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Abstract

This paper evaluates and compares the ability of alternative option-implied volatil-
ity measures to forecast the monthly realized volatility of crude-oil returns. We find
that a corridor implied volatility measure that aggregates information from a narrow
range of option contracts consistently outperforms forecasts obtained by the popular
Black-Scholes and model-free volatility expectations, as well as those generated by a
high-frequency realized volatility model. In particular, this measure ranks favorably
in all regression-based tests, delivers the lowest forecast errors under either symmetric
or asymmetric loss functions, and generates economically significant gains in volatility
timing exercises. Our results also show that the CBOE’s “o0il-VIX” (OVX) index per-
forms poorly, as it routinely produces the least accurate forecasts.
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1 Introduction

In economic terms, crude-oil is the most important traded commodity. Unsurprisingly, a wide
range of economic agents, from individual investors to policy makers, closely monitor its price
and routinely attempt to make predictions about the future. Unlike standard financial assets,
however, one salient feature of crude-oil prices is that they can experience dramatic shifts for
reasons that are largely unrelated to global macroeconomic conditions, such as OPEC policy
changes or geopolitical instability in oil-producing regions. It is therefore tempting to expand
the information set of standard time-series models, which rely exclusively on the record of
historical prices, with measures that have “forward-looking” features by construction.
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Traded options appear as a natural candidate for this task. In theory, market efficiency
dictates that their prices should instantaneously adjust to any piece of relevant information
pertaining to their expiration horizon.! In practice, option-implied measures have indeed
shown remarkable forecast performance across a variety of markets and asset classes. As
evidenced by the voluminous literature, this is particularly true for volatility forecasting.?-3

However, given a panel of option prices, different measures of expected, risk-neutral,
return variation can be explored, so empirical evidence contrasting the various alternatives
are needed in order to proceed. In this paper, we attempt to fill this gap for the case of crude-
oil volatility. We do so by comparing the forecast performance, using both statistical and
economic criteria, of various popular alternatives, such as the Black-Scholes at-the-money
implied volatility (ATMIV), the so-called model-free implied volatility (MFIV) and CBOE’s
Crude Oil Volatility Index (OVX). More importantly, we investigate, for the first time in the
commodities literature, corridor implied volatility measures introduced by Carr and Madan
(1998) and Andersen and Bondarenko (2007) and obtain very promising results.

The main strand of the crude-oil volatility forecasting literature focuses on the perfor-
mance of models belonging either to the GARCH family, introduced by Bollerslev (1986),
or those based on realized variance measures, notably the HAR model of Corsi (2009) and
its extensions. Sadorsky (2006) finds that simple GARCH models perform better than more
complicated alternatives such as bivariate GARCH, vector autoregression and state-space
models. Kang, Kang, and Yoon (2009) compare various GARCH models with a particu-
lar focus on those that exhibit long memory. More recently, Sévi (2014) and Prokopczuk,
Symeonidis, and Wese (2016) utilize high frequency returns and compare the original HAR
model of Corsi (2009) with its variants that separately model the continuous and discontin-
uous variance components. Interestingly, both studies find that jump decompositions do not
outperform the simple HAR model in terms of out-of-sample forecast accuracy.

Commencing with Latané and Rendleman (1976), there is a large collection of papers
examining the information content of option-implied volatilities (OIV) for the purpose of
forecasting, with a handful of papers focusing on crude-oil. Naturally, early studies focused
on producing forecasts using information in the ATMIV. Day and Lewis (1993) were the first
to examine this measure and found that ATMIV-based forecasts encompass those generated
by GARCH and EGARCH models. Szakmary, Ors, Kim, and Davidson (2003) also com-
pared ATMIV with GARCH-based forecasts for 35 different assets, including crude-oil, and
found that ATMIV was superior in their forecasting comparisons. Similarly, Martens and
Zein (2004) find that option-implied forecasts rank favourably against GARCH alternatives,
although the best models are those that combine both option-implied and high-frequency
return information. Agnolucci (2009) also favours models that combine GARCH and option-
implied forecasts, however the former appear to be more accurate than the latter in individual
forecast comparisons.

While the early literature has examined the information content of Black-Scholes implied

Melick and Thomas (1997) provide an insightful study of how the option-implied probability distributions
of oil prices reflected market commentary during the first Gulf War.

2See Christoffersen, Jacobs, and Chang (2013) for a recent review of literature concerning the forecasting
performance of various option-implied measures, including volatility.

3 Although, strictly speaking, this paper focuses on forecasting variance, we use the terms “volatility” and
“variance” interchangeably henceforth.



volatilities calculated from different strikes and maturities (Trippi (1977); Chiras and Man-
aster (1978), Beckers (1981); Gemmill (1986); Fung, Lie, and Moreno (1990)) the consensus
is that the simple ATMIV of a contract expiring as close to the forecast horizon appears to
provide the most reliable results. More recently, ATMIV forecasts have been compared to
the so-called model-free implied volatility (MFIV) that has a number of appealing theoretical
properties.* The empirical evidence, however, has produced inconclusive results. Jiang and
Tian (2005) study the S&P500 index and find MFIV to be more informative than ATMIV,
while the opposite conclusion is reached by Andersen and Bondarenko (2007) for the same
underlying asset. Taylor, Yadav, and Zhang (2010) examine individual U.S. stocks and
report that ATMIV provides more accurate volatility forecasts than its model-free counter-
part. Finally, in their study of three energy markets, Prokopczuk and Simen (2014) find that
MFIV is more informative than ATMIV in predicting either crude-oil, heating oil or natural
gas volatility. They also find that a simple adjustment for volatility risk-premia enhances
the forecast performance of all option-implied measures.

When the task at hand is to predict future return variation MFIV is not without short-
comings. This is mainly for two reasons. First, some options included in the calculation of
this measure (such as deep out-of-the money puts for the case of equities) tend to be very
sensitive to volatility risk-premia fluctuations. This can introduce substantial variation in
the option-implied measures that is largely unrelated to the forecast target, i.e. integrated
variance. Second, calculating MFIV requires that market prices of options with extreme
strikes are observed. In practice, this means that either some extrapolation scheme must
be implemented, or that options beyond a certain strike range should be excluded from the
calculation.

The most popular estimates of MFIV measures are the volatility indices produced and
published by CBOE, such as the VIX index for the case of the S&P500 and the OVX for
the case of crude-oil. CBOE’s implementation algorithm, which is common for both the
VIX and OVX indices, adopts a liquidity-based cut-off point that determines the range of
options to be included in the MFIV measure calculation. The choice of this algorithm by
CBOE has recently attracted some criticism. Andersen and Bondarenko (2007) were the first
to note that the VIX is in fact an ex ante measure of corridor integrated variance, rather
than integrated variance. In two comprehensive empirical studies, Andersen, Bondarenko,
and Gonzalez-Perez (2015) and Andersen, Fusari, and Todorov (2017) use high-frequency
option data and report that the VIX calculation method introduces systematic biases to the
extracted measure, including artificial jumps, which become particularly pronounced during
periods of market stress. From a different viewpoint, Griffin and Shams (2018) put forth
evidence pointing towards market manipulation of the VIX futures market. In essence, this
is facilitated by CBOE’s adopted cut-off algorithm, as speculators can temporarily boost
the liquidity of deep out-of-the money S&P 500 options, increasing the level of the VIX just
before the settlement price for VIX futures is determined. Given that the same method-
ology is used to calculate both the VIX and OVX indices, all the above raise reasonable
concerns regarding the informational efficiency of OVX-based forecasts. In addition, since

4As shown in Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999) and Britten-Jones
and Neuberger (2000), MFIV is a, risk-neutral, ex ante expectation of future return variation and, unlike the
Black-Scholes implied volatilities, can be directly obtained from observed option price data without assuming
a particular option pricing model.



the popularity of volatility indices has recently become widespread in the finance industry,
a comparison between the OVX and other option-implied alternatives appears to be long
overdue.

Our work builds on the study of Andersen and Bondarenko (2007) who propose an alter-
native measure of ex ante risk-neutral expectation of volatility, the so-called corridor implied
volatility (CIV). Similar to the MFIV, and unlike the Black-Scholes model, this measure
aggregates volatility information from several options and does not depend on a particular
option pricing model. However, the extracted measure is not a risk-neutral expectation of
integrated variance but corridor integrated variance, i.e., return variation accumulated only
when the asset price lies within a corridor of two pre-specified price levels. The advantage
of this approach is that one can select a corridor width that, while containing a wide-range
of option prices, excludes those with extreme strikes, avoiding both price extrapolations and
liquidity-driven cut-off points that may influence the reliability of the extracted measure.

The contribution of this paper is twofold. First, we examine the forecast performance
of CIV measures vis-a-vis a collection of competing alternatives, including HAR, MFIV,
OVX and ATMIV forecasts, for the case of crude-oil. Our paper builds, but significantly
expands, on the work done by Prokopczuk and Simen (2014) who compare the performance
of MFIV and ATMIV forecasts. Besides considering additional option-implied measures, our
study also includes models that utilize high-frequency return information, while forecasts are
ranked using both statistical and economic criteria. Second, we provide the first empirical
evaluation of the OVX index, used in the forecasting study of Haugom, Langeland, Molnar,
and Westgaard (2014), against other option-implied alternatives.

Our empirical results provide insights on a number of issues. We find that a particu-
lar CIV measure, that uses a relatively narrow range of option prices, consistently ranks
favorably against all other competing measures using a variety of statistical and economic
criteria. In particular, model forecasts that utilize this measure achieve the highest R? in
Minzer-Zarnowitz regressions, remain significant in encompassing regression tests, and de-
liver the most accurate forecasts for under both the symmetric and asymmetric loss functions
we consider. Moreover, volatility timing exercises show that utilizing this measure results
in significant economic gains. With respect to the performance of the CBOE’s OVX index,
we find clear evidence that this measure is problematic, as it is routinely outperformed by
all other option-based alternatives. Finally, in contrast to Prokopczuk and Simen (2014),
we find that ATMIV is more informative about future crude-oil volatility compared to the
MFIV measure®.

The structure of the paper is as follows. Section 2 discusses various measures of volatility
that we use in this study. Section 3 describes the dataset and the details of our methodology.
The empirical results are presented in Section 4. Robustness checks can be found in Section 5.
Section 6 concludes.

>The same result is also reported in Andersen and Bondarenko (2007) for the case of the S&P 500, and
Taylor et al. (2010), for the case of individual stocks.



2 Volatility Measures

In this section we describe the alternative volatility measures we use to construct forecasts.
However, before doing so, we state the assumptions we make about asset price dynamics and
outline the relevant theory on which all our volatility measures are based.

2.1 The Dynamics of Futures Prices

Assume that over the period t € [0, T] investors can continuously trade in a frictionless and
arbitrage-free market. In the filtered probability space (€2, F,P; Fycpor)), the futures price of
a contract expiring at time 0 < 7" < T, denoted as Fj, evolves according to the following
general diffusion,

dF,
?t = /Ltdt + Utth s (1)

t
where W, is a Wiener process. The drift y; and volatility o; can change across time according
to the filtration IF,.

The constraint imposed on the futures price dynamics is that the stochastic process
is a semimartingale without jumps in prices®. It is worth noting that the only restriction
imposed on the volatility dynamics is that oy is a strictly positive (cadlag) stochastic process,
so volatility can exhibit jumps.

According to these price dynamics, the total variation of logarithmic futures price changes
from ¢t = 0 to T is given by the integrated variance (IVAR), defined as,

T
IVARy 1 = / ordt (2)
0

Although total return variation is the forecast target of this paper, we also utilize the
concept of corridor integrated variance (CIVAR), i.e., variance accumulated only when the
underlying asset (F}; in our case) lies between two “barrier” price levels By and Bs. Defining
the indicator function I; that takes the value of 1 if By < F; < By and 0 otherwise, CIVAR
is given by the following expression,

T
CIVARQT = / O'?It<Bl, Bg)dt (3)
0

Obviously, when the corridor defined by B; and Bj is sufficiently wide to contain all levels
that the futures price can reach with positive probability under P, CIVAR will be equal to
IVAR. In other words, IVAR can be seen as a special case of CIVAR, since for B; = 0 and
By = oo the definitions of the two measures coincide.

6Price jumps are excluded from this representation because the OIV expectations, discussed later in the
paper, will be biased when prices are subject to discontinuous movements. Jiang and Tian (2005) and Carr
and Wu (2009) note that the bias will not be sizeable for small or moderate jumps, although large jumps
could have a significant impact, as argued by Carr, Lee, and Wu (2012).



2.2 Volatility Expectations From Option Prices

Option markets may be informative about future volatility, since observed prices can be
utilized to extract forward-looking expectations of the aforementioned volatility measures.
In particular, suppose European plain vanilla options, written on an underlying futures
contract F; and expiring at time ¢ = T, trade for a continuum of strike prices K. As
shown in Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones and Neuberger
(2000), ez ante risk-neutral expectations of the future integrated variance can be obtained
by calculating the value of a static position in a portfolio of European options. Specifically,
the expected integrated variance from time ¢ = 0 to time 7', under the risk-neutral measure
Q, can be calculated from:

g * Mo (K
MFIVyr = E2[1V ARy,] :E@[ / afdt} ot [T

where My 7(K) is the price of a European out-of-the money option (i.e., either put or call),
with strike price K and maturity 7. Since this expectation does not depend on a particular
option pricing model (such as the Black-Scholes model for example), it is referred to as Model
Free Implied Variance (MFIV).

Similarly, as shown in Carr and Madan (1998) and Andersen and Bondarenko (2007),
Corridor Implied Variance (CIV), i.e. the risk-neutral expectation of future integrated cor-
ridor variance, can be obtained by calculating the value of a static position in European
options with strikes ranging from B; to Bs,

T B2 Moy (K
ClVyr = E© [CIVARO,T} - E@{ / af[t(Bl,Bg)dt] = 2¢'T / %d}(. (5)
0 B1

2.3 CBOE Crude Oil Volatility Index (OVX)

The last option-based measure we consider is the Crude Oil ETF Volatility Index (OVX),
also known as the “Oil VIX”. The OVX, which is produced and disseminated by the CBOE,
intends to measure the market’s (risk-neutral) expectation of crude-oil price volatility over
the next month. It is defined as the square root of MFIV, given in Equation 4. The data
underlying the OVX computation are options written on the United States Oil Fund (USO),
an ETF that is designed to track the price of West Texas Intermediate light sweet crude-oil.

For the construction of the OVX the CBOE adopts exactly the same methodology as
the one employed for the popular S&P 500 VIX index. Notably, CBOE applies a liquidity
criterion to determine the range of option contracts included in the calculation of the index.
In particular, moving from high (low) strike, out-of-the-money, put (call) options towards
those with lower (higher) strikes, once two contracts with consecutive strike prices have zero
bid prices a cut-off point is applied and no further contracts are considered. Therefore, both
the VIX and the OVX are, in reality, CIV measures, with a corridor width determined by
market liquidity.



2.4 Realized Variance

While our forecast target, i.e. integrated variance, is inherently latent, accurate ex post
IVAR estimates can be obtained using high-frequency price observations. In particular,
Barndorff-Nielsen and Shephard (2002), Meddahi (2002) and Andersen, Bollerslev, Diebold,
and Labys (2003) show that summing squared intraday returns leads to an estimator which
converges in probability to IVAR and is referred to as realized variance (RV). To calculate
RV, suppose on day t there are M + 1 equally spaced intraday price observations at times
ti,i=0,..., M. We will also assume the interval between the observations is 1/M, i.e., the
length of a day is standardised to unity. If the log price at time ¢; is p;,, then the intraday
return between times t,_; and t; is 1y, = p;, — py,_,- It is then straightforward to calculate
RV on day ¢ as,

M
RV, =) 1.
=1

Theoretically, RV becomes more accurate as M increases, i.e., as more intraday prices are
observed over shorter and shorter intervals. However, if prices are observed over very short
intervals, RV will be contaminated by microstructure noise, which causes an upward bias
(Andersen, Bollerslev, Diebold, and Labys, 2000).” A common remedy is to use prices ob-
served over a relatively coarse set of intraday times so that the effects of microstructure noise
are mitigated. Typically, prices recorded over 5-min intervals are used, despite transactions
occurring at a much higher frequency. Although using a coarse intraday sampling interval
solves the microstructure noise problem, it results in information being discarded. In order
to recover some of this information, ensuring our RVs are estimated with as much accuracy
as possible, and to continue avoiding microstructure noise by using a coarse sampling inter-
val, we use sub-sampled RVs (Zhang, Mykland, and At-Sahalia, 2005) which are calculated
as follows,®

7 A MET WL
th - Z (M/A) _ 1 Z rA,ti + Z TtA(i—1)+1 ’ (6)
=2 =1

where 7a 4, = ZJ'A:1 Ttiroy = Ptivia — Pty is the A-period intraday return between times
t;—1 and t;_14a, and M and A are chosen such that M/A is an integer.

"In the context of measuring IVAR, microstructure noise refers to the difference between observed trans-
action prices and efficient, true prices. Examples of factors that contribute to microstructure noise include:
transactions tending to “bounce” between the bid and ask prices, i.e., transactions must occur at either the
bid or ask price, neither of which may be the efficient, true price; and price discreteness, i.e., the minimum
price change is one cent but the efficient, true price may change by fractions of a cent.

8 Alternative microstructure-robust estimators of IVAR, which use prices observed at higher frequencies,
include the kernel realized variance introduced by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)
and the pre-averaged realized variance developed by Podolskij and Vetter (2009) and Jacod, Li, Mykland,
Podolskij, and Vetter (2009). However, in a volatility forecasting context, Liu, Patton, and Sheppard (2015)
show that these estimators lead to marginal improvements over realized variance estimated using a 5-min
frequency.



3 Methodology

3.1 Data and Sample Construction

Our main dataset consists of options and high-frequency prices for the WTI Light Sweet
Crude Oil futures, which currently trade at CME, the world’s most liquid commodity deriva-
tives market. Our options and futures datasets start in January 1996 and end in April 2016.

3.1.1 Option Data

Option contracts are written on futures contracts for physical delivery of light sweet crude-
oil. In particular, the underlying asset is the futures contract whose delivery date is three
business days after the expiration of the option. These contracts have American-style exercise
and are settled in cash. Our option data consist of daily settlement prices, which are recorded
at 14:30 ET each day.

Our empirical study focuses on monthly variance forecasts. Along these lines, we study
options that have approximately 22 trading days to expiration.” Throughout the sample,
the day that we collect option prices is never before the maturity date of the previous option
chain we studied, i.e. all our option-based forecasts are non-overlapping.

We make several adjustments to the raw data before we proceed with the estimation
of the OIV measures. As the latter require price data on European options rather than
American ones for their calculation, we attempt to alleviate this problem in two ways. First,
we eliminate all in-the-money options and only keep out-of-the money options, for which
the early exercise premium is significantly lower and, for the case of deep-out-of the money
options, almost quantitatively negligible. Second, we estimate the early exercise premium
of each option using the Barone-Adesi and Whaley (1987) American option pricing formula
and subsequently calculate the price of their European-style counterparts.

Finally, in order to guard against recording errors and other market microstructure effects,
we eliminate options with a price less than $0.01 and filter all call/put prices that violate
standard arbitrage bounds. An overview of our final option data sample is provided in Table
1. It is noteworthy that the number of traded option contracts has increased substantially
over the last few years.

3.1.2 High-Frequency Futures Data

Our high-frequency data comprise of transaction prices recorded at 30-sec intervals. Until
June 2006, futures were traded between 09:00 and 14:30 ET using an open outcry system
in a trading pit, resulting in 661 price observations per day. Subsequently, they have been
traded between 18:00 and 17:00 ET the following day on the electronic GLOBEX platform,
resulting in 2,761 price observations per day.

To construct RV we use 5-min intraday returns. This frequency is commonly used in the
empirical literature, e.g., see Andersen, Bollerslev, Diebold, and Labys (2001), Andersen et al.

9Tf for a given month options with an expiration horizon of 22 trading days are not available, we shorten
the target horizon by one or (if needed) two days and scale the resulting OTV such that its expiration horizon
corresponds to 22 days. For example, if the expiration horizon of the OIV was N trading days, we scale the
OIV by multiplying it by 22/N.



(2003) and Liu et al. (2015) among others, as it is deemed to provide an appropriate trade-off
between the objective of incorporating as much information as possible from intraday prices
and the necessity to avoid contamination from microstructure noise. Hence, in applying our
sub-sampled RV estimator in Equation (6) we set M = 660 or M = 2760, depending on
which dates the data are from, and A = 10.

3.1.3 Construction of Implied Volatility Measures

The computation of the MFIV and CIV measures requires the existence of options trading
for a continuum of strike prices, an assumption which is of course not satisfied in practice. In
order to address this, we first estimate a risk-neutral distribution using the prices of observed
options for each relevant date, which enables us to subsequently generate option prices for
arbitrary strike prices. Our preferred risk-neutral distribution is the flexible Generalized
Beta Distribution of the second kind (GB2) which, as discussed in Taylor (2005), has a
number of appealing properties.!’

The calculation of the CIV measures also requires a selection of the relevant corridor
width, i.e., the barrier price levels B; and By. We consider four CIV measures in total, with
the barriers determined by evaluating the quantile function of the risk-neutral distribution
Fg. Specifically, defining B; = Fél(p) and By = Fél(l —p), the CIV1 to CIV4 measures are
obtained by first setting p = 0.45,0.35,0.25,0.10, respectively, and subsequently evaluating
Equation (5).

Figure 1 plots the four CIV measures together with the MFIV estimates during our full
sample (1996-2016) period. As expected, all measures exhibit a strong degree of covariation,
although narrow CIV measures appear more stable than their wide corridor counterparts.
As shown in Table 2, all CIV measures are highly correlated with both MFIV and ATMIV.
The autocorrelation patterns for 1, 6, and 12 lags also reveal that CIV measures become
less persistent as the width of the corridor widens. As expected, the unconditional moments
of the CIV measures approach those of the full MFIV as more options are included in the
calculations, while for the case of CIV4 the two measures have almost identical properties.

3.2 Volatility Forecast Construction

All our variance forecasts are non-overlapping and correspond to a monthly horizon (22
trading days). We consider two samples of different length, one that includes the OVX
and one that does not. If we exclude the OVX from the set of OIVs evaluated, then our
sample starts in January 1996 and ends in April 2016. We refer to this as our full sample.
Conversely, if we include the OVX, then our sample starts in May 2007, when the OVX is
first reported, and ends in April 2016. We refer to this as our OVX sample. Our full and
OVX samples consist of 244 and 108 non-overlapping monthly observations, respectively.!!

Our OIVs provide ex ante expectations of monthly variance, hence they form stand-alone
forecasts of variance. In contrast, RV is an ex post estimator of variance. Although we could

0The GB2 distribution, firstly proposed by Bookstaber and McDonald (1987), allows for general levels of
skewness and kurtosis, while European option prices can be computed in closed-form.

Note, the number of non-overlapping monthly observations stated here are for the combined sample of
OIVs and RVs and may differ to the number reported in Table 1, which referred to the sample of OIVs only.



use RV in a random-walk model, i.e., use the lagged RV as a stand-alone forecast, there
is a considerable literature demonstrating the superiority of forecasts generated from time-
series models of RV (e.g., Corsi (2009), Patton and Sheppard (2015), Bollerslev, Patton,
and Quaedvlieg (2016) and Bollerslev, Hood, Huss, and Pedersen (2018)). We use the

heterogeneous autoregressive model (HAR) of Corsi (2009) to generate RV-based forecasts,
RVii1 4490 = Bo + BiRViy + BoRVi_ay + B3 RVi_914 + €422,

where, RV, , = > ._. Ws. While various extensions of the HAR model could be considered,
our study relies exclusively on the baseline version. This is because, as shown in the compre-
hensive studies of Sévi (2014) and Prokopczuk et al. (2016), sophisticated HAR extensions
do not outperform the simple HAR benchmark!?. We estimate the HAR model parame-
ters using a rolling window of 60 monthly observations. Forecast evaluation is conducted
out-of-sample. Thus, in the following sections, reference to our full sample will be to the
184 out-of-sample observations. Similarly, reference to our OVX sample will be to the 48
out-of-sample observations.

4 Empirical Results

We examine the forecast accuracy of competing forecasts using several techniques. Firstly,
we evaluate the information content of each of our forecasts using Mincer-Zarnowitz regres-
sions. Secondly, we make comparisons between the information content of our forecasts
using encompassing regressions. Thirdly, we analyse the prediction errors of our forecasts
using statistical loss functions. Lastly, we assess the economic value of our forecasts by
implementing a volatility timing exercise.

4.1 Mincer-Zarnowitz Regressions

Our first evaluation procedure assesses the information content of our HAR-based forecasts
and the OIVs. This is done by running Mincer-Zarnowitz regressions (Mincer and Zarnowitz,
1969), whereby we regress our variance target, the RV calculated over each out-of-sample
monthly forecast horizon, against the competing forecasts. More precisely, for each forecast
1, we run the following regression,

RVii10422 = Bo + Biflipo0 + €1r22, (7)

where f{,, o, is the forecast from model 7 using information available up until day ¢ for the
variance between days t+ 1 and £ 4 22. The information content of each forecast is measured
by the R? of this regression.

In Table 3 we present results for the Mincer-Zarnowitz regressions. In Panel A we report
results for the full sample, whilst in Panel B we summarize results for the OVX sample. The
values of R? suggest the following. Firstly, OIVs have markedly higher information content.
Forecasts based solely on RV, i.e., the HAR forecasts, result in the lowest R? values, whilst

12Experimentation with alternative HAR models corroborated this finding for our sample. Since our
results replicate those of Sévi (2014) and Prokopczuk et al. (2016) we do not report them to conserve space.

10



the R? for the OIV forecasts are larger by 5-7 percentage points for the full sample and 35-37
percentage points for the OVX sample. Secondly, of the OIVs, CIV1 appears to have the
highest information content. The CIV1 forecasts result in the largest R%s amongst all of the
OIVs in both the full and OVX samples.

It should also be noted that the parameter values differ substantially between the fore-
casts. This is as expected and a consequence of the differing levels of bias in the forecasts.
If a forecast is unbiased, then we would expect Sy = 0 and B; = 1. Whilst all of the Sy
parameters are close to zero, there are large differences between the values of ;. Overall,
the MFIV, ATMIV and OVX are upwardly biased, consistent with the presence of a variance
risk-premium, whilst CIV1, CIV2 and CIV3 are downwardly biased, reflecting the fact that
they provide risk-neutral expectations for CIVAR. The observed biases are consistent with
the mean values for the OIVs reported in Table 2.

4.2 Encompassing Regressions

Our second evaluation procedure assesses the relative performance of the alternative fore-
casts by running encompassing regressions. We make comparisons between two forecasts by
running the following bivariate regressions,

RViq1422 = Bo + 51ff,t+22 + /82th+22 + €400 (8)

We can determine whether the forecast from one model encompasses the other by exam-
ining the significance of the individual regression parameters. If the information contained
in the forecast from model i is subsumed by the information in the forecast from model j,
then we expect 51 to be insignificant and [y to be significant. If this occurs, then we say
that the forecast from model i encompasses the forecast from model j and vice versa.

We make the following comparisons using our encompassing regressions: (i) we compare
the information content of the HAR model forecasts, which are based on RV alone, against
our OIVs to examine whether the forward-looking information in our OIVs is useful vis-a-vis
the backward-looking information contained in RV; and (ii) we compare the information
content of our alternative OIVs to examine which of our OIVs contains the most useful
forecasting information.

The results of the encompassing regressions are summarized in Table 4. Results for
comparisons between the OIVs and the HAR forecasts are summarized in Panels A and B
for the full and OVX samples, respectively. Panel A shows that CIV1, CIV2 and CIV3
encompass the HAR forecasts, at the 1% level. In the remaining encompassing regressions,
although the parameters on MFIV, ATMIV and CIV4 are significant at the 1% level, the
parameters on HAR are also significant; albeit only at the 10% level for the encompassing
regressions involving ATMIV and CIV4. Thus, although they do not encompass the HAR
forecasts, there appears to be incremental information in the MFIV, ATMIV and CIV4 OIVs
which is not captured by RV. In Panel B, all OIVs encompass the HAR forecasts, at the 1%
level.

Results for comparisons between the OIVs are summarized in Panels C and D for the full
and OVX samples, respectively. The results in Panels C and D provide more refined insights

13This is the most common way to implement encompassing regressions.
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regarding the relative information content of the OIVs. Focusing on the full sample results
in Panel C, it can be seen that the MFIV variances are encompassed by all the other OIVs,
at the 5% level. This result is consistent with the arguments of Andersen and Bondarenko
(2007) that illiquid options with strike prices in the tails of the risk-neutral distribution
(RND) and the requirement to extrapolate the tails of the RND reduce the accuracy of
the MFIV forecast. Hence, despite its inferior theoretical foundations, the ATMIV is able
to provide superior forecasts to the MFIV variance.!* Comparisons of the ATMIV and
CIVs show that ATMIV is encompassed by CIV1, CIV2 and CIV3, at the 5% level. Thus,
there is a trade-off between excluding imprecisely measured information from the tails of
the RND and limiting the information used to construct OIVs to that contained in the at-
the-money (ATM) option. It appears that CIV1, CIV2 and CIV3 make a trade-off which
enables them to harness the information contained in the liquid strikes that straddle the
ATM contract without being contaminated by measurement errors in the tails of the RND.
The encompassing regressions involving CIV1, CIV2, CIV3 and CIV4 show that CIV4 is
encompassed by CIV1, CIV2 and CIV3, at the 5% level. This is indicative of the corridor
being too wide for CIV4 such that it too is contaminated by noise in the tails of the RND.

The results in Panel D are much weaker than those in Panel C and likely reflect the
smaller size of the OVX sample. Nonetheless, although often significant at the 10% level
only, the results show that CIV1 encompasses all other OIVs.

Thus, the results from the encompassing regressions support those from the Mincer-
Zarnowitz regressions. The information content of the OIVs appears to be superior relative
to those based on RV alone, i.e., the HAR forecasts. Further, of the OIVs, the CIV1 appears
to be informationally superior.

4.3 Bias-corrected and Augmented Models

Unsurprising, our previous results showed that our OIV forecasts are biased. By comparing
the adjusted R%s of the encompassing regressions in Table 4 to the R%s of the Mincer-
Zarnowitz regressions in Table 3, we can also see that a linear combination of RVs and OIVs
leads to a higher information content than can be attained with any individual forecast.
Therefore, we introduce two additional sets of forecasting models. Firstly, instead of using
our OIVs as stand-alone forecasts, we use predicted values from univariate regressions of
RVit1,4420 on each of our OIVs. Intuitively, the objective of this set of models is to remove
the bias from the OIVs. Hence, we refer to the predicted values from these models as bias-
corrected option-implied forecasts. We use BC-MFIV to denote the bias-corrected MFIV
forecast, BC-ATMIV to denote the bias-corrected ATMIV forecast and so on.

Secondly, we augment the HAR model by adding each of the OIVs. Thus, the specification
of our augmented HAR models is,

RVt 4400 = Bo + BiRVyy + BoRVi_ay + BsRVi—o14 + BaOIV; 1199 + €1499,

where OIV, ;199 is an OIV calculated on day ¢ for return variation between days ¢ + 1 and
t + 22. We use HAR-MFIV to denote the forecasts from an HAR model augmented with
MFIV, HAR-ATMIV the forecasts from an HAR model augmented with ATMIV and so on.

4This is consistent with the evidence in Taylor et al. (2010) for individual stock variances.
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Therefore, in total, we examine thirteen competing forecasts. Our benchmark is the HAR
model, since this uses information from RV exclusively. We then have six bias-corrected
option-implied forecasts and six augmented HAR forecasts.

4.4 Forecast Evaluation using Statistical Criteria

Although Mincer-Zarnowitz and encompassing regressions provide insights into the informa-
tion content of our forecasts, they do not provide much information about their precision.
From the perspective of economic agents, quantifying forecast accuracy is of paramount
importance. Thus, we now turn to assessing prediction errors by means of statistical loss
functions.

4.4.1 Statistical Loss Functions

To evaluate the accuracy of our forecasts, we use a symmetric, the mean squared error
(MSE), and an asymmetric, the quasi-likelihood (QLIKE), loss function. A lower MSE
and/or QLIKE corresponds to smaller prediction errors. These loss functions were chosen
because they are commonly employed in the volatility forecasting literature and, as shown
in Patton (2011), they are robust to measurement error in the IVAR proxy. More pre-
cisely, using the MSE and QLIKE loss functions ensures that the ranking of two forecasts in
terms of expected loss is preserved even when the true integrated variance is replaced by a
conditionally unbiased, but imperfect, proxy.'®
For forecast i, the MSE loss function we use is defined as,

|T/22]-1
1 i 2
LMSE,i = LT/QQJ 1 85_1 (f22(s—1)7(22(8—1))+22 - RV22(371)+1,22(571)+22) )

where |z] rounds z to an integer that is less than or equal to x. Similarly, the QLIKE loss
function we use is defined as,

|T/22) -1

L i — Z f ) f2i2(sfl),22(sfl)+22
QLIKE,i LT/22 22(s—1),22(s—1)+22 RVao(s—1)41,22(s—1)422

In order to test for significant differences between the MSE and QLIKE of competing forecasts
we use Diebold-Mariano tests (Diebold and Mariano, 1995) with Newey-West (Newey and
West, 1987) standard errors.

4.4.2 Forecast Evaluation Results

The out-of-sample MSEs and QLIKEs of our competing forecasts are presented in Table
5. Panel A reports results for the full sample whilst Panel B summarizes results for the
OVX sample. In each Panel we also report the results of Diebold-Mariano tests in which

15Tt should also be noted that while measurement errors in the IVAR proxy can affect statistical inference,
proxies constructed using high-frequency return data (such as our RV measure) offer large gains in power
and improvements in finite-sample size, as shown in Patton and Sheppard (2009).
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the HAR forecasts are used as a benchmark. Therefore, any significance reported indicates
the MSE or QLIKE is significantly different to that of the HAR forecasts. In Panel B, to
assess the accuracy of forecasts which incorporate information from the OVX, we additionally
report results from Diebold-Mariano tests where the HAR-OVX forecasts are treated as the
benchmark.!

From Panel A it can be seen that, overall, the bias-corrected forecasts outperform the
corresponding HAR forecasts according to the MSE. The BC-CIV1 forecasts result in the
lowest MSE and, of the HAR-based forecasts, the lowest MSE is associated with HAR-
CIV1. However, Diebold-Mariano tests show that no forecast results in an MSE which is
significantly lower than that generated by the HAR forecasts.

The QLIKE results in Panel A differ slightly to those for the MSE. Under this loss
function the HAR-based forecasts outperform the bias-corrected forecasts, with the most
accurate forecasts being HAR-CIV1. However, in contrast to the MSE results, we find that
the QLIKEs for HAR-CIV1, HAR-CIV2, HAR-CIV3 and HAR-ATMIV are all significantly
lower than for HAR at the 5% level. The QLIKEs for HAR-MFIV and HAR-CIV4 are also
significantly lower at the 10% level. The fact that we find significant differences when using
the QLIKE loss function is most likely associated with the ability of this loss function to
more accurately discriminate between competing variance forecasts (Patton and Sheppard,
2009). Overall, the results in Panel A suggest that using information in CIV1 leads to the
most accurate variance forecasts.

The results in Panel B are analogous to those in Panel A and support our overall conclu-
sion that incorporating information from CIV1 leads to the most accurate forecasts. Impor-
tantly, it can also be seen that forecasts based on OVX perform poorly. When the HAR-OVX
forecasts are used as a benchmark, it can be seen that nearly all non-OVX option-implied
forecasts produce significantly lower QLIKEs and MSEs at the 5% level.!” Although the
BC-OVX forecasts result in an MSE that is significantly lower than that for the HAR-OVX
forecasts, of the bias-corrected forecasts, BC-OVX result in the largest MSE.

In summary, the results show that prediction errors can be minimized when CIV1 is em-
ployed. The results are consistent with those from the Mincer-Zarnowitz and encompassing
regressions, which showed that the OIVs were informationally superior to forecasts based
on RV and that CIV1 had a higher information content relative to other OIVs. Our results
also suggest that forecasts based on the OVX perform significantly worse than those based
on our alternative OIVs. Thus, the results suggest there is value in constructing our OIVs
directly from option prices rather than relying on the CBOE’s methodology.

4.5 Forecast Evaluation using Economic Criteria

Although evaluating variance forecasts with MSE and QLIKE is common, they are statistical
loss functions. It is not clear how minimising the MSE and/or QLIKE translates into eco-

I6Between the OVX-based forecasts, the BC-OVX forecasts result in a lower MSE, whilst the HAR-OVX
forecasts generate a lower QLIKE. However, to avoid unnecessary complexity, we only use the HAR and
HAR-OVX forecasts as benchmarks in our Diebold-Mariano tests reported in Table 5. This choice has no
impact on our conclusions.

1"The BC-CIV4 (HAR-CIV1) forecasts generate a QLIKE (MSE) that is significantly lower than the
QLIKE (MSE) for the HAR-OVX forecasts at the 10% level only.
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nomic gains for the forecaster. Therefore, in order to ascertain whether the improved forecast
accuracy we observe leads to economic gains, we perform a volatility timing exercise.

We consider an agent whose investment opportunity set consists of the WTI crude-oil
futures and a risk-free asset and assume the agent’s objective is to maximise the utility of a
portfolio consisting of these two assets. We follow the set-up of Bollerslev et al. (2018) and
assume Sharpe ratios are constant and that a quadratic utility function provides an accurate
approximation to investors’ true utility functions. With these assumptions, the following
function describes investors’ utility per unit wealth (UoW),

U(w
UoW, = IEVt) = (thR\/Et(R‘/fs+1,t+22) - %wat(RV;f-&-l,t-i—ﬂ)) ) (9)
t

where W; is the investors wealth, w; is the proportion of the investors wealth held in crude-
oil futures, SR is the Sharpe ratio and v is the investors level of risk aversion.'® It can be
shown that constructing a portfolio to maximise expected utility is equivalent to forming a
portfolio with a specific volatility target, where the optimal proportion of wealth to invest
in crude-oil futures is,

_ SR/vy
VE(RVii1192)

The ratio in the numerator corresponds to the volatility target and the denominator is the
expected volatility. To operationalise the strategy, Fi(RVii14422) in denominator is replaced
with a variance forecast. We also follow Bollerslev et al. (2018) and set SR = 0.4 and vy = 2,
which they argue are sensible parameters when forecasting variance over a monthly horizon,
and results in a volatility target of 20%. Using Equation 10 to substitute for w; in Equation 9,
replacing Fi(RVii1 +420) with our variance forecasts, and plugging-in our assumed values of
SR and 7y leads to the following expression for the utility per unit wealth based on forecast

*

wy

(10)

f 41,6422,

RV,
UoW, = 8% VIV RW+1,1€+22‘ (11)
\V ft+17t+22 \V ft+1,t+22

Comparisons between models are then made using realized utility,
1
RUOW = — ; UoW,. (12)

Note, realized utility is expressed as a percentage return and, given our assumptions, can
take a maximum value of 4%.

4.5.1 Realized utility results

Panels A and B of Table 6 summarize the realized utility results for our full and OVX
samples, respectively. The first column of Panel A reports the realized utility. It can be seen

18See Bollerslev et al. (2018) for more detail.
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that the HAR-based forecasts outperform the bias-corrected forecasts. In addition, of the
HAR-based forecasts, HAR-CIV1 generates the highest realized utility.

In the first column of Panel A we also report the results from Diebold-Mariano tests of
whether the realized utility associated with a forecast is significantly different to the realized
utility generated by the HAR forecasts. It can be seen that HAR-CIV1, HAR-CIV2 and
HAR-CIV3 produce realized utilities that are significantly higher, at the 5% level for HAR-
CIV1 and HAR-CIV2 and the 10% level for HAR-CIV3, than the realized utility attained
with the HAR forecasts. Therefore, the pattern in forecasting performance observed with
the statistical loss functions is retained when we use an economic loss function. The results
also confirm that the improvements in forecasting accuracy we observed with the statistical
loss functions translate into economic benefits.

The difference between the value of the realized utility for the HAR-CIV1 forecasts rel-
ative to the HAR forecasts in Panel A is 2 bp. Although this may appear to be a relatively
modest difference, there are two reasons why this represents a material economic improve-
ment. Firstly, as highlighted by Bollerslev et al. (2018), there has been a drive by investment
management companies, in particular mutual funds and ETFs, towards lowering fees. The
fees now charged by low-cost funds are of the order of tens of basis points. As argued by
Bollerslev et al. (2018), this means that a single digit basis point increase in fees is relatively
substantial. The difference in realized utility of 2 bp means that a fund using the HAR-CIV1
forecasts instead of the HAR forecasts will be able to increase its fees by 2 bp and remain
equally attractive to investors.

Secondly, the realized utilities reported are unconditional. Therefore, in any given month
the economic benefit of using the HAR-CIV1 over the HAR forecasts could be much larger
than 2 bp. In order to examine this further, we report in columns 2-7 of Panel A in Table
6 the 2.5, 5, 10, 25, 50 and 75% quantiles of the UoW for each set of forecasts. Comparing
the HAR-CIV1 to the HAR forecasts, it is clear that there are substantial differences, of
5-10 bp, in the UoW at the 2.5, 5 and 10% quantiles. The difference between the lower
quantiles of the UoW distributions suggests the HAR-CIV1 forecasts tend to outperform the
HAR forecasts precisely when it is most difficult to forecast volatility and when an accurate
forecast is in greatest demand, e.g., when there is a volatility shock which causes UoW to
be low.

The results for the OVX sample in Panel B of Table 6 are analogous to those for the
full sample in Panel A. Again, the HAR-CIV1 results in the highest realized utility, with
all the non-OVX augmented HAR forecasts generating a realized utility higher than that
attained by the HAR forecasts. The differences between the realized utilities of each non-
OVX augmented HAR forecast and the HAR forecasts are also larger and approximately 2-5
bp.

To examine the economic benefit of using our OIVs over the OVX, in Panel B we test
for a significant difference between each forecast and the HAR-OVX forecasts.!'” It can
be seen that the realized utility of all of the non-OVX augmented HAR forecasts are sig-
nificantly higher, typically at the 1% level, than the realized utility associated with the
HAR-OVX forecasts. Therefore, these results further support our conclusion that there is

19We use the HAR-OVX forecasts rather than the BC-OVX forecasts as a benchmark because, of the two,
the former generate a higher realized utility.
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value in constructing our OIVs directly from option prices rather than relying on the CBOE’s
methodology.

Similar to our findings in Panel A, there are potentially large differences between the con-
ditional values of UoW for the OVX sample. For the 25-50% UoW quantiles the difference
between the realized utilities associated with the HAR and augmented HAR forecasts is ap-
proximately 4-13 bp, whilst the difference between the HAR-OVX and non-OVX augmented
HAR forecasts is approximately 9 bp.

Of course, the magnitude of the economic benefits derived from each forecast depends
on the assumptions employed. As Bollerslev et al. (2018) highlight, the value of the realized
utility is a linear function of the volatility target. Thus, if the volatility target doubles, e.g.,
through a doubling of the Sharpe ratio or a halving of the coefficient of risk aversion, the size
of the economic benefits also double. Nevertheless, the framework above provides a sensible
approximation and therefore the magnitude of the economic benefits presented should be
reasonable.

In conclusion, the results demonstrate that the improvements in forecasting accuracy
observed when using OIVs translate into economic benefits under reasonable assumptions.
They also further corroborate our preference for the CIV1 amongst our OIVs.

4.5.2 Realized utility results with transaction costs

In order to make our analysis more realistic, we also take into consideration transaction
costs. Specifically, transaction costs are calculated as being a proportion of turnover,

T
TC = Z c - turnovery, (13)

t=1

where,
turnover; = |w; — wy_1| .

The precise level of transaction costs is controlled by c¢. We follow Wang, Liu, Ma, and
Wu (2016) and Caldeira, Moura, Nogales, and Santos (2017) and set ¢ to be either 0.033%
or 0.15%. It should be noted that transaction costs are low in futures markets (Locke and
Venkatesh, 1997) and have decreased markedly over the past few decades. Realised utility
net of transaction costs is then given by,

NetRUoW = RUoW —TC. (14)

Panels A and B of Table 7 summarize the net realized utility and transaction costs for
the full and OVX samples, respectively. In Panel A (Panel B) we also use Diebold-Mariano
tests to formally evaluate whether the net realized utility and transaction costs associated
with each forecast are significantly different to the net realized utility and transaction costs
generated by the HAR (HAR-OVX) forecasts.

In both Panels A and B it can be seen that transaction costs, whether ¢ = 0.015% or
¢ = 0.0033%, do not differ substantially between the competing forecasts. In Panel A, it
can be seen that there are no significant differences in transaction costs, whilst in Panel
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B, BC-CIV1 and BC-CIV2 lead to significantly lower transaction costs at the 10% level.
Consequently, because none of the forecasts lead to unusually high transaction costs, the
ranking of the forecasts in Panels A and B of Table 7 are identical to those in Panels A and
B of Table 6. In particular, the HAR-CIV1 forecasts produce the highest net realized utility
in both the full and OVX samples. Within the full sample, the HAR-CIV1 and HAR-CIV2
forecasts result in net realized utilities that are significantly higher than the net realized
utility of the HAR forecasts at the 5% level. Whilst for the OVX sample, all the non-OVX
augmented HAR forecasts result in significantly higher net realized utilities than the HAR-
OVX forecasts, typically at the 1% level. Thus, differences in trading volumes are small and
do not have a material impact on the relative economic benefits of the forecasts. Therefore,
the results also support our conclusions in Section 4.5.1

5 Robustness Checks

In this section we analyse the robustness of our results to: (i) the size of the rolling-window
used to estimate the models; (ii) the choice of out-of-sample period; and (iii) the method
used to bias correct the OIVs.

5.1 Estimation window

Thus far, the parameters for our bias-correction and HAR models have been estimated using
rolling windows of 60 observations, or approximately five years worth of data. In this section
we analyse the robustness of our results to the choice of estimation window. Specifically,
we vary the estimation window between 66 and 96 observations, or between approximately
five and eight years, and then re-evaluate our forecasts using the MSE, QLIKE and realized
utility loss functions. We do not use an estimation window below 60 observations since
this results in poorly estimated parameters and recalcitrant forecasts. Due to the limited
number of observations, we are also unable to conduct this robustness test for the OVX
sample. Table 8 summarizes the results of this analysis. Reassuringly, our main conclusions
continue to hold. For all estimation windows, the BC-CIV1 model minimizes the MSE,
whilst the HAR-CIV1 minimizes the QLIKE and maximises realized utility. Furthermore,
our results using an estimation window of 60 observations are superior to those found using
estimation windows between 66 and 96 observations.

5.2 Sub-sample analysis

In our analysis in Section 4, our out-of-sample period started in Jan 2001 and ended in April
2016. In this section we check the robustness of our results to variations in the out-of-sample
period. Specifically, we vary the out-of-sample start date to be either Jan 2002, Jan 2003,
..., or Jan 2012. This ensures we have sub-samples that both include and exclude the 2007/8
financial crisis. We do not consider a start date beyond 2012 because this would result in an
insufficient number of out-of-sample observations.

In Table 9 we summarize the results from using the MSE, QLIKE and realized utility loss
functions. Each column refers to the year in which the out-of-sample evaluation begins, with
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each analysis commencing in January of the associated year, and also reports the number
of observations in each sub-sample. The pattern observed over the full out-of-sample period
is retained in each of the sub-samples; the BC-CIV1 provides the most accurate forecasts
according to the MSE whilst the HAR-CIV1 forecasts are the most accurate according to
the QLIKE and realized utility. Therefore, we are convinced our results are robust to the
choice of out-of-sample period.

5.3 Alternative Bias Correction Procedure

Our final robustness check evaluates an alternative bias correction technique. Thus far, the
bias in OIVs has been corrected for by using a regression model or by including the OIVs
in the HAR model, where the parameter multiplying the OIV is able to modulate the bias.
In this section we use a technique inspired by Prokopczuk and Simen (2014), who show
that the forecasting performance of the MFIV can be improved significantly by making a
non-parametric adjustment for the variance risk premium. We apply their technique to all
our OIVs.?? Since this method relies on averages of ratios, we will refer to it as a relative
bias-correction.

More precisely, to implement the relative bias-correction, the average ratio of OIV to RV
must be computed to get an estimate of the relative bias, which, in our case, is estimated
using a window of 7 monthly non-overlapping observations,

T—1

1 OIV,_ (224 t—(22s
RB!Y = Z b-(226) 4= (225) 422 (15)
T—1 1 RV (225) 11,1 (225)+22
The relative bias-corrected OIV can then be estimated as follows,
O1V; 420
RBCIV, = ———. 16
t RBIV (16)

In Table 10 we summarize the MSE, QLIKE and realized utility for the relative bias-
correction forecasts. As benchmarks, we include our, thus far, best-performing (non-relative)
bias-corrected and HAR-based forecasts: the BC-CIV1 and HAR-CIV1 forecasts. To eval-
uate the effect of the window size used in the relative bias-correction, we report results for
7 ={6,12,...,60}.?' Several conclusions can be made. Firstly, the relative bias-corrected
forecasts are most accurate when 7 = 12. Secondly, the relative bias-corrected forecasts,
for all values of 7, are more accurate than the BC-CIV1 and HAR-CIV1 forecasts under
the MSE loss function. Except for when 7 = 24, the MSE is minimized by the RBC-CIV2
forecasts. Lastly, under the QLIKE and realized utility loss functions, the HAR-CIV1 fore-
casts provide the most accurate forecasts for all values of 7. Overall, although there is some
evidence that the relative bias-correction may produce more accurate forecasts under the
MSE loss function, our conclusions concerning the value of the information content of OIVs
and particularly CIV1 remain unaltered.

20 Although the approach can be thought of as a correction for the variance risk premium when using the
MFIV, the same interpretation does not hold for all of our OIVs, particularly the CIVs. Instead, we take a
pragmatic view and treat it as an alternative bias-correction method.

21These effectively correspond to window sizes of 0.5,1,1.5,...,5 years.
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6 Conclusion

In this paper we evaluated, using both economic and statistical criteria, the information
content of monthly crude-oil volatility forecasts extracted from the prices of traded options.
We examined a variety of alternative option-implied measures including Black-Scholes at-
the-money implieds (ATMIV), model-free volatility expectations (MFIV), CBOE’s 0il-VIX
(OVX) and, notably, corridor implied volatilities (CIV). Besides stand-alone comparisons,
option-implied forecasts were also contrasted, and combined, with those obtained by a real-
ized volatility model (HAR) that utilizes high-frequency return information.

Our key finding is that a particular CIV measure (CIV1), that utilizes a narrow range
of option contracts, consistently generates the most accurate forecasts compared to all other
alternatives. In Mincer-Zarnowitz regressions, CIV1 achieves the highest R?, whilst cncom-
passing regression tests show that CIV1 subsumes the information contained in ATMIV,
MFIV, OVX and HAR forecasts. Furthermore, under either a symmetric (MSE) or an
asymmetric (QLIKE) loss function, CIV1-based forecasts deliver the lowest forecast errors.
In terms of economic significance, incorporating the CIV1 into the HAR model leads to
forecasts that generate a significantly higher realized utility, even when transaction costs are
taken into account. All these findings remain intact for both our full sample (1996-2016) and
a shorter sub-sample that starts when the OVX index was first disseminated (2007-2016).

Our results also provide valuable insights regarding the information content of the OVX
index. In particular, we find that the OVX-based forecasts perform rather poorly. Regression-
based tests show that the OVX is encompassed by CIV1, whilst OVX-based forecasts are
typically the least accurate according to either statistical or economic loss functions. To the
best of our knowledge, this is the first time the reliability of the OVX measure has been
scrutinized, so the concerns we raise have direct implications for practitioners who often rely
on the CBOE’s volatility indices.

Overall, this paper contributes to the academic literature that assesses the forward-
looking information embedded in the prices of crude-oil options. Given that measuring
crude-oil risk is of paramount importance for a variety of economic agents, our empirical
study is of value for policy-makers and investors alike.
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FIGURE 1. Corridor Volatility Expectations
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Figure 1: Time-series plots of different corridor implied volatility (CIV) measures for the 1996-2016 period.
All expectations represent annualized standard deviations corresponding to a monthly horizon. The dashed
vertical line indicates the beginning of the OVX sample.
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Table 1: Summary statistics of our two option datasets. We report the number of unique
option cross-sections (Obs) used to construct our non-overlapping, option-implied, monthly
volatility forecasts, as well as the mean, minimum and maximum number of option contracts
used in our estimations.

All Options Calls (Puts)
Period Obs Mean Min Max Mean Min Max
Full Sample 1996-2016 280 61.1 7 213 338 (27.3) 3(3) 184 (94)

OVX Sample 2007-2016 108 1125 54 213  63.2 (49.3) 29 (16) 184 (94)
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Table 2: Descriptive statistics of option-implied volatility estimates. The first four columns
show the unconditional sample moments for each measure. Sample autocorrelations for
1, 6 and 12 lags are denoted as p;, ps and pia, respectively. The last two columns show
the correlation of each measure with the model-free (pyrr) and Black-Scholes (pps) implied
volatilities.

Mean StDev Skew Kurt 1 06 P12 PME  PBS

CIV1 0.146 0.051 1.531 7.514 0.856 0.33 0.125 0.981 0.987

CIV2 0.241 0.084 1564 7.65 0.85 0.319 0.116 0.988 0.993

CIV3 0.298 0.102 1.572 7.68 0.845 0.314 0.114 0.993 0.995

CIV4 0.356 0.12 1.583 7.699 0.837 0.306 0.112 0.999 0.995

MFIV  0.386 0.129 1.591 7.711 0.829 0.301 0.112 1 0.993
ATMIV 0.365 0.124 1.549 7.509 0.836 0.306 0.115 0.993 1
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Table 3: Mincer-Zarnowitz regression results for the HAR, MFIV, ATMIV, CIV1, CIV2,
CIV3 and CIV4 forecasts. This table reports parameter estimates and values of R? for the
Mincer-Zarnowitz regressions in Equation (7). Panel A presents results for the full sample,
which excludes the OVX forecasts. Panel B presents results for the OVX sample, which
includes the OVX forecasts. Newey-West standard errors were estimated. ¢-statistics are
reported in parentheses. *** indicates significance at the 1% level; ** indicates significance
at the 5% level; * indicates significance at the 10% level.

Panel A: Full Sample Panel B: OVX Sample

Forecast Bo o5 R? 5o 51 R?

HAR  7.499E-05*** 0.785*** 0.700 4.159E-02**  0.633*** (0.368
(3.749) (14.197) (2.055) (4.549)

MFIV -9.079E-06  0.776%** 0.747 3.099E-03  0.877*F* (0.720
(<0.001) (11.458) (0.308) (9.898)

ATMIV ~ -4.743E-06  0.857*** 0.757 5.837TE-03  0.964*** (.728
(<0.001) (12.049) (0.607) (9.801)

CIV1 2.746E-06  5.141%** 0.766 1.197E-02  5.576%** 0.737
(0.127) (12.278) (1.272) (9.695)

CIV2 1.351E-06 1.907*%FF  0.766 9.836E-03  2.109*%** 0.734
(0.064) (12.545) (1.031) (9.722)

CIV3 -1.839E-06  1.268*** 0.764 8.059E-03  1.411*** 0.731
(<0.001) (12.410) (0.836) (9.783)

CIV4 -6.678E-06  0.903*** 0.756 5.187E-03  1.013*** 0.725
(<0.001) (11.942) (0.527) (9.871)

OVX -8.312E-04  0.886*** (.725
(<0.001) (9.525)
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Table 4: Encompassing regression results. The table reports parameter estimates and values
of the adjusted R? for the encompassing regressions in Equation (8). Estimates reported in
the columns labeled ; are for the forecast listed in the column labeled Forecast 1. Esti-
mates reported in the columns labeled (5 are for the forecast listed in the column labeled
Forecast 2. Panel A presents results for encompassing regressions involving comparisons
between the HAR forecasts and each of the option-implied variances for the full sample,
which excludes the OVX forecasts. Panel B presents results for encompassing regressions
involving comparisons between the HAR forecasts and each of the option-implied variances
for the OVX sample, which includes the OVX forecasts. Panel C presents results for en-
compassing regressions involving comparisons between the option-implied variances for the
full sample. Panel D presents results for encompassing regressions involving comparisons
between the option-implied variances for the OVX sample. Newey-West standard errors
were estimated. {-statistics are reported in parentheses. *** indicates significance at the 1%
level; ** indicates significance at the 5% level; * indicates significance at the 10% level.
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Forecast 1

Forecast 2

Parameters

Bo

B1

B2 adj R?

Parameters

Bo

B1

B2

adj R?

HAR

HAR

HAR

HAR

HAR

HAR

HAR

MFIV

MFIV

MFIV

MFIV

MFIV

ATMIV

ATMIV

ATMIV

ATMIV

CIV1

CIV1

CIvV1

CIV2

CIV2

CIV3

OovX

OVX

OVX

OVX

OovXx

OovXx

MFIV

ATMIV

CIV1

CIv2

CIV3

CIV4

OVX

ATMIV

CIV1

CIv2

CIV3

CIV4

CIV1

CIV2

CIV3

CIV4

CIV2

CIV3

CIvV4

CIV3

CIV4

CIV4

MFIV

ATMIV

CIV1

CIV2

CIV3

CIvV4

Panel A: HAR vs. Option-Implied Forecasts
(Full Sample)

Panel B: HAR vs. Option-Implied Forecasts
(OVX Sample)

5.360E-06 0.284%* 0.530%** 0.763 4.867E-03 -0.390 1.210%** 0.756
(0.279) (2.141) (4.121) (0.492) (<0.001)  (4.595)
6.529E-06 0.247* 0.621%** 0.768 8.965E-03 -0.413 1.350%** 0.769
(0.342) (1.813) (4.205) (0.981) (<0.001) (4.589)
1.045E-05 0.218 3.898%** 0.774 1.807E-02%* -0.434 7.909%** 0.783
(0.541) (1.554) (4.138) (2.047) (<0.001)  (4.815)
9.438E-06 0.214 1.453%** 0.774 1.487E-02* -0.428 2.982%** 0.778
(0.490) (1.522) (4.180) (1.677) (<0.001)  (4.774)
7.475E-06 0.223 0.953%** 0.772 1.224E-02 -0.423 1.989%** 0.774
(0.387) (1.611) (4.210) (1.365) (<0.001)  (4.755)
5.372E-06 0.253* 0.648*** 0.767 7.958E-03 -0.407 1.413%** 0.765
(0.278) (1.875) (4.199) (0.849) (<0.001)  (4.677)
-1.157E-04 -0.364 1.195%** 0.757
(<0.001) (<0.001)  (4.598)
Panel C: Option-Implied Forecasts Panel D: Option-Implied Forecasts
(Full Sample) (OVX Sample)
6.383E-07 -0.549 1.457%* 0.758 1.267E-02 -1.750 2.875 0.728
(0.031) (<0.001)  (2.099) (0.963) (<0.001)  (1.426)
2.848E-06 -0.004 5.166** 0.765 2.317E-02 -0.945 11.491%* 0.738
(0.145) (<0.001) (2.546) (1.593) (<0.001) (2.032)
7.549E-06 -0.279 2.579%* 0.766 2.094E-02 -1.229 5.028%* 0.735
(0.393) (<0.001) (2.464) (1.506) (<0.001) (1.875)
8.505E-06 -0.647 2.309** 0.766 2.055E-02 -1.856 4.368* 0.735
(0.441) (<0.001)  (2.397) (1.495) (<0.001)  (1.848)
8.481E-06 -2.501 3.794** 0.767 1.967E-02 -5.038 6.806* 0.735
(0.435) (<0.001) (2.265) (1.466) (<0.001) (1.798)
2.314E-06 0.031 4.956%* 0.765 2.623E-02* -2.000 17.055%* 0.740
(0.115) (0.087) (2.019) (1.928) (<0.001)  (2.040)
5.580E-06 -0.394 2.775%* 0.766 2.222E-02%* -2.681 7.948%* 0.735
(0.289) (<0.001)  (1.995) (1.969) (<0.001)  (1.773)
2.377E-06 -0.734 2.348%* 0.764 1.696E-02** -3.449 6.447 0.731
(0.120) (<0.001)  (1.980) (2.002) (<0.001)  (1.535)
-5.149E-06 0.726 0.138 0.756 7.344E-03 2.648 -1.773 0.724
(<0.001) (0.874) (0.159) (0.640) (0.708)  (<0.001)
2.049E-06 3.130 0.747 0.765 2.647E-02* 39.351% -12.809 0.742
(0.097) (0.630) (0.430) (1.680) (1.704)  (<0.001)
1.901E-06 4.436 0.175 0.765 2.481E-02 21.911* -4.153 0.739
(0.093) (1.348) (0.239) (1.632) (1.709) (<0.001)
2.399E-06 5.018** 0.022 0.765 2.386E-02 14.032* -1.552 0.738
(0.120) (2.123) (0.061) (1.604) (1.865)  (<0.001)
6.274E-06 4.282 -1.582 0.766 2.109E-02 14.244 -8.132 0.734
(0.325) (1.332) (<0.001) (1.493) (1.362) (<0.001)
7.217E-06 2.868%* -0.460 0.766 2.130E-02 6.628% -2.185 0.735
(0.375) (2.045) (<0.001) (1.509) (1.661) (<0.001)
8.374E-06 3.090** -1.305 0.766 2.110E-02 6.925 -3.976 0.736
(0.434) (1.988)  (<0.001) (1.506) (1.641)  (<0.001)
-9.208E-04 0.911 -0.025 0.719
(<0.001) (0.768)  (<0.001)
3.244E-03 0.308 0.631 0.723
(0.286) (0.459) (0.866)
1.051E-02 0.089 5.025% 0.732
(0.961) (0.200) (1.676)
7.877TE-03 0.144 1.772 0.728
(0.735) (0.286) (1.412)
6.003E-03 0.182 1.125 0.726
(0.565) (0.322) (1.212)
1.999E-03 0.433 0.521 0.721
(0.182) (0.555) (0.587)
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Table 5: MSE and QLIKE values for bias-corrected and HAR-based forecasts. Panel A
reports the values of MSE and QLIKE for the full sample, which excludes the BC-OVX
and HAR-OVX forecasts. Panel B reports values of MSE and QLIKE for the OVX sample,
which includes the BC-OVX and HAR-OVX forecasts. Boldface is used to highlight mini-
mum values. The results of Diebold-Mariano tests, based on Newey-West standard errors,
are also summarised. In Panel A the HAR forecasts are the benchmark against which all
other forecasts are compared. In panel B the HAR and HAR-OVX forecasts are used as
benchmarks against which all other forecasts are compared. Where the HAR forecasts are
a benchmark, *** indicates significance at the 1% level; ** indicates significance at the 5%
level; * indicates significance at the 10% level. Where the HAR-OVX forecasts are a bench-
mark, T 1 1 indicates significance at the 1% level; {1 indicates significance at the 5% level; {
indicates significance at the 10% level.

Panel A: Full Sample Panel B: OVX Sample

Forecast MSE QLIKE MSE QLIKE
HAR 2.721 -1.634 9.760 -1.504
BC-MFIV  2.562 -1.637 4.916' -1.504
BC-ATMIV  2.427 -1.639 4.626* 11 —1.519ft
BC-CIV1 2.229 -1.636 4.279%f 15281t
BC-CIV2 2.268 -1.638 4.413*1t —1.527ft
BC-CIV3 2.314 -1.639 4.5171 —1.523ft
BC-CIV4 2.430 -1.638 4.720%1t —1.514%
BC-OVX 5.01011 -1.445
HAR-MFIV  2.721 —1.642* 6.4471  —1.519%1f
HAR-ATMIV  2.600 —1.644** 5.5831  —1.526* 1t
HAR-CIV1  2.393 -1.646** 4.4401  -1.533* it
HAR-CIV2  2.460 —1.645* 4.900fT  —1.531%
HAR-CIV3  2.518 —1.644* 5.2767T  —1.528*1tf
HAR-CIV4  2.629 —1.643* 5.9431  —1.523* 1t
HAR-OVX 7.196 -1.494
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Table 8: MSE, QLIKE and realized utility for the bias-corrected and HAR-based forecasts
generated using alternative in-sample rolling-windows for parameter estimation. To generate
forecasts from the bias-correction model and the augmented and non-augmented HAR mod-
els, parameters were estimated using in-sample rolling-windows of either 66, 72, 78, 84, 90 or
96 observations (each observation corresponds to a 22-day non-overlapping interval). Panel A
reports the MSE for the forecasts generated using the alternative in-sample rolling-windows,
whilst Panel B and C report the QLIKE and realized utility (reported as a percentage), re-
spectively. Boldface is used to highlight minimum values of MSE and QLIKE and maximum
values of realized utility. All forecast evaluations were for the full sample. We also report the
results of Diebold-Mariano tests for differences between the MSE, QLIKE or realized utility
of the HAR forecasts, which are the benchmark forecasts, and the MSE, QLIKE and realized
utility, respectively, of each of the remaining competing forecasts. Newey-West standard er-
rors were used in all Diebold-Mariano tests. *** ** and * indicate a significant difference
to the benchmark at the 1, 5 and 10% levels, respectively.
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Models

In-Sample Estimation Window

66 72 78 84 90 96
Panel A: MSE
HAR 3.0302 2.5269 2.5764 2.4522 2.4578 2.5943
BC-MFIV 2.6303 2.3433 2.3651 2.3652 2.3069 2.4333
BC-ATMIV 2.4810%* 2.2502 2.2779 2.2733 2.1977 2.3227
BC-CIV1 2.2687** 2.1639 2.2097 2.1940 2.0902 2.2161
BC-CIV2 2.3092%* 2.1734 2.2143 2.2012 2.1096 2.2343
BC-CIV3 2.3584** 2.1956 2.2317 2.2235 2.1415 2.2655
BC-CIV4 2.4870%* 2.2640 2.2917 2.2897 2.2217 2.3462
HAR-MFIV 2.9416 2.5111 2.5841 2.3901 2.4332 2.5467
HAR-ATMIV 2.8332 2.4364 2.5242 2.2903 2.3060 2.4182
HAR-CIV1 2.6174%* 2.2821 2.3790 2.2247 2.1983 2.3246
HAR-CIV2 2.6796 2.3325 2.4202 2.2460 2.2262 2.3511
HAR-CIV3 2.7357 2.3743 2.4574 2.2752 2.2676 2.3904
HAR-CIV4 2.8464 2.4513 2.5278 2.3373 2.3553 2.4732
Panel B: QLIKE
HAR -1.6197 -1.6425 -1.6583 -1.6604 -1.6763 -1.6631
BC-MFIV -1.6251 -1.6319 -1.6475 -1.6480*%  -1.6588**  -1.6431**
BC-ATMIV -1.6284 -1.6367 -1.6517 -1.6510 -1.6622*  -1.6461*
BC-CIV1 -1.6264 -1.6345 -1.6464 -1.6453 -1.6571*%  -1.6389**
BC-CIV2 -1.6280 -1.6364 -1.6493 -1.6486 -1.6606*  -1.6436*
BC-CIV3 -1.6283 -1.6363 -1.6499 -1.6494 -1.6612*  -1.6445%*
BC-CIV4 -1.6273 -1.6345 -1.6492 -1.6492  -1.6604**  -1.6442**
HAR-MFIV -1.6258 -1.6440 -1.6600 -1.6621 -1.6764 -1.6628
HAR-ATMIV -1.6284* -1.6466 -1.6615 -1.6635 -1.6781 -1.6641
HAR-CIV1 -1.6316** -1.6493** -1.6637* -1.6644* -1.6795 -1.6645
HAR-CIV2 -1.6301%* -1.6480* -1.6628 -1.6639* -1.6790 -1.6643
HAR-CIV3 -1.6290* -1.6471 -1.6622 -1.6636 -1.6785 -1.6640
HAR-CIV4 -1.6273 -1.6455 -1.6610 -1.6629 -1.6774 -1.6633
Panel C: Realized Utility
HAR 3.7967 3.8241 3.8246 3.8289 3.8316 3.8237
BC-MFIV 3.8017 3.7899* 3.7892* 3.7891*%*  3.7786**  3.7645%*
BC-ATMIV 3.8087 3.8005* 3.7981* 3.7951%* 3.7855%*  3.7704**
BC-CIV1 3.8029 3.7942% 3.7841%* 3.7797* 3.7714**  3.7515%*
BC-CIV2 3.8070 3.7991* 3.7915* 3.7881* 3.7804**  3.7631**
BC-CIV3 3.8079 3.7992* 3.7932* 3.7906* 3.7822*%*  3.7658**
BC-CIV4 3.8060 3.7954* 3.7923* 3.7910%*  3.7814**  3.7662**
HAR-MFIV 3.8087 3.8253 3.8263 3.8309 3.8291 3.8199
HAR-ATMIV 3.8133 3.8296 3.8279 3.8320 3.8310 3.8210
HAR-CIV1 3.8201** 3.8353* 3.8326 3.8333 3.8335 3.8210
HAR-CIV2 3.8165* 3.8323 3.8305 3.8324 3.8325 3.8206
HAR-CIV3 3.8144 3.8305 3.8293 3.8321 3.8317 3.8204
HAR-CIV4 3.8113 3.8279 3.8278 3.8315 3.8303 3.8201
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