Theoretical and empirical analysis of
trading activity”

Mathias Pohl"  Alexander Ristigt ~ Walter Schachermayer?
Ludovic Tangpi¥

March 21, 2018

Dedicated to Georg Pflug

Abstract. Understanding the structure of financial markets deals with suit-
ably determining the functional relation between financial variables. In this
respect, important variables are the trading activity, defined here as the number
of trades N, the traded volume V, the asset price P, the squared volatility o2,
the bid-ask spread S and the cost of trading C. Different reasonings result in
simple proportionality relations (“scaling laws”) between these variables. A ba-
sic proportionality is established between the trading activity and the squared
volatility, i.e., N ~ o2. More sophisticated relations are the so called 3/2-law
N3/2 ~ ¢PV/C and the intriguing scaling N ~ (¢P/S)?. We prove that these
“scaling laws” are the only possible relations for considered sets of variables by
means of a well-known argument from physics: dimensional analysis. Moreover,
we provide empirical evidence based on data from the NASDAQ stock exchange
showing that the sophisticated relations hold with a certain degree of universal-
ity. Finally, we discuss the time scaling of the volatility o, which turns out to be
more subtle than one might naively expect.

1. Introduction

Understanding the structure of financial markets is of obvious relevance for traders, investors
and regulators. Among others, the relation between trading activity and price variability
received a lot of attention in the financial literature over the last five decades. The pioneers
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of this field, e.g. Clark [9], Epps and Epps [14] and Tauchen and Pitts [29], defined trading
activity via trading volume and derived a proportionality relation between the trading vol-
ume and the price variability. The rationale behind this definition and the implied relation
is the widely-cited aphorism, “it takes volume to move prices”. We refer to Karpoff [17] for
a survey of these early works on the price-volume relation.

Due to minor empirical evidence for the hypotheses developed in these early approaches,
the volume-based definition of trading activity has been replaced by the number of trades.
This definition is caused by the substantial link between the observed price variability and the
number of trades (see Jones et al. [16], Ané and Geman [4] as well as Dufour and Engle [12]).
For example, Jones et al. [16] find no predictive power in the volume for the price variability
but that the number of trades scales proportionally to the squared volatility. This scaling
relation will be the starting point of our discussion. Building on the aforementioned ideas
numerous other studies followed, e.g. [2, 20]. In particular, let us point out the contribution
by Wyart et al. [30], who argue that the price volatility per trade, i.e., (price) x (volatility)
X (number of trades)*l/ 2. is proportional to the bid-ask-spread. This connection can be
seen as a somewhat refined version of the relation proposed by Jones et al. [16].

More recently, general relations between financial quantities have been derived based on
the invariance of markets’ microstructure, see Kyle and Obizhaeva [18]. In particular, the
authors postulate a trading invariance principle which (in contrast to the above relations) is
formulated on the latent level of meta-orders.! Andersen et al. [3] and Benzaquen et al. [6]
confirm empirically that an analogue of this invariance principle holds true for intradaily
observable quantities. The fundamental relation may then be formulated as follows: the
nominal value of the exchanged risk during a period of time, defined as the product (volatil-
ity) x (traded volume) x (price), is proportional to the number of trades to the power
3/2. This so called intraday trading invariance principle and its connection to the relations
proposed by Jones et al. [16] and Wyart et al. [30] is the focus of the present paper.

Our aim is to critically analyze these three relations as well as variants thereof by applying
a method well known from physics: dimensional analysis. It is a tool which allows for the
falsification of a proposed relation, e.g. of the above mentioned formulas for the number of
trades, but not for its verification. This principle is similar in spirit to K. Popper’s approach
to epistemology which in turn is inspired by the classical theory of statistics: There one can
possibly reject a null hypothesis, but never prove it. Similarly, dimensional analysis can only
isolate those functional relations between variables involving certain “dimensions” which do
not violate the obvious scaling invariance of these dimensions. Hence, it a priori rules out
those functional relations which are in conflict with these scaling requirements. But this
does not imply that the identified functional relations, which are in accordance with the
scaling requirements, describe the reality in a reasonable way. This has to be confirmed by
other methods. In the present setting the ultimate challenge is, of course, to fit to empirical
data. To complete the picture, we perform an empirical analysis of the relations described
above and show that the intraday trading invariance principle provides an appropriate fit
to empirical data, but fails to be a “universal law”.

In dimensional analysis one uses the rather obvious argument that a meaningful relation
between quantities involving some “dimensions” should not be affected by the units in which

1A meta-order, also referred to as bet, is a collection of trades originating from the same trading decision
of a single investor.



these “dimensions” are measured. In the present context the relevant “dimensions” are time,
shares, and money, denoted as T,S and U, respectively. We shall also use an additional
argument, namely “leverage neutrality” as introduced by Kyle and Obizhaeva [19]. We
emphasize that these authors were the first to combine the concepts of “leverage neutrality”
and dimensional analysis. The assumption of leverage neutrality is based on the Modigliani-
Miller theorem (see [23]) and leads to a scaling invariance principle which, mathematically
speaking, is perfectly analogous to the dimensional scaling requirements mentioned above.

The remainder of the paper is structured as follows. In Section 2, we first deduce the
proportionality between the number of trades and the price variability as proposed by Jones
et al. [16] from dimensional arguments. Next, we derive the more involved scaling relations
proposed by Benzaquen et al. [6] as well as Wyart et al. [30], again using dimensional analysis,
and discuss the assumption of leverage neutrality in this context. Having a theoretical
foundation for the discussed relations, we then turn to the empirical analysis in Section 3:
Based on data from the NASDAQ stock market, we show that the relation proposed by
Benzaquen et al. [6] fits the data rather well. In Section 4, we take a closer look at volatility
and analyze implications of different time scalings thereof. We conclude with some empirical
results in this respect. A reminder on the Pi-theorem from dimensional analysis as well as
proofs for all considered relations can be found in the appendix.

2. The trading invariance principle

We are interested in explaining the arrival rate of trades in a given stock measured as

e N =N/ the number of trades within a fixed time interval [t,t + T] so that N
is measured per units of time. Following the notation from [25], this link between the
variable N and its dimensional unit is therefore given by

[N =T

Let us identify the variables (and their dimensions [-]) which are likely to influence the
number of trades N in a given interval [¢,¢ + T]. Three obvious candidates are:

o V= V;HT the traded volume of the stock during the time interval [¢,¢ + T, mea-
sured in units of shares per time
[V]=S/T.

e P =PI the average price of the stock in the interval [t, ¢+ T, measured in units
of money per share
[P] =T/S.

e 02 = (0% = Var (log(P,; 1) — log(P;))  the variance of the log-price over the time
interval [¢,t + T']. We assume
[0?] =T .

If the price process (P;);>¢ follows, e.g. the Black-Scholes model, see (24), we clearly find the
above scaling [0?] = T~! and shall retain this assumption in most of the paper. However,
the scaling of o2 turns out to be more subtle than it seems at first glance. In Section 4 below,
we shall investigate the implications of a scaling relation [0?] = T=2# where H € (0, 1) may



be different from 1/2. For instance, such a scaling may result from price processes based on
a fractional Brownian motion (B/?);>o with Hurst parameter H € (0,1), see [22].

Based on these identified dimensions, let us turn to the basic idea of dimensional analysis:
the validity of a considered relation should not depend on whether we measure time T in
seconds or in minutes, shares S in single shares or in packages of hundred shares, and money
U in Euros or in Euro-cents.

Defintion 1 (Dimenisonal invariance). A function h : R — Ry relating the quantity of
interest U to the explanatory variables Wy, ... , W, i.e,

U: h(Wh...,Wn),

18 called dimensionally invariant if it is invariant under rescaling the involved dimensions
(in our case S, T and U).

As a first - and rather naive - approach we analyze the assumption that the three variables
0%, P and V fully explain the number of trades N.

Proposition 1. Assume that the number of trades N depends only on the three quantities
o2, P andV, i.e.,

N:g(azvpa V)a (1)

where the function g : Ri — R s dimensionally invariant. Then, there is a constant ¢ > 0
such that the number of trades N obeys the relation

N =c-o% (2)

The proof relies on elementary linear algebra and is given in Appendix B below (compare
also the proof of Theorem 1 below which is similar). Recall that relation (2) goes back to
Jones et al. [16].

As mentioned in the introduction, one should read the present “dimensional” argument
in favor of relation (2) as a pure “if...then...” assertion: if N really is fully explained by
0%, P and V and the obvious scaling invariances of S, T and U are satisfied, then (2) is
the only possible relation. As we shall see below, the empirical data does not reconfirm the
validity of (2). In other words, we have to turn the above statement upside down: as (2)
is not reconfirmed by empirical data, the variables o2, P and V cannot fully explain the
quantity N. It is therefore natural to introduce more/other quantities in order to explain
the number of trades N.

Regarding the uniqueness of the function g in (1), the mathematical reason for the unique
choice of g given by (2) is that we have three scaling relations (pertaining to the invariance
of the “dimensions” S,U and T) as well as the three explanatory variables o2, P and V.
This leads to three linear equations in three unknowns, yielding a unique solution.

Let us now try to go beyond the scope of relation (1) by considering further explanatory
variables. Motivated by Wyart et al. [30], we consider the following quantity as relevant for
the number of trades N in a given interval [t,t + T, additionally to o2, P and V:

e S = StHT the average bid-ask spread in the interval [t, ¢+ T'], measured in units of
money per share

[S] = UJS.



Following Benzaquen et al. [6], it is also convenient to alternatively consider the quantity

o (= Ct“rT the average cost per trade in the interval [¢, ¢+ T'], measured in units of

money
[C]=T.

To visualize things, suppose that for some stock we observe in average during the time
interval [t, ¢+ T an ask price of EUR12.30 and a bid price of EUR12.20 so that the bid-ask
spread S equals 10 cents. If the average trade size in the interval [t,¢ + T, denoted by
Q = Q?’T, is 500 shares, we obtain that the average cost per trade C' = Q.S is EUR50.
A discussion of the difference between using S rather than C' as an explanatory variable
can be found at the end of this section. For now, let us follow Benzaquen et al. [6] for our
derivation of the intraday trading invariance principle and pass to the set 02, P,V and C of
explanatory variables, i.e.,

N =g(o* P,V,0), 3)

for some function g : ]Rﬁ_ — R;. As we now have four explanatory variables, the three
equations yielded by the scale invariance of the dimensions S,U and T are not sufficient
anymore to imply an (essentially) unique solution for g. In fact, the four explanatory
variables above combined with the three invariance relations pertaining to S, T and U only
yield a general solution of (3) of the form

N = o2f (;‘é) (4)

where f: Ry — Ry is an arbitrary function whose generality cannot be restricted by only
relying on arguments pertaining to dimensional analysis with respect to the three dimen-
sions S, T and U (see Appendix B).

Hence, in order to obtain such a crisp result as in (2), an additional “dimensional invari-
ance” is required. Kyle and Obizhaeva [19] found a remedy: a no-arbitrage type argument,
referred to as “leverage neutrality”.? This concept is inspired by the findings of Modigliani
and Miller [23] (compare [25]): Consider a stock of a company, and suppose that the company
changes its capital structure by paying dividends or by raising new capital. The Modigliani-
Miller theorem tells us precisely which features of the company are not affected by a change
in the capital structure. This allows us to establish how certain quantities behave when
varying the leverage in terms of the relation between debt and equity of a company.

From a conceptual point of view, the assumption of leverage neutrality gives a constraint
on the behavior of the quantities NV, 02, P, V, C (resp. S) in case of changing the firm’s capital
structure. This constraint can be understood as an additional though synthetic dimension
in our analysis, which we refer to as the Modigliani-Miller “dimension” M. The Modigliani-
Miller “dimension” M of a share of a company is measured in terms of the leverage L, i.e.,
the quantity

_ total assets
~ equity

?Note that Kyle and Obizhaeva [19] use the argument of leverage neutrality in the context of market
impact. But, of course, the same idea applies in the present situation.



Multiplying £ by a factor A > 1 is equivalent to paying out (1 — A~!) of the equity as
cash-dividends. On the other hand, multiplying £ by a factor 0 < A < 1 corresponds to
raising new capital in order to increase the firm’s equity by a factor A~!. Following Kyle
and Obizhaeva [19] as well as [25], we are led to the following assumption:

Leverage Neutrality Assumption ([19, 25]). Scaling the Modigliani-Miller “dimension”
M by a factor A € Ry implies that

e N,V and C (as well as S) remain constant,
e P changes by a factor A™1,
e o2 changes by a factor A2.

To recapitulate: Setting A = 2 corresponds to paying out half of the equity as dividends so
that each share yields a dividend of (1 — A=1)P = P/2. The stock price is, thus, multiplied
by A=! = 1/2 while the volatility o is multiplied by A = 2. The remaining quantities
are not affected by changing the leverage, in accordance with the insight of Modigliani and
Miller [23] and the recent work by Kyle and Obizhaeva [19]. The economic reason is that
the value of the assets of the corresponding company and hence the associated risk does not
change.

Defintion 2 (Leverage neutrality). A function h : R} — R, relating the quantity N to the
explanatory variables o, P,V,C and S, i.e,

N = h(c?, P,V,C,S),

1s called leverage neutral if it is invariant when rescaling the Modigliani-Miller dimension
M of the variables N,o2, P, V,C, S as defined in the assumption above.

We can now derive the following relation, which is the focus of the present paper. It relies
on the basic fact that under the “Leverage Neutrality Assumption” we now find four linear
equations in order to determine four unknowns. Note that Benzaquen et al. [6] coined this
relation the “3/2-law”.

Theorem 1 ((3/2)-law). Suppose the “Leverage Neutrality Assumption” holds and that the
number of trades N depends only on the four quantities o2, P,V and C, i.e.,

N = g(o®, P,V,C), (5)

where the function g : R‘i — Ry is dimensionally invariant and leverage neutral. Then,
there is a constant ¢ > 0 such that the number of trades N obeys the relation

ocPV
A4 (6)

N3/2 — .

The proof follows from the general Pi-theorem reviewed in Appendix A. For the conve-
nience of the reader, we also present a direct proof of Theorem 1. Although slightly longish
and repetitive, we hope that it helps the intuition.

Proof of Theorem 1. First, we make the following ansatz for the function g in (5):

9(c®, P,V,C) = c- (0*)' P2V Y3C¥4, (7)



where ¢ > 0 is a constant and yi,...,ys are unknown real numbers. Looking at the first
row of Table 1 yields the relation

—y2+y3 =0. (8)
Indeed, when passing from counting shares in packages of 100 units rather than in single
units, the number P is replaced by 100P while the number V' is replaced by V/100. Since

the function g in (7) is assumed to be dimensionally invariant, g should remain unchanged
by this passage, i.e.,

Y3
¢ (0?)" PryyCvs = ¢ (62)” (100P)" <1‘(;o> cv (9)

which is only possible if (8) holds true. Looking at the other rows of Table 1 we therefore
get the system of linear equations

—Y2t+ys3 =0

Y2 + Ya 0

— — Y3 =-1

2y1 — y2 =0

whose unique solution is
T
122 2

= 2 a9)a) o ) 10
y (3 22 3) (10)

which gives (6) as one possible solution of (5).

We still have to show the uniqueness of (6). To do so, it is convenient to pass to log-
arithmic coordinates: suppose that there is a function G : R* — R such that log(N) =
G (log(c?),log(P),log(V'),log(C)) or equivalently,

IOg(N)—G(Xl,XQ,Xg,X4) :0, (11)

where we write (log(c?),log(P),log(V),log(C)) as (X1, X2, X3, X4). We have to show that
G has the form

log(N) = y1 X1 + y2Xo + y3 X3 + ya X4 + const,
where y1, Y2, Y3, Y4 are given by (10) and const is a real number. Denote by r1 := —eq + €3

the first row of Table 1, considered as a vector in R*, where (e;)%:_; is the canonical basis of
R*. Similarly as in (9), the first row of Table 1 and dimensional invariance imply that

G (log(c?),1og(P),log(V),log(C))
= G (log(c?),1og(P) + log(100),log(V) — log(100), log(C)) .

Clearly we can replace log(100) by any real number. Speaking abstractly, this means that
G : R* — R must be constant on any straight line parallel to the vector r;. A similar
argument applies to ro = es + e4 and r4 = 2e; — es. As regard r3 = —e; — eg the situation
is slightly different, as the third row of Table 1 also involves a non-zero entry of N.

The third row of Table 1 and (11) imply that for any A € R,

G(X1— A X, X3 — N, Xy) = G(X1, Xo, X3, Xy) — A



Table 1: A labelled overview of the dimensions of the quantities P, V, 2 and C.

Setting const := G(0,0,0,0), we have
G(—=X,0,—X,0) = =X+ const for all A € R,

which uniquely determines G on the one-dimensional space spanned by 73 = —e; —e3 in R%.
As we have seen that G also must be constant along each line in R3 parallel to 71,7, and
r4, and as 71,79, 73,74 span the entire space R*, we conclude that there is only one choice
for the function G, up to the constant const = G(0,0,0,0). O

For an alternative derivation of relation (6), we pass from considering o2, the variability
of the relative price changes, to considering 0%, the variability of the absolute price changes.
This will allow us to reduce the two explanatory variables o2 and P to one explanatory
variable 0% = 0?P2. We call o the Bachelier volatility as it corresponds to Bachelier’s
original model from 1900, see [5]. Recall that the dynamics of the price process (P;);>0 of
the Black-Scholes versus the Bachelier model are

dP; = o P, dWy, (Black-Schloes model) (12)
dP; = ogdWy, (Bachelier model)

where W; is a standard Brownian motion. Defining o = 0P the two models coincide
remarkably well as long as P; does not move too much (compare e.g. [28]). We therefore
define

e 0% = 02 P2 the Bachelier volatility in the interval [¢,¢+7]. Plugging in the dimensions
[0?] = T~! and [P] = US™!, we obtain

[03] = U2S—2T 1.

A glance at Table 2 reveals that 0% has Modigliani-Miller dimension M equal to zero (just
as the other variables V,C and N). This enables us to derive the assertion of Theorem
1 by using only the three obvious scaling invariances, but without imposing a priori the
requirement of leverage neutrality.

Corollary 2. Suppose the number of trades N depends only on the three quantities 0%,V
and C, i.e.,

N =g(o%,V,0), (13)

where the function g : Ri — Ry s dimensionally invariant. Then, there is a constant ¢ > 0
such that the number of trades N obeys the relation

O'BV

N3/2 = ¢.
©

(14)



% V. C ‘ N
S | -2 1 0 0
U 2 0 1 0
T | -1 -1 0]-1

Table 2: A labelled overview of the dimensions of the quantities V, 0% = 02P? and C.

The proof is analogous to (and even easier than) the above proof. Note that Proposition
1 and Corollary 2 both only rely on the very convincing invariance assumption with respect
to S, T and U, but not on the “Leverage Neutrality Assumption”.

Anticipating that relation (14) gives a superior fit to empirical data than relation (2) we
can draw the following conclusion: the choice of 0%, V,C as explanatory variables for the
quantity N is superior to the choice 02, P,V made in Proposition 1 above.

Here is a “dimensional argument” why we should expect a better result from Corollary
2 as compared to Proposition 1. It follows from the very approach of dimensional analysis
that everything hinges on the assumption that the chosen explanatory variables indeed “fully
explain” the dependent variable. Of course, in reality such an assumption will — at best —
only be approximately satisfied. The art of the game is to find a combination of explanatory
variables which “best” explain the resulting variable. The choice of the variables 0%, V, C as
in Corollary 2 automatically implies that the “Leverage Neutrality Assumption” is satisfied
as shown in Table 2. Indeed, the variables U%, V,C as well as N have a zero entry for the
Modigliani-Miller dimension M. Therefore, any function relating these variables is automat-
ically leverage neutral. This is in contrast to the choice of variables o2, P,V in Proposition
1 as Table 1 reveals that P and o2 have a non-trivial dependence on M. It follows that
formula (2) does not satisfy the invariance relation dictated by the “Leverage Neutrality
Assumption”.

Finally, we examine the implications of substituting the cost per trade C' by its more
common counterpart, the bid-ask spread S, introduced above. In fact, in the present context
it is equivalent to use either C' or S as explanatory variables for the number of trades NV -
provided that the traded volume V is already one of the explanatory variables. Indeed, we
have the relation C'= SQ = SV/N since the average trade size @ in the interval [¢, ¢+ T is
given by the traded volume V' divided by the number of trades N. Hence, if we know the
functional relation between N and V', we also know the functional relation between N and
@ and can therefore pass from S to C' = S@Q and vice versa. Thus, we may restate Theorem
1 (and, equivalently, Corollary 2) in terms of the bid-ask spread S rather than the cost per
trade C in the following corollary.

Corollary 3. Suppose that the number of trades N depends only on the three quantities
0%,V and S, i.e.,

N:g(U%,V,S), (15)

where the function g : Ri — R, dimensionally invariant and leverage neutral. Then, there



is a constant ¢ > 0 such that the number of trades N obeys the relation

2 oB\?
N=¢. (?) . (16)

We observe that the variables 0%,V and S again have no Modigliani-Miller dimension M,
i.e., they are invariant under changes of the leverage. Therefore, formula (16) satisfies the
invariance principle given by the “Leverage Neutrality Assumption”. We note again that
given the relations C' = SQ = SV/N as well as 0% = 0?P? the two equations (6) and (16)
are indeed equivalent.

Relation (16) is precisely the one proposed by Wyart et al. [30]. By rearranging the terms,
we find that

2 2 0%
S? =2 B, 17
.k (17)
The interpretation is that the squared Bachelier volatility per trade is proportional to the
square of the spread. If we elaborate further on (17), we find that

(18)

Without loss of generality, we can determine the price P on the left hand side of (18) as
midquote price, i.e., the average of the best ask- and bid price. Then, S/P refers to the
so called proportional bid-ask spread which can be used to approximate a dealer’s “round
trip” transaction costs. Clearly, the approximate round-trip costs increase in the volatility
of a relative price change and decrease in the trading activity.

Summing up this section, we have seen that the relation N ~ o2 proposed by Jones et
al. [16] follows from the restrictive assumption that the number of trades N only depends
on the quantities o2, P and V as well as dimensional arguments (see Proposition 1). Going
beyond the latter relation, it seems reasonable to include information concerning the bid-ask
spread in our analysis. Depending on whether we choose the trading cost C or the bid-ask
spread S directly, we are led to either the 3/2-law N3/2 ~ ¢ PV/C proposed by Benzaquen
et al. [6] (see Theorem 1) or to the relation S ~ o5/v/N proposed by Wyart et al. [30] (see
Corollary 3). When proving the two latter relations we have seen that the assumption of
leverage neutrality comes into play. Alternatively, we can also consider the product o?P?,
rather than o2 and P separately. This consideration of the “Bachelier volatility” op = 0P
reduces the complexity of the problem inasmuch as the assumption of leverage neutrality is
not needed anymore. Again, the actual validity of any of the above scaling laws should be
confirmed by exhaustive empirical analyses.

3. Empirical evidence

3.1. Degrees of universality and related literature

We now turn to the empirical analysis of relation (2) as well as of the 3/2-law (6). When col-
lecting data for the relevant quantities N, o2, V, P and C, one has to specify the considered
asset and the considered time period as well as the length T" of the time interval over which
the data is aggregated. We cannot expect that the constant ¢ appearing in relations (2)

10



resp. (6) is the same for each considered interval and each possible interval length and each
considered asset in either one of the relations. We can only hope that a given relation holds
on average. Based on the nomenclature introduced in Benzaquen et al. [6], we therefore
distinguish the following three degrees of universality attached to the validity of relations
(2) and (6):

1. No universality: The relation holds on average for a fixed asset and a fixed interval
length. However, the constant ¢ varies significantly for different assets and different
interval lengths.

2. Weak universality: The relation holds on average for some assets and some interval
lengths with similar values from the constant c.

3. Strong universality: The relation holds on average for all assets and all interval lengths
with similar values from the constant c.

Note that this distinction does not allow for the possibility that the validity attached to a
given relation changes over time, simply because we consider only one specific time period.

Let us shortly discuss the relevant empirical evidence which can be found in the literature
before turning to our own empirical analysis. Andersen et al. [3] conducted an important
empirical study in the present context. They test the relation

ocPV

IZW’

(19)
where [ is independently and identically distributed across assets and time for E-mini S&P
500 futures contract. Neglecting the price P, they show that relation N3/2 ~ V¢ holds when
averaging within and across trading days for this particular asset. In fact, their data fits the
latter relation nearly perfectly compared to the relations V ~ o2 resp. N ~ o2 proposed
by Tauchen and Pitts [29] resp. Jones et al. [16]. Benzaquen et al. [6] address the same
question by examining eleven additional futures contracts as well as 300 US stocks. Aiming
to confirm that B = 3/2 in the relation N” ~ ¢PV, they estimate 8 for each considered
stock individually. They find that B = 1.54 + 0.11, where the uncertainty here is the root
mean square cross-sectional dispersion. Thus, these authors note that this provides evidence
that the relation N3/2 ~ ¢ PV holds also on the stock market and not only on the very liquid
futures market. Moreover, they show that the distribution of I in (19) depends significantly
on the studied asset and thus, conclude that relation (19) holds only with weak universality.
As an additional contribution, the authors reveal that the inclusion of the trading cost C' is
beneficial in the sense that their proposed invariant Z = ¢ PVC~'N~3/2 is almost constant
for different assets.

Finally, let us mention the evidence in the earlier work by Wyart et al. [30]. These authors
show that relation (17) describes the data very well when the right level of aggregation is
chosen. When examining the France Telecom stock, S and op/ VN are averaged over two
trading days, while in case of NYSE stocks these quantities are averaged over an entire year.
The constant ¢ in relation (17) is found to lie between 1.2 and 1.6. Moreover, the authors
note that the typical intraday pattern of the considered quantities is in line with (17): The
U-shaped pattern of the volatility op is explained by the decline of the bid-ask spread S
and an increase of the number of trades N within the trading day.

11



3.2. Description of data

Our empirical analysis is based on limit order book data provided by the LOBSTER database
(https://lobsterdata.com). The considered sampling period begins on January 2, 2015
and ends on August 31, 2015, leaving 167 trading days. Among all NASDAQ stocks, d = 128
sufficiently liquid stocks with high market capitalizations are chosen. Stocks are considered
to be “sufficiently liquid” as long as the aggregated variables (defined below) can be reason-
ably treated as continuously distributed, i.e., the empirical distributions of the aggregated
variables do not have points with obviously concentrated mass. Observations made during
the thirty minutes after the opening of the exchange as well as trading halts are removed.

Let us fix an interval length T' € {30, 60, 120, 180, 360} min for which a developed hypoth-
esis is tested. For the sake of illustration, set the length of the considered time interval T
to 60min. This interval length balances the tradeoff between sufficient aggregation of the
data on the one hand and some intraday variability on the other hand. As a result, we
are left with n = 1002 non-overlapping time intervals with equal length 7" = 60min. Let
us concentrate on a specific asset ¢ € {1,...,d} (omitting the index i for ease of notation
in the remainder of Section 3.2) and let j € {1,...,n} refer to an arbitrary interval. Sup-
pose the trades in the considered interval j arrive at irregularly spaced transaction times
tl, tg, e ,tNJ . Then,

N; denotes the number of trades in the interval j,

Q; = Nj_1 Zg;l ¢, denotes the average size of the trades in the interval j, where @,
denotes the number of shares traded at time ¢y,

V; = Nj x Q; is the traded volume in the interval j,

P; =N j_l ZkN; 1 P, denotes the average midquote price in the interval j, where P, =
(A¢, + By,)/2 and Ay, (resp. By, ) denotes the best ask (resp. bid) price after the
transaction at time tg,

52

7 denotes the estimated squared volatility in the interval j,

S; = Njf1 2116\21 Sy, denotes the average bid-ask spread in the interval j, where S;, =
At — By, is the bid-ask spread after the transaction at time t;, and

C; = @Qj x S; is the cost per trade in the interval j.

Note the following four details: Firstly, even though transaction times are recorded on
a nano-second level, a time-stamp t, is recorded L-times (tx,,...,t;,) in the raw dataset
when a market order is executed against L limit orders at time t;. Such a multiple entry
of the same time-stamp enters the number of trades N; only once (not L-times). The size
@y, of the trade at time ¢y is determined by summing the L-records in the dataset thw
{=1,...,L, ie, Q¢ = 25:1 Qt,,- The midquote price F;, and the bid-ask spread Sy,
related to the merged market order of size )y, are computed as volume-weighted averages

L L
Py =0Q;,"Y Qu, Py, and S, =Q;" Y Qu, S,

=1 (=1

12



Secondly, the aggregated variables, i.e., the average market order size @);, the average
midquote price P; and the average bid-ask spread .S; of interval j, are in fact not computed
by the sample averages as state above. Since simple sample averages are sensitive with
respect to outliers, e.g. huge market orders, @);, P; and S; are based on robust averages.
In detail, we compute trimmed means of Q,,..., Qth, Ptl,...,Pth and Stl,...,Sth to
obtain @;, P; and S; respectively. These trimmed means discard the upper 0.5% and
the lower 0.5% of the corresponding ordered data and compute the average based on the
remaining 99% of the data.

Thirdly, the estimated squared volatility 0]2- is computed as realized variance in interval j

N

Z (10g(Ptk) - log(Ptk—l))z : (20)

22
i
k=2

The properties of the estimator &JQ- are well understood for a variety of models for the
efficient price process (P;);>o. For example, if the dynamics of the efficient price process
follows the stochastic model dP; = o P, dW;, with o > 0, the estimator &]2- converges weakly
in probability to ¢?T" (the quadratic variation of the increments of (log(F;)),s,) as the
number of transactions within interval j becomes dense (as N; — oo). The limit of &]2,
however, does not coincide with the quadratic variation of the efficient price process, if
the observed midquote price is contaminated by market microstructure noise. This noise,
for instance, arises from market imperfections such as price discreteness or informational
content in price changes, see [7]. To check the robustness of our analysis with respect to
the presence of market microstructure noise, several results below can likewise be confirmed
by replacing the realized variance by the noise-robust estimator of the quadratic variation
proposed in [15]. It should be noticed that a distortion of the analysis by the bid-ask
bounce is already avoided by considering midquote prices rather than transaction prices.
The interested reader will find a gentle introduction explaining how noisy price observations
erode the realized variance in [1].

Last but not least, note that Benzaquen et al. [6] in fact define the cost per trade by éj =
N j_l Z,iv; 1 @1, St,.. This slight difference in the definitions becomes obviously negligible, if
the bid-ask spread S;, is constant over the entire interval j. The results presented below
are robust with respect to the employed version of the cost per trade as we shall see.

3.3. N ~¢? versus N*? ~ o PV/C

To check which of the relations N ~ ¢2 and N3/2 ~ oPV/C is superiorly supported by

data, we consider for each stock (i =1,...,d) a multiplicative model of the form
g (PiiVii \ " . .
N;j = exp(ai)(afj)ﬁ‘ (g”) exp(ei;) with j=1,...,n, (21)
ij
where €55, j = 1,...,n, is an error term that satisfies standard regularity conditions and «;,

B; and ~; are unknown real valued parameters. A logarithmic transformation of (21) yields
the linear model

j

: PV

Since dimensional analysis imposes the restriction ; +; = 1 on the parameters §; and ~y;,
the value ; = 0 would imply the relation N ~ o2, whereas v; = 2/3 would imply the relation

13
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Figure 1: The logarithmic dependent variable log(/N) is plotted versus the logarithmic ex-
planatory variable log(6 PV/C) for the fixed interval length T = 60min and the two
stocks AAL and AAPL. The lines indicate the estimated linear relations between
the considered quantities.

N3/2 ~ ¢PV/C from Theorem 1. The estimation of the coefficients 8; and 7; subject to
the restriction 8; + v; = 1 therefore allows to infer which of the two discussed relations is
backed by stronger empirical evidence.

Before turning to the constrained estimation of the parameters 8; and +;, it deserves to be
emphasized that the functional relation between the logarithmic dependent variable log(V;)
and the logarithmic explanatory variable log(d;;P;;Vij/C;;) can be reasonably assumed to
be linear for all stocks 7 = 1,...,d. To conclude this, we have visually inspected the bivariate
point-clouds of dependent and explanatory variable. Figure 1 illustrates this relation for the
stocks of the American Airline Group, Inc. (AAL) and Apple Inc. (AAPL). The remaining
126 stocks show similar patterns.

For each stock (i = 1,...,d) and all interval lengths T' € {30, 60, 120, 180,360} min, we
estimate the parameters 8; and ; in (22) by ordinary least squares subject to the constraint
Bi+7:; = 1. The corresponding estimate of interest is denoted by %;. To present the results of
these regressions in an informative and compact way, Figure 2 shows kernel density estimates
of 4; across ¢ and for fixed T

First, let us come to the main result of this section and concentrate on the solid graphs in
Figure 2 referring to the standard setting based on the realized variance &?j defined in (20)
and the cost per trade C;; = Q;; % S;;. If the parameter +; of the linear model (22) is equal
to zero, then the underlying variables satisfy the simple relation N ~ ¢2. Similarly, if the
parameter -; is equal to 2/3, then we can conclude that the 3/2-law from Theorem 1 holds.
As seen in Figure 2, the averages of the estimates 4; (across i for different T') are clearly
much closer to 2/3 than to zero for all considered interval lengths T'. This result supports
the claim made in Section 2 that there is stronger empirical support for the 3/2-law (or
equivalently for the relation N ~ (¢P/S)?) than for the relation N ~ 2.

Regarding the robustness of this insight, we have re-conducted the above regression analy-
sis for two slightly different scenarios. One alternative setting considers replacing the realized

14
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Figure 2: The panels show kernel density estimates across the estimated parameters 4; for
different interval lengths T" € {30, 60, 120, 180, 360} min.

variance in the linear model (22) by the market microstructure noise robust estimator of the
quadratic variation of [15]. The dashed graphs in Figure 2 are related to density estimates
relying on corresponding parameter estimates 4;, i« = 1,...,d. The second modification of
the initial setting replaces the cost per trade Cj in the linear model (22) by the variant 5j
of [6]. The dotted graphs in Figure 2 refer to corresponding density estimates. Despite some
deviation in the estimates 4; for these two alternative settings from the initial one, the solid,
dashed and dotted graphs document a rather similar pattern among the estimates of the
parameters -y; for all interval lengths T' € {30, 60, 120, 180, 360} min. These similarities lead
to the conclusion that neither market microstructure noise nor the exact definition of the
cost per trade erode the overall relation between the dependent and explanatory variables.
In the remaining part of the manuscript, we take a closer look on the 3/2-law and try to
find reasonable explanations for the systematic deviations of the estimates 4; from 2/3.

3.4. On the universality of the 3/2-law

In order to check the validity and universality of the 3/2-law, N3/2 = ¢- ¢ PV/C (or equiv-
alently of the relation N = ¢? - (¢P/S)?), we examine the variation of the constant ¢ across
assets and interval lengths. Hence, we do not rely on the estimators 4; computed in Section
3.3. Instead, we compute for a fixed interval length T' the quantity

Oy Ny " NY?g..
-1 ij  Oij .
g =n g — , for i=1,...,d,
O'”R] V” ‘ 0i; Pij
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Figure 3: The left panel shows the computed values for ¢ in dependence of T €
{30, 60, 120, 180, 360} min. The right panel shows a kernel density estimate across
the estimates ¢; for fixed T" = 120min.

where n is the number of non-overlapping time intervals with equal length T'. The left panel
of Figure 3 shows the estimates ¢; for different values of T'. Note that the rainbow-color-code
refers to the ordered values of ¢; for T'= 120min. As we recover the same rainbow-pattern
also for the other interval lengths T' € {30, 60, 180,360} min, we can conclude that there is
little variation of the estimates ¢; for a fixed stock ¢ across different interval lengths T'. This
small variation of ¢; for fixed i and varying T' € {30, 60, 120, 180,360} min endows the 3/2-
law with a certain degree of universality. However, the present cross-sectional dispersion in ¢;
across different assets i, i.e., the fact that depending on the considered stock the estimates
¢; range from two to five, does not allow awarding the 3/2-law with strong universality.
Thus, we draw the same conclusion as Benzaquen et al. [6] that the 3/2-law holds with weak
universality. For completeness, the kernel density estimate in the right panel of Figure 3
illustrates the distribution of the estimates ¢;, i = 1,...,d for T'= 120min.

4. A closer look on volatility

We have seen that the volatility o plays a dominant role in explaining the trading activity
N. The squared volatility o2 of a given stock during a fixed interval [t,t + T] was defined
as the variance of the change of the log-price

o? := Var (log(Piy 1) — log(P;)) . (23)
When specifying the definition of 02 in this way we had in mind the Black-Scholes model,
dpt = Pt (O'th + /Ldt) 3 (24)

where, fixing the normalization 7' = 1, formula (23) indeed recovers the constant o in (24).
Going beyond Black-Scholes, consider a price process of the form

t
P, = Pyexp (/ ouqu> (25)
0
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where (0¢):>0 is an arbitrary stochastic process (satisfying suitable regularity conditions). In
this case, formula (23) should, of course, be interpreted conditionally on the sigma-algebra
Fi and we obtain the “Wald identity”

t+T
Var (log(Pyyr) — log(P)|F;) =E ( /t agdum) . (26)

This implies in particular that, as long as we are in the framework of processes of the form
(25), the above chosen scaling

is the only reasonable choice.

But let us have a closer look at what we are actually doing here. The above reasoning
tacitly assumes that we are starting from a stochastic model of a price process. The present
situation, however, dictates a different point of view: we start from empirical tick data
observed during the interval [t,¢ 4+ T]. Even when we make the heroic assumption that this
data is accurately modeled, e.g. by the Black Scholes model (24), the number o2 which we
plug into the formula N = g(o?,...) can only be an estimator of 02 obtained from the data
at hand. This implies that, strictly speaking, we should write our formulas as N = g(62,...)
in dependence of the estimated squared volatility 62. The gist of the argument is that for
the purpose of dimensional analysis the scaling which is relevant is that of the estimator
of the volatility rather than that of the true volatility (whatever this is). To be concrete,
suppose that we are given price data (P, )g=1, .~ foragridt <t; <.--- <ty <t+Tin
the interval [t,¢ + T]. An obvious choice for the estimator of the squared volatility, which is
also used in Section 3 above, is

N

5% =Y (log(P,,) — log(P,,_,))". (27)

k=2

Clearly, this estimator has the dimension [62] = T~ if we suppose that the typical distance
Aty = tg41 — tr (in absolute terms) does not depend on whether we measure time in
seconds or in minutes. Hence, for the estimator 62, the hypothesis [62] = T~! underlying
the dimensional analysis in Section 2 is satisfied.

However, we can also think of other estimators. Fix H € (0,1) and define the estimator
6%(H) by

N 2H
G*(H) = (Z |log(Pr,) — 10g(Ptk1)|1/H> : (28)
k=2

To motivate this estimator, consider the model
P, = Pyexp(cWH),  t>0, (29)

where o > 0 is a fixed number and (W/);>¢ is a fractional Brownian motion with Hurst
parameter H, starting at W = 0. In this case, the estimator 62(H) in (28) is a consistent
estimator for the parameter o2 in (29). But the estimator 62(H) now scales differently in
time than the quadratic estimator 62 (see [10, 26]), namely

[62(H)) = T 2H. (30)
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Models for the price process (P;)¢>o involving fractional Brownian motion as in (29) have
been proposed, notably by B. Mandelbrot, already more than 50 years ago [21, 22] and there
may be good reasons not to rule them out a priori.

Here is another example where a sub-diffusive behavior of the price process (P;),> occurs,
due to a micro-structural effect: the discrete nature of the prices in the real world (compare
Benzaquen et al. [6]; we thank Jean-Philippe Bouchaud for bringing this phenomenon to our
attention). To present the idea in its simplest possible form, suppose that the price process
(pt)tzo is given by

log(P,) = int(W,),
where (W})>0 is a standard Brownian motion and int(z) denotes the integer closest to the
real number z, i.e., int(x) = sup{n € Z : n < x4 0.5}. Fix again an interval [¢,¢ + T and
consider the quantity

5% = (6%);" = Var (log(Prr) — log(P,)) -
For small T' > 0, we show in Appendix C that
(@*) = e VT,

for some constant ¢ > 0. Hence, if the interval length T is sufficiently small, we recover that
(2] = T—1/2, rather than the usual scaling in the dimension time, i.e., T~1.

This observation indicates, that if the interval length 7" is small compared to the width
of the price grid, i.e., the tick value, we observe a sub-diffusive behavior of the price process
even if the “efficient”, unobserved price process is assumed to be a diffusion. We refer to
Robert and Rosenbaum [27] for a detailed discussion of how to account for the discrete
nature of prices. For now, this rough argument should only serve as motivation that there
might be plenty of reasons why the scaling [0?] = T~! is, in practical situations, not as
clearly granted as it might seem at first glance.

For all these reasons we drop in this section the convenient dimensional assumption [02] =
T—! and replace it by the subsequent more general assumption.

H-Assumption. There is H € (0,1) such that the squared volatility estimator 6*(H) has
dimension

[62(H)) =T 2.
Proposition 2 ((1 + H)-law). Suppose that the “Leverage Neutrality Assumption” as well

as the “H-Assumption” hold true and that the number of trades N depends only on the four
quantities 62(H), P,V and C, i.e.,

N = g(6*(H), P,V,C),

where the function g : Ri — Ry is dimensionally invariant and leverage neutral. Then,
there is a constant ¢ > 0 such that the number of trades N obeys the relation
NUE &(H)PV'
C
The proof is analogous to the proof of Theorem 1 and is given in Appendix B.
The hypothesis of the above proposition assumes that H € (0,1) is known a priori. As H

(31)

is typically unknown in practical applications, we can therefore ask the following question:
For which H does relation (31) fit the empirical data best? We address this question in the
following subsection.
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Figure 4: The left panel illustrates the Gini-coefficient in dependence of H for T =
30min (solid), T = 60min (long-dashed), T = 120min (dashed), T = 180min
(dashed-dotted) and 7' = 360min (dotted). The right panel shows the com-

puted values for & (H) such that H minimizes the Gini-coefficient for fixed
T < {30, 60,120, 180,360} min.

4.1. Empirical evidence under the H-Assumption

According to arguments from dimensional analysis, the constant ¢ and the parameter H
from Equation (31) should at best be identical for all stocks and all interval lengths T. The
empirical results above, however, have revealed cross-sectional dispersion which might be
related to the restrictive assumption [6%] = T~!. This restriction motivates the empirical
exercise of this section: Can we determine an H € (0,1) in (31) that minimizes the cross-
sectional dispersion across the estimates of ¢?

Following Proposition 2, we therefore compute the estimates ¢;(H) for different H as

" NHHC n y
GG(H)=nt) —H 2 =l 2 for i=1,...,d
Gy =n Zﬁij(H)PijVij ! Zﬁij(H)Pﬂ T hen®

j=1

where 67 (H) is defined in (28), H € (0,1). Both variables N/l and 6;;(H) increase as H
increases, so that it is not obvious how ¢é;(H) behaves when H increases. We find empirically
that overall the constant ¢é;(H) typically increases in H. Addressing the above question
therefore requires a scale invariant measure for the variation in ¢;(H) such as the Gini-

coefficient which is given by
2> i iey  n+tl
n—1)¥irm n—1

for the ordered data xp) <z < ... < Tpy). Note that the Gini-coefficient G(z1,...,z,) €

[0,1] is interpreted as a measure for inequality. If all values z1,...,z, are equal, G equals
3

G(x1,...,zn) = (

zero. In case of strong heterogeneity in 1, ..., x, the Gini-coefficient approaches one.

3The coefficient of variation defined as the ratio of the standard deviation to the sample average could be
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Now, we minimize the Gini-coefficient of (¢;(H)),_, , with respect to H in order to find

H = arg min G(é1(H), ..., é,(H)).
He(0,1)

The left panel of Figure 4 plots the Gini-coefficient in dependence of H for different interval
length T'. We roughly find that H=022frT= 30min, H=023forT = 60min, H=0.25
for T = 120min, H = 0.27 for T = 180min and H = 0.31 for T = 360min. The rainbow-
color-code of Figure 3 has been transferred to the right panel of Figure 4. In contrast to
Figure 3 yet, we present the quantities é,([fl ) in dependence of the optimal H for the given
interval length T'. In case T' = 120min for instance, the estimates ¢;(H = 0.25) range from 1.2
to 2.6 for different assets . On an absolute scale, the variation seems to be smaller compared
to Figure 3, where the estimates é;(H = 0.5) lie between 2 and 4.5 for the same interval length
T = 120min. In relative terms though, the difference between the variation in é;(H = 0.25)
and ¢;(H = 0.5) is not so significant, as G (¢, (H = 0.25),...,¢é,(H = 0.25)) = 0.11 compared
to G (é1(H =0.5),...,¢,(H =0.5)) = 0.14 for T = 120min.

For now, we can only speculate on reasons why the optimal H is strikingly smaller than
1/2 for all interval lengths 7. The quantity ¢ (H) relies on tick-by-tick data, so that an
obvious explanation for these unexpected optimal values of H are market microstructure
effects. To be more concrete, Benzaquen et al. [6] observe similar to our results a sub-
diffusive behavior for so called large tick future contracts. Large tick assets are defined such
that their bid-ask spread is almost always equal to one tick, see e.g. [13]. Most of the stocks
in our sample can be categorized as large tick stocks based on this definition.

When referring to market microstructure effects, however, it deserves to be stressed that
the value H = 1/2 is implied by numerous models for the efficient price process (P;)¢>0,
which are backed by empirical evidence and take market microstructure effects into account.
Hence, the scaling of the squared volatility through time implied by H = 1/2 seems suitable
in many applications. We also note that the Gini-coefficient G in Figure 4 does not vary
drastically when H ranges between the optimal H ~ 0.25 and the traditional H = 1/2,
namely roughly between G = 0.12 and G = 0.15. Hence, the value of H does not seem to play
a very significant role in explaining the heterogeneity of the value of ¢;;(H). Nevertheless, a
better understanding of the behavior of H seems to us a challenging topic for future research.

5. Conclusion

Finding laws relating the trading activity (defined here as the number of trades N within a
given time interval) to other relevant market quantities has been the subject of numerous
investigations. The earliest contribution dating as far back as the beginning of the 1970s.
Two decades later, Jones et al. [16] suggested the relation N ~ o2 based on an extensive
empirical study. Other landmark contributions include the relation N ~ (0 P/S)? of Wyart
et al. [30] and the so called 3/2-law N3/2 ~ ¢PV/C of Benzaquen et al. [6], respectively
obtained using market microstructure arguments, which were supported by empirical evi-
dence. In the first part of the paper we show that all these scaling laws can be obtained
using arguments relying on dimensional analysis. The relation N ~ ¢? follows from the
assumption that N is fully explained by the squared volatility o2, the asset price P and the

employed as an alternative to the Gini-coefficient. The presented results are widely robust with respect
to the chosen measure of standardized dispersion.
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traded volume V', and the assumption that the relation between these quantities is invariant
under changes of the dimensions shares S, time T and money S. The somewhat refined
relation N3/2 ~ oPV/C is obtained when assuming that N depends only on o2, P,V and
the cost of trading C, and assuming in addition, that an invariance principle known as
“Leverage Neutrality” holds true. This “Leverage Neutrality Assumption” can be seen as a
no-arbitrage condition enabling us to obtain a unique functional relation from the assump-
tion N = g(0?, P,V,C). Substituting the quantity C' by the bid-ask spread S in the latter
assumption, we derive the relation N ~ (oP/S)?, which is shown to be equivalent to the
3/2-law. Alternatively, we can consider the volatility of the relative price change instead of
the absolute price change, i.e., assume N = g(c2P?,V,C) resp. N = g(¢?P2,V,S). This
assumption simplifies the analysis in that a unique solution for ¢(-,-,:) can be obtained
without recourse to the “Leverage Neutrality Assumption”. Since our theoretical analysis
relies on a set of well-defined, but not necessarily realistic assumptions, the validity of any
of the aforementioned scaling laws needs to be confirmed through an empirical analysis.

Based on data from the NASDAQ stock exchange, we provide empirical evidence that the
3/2-law N3/2 = c.a PV/C (or equivalently N = ¢?-(cP/S)?) fits the data clearly better than
N ~ ¢2. In fact, the 3/2-law holds for a fixed asset and a fixed interval length. However, the
estimated value of the constant ¢ strongly depends on the considered asset. In the language
of Benzaquen et al. [6], this means that the 3/2-law holds with weak universality.

Finally, we note that both our theoretical and empirical analysis relied on the assumption
that the scaling of o2 is inversely proportional to time T. This hypothesis is clearly debatable
as it tacitly assumes diffusive price behaviors, and ignores e.g. the discrete nature of prices.
A closer look at the scaling of o2 suggests the scaling [02] = T2 for some H € (0,1) that
can be seen e.g. as the Hurst parameter of a fractional Brownian motion. Repeating our
dimensional arguments, the latter scaling of o2 yields the relation N'*# ~ ¢2PV/C. An
essential drawback of this more general situation is that the parameter H is unknown. We
formulate an optimality criterion for the choice of H. It should yield the most homogeneous
estimates for the proportionality coefficients ¢é;(H). A preliminary analysis implies that,
on average, the optimal H is of the order 0.25, i.e., quite different from the assumption
H = 0.5. Although the overall effect of this passage from H = 0.5 to H =~ 0.25 turns out to
have only mild effects on the issue of universality of the corresponding laws, we believe that
this phenomenon merits further investigation.

A. Dimensional analysis and the Pi-Theorem

In order to formally prove the results of Sections 2 and 4, which in done in Appendix B,
we need the Pi-Theorem from dimensional analysis. For completeness, we therefore provide
the following reminder of this important theorem from dimensional analysis, which can also
be found in [25]. Additionally, the interested reader is referred to Chapter 1 of the book by
Bluman and Kumei [8] as well as to Pobedrya and Georgievskii [24] for a historical perspec-
tive and to [11] for a purely mathematical treatment of dimensional analysis. We formalize
the assumptions behind dimensional analysis in proper generality. However, for the purpose
of the present paper we shall only need the degree of generality covered by Corollaries 5 and
6 below.

Assumption 1 (Dimensional analysis).
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(i) Let the quantity of interest U € Ry depend on n quantities Wr,...,W,, € Ry, i.e.,
U=h(W,Ws,...,W,), (32)
for some function h : R — R,.

(i) The quantities U, W1, ..., W, are measured in terms of m fundamental dimensions

labelled Ly, ..., Ly, where m < n. For any positive quantity X, its dimension [X]
satisfies [X] = L{* -+ LT for some x1,...,x,m € R. If [X] = 1, the quantity X is
called dimensionless.
The dimensions of the quantities U, Wy, Wy, ..., W, are known and given in the form
of vectors a and b € R™, i = 1,...,n, satisfying [U] = L§* --- L% and [W;] =
Ll{“ <o Lbmi i =1,...,n. Denote by B = (b b3 ... b)) the m x n matriz with
column vectors b = (byy, ... b)), i =1,...,n.

(iii) For the given set of fundamental dimensions L1, ..., Ly, a system of units is chosen
in order to measure the value of a quantity. A change from one system of units to
another amounts to rescaling all considered quantities. In particular, dimensionless
quantities remain unchanged and formula (32) is invariant under arbitrary scaling of
the fundamental dimensions.

We can now state the main result from dimensional analysis (see [8]).

Theorem 4 (Pi-Theorem). Under Assumption 1, let ) := (214, ..., xp) ,i=1,...,k:=
n — rank(B) be a basis of the solutions to the homogeneous system Bx = 0 and y :=
(Y1,-.-,yn) " a solution to the inhomogeneous system By = a respectively. Then, there
s a function f : Rﬁ — Ry such that

—y1 —Yn _
U-wro... w9 = f(m,...,m),
where m; := W ... WZni are dimensionless quantities, fori=1,... k.

We shall only need the special cases k¥ = 0 and k = 1, which are spelled out in the two
subsequent corollaries.

Corollary 5. Under Assumption 1, suppose that rank(B) = n and let y := (y1,...,Yn) " be
the unique solution to the linear system By = a. Then there is a constant const > 0 such
that

U = const - W/t .. WHn.

Corollary 6. Under Assumption 1, suppose that rank(B) = n—1 and let z := (x1,...,7,) "
and y := (y1,...,Yn) " be non-trivial solutions to the homogeneous and inhomogeneous sys-
tems Bx = 0 and By = a respectively. Then there is a function f: R, — Ry such that

U= W W)W Wi

B. Proofs of Sections 2 and 4

In this section, we provide formal arguments for the results presented in Sections 2 and 4.
The proofs are based on the above particular cases of the Pi-Theorem.
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Proof of Proposition 1. Combining relation (1) and the dimensions of the quantities o2, P, V/
and N, we obtain that the matrix B as well as the vector a are given by

0 -1 1 0
B = 0 1 0 and a = 0
—1 0o -1 -1

Table 1 illustrates how B and a relate to the considered quantities and their dimensions. As
the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields

N=c¢- U2ylpyzvys7
for some constant ¢ > 0, where y = (y1,%2,%3) " is the unique solution of the linear system
By = a which is given by y = (1,0, O)T. O

Proof of Relation (4). Combining relation (3) and the dimensions of the quantities o2, P,V
and C as well as N, the matrix B as well as the vector a become

0 -1 1 0 0
B = 0 1 0 1 and a = 0
-1 0 -1 0 -1

The vector z = (—1,1,1,—1)T is a solution of the homogeneous system Bz = 0, and the
vector y = (1,0,0,0) " is a solution of the inhomogeneous system By = a. Thus, relation
(4) follows from Corollary 6. O

Proof of Theorem 1. Combining the dimensions of the quantities considered in relation (5)
and the “Leverage Neutrality Assumption”, we obtain that the matrix B as well as the
vector a are given by

0 -1 1 0 0
0 1 0 1 0

B = 1 0 -1 0 and a = 1
2 -1 0 0

As the matrix B has full rank, i.e., rank(B) = 4, applying Corollary 5 yields
Ne=c - o/" PPVPCP,

for some constant ¢ > 0, where y = (y1,%2,%3,%4)  is the unique solution of the linear
system By = a which is given by y = (1/3,2/3,2/3,-2/3)". O

Proof of Corollary 2. Considering the dimensions of the quantities o, V, C, we obtain that
the matrix B as well as the vector a are given by

-2 1 0 0
B = 2 0 1 and a = 0
-1 -1 0 -1

As the matrix B has full rank, i.e., rank(B) = 3, applying Corollary 5 yields
N=c  V¥agl20%s,

for some constant ¢ > 0, where y = (y1,¥2,¥3) " is the unique solution of the linear system
By = a which is given by y = (1/3,2/3, —2/3)T. This shows (14). O
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Proof of Corollary 3. As explained before the statement of Corollary 3, the conditions (5)
and (15) are equivalent. Thus, it holds

|4
N3/2 .. 9BY

Since C' = SV/N, the corollary follows. O

Proof of Proposition 2. The proof is the same as that of Theorem 1 except that in the
present case the matrices B and a are given by

0 -1 10 0
0 1 0 1 0
B=1 oy o -1 0 and a=1"_,
2 -1 0 0 0

The unique solution y of the linear system By = a is y = 1/(1 + H) - (1/2,1,1,-1)T.
Applying Corollary (5) gives the desired result. O

C. Integer part of Brownian motion
With the notation from Section 4, we want to show that as T\, 0
Var (log(Pri7) — log(P;)) = eVT,

for some constant ¢ > 0. Recall that (log(Pt)) is given by

t>0
log(pf) = il’lt(Wt),

where (W,);>0 is a standard Brownian motion and int(z) denotes the integer closest to the
real number z, i.e., int(z) = sup{n € Z : n < x4 0.5}.

To present the idea in its simplest possible form, note that for fixed ¢ > 0, say t = 1 and
T small, it is straightforward to verify that

0 with probability of order 1,
(log(Prsr) — log(Pt))2 = (int(Wipr) — int(W3))> = {1 with probability of order T/2,
>1 with probability smaller than 7.

So that Var (log(P1r) — log(2;)) is of order T/2, as T\, 0, rather than of the usual order
T. In the above sketchy argument we used the fact that, for every ¢ > 0,

1
lim — P (min|Wt —n| < h) >,
h—0 h nez
for some constant ¢ > 0.
To furnish a more precise result, we make - contrary to our usual assumption Wy = 0 - the
assumption that the Brownian motion starts from a random variable W which is uniformly

distributed on [—1/2,1/2]. Then, we can formulate the following more quantitative result
for fixed ¢t = 0.
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Proposition 3. Assume that Wy is uniformly distributed on [—1/2,+1/2]. Then,

. . ﬂ- » »
hjrp 1{)1f \/; Var (log(Pr) — log(Py)) = 0.

—

Proof. Note that
Var (log(PT) — log(po)) =E [(log(PT) - 1og(p0)>2} :

where log(Fy) is in fact zero as we assumed that Wy ~ Uni(1/2,1/2). In the following
(Bt)i>0 denotes a standard Brownian motion starting at By = 0 such that Wy = By + W,
Then,

0.5

E ((log(PT) - log(Po))Q) = / E ((int(BT + x))2) dx

—-0.5

0.5 oo . .
% —1 % + 1
:/ > 12<P(Z2—x§BT§ Z; —x>

0.5 =1

() o (20 )

cesn (<020 e (- 12))
+ (20 +2)@ (i}}}) +(20-2)® (i;;) e (\/ZT»
= 2:<1+2§eXp(£p>>4ii@<\/iT)

We now use that fact for x — oo, ®(—z) ~ ¢(x)/x, where ¢(x) = exp(—z2/2)/V/2r is
the probability density function of the standard normal distribution (we thank Friedrich
Hubalek for pointing this out to us). It follows that for small T

D T T i?
C\TUT o P\ "o )0
which concludes the proof. O
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