n− 1
,

for the ordered data x[1] < x[2] < . . . < x[n]. Note that the Gini-coefficient G(x1, . . . , xn) ∈
[0, 1] is interpreted as a measure for inequality. If all values x1, . . . , xn are equal, G equals

zero. In case of strong heterogeneity in x1, . . . , xn the Gini-coefficient approaches one.3

3The coefficient of variation defined as the ratio of the standard deviation to the sample average could be
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Now, we minimize the Gini-coefficient of (ĉi(H))i=1,...,d with respect to H in order to find

Ĥ = arg min
H∈(0,1)

G(ĉ1(H), . . . , ĉn(H)).

The left panel of Figure 4 plots the Gini-coefficient in dependence of H for different interval

length T . We roughly find that Ĥ = 0.22 for T = 30min, Ĥ = 0.23 for T = 60min, Ĥ = 0.25

for T = 120min, Ĥ = 0.27 for T = 180min and Ĥ = 0.31 for T = 360min. The rainbow-

color-code of Figure 3 has been transferred to the right panel of Figure 4. In contrast to

Figure 3 yet, we present the quantities ĉi(Ĥ) in dependence of the optimal Ĥ for the given

interval length T . In case T = 120min for instance, the estimates ĉi(H = 0.25) range from 1.2

to 2.6 for different assets i. On an absolute scale, the variation seems to be smaller compared

to Figure 3, where the estimates ĉi(H = 0.5) lie between 2 and 4.5 for the same interval length

T = 120min. In relative terms though, the difference between the variation in ĉi(H = 0.25)

and ĉi(H = 0.5) is not so significant, as G (ĉ1(H = 0.25), . . . , ĉn(H = 0.25)) = 0.11 compared

to G (ĉ1(H = 0.5), . . . , ĉn(H = 0.5)) = 0.14 for T = 120min.

For now, we can only speculate on reasons why the optimal Ĥ is strikingly smaller than

1/2 for all interval lengths T . The quantity ĉi(H) relies on tick-by-tick data, so that an

obvious explanation for these unexpected optimal values of H are market microstructure

effects. To be more concrete, Benzaquen et al. [6] observe similar to our results a sub-

diffusive behavior for so called large tick future contracts. Large tick assets are defined such

that their bid-ask spread is almost always equal to one tick, see e.g. [13]. Most of the stocks

in our sample can be categorized as large tick stocks based on this definition.

When referring to market microstructure effects, however, it deserves to be stressed that

the value H = 1/2 is implied by numerous models for the efficient price process (Pt)t≥0,

which are backed by empirical evidence and take market microstructure effects into account.

Hence, the scaling of the squared volatility through time implied by H = 1/2 seems suitable

in many applications. We also note that the Gini-coefficient G in Figure 4 does not vary

drastically when H ranges between the optimal Ĥ ≈ 0.25 and the traditional H = 1/2,

namely roughly between G = 0.12 and G = 0.15. Hence, the value of H does not seem to play

a very significant role in explaining the heterogeneity of the value of ĉij(H). Nevertheless, a

better understanding of the behavior of Ĥ seems to us a challenging topic for future research.

5. Conclusion

Finding laws relating the trading activity (defined here as the number of trades N within a

given time interval) to other relevant market quantities has been the subject of numerous

investigations. The earliest contribution dating as far back as the beginning of the 1970s.

Two decades later, Jones et al. [16] suggested the relation N ∼ σ2 based on an extensive

empirical study. Other landmark contributions include the relation N ∼ (σP/S)2 of Wyart

et al. [30] and the so called 3/2-law N3/2 ∼ σPV/C of Benzaquen et al. [6], respectively

obtained using market microstructure arguments, which were supported by empirical evi-

dence. In the first part of the paper we show that all these scaling laws can be obtained

using arguments relying on dimensional analysis. The relation N ∼ σ2 follows from the

assumption that N is fully explained by the squared volatility σ2, the asset price P and the

employed as an alternative to the Gini-coefficient. The presented results are widely robust with respect

to the chosen measure of standardized dispersion.
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traded volume V , and the assumption that the relation between these quantities is invariant

under changes of the dimensions shares S, time T and money S. The somewhat refined

relation N3/2 ∼ σPV/C is obtained when assuming that N depends only on σ2, P, V and

the cost of trading C, and assuming in addition, that an invariance principle known as

“Leverage Neutrality” holds true. This “Leverage Neutrality Assumption” can be seen as a

no-arbitrage condition enabling us to obtain a unique functional relation from the assump-

tion N = g(σ2, P, V, C). Substituting the quantity C by the bid-ask spread S in the latter

assumption, we derive the relation N ∼ (σP/S)2, which is shown to be equivalent to the

3/2-law. Alternatively, we can consider the volatility of the relative price change instead of

the absolute price change, i.e., assume N = g(σ2P 2, V, C) resp. N = g(σ2P 2, V, S). This

assumption simplifies the analysis in that a unique solution for g(·, ·, ·) can be obtained

without recourse to the “Leverage Neutrality Assumption”. Since our theoretical analysis

relies on a set of well-defined, but not necessarily realistic assumptions, the validity of any

of the aforementioned scaling laws needs to be confirmed through an empirical analysis.

Based on data from the NASDAQ stock exchange, we provide empirical evidence that the

3/2-law N3/2 = c·σPV/C (or equivalently N = c2 ·(σP/S)2) fits the data clearly better than

N ∼ σ2. In fact, the 3/2-law holds for a fixed asset and a fixed interval length. However, the

estimated value of the constant c strongly depends on the considered asset. In the language

of Benzaquen et al. [6], this means that the 3/2-law holds with weak universality.

Finally, we note that both our theoretical and empirical analysis relied on the assumption

that the scaling of σ2 is inversely proportional to time T. This hypothesis is clearly debatable

as it tacitly assumes diffusive price behaviors, and ignores e.g. the discrete nature of prices.

A closer look at the scaling of σ2 suggests the scaling [σ2] = T−2H for some H ∈ (0, 1) that

can be seen e.g. as the Hurst parameter of a fractional Brownian motion. Repeating our

dimensional arguments, the latter scaling of σ2 yields the relation N1+H ∼ σ2PV/C. An

essential drawback of this more general situation is that the parameter H is unknown. We

formulate an optimality criterion for the choice of H. It should yield the most homogeneous

estimates for the proportionality coefficients ĉi(H). A preliminary analysis implies that,

on average, the optimal Ĥ is of the order 0.25, i.e., quite different from the assumption

H = 0.5. Although the overall effect of this passage from H = 0.5 to Ĥ ≈ 0.25 turns out to

have only mild effects on the issue of universality of the corresponding laws, we believe that

this phenomenon merits further investigation.

A. Dimensional analysis and the Pi-Theorem

In order to formally prove the results of Sections 2 and 4, which in done in Appendix B,

we need the Pi-Theorem from dimensional analysis. For completeness, we therefore provide

the following reminder of this important theorem from dimensional analysis, which can also

be found in [25]. Additionally, the interested reader is referred to Chapter 1 of the book by

Bluman and Kumei [8] as well as to Pobedrya and Georgievskii [24] for a historical perspec-

tive and to [11] for a purely mathematical treatment of dimensional analysis. We formalize

the assumptions behind dimensional analysis in proper generality. However, for the purpose

of the present paper we shall only need the degree of generality covered by Corollaries 5 and

6 below.

Assumption 1 (Dimensional analysis).
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(i) Let the quantity of interest U ∈ R+ depend on n quantities W1, . . . ,Wn ∈ R+, i.e.,

U = h(W1,W2, . . . ,Wn), (32)

for some function h : Rn+ → R+.

(ii) The quantities U,W1, . . . ,Wn are measured in terms of m fundamental dimensions

labelled L1, . . . , Lm, where m ≤ n. For any positive quantity X, its dimension [X]

satisfies [X] = Lx1
1 · · ·Lxm

m for some x1, . . . , xm ∈ R. If [X] = 1, the quantity X is

called dimensionless.

The dimensions of the quantities U,W1,W2, . . . ,Wn are known and given in the form

of vectors a and b(i) ∈ Rm, i = 1, . . . , n, satisfying [U ] = La11 · · ·Lamm and [Wi] =

Lb1i1 · · ·Lbmi
m , i = 1, . . . , n. Denote by B = (b(1), b(2), . . . , b(n)) the m × n matrix with

column vectors b(i) = (b1i, . . . , bmi)
>, i = 1, . . . , n.

(iii) For the given set of fundamental dimensions L1, . . . , Lm, a system of units is chosen

in order to measure the value of a quantity. A change from one system of units to

another amounts to rescaling all considered quantities. In particular, dimensionless

quantities remain unchanged and formula (32) is invariant under arbitrary scaling of

the fundamental dimensions.

We can now state the main result from dimensional analysis (see [8]).

Theorem 4 (Pi-Theorem). Under Assumption 1, let x(i) := (x1i, . . . , xni)
>, i = 1, . . . , k :=

n − rank(B) be a basis of the solutions to the homogeneous system Bx = 0 and y :=

(y1, . . . , yn)> a solution to the inhomogeneous system By = a respectively. Then, there

is a function f : Rk+ → R+ such that

U ·W−y11 · · ·W−ynn = f(π1, . . . , πk),

where πi := W x1i
1 · · ·W xni

n are dimensionless quantities, for i = 1, . . . , k.

We shall only need the special cases k = 0 and k = 1, which are spelled out in the two

subsequent corollaries.

Corollary 5. Under Assumption 1, suppose that rank(B) = n and let y := (y1, . . . , yn)> be

the unique solution to the linear system By = a. Then there is a constant const > 0 such

that

U = const ·W y1
1 · · ·W yn

n .

Corollary 6. Under Assumption 1, suppose that rank(B) = n−1 and let x := (x1, . . . , xn)>

and y := (y1, . . . , yn)> be non-trivial solutions to the homogeneous and inhomogeneous sys-

tems Bx = 0 and By = a respectively. Then there is a function f : R+ → R+ such that

U = f(W x1
1 · · ·W xn

n )W y1
1 · · ·W yn

n .

B. Proofs of Sections 2 and 4

In this section, we provide formal arguments for the results presented in Sections 2 and 4.

The proofs are based on the above particular cases of the Pi-Theorem.
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Proof of Proposition 1. Combining relation (1) and the dimensions of the quantities σ2, P, V

and N , we obtain that the matrix B as well as the vector a are given by

B =

 0 −1 1

0 1 0

−1 0 −1

 and a =

 0

0

−1

 .

Table 1 illustrates how B and a relate to the considered quantities and their dimensions. As

the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields

N = c · σ2y1P y2V y3 ,

for some constant c > 0, where y = (y1, y2, y3)> is the unique solution of the linear system

By = a which is given by y = (1, 0, 0)
>

.

Proof of Relation (4). Combining relation (3) and the dimensions of the quantities σ2, P, V

and C as well as N , the matrix B as well as the vector a become

B =

 0 −1 1 0

0 1 0 1

−1 0 −1 0

 and a =

 0

0

−1

 .

The vector x = (−1, 1, 1,−1)> is a solution of the homogeneous system Bx = 0, and the

vector y = (1, 0, 0, 0)> is a solution of the inhomogeneous system By = a. Thus, relation

(4) follows from Corollary 6.

Proof of Theorem 1. Combining the dimensions of the quantities considered in relation (5)

and the “Leverage Neutrality Assumption”, we obtain that the matrix B as well as the

vector a are given by

B =


0 −1 1 0

0 1 0 1

−1 0 −1 0

2 −1 0 0

 and a =


0

0

−1

0

 .

As the matrix B has full rank, i.e., rank(B) = 4, applying Corollary 5 yields

Nt = c · σ2y1
t P y2t V y3t Cy4t ,

for some constant c > 0, where y = (y1, y2, y3, y4)> is the unique solution of the linear

system By = a which is given by y = (1/3, 2/3, 2/3,−2/3)
>

.

Proof of Corollary 2. Considering the dimensions of the quantities σB , V, C, we obtain that

the matrix B as well as the vector a are given by

B =

 −2 1 0

2 0 1

−1 −1 0

 and a =

 0

0

−1

 .

As the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields

N = c · V y1σy2B C
2y3 ,

for some constant c > 0, where y = (y1, y2, y3)> is the unique solution of the linear system

By = a which is given by y = (1/3, 2/3,−2/3)
>

. This shows (14).
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Proof of Corollary 3. As explained before the statement of Corollary 3, the conditions (5)

and (15) are equivalent. Thus, it holds

N3/2 = c · σBV
C

.

Since C = SV/N , the corollary follows.

Proof of Proposition 2. The proof is the same as that of Theorem 1 except that in the

present case the matrices B and a are given by

B =


0 −1 1 0

0 1 0 1

−2H 0 −1 0

2 −1 0 0

 and a =


0

0

−1

0

 .

The unique solution y of the linear system By = a is y = 1/(1 + H) · (1/2, 1, 1,−1)>.

Applying Corollary (5) gives the desired result.

C. Integer part of Brownian motion

With the notation from Section 4, we want to show that as T ↘ 0

Var
(
log(P̌t+T )− log(P̌t)

)
≈ c
√
T ,

for some constant c > 0. Recall that
(
log(P̌t)

)
t≥0 is given by

log(P̌t) = int(Wt),

where (Wt)t≥0 is a standard Brownian motion and int(x) denotes the integer closest to the

real number x, i.e., int(x) = sup{n ∈ Z : n ≤ x+ 0.5}.

To present the idea in its simplest possible form, note that for fixed t > 0, say t = 1 and

T small, it is straightforward to verify that

(
log(P̌t+T )− log(P̌t)

)2
= (int(Wt+T )− int(Wt))

2
=


0 with probability of order 1,

1 with probability of order T 1/2,

>1 with probability smaller than T.

So that Var
(
log(P̌t+T )− log(P̌t)

)
is of order T 1/2, as T ↘ 0, rather than of the usual order

T . In the above sketchy argument we used the fact that, for every t > 0,

lim
h→0

1

h
P
(

min
n∈Z
|Wt − n| ≤ h

)
≥ c,

for some constant c > 0.

To furnish a more precise result, we make - contrary to our usual assumption W0 = 0 - the

assumption that the Brownian motion starts from a random variable W0 which is uniformly

distributed on [−1/2, 1/2]. Then, we can formulate the following more quantitative result

for fixed t = 0.
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Proposition 3. Assume that W0 is uniformly distributed on [−1/2,+1/2]. Then,

lim inf
T→0

√
π

2T
Var

(
log(P̌T )− log(P̌0)

)
= 0.

Proof. Note that

Var
(
log(P̌T )− log(P̌0)

)
= E

[(
log(P̌T )− log(P̌0)

)2]
,

where log(P̌0) is in fact zero as we assumed that W0 ∼ Uni(1/2, 1/2). In the following

(Bt)t≥0 denotes a standard Brownian motion starting at B0 = 0 such that WT = BT +W0.

Then,

E
((

log(P̌T )− log(P̌0)
)2)

=

∫ 0.5

−0.5
E
(

(int(BT + x))
2
)
dx

=

∫ 0.5

−0.5

∞∑
i=1

i2
(
P
(

2i− 1

2
− x ≤ BT ≤

2i+ 1

2
− x
)

+P
(
−2i+ 1

2
− x ≤ BT ≤ −

2i− 1

2
− x
))

dx

=

∫ 0.5

−0.5

∞∑
i=1

i2
(

Φ

(
i+ 0.5− x√

T

)
− Φ

(
i− 0.5− x√

T

)
+Φ

(
i+ 0.5 + x√

T

)
− Φ

(
i− 0.5 + x√

T

))
dx

=

∞∑
i=1

i2

(√
2T

π

(
exp

(
− (i+ 1)2

2T

)
+ exp

(
− (i− 1)2

2T

)
− 2 exp

(
− i2

2T

))
+ (2i+ 2)Φ

(
i+ 1√
T

)
+ (2i− 2)Φ

(
i− 1√
T

)
− 4iΦ

(
i√
T

))
=

√
2T

π

(
1 + 2

∞∑
i=1

exp

(
− i2

2T

))
− 4

∞∑
i=1

iΦ

(
− i√

T

)

We now use that fact for x → ∞, Φ(−x) ≈ φ(x)/x, where φ(x) = exp(−x2/2)/
√

2π is

the probability density function of the standard normal distribution (we thank Friedrich

Hubalek for pointing this out to us). It follows that for small T

iΦ

(
− i√

T

)
≈
√

T

2π
exp

(
− i2

2T

)
,

which concludes the proof.
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