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Abstract

In this paper we propose to measure the model risk of Expected Shortfall
as the optimal correction needed to pass several ES backtests, and investigate
the properties of our proposed measures of model risk from a regulatory per-
spective. Our results show that for the DJIA index, the smallest corrections
are required for the ES estimates built using GARCH models. Furthermore,
the 2.5% ES requires smaller corrections for model risk than the 1% VaR,
which advocates the replacement of VaR with ES as recommended by the
Basel Committee. Also, if the model risk of VaR is taken into account, then
the corrections made to the ES estimates reduce by 50% on average.
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1 Introduction

For risk forecasts like Value-at-Risk (VaR) and Expected Shortfall (ES)T] the fore-
casting process often involves sophisticated models. The model itself is a source of
risk in getting inadequate risk estimates, so assessing the model risk of risk measures
becomes vital as the pitfalls of inadequate modelling were revealed during the global
financial crisis. Also, the Basel Committee (2012) advocates the use of the 2.5% ES
as a replacement for the 1% VaR that has been popular for many years but highly
debatable for its simplicity.

Though risk measures are gaining popularity, a concern about the model risk of
risk estimation arises. Based on a strand of literature, the model risk of risk mea-
sures can be owed to the misspecification of the underlying model (Cont|, 2006)), the
inaccuracy of parameter estimation (Berkowitz and Obrien|, 2002)), or the use of in-
appropriate models (Danielsson et al., 2016} |Alexander and Sarabial,|2012). As such,
Kerkhof et al.| (2010) decompose model risk into estimation risk, misspecification risk
and identification risk?l

To address these different sources of model risk, several inspiring studies look
into the quantification of VaR model risk followed by the adjustments of VaR es-
timates. One of the earliest works is [Hartz et al.| (2006)), considering estimation
error only, and the size of adjustments is based on a data-driven method. |Alexander
and Sarabial (2010]) propose to quantify VaR model risk and correct VaR estimates
for estimation and specification errors mainly based on probability shifting. Using
Taylor’s expansion, Barrieu and Ravanelli (2015) derive the upper bound of the
VaR adjustments, only taking specification error into account, whilst |[Farkas et al.
(2016) derive confidence intervals for VaR and Median Shortfall and propose a test
for model validation based on extreme losses. [Danfelsson et al.| (2016|) argue that
the VaR model risk is significant during the crisis periods but negligible during the
calm periods, computing model risk as the ratio of the highest VaR to the lowest
VaR across all the models considered. However, this way of estimating VaR model
risk is on a relative scale. Kerkhof et al. (2010) make absolute corrections to VaR

forecasts based on regulatory backtesting measures. Similarly, Boucher et al.| (2014])

! Alternatives are Median Shortfall (So and Wong, 2012), and expectiles (Bellini and Bignozzil
2015)).

“Estimation risk refers to the uncertainty of parameter estimates. Misspecification risk is the
risk associated with inappropriate assumptions of the risk model, whilst identification risk refers
to the risk that future sources of risk are not currently known and included in the model.
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Figure 1: DJIA index daily returns, the daily historical VaR estimates (« = 1%) and the
daily historical ES estimates (o« = 2.5%) from 28/12/1903 to 23/05/2017, as well as the
difference between the 2.5% historical ES and the 1% historical VaR are presented. We
use a four-year rolling window to compute the risk estimates.

suggest a correction for VaR model risk, which ensures various VaR backtests are
passed, and propose the future application for ES model risk. With the growing
literature on ES backtesting (see selected ES backtests in Table |§|, Appendix B),
measuring the model risk of ES becomes plausible.

Figure [1| shows the disagreement between the daily historical VaR and ES with
significance levels at 1% and 2.5%, repectively, based on the DJIA index (Dow Jones
Industrial Average index) daily returns from 28/12/1903 to 23/05/2017. During the
crisis periods, the difference between the historical ES and VaR becomes wider
and more positive, which supports the replacement of the VaR measure with the
ES measure; nevertheless, the clustering of exceptions when ES is violated is still
noticeable. In other words, the historical ES does not react to adverse changes
immediately when the market returns worsen, and also it does not immediately
adjust when the market apparently goes back to normal.

Another example is around the 2008 financial crisis, presented in Figure
which shows the peaked-over-ES (o = 2.5%) and three tiers of corrections (labelled
as #1, #2 and #3 on the right-hand side) made to the daily historical ES estimates
(v = 2.5%), based on a one-year rolling window. Adjustment #1 with a magnitude
of 0.005 (about 18% in relative terms) added to the daily ES estimates can avoid
most of the exceptions that occur during this crisis. The higher the adjustment level
(#2 and #3), the more the protection from extreme losses, but even an adjustment

of 0.015 (adjustment #3) still has several exceptions. However, too much protection
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Figure 2: Peaked-over-ES and adjustments, based on the DJIA index from 01,/01,/2007 to
01/01/2009. One-year moving window is used to forecast daily historical ES (a = 2.5%).

is not favorable to risk managers, implying that effective adjustments (not too large
or too small) for ES estimates are needed to cover for model risk. In this paper,
we mainly focus on several ES backtests with respect to the following propertieﬁ
of a desirable ES forecast: one referring to the expected number of exceptions, one
regarding the absence of violation clustering, and one about the appropriate size of
exceptions.

To the best of our knowledge, we are the first to quantify ES model risk as a
correction needed to pass various ES backtests (Du and Escanciano, |2016;|Acerbi and
Szekelyl 2014 [McNeil and Frey, 2000), and examine whether our chosen measures of
model risk satisfy certain desirable properties which would facilitate the regulations
concerning these measures. Also, we compare the correction for the model risk of
VaR (a = 1%) with that for ES model risk (o = 2.5%) based on different models
and different assets, concluding that the 2.5% ES is less affected by model risk than
the 1% VaR. Regarding the substantial impact of VaR on ES in terms of the ES
calculations and the ES backtesting, if VaR model risk is accommodated for, then
the correction made to ES forecasts reduces by 50% on average.

The structure of the paper is as follows: section [2| analyzes the sources of ES
model risk focusing on estimation and specification errors, and performs Monte
Carlo simulations to quantify them; section |3[ proposes a backtesting-based correc-
tion methodology for ES model risk, considers the properties of our chosen measures
of model risk and also investigates the impact of VaR model risk on the model risk

of ES; section [4] presents the empirical study and section [5] concludes.

3Similar characteristics of a desirable VaR estimate are considered by [Boucher et al.| (2014)).



2 Model risk of Expected Shortfall

2.1 Sources of model risk

We first establish a general scheme (see Figure |3)) in which the sources of model
risk of risk estimates are shown. Consider a portfolio affected by risk factors, and
the goal is to compute risk estimates such as VaR and ES. The first step is the
identification of risk factors, and this process is affected by identification risk, which
arises when some risk factors are not identified, with a very high risk of producing
inaccurate risk estimates. The next step is the specification of risk factor models
which, again, will have a large effect on the estimation of risk. This is followed by
the estimation of the risk factor model (this, in our view, has a medium effect on the
risk estimate). In step 3, the relationship between the portfolio P&L and the risk
factors is considered and the formulation of this model will have a high effect on the
estimation of the risk. The estimation of this will have a medium effect on the risk
estimation. Step 4 links the risk estimation with the dependency of the P&L series
on the risk factors.

For example, when computing the VaR of a portfolio of derivatives, step 1 would
identify the sources of risk, step 2 would specify and estimate the models describing
these risk factors (underlying asset returns most importantly), step 3 would model
the P&L of the portfolio as a function of the risk factors, and in step 4 the risk
model would transform P&L values into risk estimates.

The diagram shows that the main causes of model risk of risk estimates are (1)
identification error, (2) model estimation error (for the risk factor model, the P&L
model or the risk model), which arises from the estimation of the parameters of the
model and (3) model specification error (for the risk factor model, the P&L model
or the risk model), which arises when the true model is not known. Other sources
of model risk that may give wrong risk estimates are, for example, granularity error,

measurement error and liquidity risk (Boucher et al., 2014).

2.2 Bias and correction of Expected Shortfall

Most academic research on the adequacy of risk models mainly focuses on two of
the sources of model risk: estimation error and specification error. Referring to
Boucher et al.| (2014), the theoretical results about the two sources of VaR model

risk are presented in Appendix A. In a similar vein, we investigate the impact
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Figure 3: Risk estimation process

Notation: H and M represent high and medium impacts on risk estimates, respectively.

of the earlier mentioned two errors on the ES estimates, deriving the theoretical
formulae for estimation and specification errors, as well as correction of ES. VaR[]

for a given distribution function F' and a given significance level «, is defined as:
VaRy(a) = —inf{q: F(q) > a}, (2.1)

where ¢ denotes the quantile of the cumulative distribution F. ES, as an absolute
downside risk measure, measures the average losses exceeding VaR, taking extreme

losses into account; it is given by:
1 «
ESi(a) = —/ VaR(u)du (2.2)
@ Jo

Estimation bias of Expected Shortfall

Assuming that the data generating process (DGP), a model with a cumulative dis-
tribution F' for the returns, is known and the true parameter values (6p) of this ‘true’
model are also known, the theoretical VaR, denoted by ThVaR(6y, ) and the theo-
retical ES, denoted by ThES(6y, ), both at a significance level «, can be computed
as:

ThVaR(0y, o) = —q¢f = —F* (2.3)

«

ThES(a) = é/ ThVaR(0y,u)du (2.4)
0

4The values of VaR and ES are considered positive in this paper.



Now, we assume that the DGP is known, but the parameter values are not known.
The estimated VaR in this case is denoted by VaR(éO, «), where 0o is an estimate
of #y. The relationship between the theoretical VaR and the estimated VaR is:

ThV aR(6y, ) = VaR(0y, a) + bias(6y, b, o) (2.5)
We also have that:
ThVaR(0y, o) — E(VaR(6y, ) = E(bias(0y, by, ) (2.6)

where E[bias(0y, 0y, )] denotes the mean bias of the estimated VaR from the theo-
retical VaR as a result of model estimation error. Based on this, we can write the

estimation bias of ES(fy, @), and we have that

. 1 (o .
ThES (6o, 0) — E[ES(fy, )] — — / Elbias(0, 0, v)]dv, (2.7)
@ Jo
Ideally, correcting for the estimation bias, the ES estimate, denoted by ES (ém a),

can be improved as below:

«

ESE(fy, ) = BS(f, a) + — / Efbias(6o, 0, v)]dv (2.8)
0

Specification and estimation biases of Expected Shortfall

However, in most cases the 'true’ DGP is not known, and the returns are assumed
to follow a different model, given a cumulative distribution (F) for the returns
with estimated parameter values él, where 6y and él can have different dimensions
depending on the models used and their values are expected to be different. This

gives the following value for the estimated VaR:

A

VaR(0;,a) = —qf = —F! (2.9)

o

The relationship between the true VaR and the estimated VaR is given as:
ThVaR(0y, o) = VaR(0y, o) + bias(6y, 01,01, @) (2.10)

where 0; and él have the same dimension under the specified model, but #; de-

notes the true parameter values different from the estimated parameter values of 0:.



Similarly:
ThV aR (0, ) — E(VaR(0y, o)) = E(bias(y, 01,01, @) (2.11)

where E[bias(6y, 0, 0;, «)] denotes the mean bias of the estimated VaR from the
theoretical VaR as a result of model specification and estimation errors. According to
equation ({2.2)), the mean estimation and specification biases of ES can be formulated

as below:

~ 1 o ~

ThES(6o,a) — E[ES(61,a)] — — / Elbias(6o, 01,00, v)]dv  (2.12)
a Jo

Correcting for these biases, the estimated ES, denoted by E'S (él, «), can be improved

as:
R R 1 [e A
ES*(0,,a) = ES(0,,a) + —/ E[bias(0o, 01, 01,v)]dv (2.13)
0

«

In practice, the choice of the risk model for computing VaR and ES forecasts is
usually subjective, along with specification errors (and other sources of model risk).

In Appendix C, we give a review of risk forecasting models used in this paper.

2.3 Monte Carlo simulations

In this section, assume a simplified risk estimation process (Figure (3 so that only
one risk factor exists. Thus, the identification risk and the P&L model specification
and estimation risks are not modelled, and we are left with the specification and es-
timation risks for the risk factor model and, consequently, for the risk model, namely
steps 2 and 4. Following the theoretical formulae for estimation and specification
errors of the ES estimates, Monte Carlo simulations are implemented to investigate
the impacts of these two errors on the estimated ES.

We simulate the daily return series assuming a model, thus knowing the theoret-
ical ES. Then, the parameters are estimated using the same model as specified to
generate the daily returns, thus giving the value of the estimation bias of ES, as in
equation . We also forecast ES based on other models to examine the values of
joint estimation and specification biases of ES, as in equation (2.12)).

In our setup, a GARCH(1,1) model with normal disturbances (GARCH(1,1)-N)



Table 1: Simulated bias associated with the ES estimates

Significance level Mean estimated ES(%) Theoretical ES(%) Mean bias(%) Std. err of bias(%)
Panel A. GARCH(1,1)-N DGP with estimated GARCH(1,1)-N ES: estimation bias

a=5% 23.82 23.83 0.01 1.73
a=2.5% 28.50 28.51 0.01 1.94
a=1% 34.07 34.08 0.01 2.20
Panel B. GARCH(1,1)-N DGP with historical ES: specification and estimation biases
a=5% 28.92 23.83 -5.09 15.79
a=2.5% 36.38 28.51 -7.87 18.97
a=1% 45.77 34.08 -11.69 23.16
Panel C. GARCH(1,1)-N DGP with Gaussian Normal ES: specification and estimation biases
a=5% 26.27 23.83 -2.44 14.86
a=2.5% 31.27 28.51 -2.76 16.84
a=1% 37.23 34.08 -3.15 19.20
Panel D. GARCH(1,1)-N DGP with EWMA ES: specification and estimation biases
a=5% 21.68 23.83 2.15 2.54
a=2.5% 26.31 28.51 2.20 2.87
a=1% 31.82 34.08 2.26 3.28

Note: The results are based on the DJIA index from 01/01/1900 to 23/05/2017, down-
loaded from DataStream. First, we simulate 1,000 paths of 1,000 daily returns according
to the DGP of GARCH(1,1)-N. Then we forecast ES based on the GARCH(1,1)-N, his-
torical, Gaussian Normal and EWMA (A = 0.94) specifications, for a = 5%, 2.5% and
1%.

is assumed to be the ‘true’ data generating process, given by:

e = QA+ (2.14)
Et = Ot Zty, Zt ™~ N(O, 1) (215)
0% = w+ael +poi, (2.16)

Using real data, we first estimate the parameterﬂ of this model. Next, we simulate
1,000 paths of 1,000 daily returns, compute one-step ahead ES forecasts under several
different models and compare these forecasts with the theoretical ES. The purpose
of Monte Carlo simulations is to compute the perfect corrections for the model risk
of ES forecasts. The second and third columns in Table [1] present the annualized
ES forecasts and theoretical ES at 5%, 2.5% and 1%.

We compare the theoretical ES given by the data generating process with the

estimated ES based on the same specification in Panel A, showing that the mean

5The parameters of GARCH(1,1)-N estimated from the DJIA index (1st Jan 1900 to 23rd May
2017) are : p = 4.4521e~%; w = 1.3269¢7%; a = 0.0891; and 3 = 0.9017.



estimation bias is close to 0 for the 5%, 2.5% and 1% ES estimates. Also, the
estimation bias can be reduced by increasing the size of the estimation period as
suggested by |Du and Escanciano (2016)). The standard error of the bias decreases
when the value of « increases, as expected. In Panel B, the mean specification and
estimation biases are computed from the theoretical ES and the historical ES. The
negative values of the bias show that the estimated ES is more conservative than
the theoretical ES, whilst the positive values of the bias refer to an estimated ES
lower than the theoretical ES. Panel C examines the specification and estimation
biases of the Gaussian Normal ES estimates. In this case, the Gaussian Normal
ES estimates are more conservative than the theoretical ES. The specification and
estimation biases of the ES estimates computed from EWMA are positive as shown
in Panel D, which requires a positive adjustment to be added to the EWMA ES
estimates.

Furthermore, the specification and estimation biases in Panel B, C and D
are much higher than the estimation bias in Panel A in absolute value, which
indicates that the specification error has a bigger importance than the estimation
error. Overall, based on the results in the table, we conclude that an adjustment is

needed to correct for the model risk of ES estimates.

3 Measuring ES model risk

3.1 Backtesting-based correction methodology for ES

If a data generating process is known, then it is straightforward to compute the model
risk of ES, as shown in Table [1| In a realistic setup, the ‘true’ model is unknown,
so it is impossible to measure model risk directly. By correcting the estimated ES
and forcing it to pass backtests, model risk is not broken into its components, but
the correction would be for all the types of model risk considered jointly. In this
way, the backtesting-based correction methodology for ES, proposed in this paper,
provides corrections for all the sources of ES model risk.

Comparing the ex-ante forecasted ES with the ex-post realizations of returns,
the accuracy of ES estimates is examined via backtesting. For a given backtest,
we can compute the correction needed for the ES forecasts made by a risk model,

M;, so that the adjusted ES passes this backtest. The value of ES corrected via



backtesting, ESZ%, is written as:

ESE (6, 0) = ES;(61, ) + C;, (3.1)
The minimum correction is given by:
Cii = min{C; ;| ES; (1, ) + C;; passes the ith backtest,t =1,...,T,C;; > 0}

where {ES;,(0,a),t = 1,...,T} denotes the forecasted ES made using model M,;
during the period from 1 to 7. A correction, C;; = Ci7j(00,¢91,91,a), is needed
to be made so that the ¢th backtest of the ES estimates is passed successfully; of
these, C7; is the minimum correction required to pass the ith ES backtest. In our
paper, i € {1,2,3,4}; Cy,, Cy;, and C5; refer to the correction required to pass
the unconditional coverage test for ES and the conditional coverage test for ES
introduced by Du and Escanciano| (2016)), and the Z5 test proposed by |Acerbi and
Szekely| (2014), respectively. Additionally, the exceedance residual test by [McNeil
and Frey| (2000)), associated with Cy ;, is an alternative to the Z; test. By learning
from past mistakes, we can find the appropriate correction made to the ES forecasts,
through which the model risk of ES forecasts can be quantified.

In this paper, we define model risk as M R : R"xVj; — R*, where M R ((Xo+), M,
refers to the maximum of the optimal corrections C}; made to ES forecasts of a se-
ries of empirical observations Xj; during the period ¢ = 1,...,7", which ensures
that certain backtests are passed. Vjs represents a set of models with M; € V.
This definition can be transformed into the following definition of model risk M R :
R™ x R" x R* — R*:

MR ((Xoy), (v74), (€j4)) = max(CF;). (3-2)

In this notation, X, v, and e denote the empirical observations and, respectively,
the one-step ahead VaR and ES forecasts made for time ¢. The subscripts 7 and ¢
refer to the model j used to build risk forecasts and the ¢th backtest, accordingly.
The superscript I refers to a set of ES backtests used to make corrections for ES
model risk. For example, if I = {1,2,3}, we find the maximum correction needed
to pass the unconditional coverage test (UC test), the conditional coverage test
(CC test) and the Zj test jointly. Likewise, we also consider I= {1,2} or {1,2,3,4}.
Clearly, this representation of model risk shows that it is affected by the data and the

10



risk model used to make VaR and ES forecasts. In the following, for simplification
we use the notation X = (Xo,),v; = (vj4), €; = (€;4), and MR! = MR given I.

3.2 Backtesting framework for ES

Backtesting, as a way of model validation, checks whether ES forecasts satisfy certain
desirable criteria. Here we consider that a good ES forecast should have an appro-
priate frequency of exceptions, absence of volatility clustering in the tail and an
suitable magnitude of the violations. Regarding these attractive features, we mainly
implement the unconditional /conditional coverage test for ES (UC/CC test), and
the Zs test (Du and Escanciano, |2016; |Acerbi and Szekely|, 2014]).

Exception frequency test

Based on the seminal work of (Kupiec, 1995)), in which the unconditional coverage
test (UC test) for VaR considers the number of exceptions, Du and Escanciano
(2016) investigate the cumulation of violations and develop an unconditional cov-
erage test statistic for ES. The estimated cumulative violations H,(«) are defined
as:

(o) = é(a a1 < @) (3.3)
where 4, is the estimated probability level corresponding to the daily returns (r;) in
the estimated distribution (F}) with the estimated parameters (6;), and €,_; denotes

all the information available until ¢ — 1.
Gy = F(re, Q_1,0,) (3.4)
The null hypothesis of the unconditional coverage test for ES, Hy, is given by:

H :E [Ht(a, 0y) — %] =0 (3.5)

Hence, the simple t-test statistid®] and its distribution is:

Vi (1/n S0, i) = /2)
Ups = ~ N(0,1) (3.6)
a(l/3 —a/4)

we use the p-value = 0.05 in this paper.

6
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Exception frequency and independence test

The conditional coverage test (C'C test) for VaR is a very popular formal backtesting
measure (Christoffersen [1998). Inspired by this, Du and Escanciano| (2016) propose
a conditional coverage test for ES and give its test statistic. The null hypothesis of

the conditional coverage test for ES, H, is given by:
o
H2 E Ht<04,90> — §|Qt_1 =0 (37)

Du and Escanciano| propose a general test statistic to test the mth-order dependence
of the violations, following a Chi-squared distribution with m degrees of freedom.
In the present context, the first order dependence of the violations is considered, so
the test statistic follows x?(1). During the evaluation period from ¢ = 1 to t = n,

the basic test statistic®, Cgg(1), is written as:

wo (S - a2 -af2)
Cps(1) = CEEER - - - ~x (1) (38)
(S0 (@) = a/2)(fifa) - a/2)

Escanciano and Olmol (2010) point out that the VaR (and correspondingly, ES)
backtesting procedure may not be convincing enough due to estimation risk and
propose a robust backtest. In spite of that, [Du and Escanciano (2016|) agree with
Escanciano and Olmo (2010) that estimation risk can be ignored and the basic test
statistic is robust enough against the alternative hypothesis if the estimation period
is much larger than the evaluation period. In this context, the estimation period
(1,000) we use is much larger than the evaluation period (250), so the robust test

statistic is not considered.

Exception frequency and magnitude test

Acerbi and Szekely| (2014) directly backtest ES by using the test statistic (Z, test)

below:
T

Tt]t
To=3y — 2 19 .
2 ; TaESq, + (3.9)

I;, an indicator function, is equal to 1 when the forecasted VaR is violated, otherwise,
0. The Z, test is non-parametric and only needs the magnitude of the VaR violations

(rely) and the predicted ES (ES,+), thus easily implemented and considered a joint

12



backtest of VaR and ES forecasts. The Z; score at a certain significance level
can be determined numerically based on the simulated distribution of Z,. If the
test statistic is smaller than the Z, scord’} the model is rejected. The authors
also demonstrate that there is no need to do Monte Carlo simulations to store the
predictive distributions due to the stability of the p-values of the Z, test statistic
across different distribution types. Clift et al.| (2016) also support this test statistic
(Z3) by comparing some existing backtesting approaches for ES.

In the Z; test, ES is jointly backtested in terms of the frequency and the mag-
nitude of VaR exceptions. Alternatively, we also use a tail losses based backtest
for ES, proposed by McNeil and Frey| (2000), only taking into account the size of
exceptions. The exceedance residual (er;), conditional the VaR being violated (1),
is given below:

E€ry = (Tt + ESa7t) . It (310)

here r; denotes the return at time t, and ES,; represents the forecasted ES for
time t. The null hypothesis of the backtest is that the exceedance residuals are on
average equal to zero against the alternative that their mean is greater than zero.

The p-value used for this one-sided bootstrapped test is 0.05.

3.3 Properties of measures of model risk

We introduce some basic notations and assumptions: we assume a r.v. A defined
on a probability space (£, F, P), and F4 the associated distribution function. If
Fy = Fp, the cumulative distributions associated with A and B are considered the
same and we write A ~ B. In the same fashion, we will write A ~ Fif Fy = F. A
measure of risk is a map p : V, — R, defined on some space of r.v. V.

Artzner et al.| (1999) propose four desirable properties of measures of risk (market
and nonmarket risks), and argue that effectively regulated measures of risk should

satisfy the four properties stated below:

1) Monotonicity: A,B € V,;A < B = p(A) > p(B).

2) Translation invariance: A € V,,a € R = p(A+a) = p(A) — a.

3) Subadditivity: A,B,A+ B €V, = p(A+ B) < p(A) + p(B).

4) Positive homogeneity: A€V, h>0,h-AecV,=ph-A)=nh-pA).

"The critical value related to the 5% significance level for the Z, test is -0.7, which is stable for
different distribution types (Acerbi and Szekely, 2014]).
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ES is considered coherent as a result of satisfying the above four properties,
whilst VaR is not due to the lack of subadditivity (Acerbi and Tasche, 2002). As
model risk is becoming essential from a regulatory point of view, we are examining
whether the above properties hold for our proposed measure of model risk of ES.

Regarding this measure of model risk, the four desirable properties of risk mea-
sures mentioned above are considered below:

1. Monotonicity:

la) For a given model M;, and two data series X,Y with X <Y it is desirable

to have that M R(X,v;,e;) > MR(Y,v;,€;).

1b) For a data series X, models My, My € Vi, v1 < vg,e1 < eg,

then it is desirable to have that M R(X, vy,e1) > MR(X, vq, €3).

The property Ia) states that risk models that are not able to accommodate for

bigger losses should have a higher model risk, which is in line with the argument

of Danielsson et al.| (2015)). The property 1b) is a natural requirement that, for a

given return series, models that forecast low values of VaR and ES risk estimates

should carry a higher model risk (and require higher corrections).
2. Translation tnvariance:

2a) For a given model M;, a series of data X, and a constant a < vj, it is

desirable to have that M R(X + a,v; —a,e; —a) = MR(X,vj,e;).

2b) For a given model M;, a series of data X, and a constant a € RT, it is

desirable to have that M R(X + a,v;,e;) > MR(X,v;,e;) — a.
2c) For a given model M;, a series of data X, and a constant a € R*, it is
desirable to have that M R(X,v; + a,e; +a) > MR(X,vj,e;) — a.
Generally, when shifting the observations with a constant and lowering the values
of VaR and ES forecasts by the same amount, the model risk is expected to stay
constant in the case of 2a). In 2b) and 2¢), if the real data or the risk forecasts
are shifted with a positive constant (a), the model risk would be larger (or equal
with) than the difference between the previous model risk and the size of the
shift.
3. Subadditivity
3a) For a given model M;, (vy;,e15), (v2j, €2;) and (vi4o,;, €142 ) are estimates
based on X7, X, and X; + Xs, it is desirable to have that
MR(X1 + Xa, 0142, €142,;) < MR(X1,v15,€15) + MR(Xs,v95, €2;5).
The property 3a) is desirable, since we expect that the model risk is smaller in a

diversified portfolio than the sum of the model risks of the individual assets. The
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desirability of subadditivity for measures of risk is an ongoing discussion. |Cont
et al.| (2010)) point out that subadditivity and statistical robustness are exclusive
for measure of risks, and that robustness should be a concern to the regulators.
Also, [Kratschmer et al.| (2012, 2014, [2015) argue that robustness may not be
necessary in a risk management context. Subadditivity, expressed in this format,
is not too important because we rarely use the same model for two different
datasets.
4. Positive homogeneity
4a) For a given model M;, and a data series X, h > 0,h - X € V),
then MR(h-X,h-vj,h-e;) =h- MR(X,vj,ej).
The property 4a) states that the change in the size of the investment is consistent

with the change in the size of model risk.

Property: Assuming model risk is computed as in equation , then the following
properties will hold:

(1) For I ={1,2}, properties 1a), 1b), 2a), 2b), 2c) and 4a) will hold.
(2) For I ={1,2,3}, properties 1a), 1b), 2a) and 4a) will hold.

We mainly consider two measures of ES model risk: (1) When we compute the
model risk of ES in terms of the UC and CC tests (1={1,2}), allowing for the
frequency and clustering of exceptions, all properties considered above hold, except
for subadditivity; (2) when we compute the model risk of ES in terms of the UC,
CC and Zy tests (1 ={1,2,3}), allowing for the frequency, clustering and size of
exceptions, 2b) and 2c) of translation invariance and subadditivity are not satisfied,
whilst the rest still hold. Due to the nature of the Zy test, translation invariance
is not guaranteed. This is not necessarily a problem, because shifting data or risk

estimates with a constant is not encountered routinely.

Next, let’s look at subadditivity in more detail and we are going to give an
example why it is not always satisfied for M R'=1123} Inheriting an example from
Danielsson et al. (2005, we consider two independent assets, X; and X3, but with

the same distribution, specified as:

0 with a probability 0.991
X=e+mn, e~IIDN(0,1), n= (3.11)
—10 with a probability 0.009

Based on this, we generate two series of data with 5,000 observations for X; and
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Xj. Considering the Gaussian Normal or GARCH(1,1)-GPD model used to make
one-step ahead VaR and ES forecasts at different significance levels with a rolling
window of length 1,000, we measure the model risk of ES forecasts based on the two
models by the backtesting-based methodology. Then we compare the model risk of
an equally weighted portfolio of (X; + X5), MRI,, with the sum of model risks of
X and Xy, MR! + MRZ, shown in Figure The upper figure shows that the
model risk of ES of an equally weighted portfolio based on the Gaussian Normal
model is higher than the sum of model risks of ES of the two individual assets at
some significance levels such as 2.5%. One possible explanation for this is that the
Gaussian Normal model is not appropriate to make ES forecasts at these extreme
alpha levels, as compared to the lower figure in which the model risk of the portfolio
is much lower than the sum of model risks based on the GARCH(1,1)-GPD model.
Therefore, subadditivity is not guaranteed for our measure of model risk. However,
in our applications as seen below in the second part of Figure [ we argue that
subadditivity is satisfied when the model fits the data well.

8 T T

6 }\\ Gaussian Normal —MR

t
1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

Iy GARCH(1,1)-GPD 12

Figure 4: Average values of ES model risk of an equally weighted portfolio, (X7 + X3),
and the sum of ES model risks of X; and X5, based on the Gaussian Normal ES and the
GARCH(1,1)-GPD ES for a series of significance levels.

3.4 The impact of VaR model risk on the model risk of ES

The backtesting-based correction methodology for ES shows that the correction
made to the ES forecasts can be regarded as a barometer of ES model risk. VaR
has been an indispensable part of ES calculations and the ES bakctests used in this

paper. For instance, the Zs test (Acerbi and Szekely, 2014)) is commonly considered
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as a joint backtest of VaR and ES. For this reason, it is of much interest to explore to
what extent the model risk of VaR is transferred to the model risk of ES. On the one
hand, ES calculations may be affected by the model risk of VaR, since the inaccuracy
of VaR estimates is carried over to the ES estimates as seen in equation . On
the other hand, the wrong VaR estimates may have an impact on backtesting, thus
leading to inappropriate corrections of ES estimates. As such, the measurement
of the ES correction required to pass a backtest is likely to be affected by VaR
model risk. To address this, as an additional exercise, we compute the optimal
correction of VaR for model risk (estimated at the same significance level as the
corresponding ES) as in |Boucher et al. (2014)@. Then we use the corrected VaR for
ES calculation, estimating ES corrected for VaR model risk. Consequently, based on
the backtesting-based correction framework, the optimal correction made to the ES

corrected for VaR model risk is gauged as a measurement of ES model risk alone.

3.5 Monte Carlo simulations of ES model risk

According to the backtesting-based correction methodology for ES; we quantify ES
model risk by passing the aforementioned ES backtests based on Monte Carlo simu-
lations, where we simulate 5,000 series of 1,000 returns using a GARCH(1,1)-¢ model
with model parameters taken from Kratz et al.| (2018), specified below:

r=0,Z,  02=218x107%40.10972 | +0.89002 ,, (3.12)

where Z, follows a standardised student’s ¢ distribution with 5.06 degrees of freedom.

We implement several well known models (see details in Appendix C) for com-
parison, such as the Gaussian Normal distribution, the Student’s ¢ distribution,
GARCH(1,1) with normal or standardised Student’s ¢ innovations, GARCH(1,1)-
GPD, EWMA, Cornish Fisher expansion as well as the historical method.

It is known that ES considers average extreme losses which VaR disregards. Con-
sequently, it is of interest to investigate the adequacy of ES estimates in measuring
the size of extreme losses and also quantify ES model risk by passing the Z, test

inasmuch as the Z, test considers the frequency and magnitude of exceptions. Table

8To find the optimal correction of VaR accommodating for model risk, two VaR backtests are
considered. The VaR backtests are Kupiec’ s unconditional coverage test (Kupied, 1995), and
Christoffersen’s conditional coverage test (Christoffersen, 1998). We do not include Berkowitz’s
magnitude test (Berkowitz, 2001)), because in principle it is very similar to the magnitude test for
ES (it checks the size of exceptions).
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shows the mean values of the optimal absolute and relative corrections (in the 3rd
and 5th columns) made to the daily ES (a = 2.5%), estimated by different methods,
in order to pass the Z, test without considering the impact of VaR model risk on the
ES calculations and ES backtesting, as well as the mean values of the absolute and
relative optimal correction (in the 4th and 6th columns) made to the daily ES after
correcting VaR model risk. In this simulation study, the data generating process is
specified by GARCH(1,1)-¢ as in equation . Thus, according to the last two
rows in Table [2] ES estimates are only subject to estimation risk measured by the
mean of the absolute optimal correction, 0.0001, which is much smaller than the
mean values of the optimal corrections associated with the other models, which are
different from the DGP. This shows that misspecification risk plays a crucial role
in giving accurate ES estimates, and also applies when we correct for VaR model
risk. The mean values of the optimal corrections made to the ES estimates generally

decrease after excluding the impact of VaR model risk on ES model risk.

Table 2: The mean values of the absolute and relative optimal correction, obtained by
passing Zs test, made to daily ES (o = 2.5%), estimated by different models.

Model Mean ES Abs. C5 Abs. C; Rel. 5 Rel. (3
Historical 0.062 0.45% 0.41% 0.071 0.066
EWMA 0.046 0.73% 0.70% 0.157 0.149
Gaussian Normal — 0.047 091%  0.87%  0.195 0.184
Student’s ¢ 0.060 0.40% 0.36% 0.066 0.060
GARCH(1,1)-N 0.039 0.08% 0.08% 0.022 0.019
Cornish Fisher 0.046 0.03% 0.03% 0.003 0.003
GARCH(1,1)-GPD 0.045 0.03% 0.02% 0.007 0.006
GARCH(1,1)-t 0.097 0.01% 0.01% 0.003 0.003
DGP 0.046 0.00% 0.00% 0.001 0.001

Note: Based on the DGP (GARCH(1,1) with standardised student’s ¢ disturbances), we
first simulated 5,000 series of 1,000 daily returns. Then ES estimates are obtained by
using different methods with a rolling window of length 1,000. By passing the Zs test
with a backtesting window of length 250, the optimal correction made to the daily ES are
calculated. (3 represents the optimal corrections made to ES forecasts required to pass
the Z test; C3 stands for the optimal corrections made to the corrected ES allowing for
VaR model risk, required to pass the Z, test.
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Figure 5: Relative corrections based on the UC test made to the daily ES associated
with EWMA, GARCH(1,1)-N, Gaussian Normal, and Student’s ¢ along with a range of
alpha levels, which is computed as the ratio of the absolute correction over the average
daily ES.

4 Empirical Analysis

Based on the same set of models used in the previous section, we evaluate the
backtesting-based correction methodology for ES using the DJIA index from 01/01/1900
to 05/03/2017 (29,486 daily returns in total). Based on equation ({3.1)), we quantify
the model risk of ES as the maximum of minimum corrections required to pass the
ES backtestﬂ and make comparisons among different models, where backtesting is
performed over a year. Moreover, we examine this measure of model risk based
on different asset classes by using the GARCH(1,1)-GPD model due to its best
performance shown in the case of the DJIA index.

Figure [5/shows the relative corrections made to the daily ES, estimated at differ-
ent significance levels, of four models: EWMA, GARCH(1,1)-N, Gaussian Normal,
and Student’s t, when considering the frequency of the exceptions (passing the UC
test). ES forecasts are computed with a four-year moving window and backtested
using the entire sample. The level of relative corrections is decreasing when al-
pha is increasing, implying that the ES at a smaller significance level may need a
larger correction to allow for model risk. Not surprisingly, the dynamic approaches,
GARCH(1,1)-N and EWMA, require smaller corrections than the two static models
in general, though the Student’s ¢ distribution performs better at capturing the fat

9The UC and CC tests for all the distribution-based ES are examined in the setting proposed
by Du and Escanciano| (2016)), whilst the Cornish Fisher expansion and the historical method are
entertained in the same setting but in a more general way. ES for the asymmetric and fat-tailed
distirbutions (Broda and Paolellay 2009)) can also be examined using these backtests.
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tails than the EWMA model, for example, at 1% and 1.5% significance levels.

Figure [6] presents the optimal corrections made to the daily ES forecasts based
on various forecasting models with regard to passing the unconditional coverage test
for ES (UC test), the conditional test for ES (CC test) and the magnitude test
(Zy test), respectively, where ES is estimated at a 2.5% significance level using a
four-year moving window"’| and the evaluation period for backtesting procedures is
one year. This figure shows that a series of dynamic adjustments are needed for the
daily ES (o = 2.5%) across all different models, especially during the crisis periods.
This is in line with our expectation of model inadequacy in the crisis periods. The
smaller the correction, the more accurate the ES estimates, therefore the less the
model risk of the ES forecasting model. Among the models considered, the historical,
EWMA, Gaussian Normal and Student’s ¢ models require larger corrections than
the others when considering the three backtests jointly, indicating that they have
higher model risk than the others. Particularly, the GARCH(1,1)-GPD performs the
best. Also, the Cornish Fisher expansion, GARCH(1,1)-GPD, and GARCH(1,1)-¢
models require the smallest adjustments in order to pass the UC, CC, and Z, tests,
accordingly. Noticeably, the ES forecasts made by the non-GARCH models need
larger corrections in order to pass the Z, test that refers to the size of the exceptions,
compared with these corrections required by the UC and C'C' test particularly during
the 2008 financial crisis. Thus, the GARCH(1,1) models are more able to capture
the extreme losses, as expected.

We prsent the time taken to arrive at the peak of the optimal corrections in
Figure [7] for the UC, CC and Z, tests, which shows that more than a decade
is needed to get the highest correction required to cover for model risk (also see
Appendix D, Table (7| for the dates when the highest corrections are required).
When considering the UC' and C'C' tests, the highest values of the optimal corrections
made to the daily ES of various models are achieved before the 21st century (except
that the highest value of the optimal corrections made to the Student’s ¢ ES is found
around 2008, required to pass the UC' test), indicating that based on past mistakes
we could have avoided the ES failures using these two tests, for instance, in the
2008 credit crisis. Nevertheless, when considering three tests jointly, all the models,
except for the GARCH models, find the peak values of the optimal corrections
around 2008. Therefore, the GARCH models are more favorable than the others in

10The results computed by using a five-year moving window and a three-year moving window
are very similar to those required here. (available from the authors on request.)
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Figure 6: Dynamic optimal corrections made to the daily ES estimates (o = 2.5%) asso-
ciated with various models for the DJIA index from 01/01/1900 to 23/05/2017, required
to pass the UC , CC , and Z; tests, respectively. The parameters are re-estimated using a
four-year moving window (1,000 daily returns) and the evaluation window for backtesting

is one year.
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avoiding model risk. In this way, we could have been well prepared against the 2008
financial crisis if the GARCH(1,1) models were used to make ES forecasts. This is
also supported by the results shown in Appendix D, Figure [9] which presents
extreme optimal corrections of ES forecasts by different models, required to pass
various backtests.

In Table [3] we measure the model risk of ES forecasts made by various risk
models for the DJIA index, and compare the model risk of the 2.5% ES with that
of the 1% VaR. Besides, we look into how ES model risk is affected by the model
risk of VaR via two channels, namely the ES calculations and the ES backtesting,
discussed in section [3.4, Panel A and Panel B give the maximum and mean
values of the absolute and relative optimal corrections to the daily ES (o = 2.5%)
across various risk models with respect to the aforementioned three backtests and
an alternative to the Z, test. The largest absolute corrections are needed for the
Gaussian Normal and Student’s ¢ models, which do not account for the volatility
clustering, whilst the GARCH models perform well in capturing extreme losses.
With the requirement of passing the three backtests jointly, the GARCH(1,1)-GPD
performs best and requires a correction of 0.11% made to the daily ES against model
risk. However, the absolute model risk shown in Panel A may give an ambiguous
understanding of the severity of ES model risk, since the values of ES estimates vary
for various forecasting models. Thus, we present the relative corrections in Panel
B, expressed as the optimal corrections over the average daily ES. When looking at
the three backtests jointly, the EWMA, Gaussian Normal and Student’s ¢ models
face the highest ES model risk with the mean values of the relative corrections at
0.307, 0.358, and 0.396, repectively, thereby needing the largest buffers; whilst the
GARCH(1,1)-GPD model has the best performance with a mean value of the relative
optimal correction of 0.058.

Applying the backtesting-based correction methodology to the 1% VaR as in
Boucher et al| (2014)[7] we compute the relative corrections made to one-step ahead
VaR forecasts by passing three VaR backtests{r_z], reported in Panel C of Table
Bl The results show that the Cornish Fisher expansion and GARCH(1,1)-¢ models
outperform the other models, requiring the smallest corrections for VaR model risk.

Comparing Panel B and Panel C, it can be seen that the peak values of the relative

HBoucher et al. (2014) only present the results for the 5% VaR.

12The three VaR backtests are Kupiec’s unconditional coverage test (Kupiec, 1995), Chritof-
fersen’s conditional coverage test (Christoffersenl 1998)) and Berkowitz’s magnitude test (Berkowitz,
2001)).
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Figure 7: Required relative optimal adjustments made to the daily ES estimates by
passing the UC, CC, Z, tests, which is expressed as the ratio of the corrections over the
maximum of the optimal corrections over the entire period.




correction required to pass the UC' and C'C tests for VaR estimates are generally
(with a few exceptions) smaller than the corresponding values for ES estimates,
whilst the ES estimates require much smaller corrections than the VaR estimates
when considering the Z, test or its alternative. That is, the ES measure is more able
to measure the size of the extreme losses than the VaR measure, just as Colletaz
et al. (2013) and [Danielsson et al. (2015) argue. When the three backtests are
considered jointly, we suggest that the 2.5% ES is less affected by model risk than
the 1% VaR.

It is interesting to compare our results with those of Danielsson et al.| (2015]). In
their Table 1, they show that VaR estimation has a higher bias than ES estimation,
but a smaller standard error. However, this is based on a simulation study that
focuses on estimation risk. The results presented in the empirical part of their
paper somewhat contradict their theoretical expectation of VaR being superior to
ES, and it can be argued that this is caused by the presence of specification error.
So when only estimation error is considered, VaR is superior to ES, but when both
estimation error and specification error are considered jointly, our results show that
ES outperforms VaR, being less affected by model risk.

Supplementary to the backtesting-based correction methodology for ES, we ex-
amine the impact of VaR model risk on the model risk of ES in Panel D, Table
For all the models, the relative optimal corrections (shown in Panel D) required to
pass the three ES backtests jointly, made to the daily ES after accomdating for VaR
model risk, are smaller than the relative corrections (shown in Panel B) made to
the daily ES when VaR is not corrected for model risk. Thus, ES is less affected by
model risk, when VaR model risk is removed first. Roughly speaking, the corrections
for model risk to the ES estimates reduce by about 50% if the VaR estimates are
corrected for model risk. Also, we find further evidence in Table [9, Appendix
D to support the previous result that GARCH models are less affected by model
risk, thus preferred to make risk forecasts, when compared with the other models
considered.

Additionally, we apply this proposed methodology to different asset classes (eq-
uity, bond and commodity from 31/10/1986 to 07/07/2017), as well as the FX
(USD/GBP) and MFST shares (adjusted or non-adjusted for dividends) from 01/01/1987
to 04/10/2017. Panel A and B of Table [4|report the absolute and relative correc-
tions required for the GARCH(1,1)-GPD ES (a = 2.5%) of various asset classeqd™]

13See the data source in the note to Table
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Table 3: Maximum and mean of the absolute and relative optimal corrections made to the
daily 2.5% ES, the relative optimal corrections made to the daily 1% VaR, as well as the
relative optimal corrections made to the corrected ES after VaR model risk is accounted
for, based on different backtests across various models.

Model Mean ES (VaR) Max ¢} Max Cy Max C3 Max Cy Mean C; Mean C3 Mean C3 Mean C)
Panel A: Mazimum and mean of the absolute optimal corrections to the daily ES (o= 2.5%)

Historical 0.031 2.50%  9.80% 11.86% 8.43% 0.13% 0.20% 0.53% 0.11%
EWMA 0.024 13.55%  9.30% 12.41%  5.55% 0.69% 0.37% 0.74% 0.56%
Gaussian Normal ~ 0.025 873%  9.64%  14.33% 9.66%  0.72% 0.42% 0.84% 0.63%
Student’s ¢ 0.030 21.84% 12.12% 13.15%  9.14% 1.13% 0.38% 0.73% 0.19%
GARCH(1,1)-N 0.023 10.11%  9.90%  4.08%  4.79% 0.20% 0.08% 0.33% 0.30%
GARCH(1,1)-¢ 0.031 8.69% 1041% 1.18% 3.93% 0.29% 0.15% 0.01% 0.10%
Cornish Fisher 0.050 1.40% 7.60% 9.75% 22.94% 0.05% 0.14% 0.29% 0.09%
GARCH(1,1)-GPD 0.028 2.95% 2.85% 3.60%  4.09% 0.11% 0.08% 0.09% 0.04%
Panel B: Mazimum and mean of the relative optimal corrections to the daily ES (o= 2.5%)

Historical 0.031 0.985 3.190 4.368 2.744 0.045 0.061 0.182 0.039
EWMA 0.024 3.188 3.993 5.375 2.958 0.260 0.116 0.307 0.244
Gaussian Normal — 0.025 2.690 2.143 6.720 4.209 0.274 0.134 0.358 0.275
Student’s ¢ 0.030 4.798 2.411 4.808 3.371 0.396 0.098 0.255 0.071
GARCH(1,1)-N 0.023 5.604 3.972 1.337 2.961 0.084 0.034 0.134 0.134
GARCH(1,1)-¢ 0.031 1.550 3.174 0.234 1.620  0.087 0.041 0.002 0.031
Cornish Fisher 0.050 0.522 2.401 3.390 1.821 0.018 0.022 0.098 0.015
GARCH(1,1)-GPD 0.028 1.577 1.344 1.214 1.928 0.058 0.030 0.025 0.015
Panel C: Mazimum and mean of the relative optimal corrections to the daily VaR (o= 1%)

Historical 0.030 0.782 2.809 2.130 2.130 0.029 0.077 0.226 0.226
EWMA 0.024 1.018 2.978 3.137 3.137 0.063 0.108 0.421 0.421
Gaussian Normal  0.024 1.394 4.235 3.055 3.055 0.073 0.143 0.417 0.417
Student’s ¢ 0.028 0.891 3.662 2.353 2.353 0.042 0.100 0.281 0.281
GARCH(1,1)-N 0.022 0.505 2.981 4.349 4.349 0.023 0.065 0.637 0.637
GARCH(1,1)-t 0.030 0.071 1.739  2.365 2.365 0.000 0.015 0.320 0.320
Cornish Fisher 0.050 0.366 1.801 1.054 1.054  0.008 0.024 0.126 0.126
GARCH(1,1)-GPD 0.027 0.226 2.049 3.373 3.373 0.002 0.025 0.432 0.432
Panel D: Mazimum and mean of the relative corrections to the daily ES, corrected for VaR model risk

Historical 0.032 0.464 2.486 1.900 2.138 0.024 0.056 0.083 0.040
EWMA 0.026 0.685 3.086 2.291 2.957 0.045 0.043 0.153 0.197
Gaussian Normal — 0.026 1.862 2.031 2.496 2.934 0.080 0.046 0.157 0.209
Student’s ¢ 0.032 1.652 1.322  2.082 2.351 0.081 0.033 0.107 0.057
GARCH(1,1)-N 0.023 1.894 4.211 1.198 2.958 0.060 0.029 0.094 0.124
GARCH(1,1)-¢ 0.031 1.713 3.174 0.231 1.620 0.003 0.023 0.002 0.031
Cornish Fisher 0.052 0.236 1.760 1.212 1.059  0.011 0.031 0.042 0.013
GARCH(1,1)-GPD 0.028 1.477 1.344 0.998 1.928 0.042 0.030 0.020 0.019

Note: Based on the DJIA index from 01,/01/1900 to 23/05/2017, downloaded from DataS-
tream. Based on various forecasting models, ES and VaR are forecasted with a four-year
moving window (1,000 daily returns), and the mean ES and VaR are calculated over the
entire sample. In Panel A, B, and D, (4, C5, C3 and Cy denote the optimal corrections
made to the ES estimates, accordingly, required to pass the unconditional coverage test
(UC test), the conditional coverage test (C'C test), and the magnitude tests (Z; test and
the exceedance residual test). In Panel C, C;, Cs, and C3 (Cy is the same as Cs, to be
consistent with other panels) represent the optimal corrections made to VaR forecasts, re-
quired to pass Kupiec’s unconditional coverage test, Christoffersen’s conditional coverage
test and Berkowitz’s magnitude test, respectively. The relative correction is the ratio of
the optimal correction over the average daily ES (or VaR); backtesting is done over 250
days.
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The higher the corrections, the more unreliable the ES forecasts of the specified
model for the data. We find that commodity ES carries the highest model risk
with the highest mean value of the relative optimal correction at 0.052 required
to pass the three tests jointly, provided that a GARCH(1,1)-GPD model is used.
This is consistent with the statistical properties of the dataset considered, namely
that commodity returns are fat-tailed and negatively skewed. Interestingly, in Ta-
ble 8| of Appendix D we find that commodity ES does not provide enough buffer
against unfavorable extreme events in the global financial crisis, since the largest
adjustments are needed in 2008 and 2009, suggesting that commodity ES suffers the
highest model risk over the crisis period. However, equity and bond ES could have
avoided the failures around 2008. Panel C shows the maximum and mean of the
relative optimal corrections made to the 1% VaR, obtained by passing the three VaR
backtests. Clearly, for the three different asset classes, the 1% VaR forecasts require
much higher corrections than the 2.5% ES forecasts made by the GARCH(1,1)-
GPD model, thereby carrying a higher model risk by considering the three backtests
jointly as can be seen in the last column.

To get a further insight into the model risk of ES estimates of specific assets,
we conduct a case study on the USD/GBP foreign currency and the MSFT stock
(adjusted or non-adjusted for dividends) listed in the Nasdaq Stock Market. We
consider that ES is estimated at a significance level of 2.5%, and we have a position
of 1 million dollars in each asset. Table [5|shows the dollar exposures to the model
risk of the GARCH(1,1)-GPD ES when investing in the USD/GBP exchange rate
or by purchasing the Microsoft stock, respectively. The average 2.5% ES of the FX
and MSFT (adjusted) investments are $14,291 and $48,879, accordingly. The mean
model risks, considering the three backtests for ES jointly, are $1,371 and $1,350 for
FX and MSFT (adjusted). It is inappropriate to consider a certain ES backtest, since
the mean of the dollar exposures for FX with respect to different backtests varies
from $107 to $1,371. Also, the non-adjusted MSFT equity has a much higher model
risk than its counterparts, because the share prices shocked by dividend distributions
are more volatile and therefore the risk model used is more vulnerable in this case.
These examples show why it is necessary for banks to introduce enough protection
against model risk when calculating the risk-based capital requirement introduced
in Basel (2011]).

Our empirical analysis shows that, when forecasting ES, the GARCH(1,1) models

are preferred, whilst the static models (e.g. the Gaussian Normal and Student’s ¢
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Table 4: Maximum and mean of the absolute and relative corrections made to the
daily GARCH(1,1)-GPD ES (a = 2.5%), and the relative corrections made to the daily
GARCH(1,1)-GPD VaR (a = 1%) for different asset classes based on different backtests.

Statistics of asset returns Backtesting-based corrections
Asset class  Std. dev Skewness Kurtosis Mean ES Max C; Max C; Max C3 Mean C; Mean Co Mean Cs

Panel A: Mazimum and mean of the absolute corrections to the daily GARCH (1,1)-GPD ES (a = 2.5%)

equity 0.012 -0.362 11.923 0.029 0.028 0.003 0.009 0.001 0.000 0.000
bond 0.003 0.017 7.400 0.007 0.003 0.000 0.003 0.000 0.000 0.000
commodity 0.004 -0.439 9.018 0.011 0.007 0.001 0.021 0.000 0.000 0.001

Panel B: Mazimum and mean of the relative corrections to the daily GARCH (1,1)-GPD ES (a = 2.5%)

equity 0.012 -0.362 11.923 0.029 0.970 0.100 0.375 0.022 0.001 0.006
bond 0.003 0.017 7.400 0.007 0.639 0.055 0.566 0.010 0.002 0.018
commodity 0.004 -0.439 9.018 0.011 0.952 0.097 1.238 0.041 0.004 0.052

Panel C: Mazimum and mean of the relative corrections to the daily GARCH (1,1)-GPD VaR (o = 1%)

equity 0.012 -0.362 11.923 0.029 0.036 0.036 1.779 0.000 0.000 0.429
bond 0.003 0.017 7.400 0.007 0.072 0.156 1.208 0.001 0.006 0.317
commodity 0.004 -0.439 9.018 0.010 0.151 0.151 2.353 0.003 0.006 0.295

Note: Downloaded from DataStream, from 31/10/1986 to 07/07/2017. For the equity, we
use a composite index with 95% “MSCI Europe Index” and 5% “MSCI World Index”; for
the bond, we use the “Bank of America Merrill Lynch US Treasury & Agency Index”; for
the commodity, we use the “CRB Spot Index”. The average daily 2.5% ES (and 1% VaR)
of various asset classes is computed based on the GARCH(1,1)-GPD model in a four-year
rolling forecasting scheme. C7, Co and C5 represent the optimal corrections required to
pass the UC, C'C' and Z tests accordingly; backtesting is done over 250 days. The relative
correction is the ratio of the optimal correction over the average daily ES (or VaR).

Table 5: Dollar exposures to the model risk of GARCH(1,1)-GPD ES (a = 2.5%) of the
USD/GBP exchange rate and Microsoft equity, based on various ES backtests.

Asset Mean ES Max C7; Max Cy; Max C3 Mean C; Mean Cy Mean Cs
FX USD/GBP 14,291 11,100 3,300 8,700 1,371 107 152
MSFT (adjusted) 48,879 106,400 19,800 62,200 212 646 1,350
MSFT (non-adjusted) 65,200 2,500 3,500 34,700 6 129 3,168

Note: The USD/GBP spot rate and MSFT share prices from 01/01/1987 to 04/10/2017
are downloaded from DataStream and Bloomberg, respectively. All the outcomes are in
dollar units, computed by using a four-year moving window and a one-year backtesting
period, based on the GARCH(1,1)-GPD model. C1, Cy and C5 represent the dollar values
of the optimal corrections required to pass the UC, CC and Z, tests accordingly, when
considering a position of 1 million dollars in the asset specified in the first column.

models) and EWMA should be avoided. This is in contrast to the recommendations
of Boucher et al. (2014) made for the model risk of VaR, namely that the EWMA

VaR is preferred. Also, the 2.5% ES is the preferred measure of risk since it is less
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affected by model risk than the 1% VaR across different models or based on different
assets, especially after VaR model risk is removed first. Using the GARCH(1,1)-
GPD model to make ES forecasts of various asset classes, we find that commodity
ES carries the highest model risk especially around 2008, compared to equity and
bond ES.

5 Conclusions

In this paper, we propose a practical method of quantifying ES model risk based on
ES backtesting measures. Model risk is considered as an optimal correction required
to pass several ES backtests jointly. These ES backtests are tailored to the following
characteristics of ES forecasts: 1) the frequency of exceptions; 2) the absence of
autocorrelations in exceptions; 3) the magnitude of exceptions. We compare the
2.5% ES with the 1% VaR in terms of model risk across different models or based
on different assets. As a result, we find that the 2.5% ES are less affected by model
risk than the 1% VaR, needing a smaller correction to pass the three ES backtests
jointly. Besides, commodity ES carries the highest model risk especially around 2008,
compared to equity and bond ES. Moreover, we consider the impact of VaR model
risk on ES model risk in terms of the ES calculations and the ES backtests. If VaR
model risk is first removed, then ES model risk reduces further by approximately
50%.

Our results are strengthened when the standard deviations of the corrections for
model risk are considered: the GARCH(1,1) models not only require the smallest
corrections for model risk, but the level of the corrections are the most stable, when
compared to the other models considered in our study. Also, we theoretically exam-
ine the desirable properties of model risk from a regulatory perspective. Considering
the UC' and C'C' tests for our chosen measure of model risk, all the desirable prop-
erties hold, whilst subadditivity is not guaranteed and our results show that it is

generally satisfied by well-fitting models.
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Appendix A. Theoretical analysis of estimation and

specification errors of VaR["

Estimation bias and correction of VaR

Based on equation (2.5) and ([2.6]), correcting for the estimation error, the VaR

estimate can be written as:
VaR" (0, ) = VaR(0y, o) + E(bias(by, Oy, ) (A1)

This tells us that the mean bias of the forecasted VaR from the theoretical VaR is

caused by estimation error.

Specification and estimation biases and correction of VaR

Based on equation (2.10) and ([2.11)), correcting for these biases (specification and

estimation biases), the VaR estimate can be written as:
VaR®(0,,0) = VaR(6y, a) + E(bias(6y, 01, 61, ) (A.2)

The mean of the estimation and specification biases for VaR can be considered as a

measurement of economic value of the model risk of VaR.

14The analysis is based on [Boucher et al.| (2014)).
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Appendix B. Backtesting measures of VaR and ES

Table 6: Selected backtesting methodologies for VaR and ES

VaR backtests ES backtests
Exception Frequency Tests: Exception Frequency Tests:
1)UC test - 1)UC test - (2016

2)data-driven-

2)risk map- |Colletaz et al.|(2013

FException Independence Tests: Exception Independence Tests:

1)independence test (1998
2)density test- (2001
Ezxception Frequency and Independence Tests: Ezxception Frequency and Independence Tests:

1)CC test- |Christoffersen| ( 1)CC test- [Du and Escmlcianul 2016); |Costanzino and CurranMZOl5alb'

Engle and Manganelli| (2004 |Patt0n et al.|(2017 2)dynamic quantile-

Clift et a1A|

5)multinomial test{Kratz et 3)multinomial test1Kratz et al,l (2018 ;|Emmer et al.l l :
6)two-stage test- |Angelidis and Degiaunakisl (2007

Exception Duration Tests: Exception Duration Tests:

1)duration test- |Christoffersen and Pelletier 2004'

2)duration-based test-|Berkowitz et al.[(2011
3)GMM duration-based test- |Candelon et al.|(2010

Exception Magnitude Tests: Exception Magnitude Tests:

1)tail losses- (2010 1)tail losses- |V\'ong| (2008 ;|Christoﬂersen| (2009 ;|McNeil and Freyl (2000
2)magnitude test (2001

Exception Frequency and Magnitude Tests: Exception Frequency and Magnitude Tests:

1)risk map-

Colletaz et al.|(2013
2)quantile regression-

)
1)Z; test1Acerbi and Szekely| (2014

Appendix C. Risk forecasting models

In the following, we focus on several commonly discussed models for computing one-

step ahead VaR and ES forecasts (Christoffersen, 2012) using a rolling window of

length 7 at a significance level, a.

Historical Simulation

Among all the models considered in this paper, Historical SimulationEl is the simplest
and easiest to implement, in which the forecasting of risk estimates is model free,
based on past return data. VaR is computed as the empirical a-quantile (Q(-)) of

the observed returns X;, X1, ..., X411, and its formulation is given below

@?+T = _Qa(Xt; Xis1, "'7Xt+7'—1)' (C-l)

5Qther varieties of Historical Simulation, such as Filtered Historical Simulation, are found in
(Christoffersen, 2012).
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ES is the expected value of the returns in the tail, and it is computed as

i=t+7—-1
ES,,, = 2 Ml v (C2)
t+r T Zi=t+771 I . ’ )
1=t {X¢<*V(1Rt+.,-}

where [(+) is equal to 1 when the empirical return is smaller than the negative value
of VaR, otherwise 0.

Gaussian Normal distribution

Simply assuming that the observed returns follow a normal distribution, the one-step
-1

o )

ahead return 7, = 41, + 641 P, ", where [i;,, and [7t2+T are mean and variance
of the previous 7 observations X;, Xy, 1, ..., Xy.,_1, and ® denotes the cumulative
density function of the standard normal distribution. In this normal distribution

case, we compute VaRy, _ as

VaRy,, = —firyr — Gp4- P (C.3)
ES can be derived as .
o . 0(2,)

ES, ;= —fitsr + Ot4r P (C4)

where ¢ denotes the density function of the standard normal distribution.

Student’s t distribution

Here, we consider a symmetric Student’s ¢, capturing the fatter tails and the more
peak in the distribution of the standardised returns as compared with the normal
case. Let X denote a Student’s ¢ variable with the pdf defined as below:
I'((d+1)/2) 2 ) N—(1+d)/2

fua(x;d) = ——LZ (1 + 22 /d)~ D2 for d > 2, C.5

wlasd) = S 2 (©5)
where I'(+) is the gamma function and d is the degree of freedom larger than 2.
The one-step ahead return 7, = fiy 1 + G4yt (d), where t7'(d) refers to the
empirical a-quantile of the standardised returns following a Student’s ¢ distribution

with estimated parameter d. VaR can therefore be computed as

A,

VaR,, . = —fiuir — Grirty (). (C.6)
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ES is given by as
B8}y, = —firsr + par— 2 (C.7)

where fi; . and 67, are mean and variance of the previous 7 observations.

GARCH models

The Gaussian Normal and Student’s ¢ distributions are fully parametric approaches
and belong to the location-scale family with the general expression for the returns
Tior = fyar+0¢1r21r, where the mean pi;, . and standard deviation oy, are the loca-
tion and scale parameters, respectively. z;,, is the empirical quantile of the assumed
distribution of the standardised returns such as the standard normal distribution in
the normal case. The GARCH models play a crucial role in the location-scale family
with time-varying conditional variances and a modeled distribution for the stan-
dardised residuals, thus being considered as the dynamic approaches, as opposed to
the static models (the Guassian Normal and Student’s ¢ distributions). Considering
GARCH(1,1) models with the normal or Student’s ¢ disturbances (GARCH(1,1)-N

or GARCH(1,1)-), the time-varying conditional variance is written as
s2 2 -2
Oppr =W+ aXi, 460, (C.8)

Within the estimation window ¢,¢+ 1, ..., + 7, the model parameters (u,w, «, 5; d)
are estimated via maximum likelihood estimation with the constraints: w, «, 3 > 0,
a+p < 1,and d > 2. For GARCH(1,1)-N, the formulae for computing VaR and

ES are the same as equation (C.3) and (C.4). We can refer to equation (C.6) and
(C.7) to make VaR and ES forecasts using the GARCH(1,1)-¢t model.

Exponentially Weighted Moving Average

The exponentially weighted moving average method (EWMA) is a special case of
the GARCH(1,1) model with normal disturbances, as the conditional variance is
expressed as

67, =1 —=NX7, 1 +X67 1, A=0094. (C.9)

The formulae to compute VaR and ES are the same in equations (C.3) and (C.4)).
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GARCH with Extreme Value Theory

The advantage of extreme value theory is to model the tail distribution, thereby it
focuses on the extreme values in the tail. In our paper, we use the GARCH(1,1)
model with standardised ¢ disturbances, combined with the EVT methodology
(GARCH(1,1)-GPD). First, we obtain the standardised empirical losses via GARCH(1,1),

assuming they are distributed as a standardised ¢ distribution.
XtJrT = a-tJrTStil(d% a-t2+7' =w+ OéXtQJrTfl + ﬁa.tQJrﬂ'flv (ClO)

where St~!(d) denotes the inverse of the cumulative density function of a standard-

ised t distribution with its pdf expressed as
fiay (@ d) = C(d)(1+7/(d—2))" D2 for d> 2, (C.11)

where
C(d) = ['((d+1)/2) (C.12)
I'(d/2)\/m(d—2) '

Z 1s a standardised random variable distributed as a standardised ¢ distribution with
mean 0, variance 1 and degree of freedom larger than 2. Then we fit Generalized

Pareto Distribution (GPD) to excesses over the given threshold u, where

_ SV
e 1— (1+&u/B)~YE, if€>0 ©13)

1 —exp(—u/pB), if&=0

with > 0 and u > 0. The tail index parameter £ controls the shape of the tail.
When ¢ is positive, the tail distribution is fat-tailed. Consequently, in this approach
VaR could be computed as:

VaR,,. = 6,..VaR.(a), (C.14)

VaR,(a) = (u + g <<%) s 1>> (C.15)

with & the number of peaks over the threshold. ES is given by

where

ES,,, = 614+ ES.(a), (C.16)
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where

var (o [ (B — &)
ES.(a) = VaR.(«) (1 s f)VaRz(a)> . (C.17)

Cornish Fisher expansion

The Cornish Fisher expansion allows for skewness and kurtosis to make VaR and

ES forecasts by using the sample moments without any assumption on the returns.
VaR,, = —6,.,CF;" (C.18)

where 67, is the variance of the previous 7 observations, and CF, ! is expressed

below:
—1 -1 61 —1\2 52 —1\3 -1 A12 ~1,\3 -1
CEM =o'+ [(0,1) — 1]+ = [(@,1)° — 30, | — == [2(®,1)° — 58] (C.19)
6 24 36
ES is formulated as
ESyy, = —611-EScra (C.20)
where
_ -t s -
EScr(a) = —¢(i o) 1+ %(CFal)?’ + 2% [(CF M) —=2(CF; ') —1]| (C.21)

fl and 52 represent the skewness and excess kurtosis of the standardised returns,

calculated based on the past 7 observations.

Appdendix D. Empirical results
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Figure 8: Historical maximum of required optimal adjustments made to the daily ES
estimates by passing the UC, CC and Zs tests, respectively.
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Table 7: The highest values of the absolute minimum corrections made to the daily ES
(v = 2.5%) based on several models and different backtests.

UC test CC test Zy test

Model

Date

&

Date

Cy

Date

Cs

Historical

EWMA

Gaussian Normal

Student’s ¢

GARCH(1,1)-N

GARCH(1,1)-t

Cornish Fisher

GARCH(1,1)-GPD

=W N =W N =W N W N W N W N =

e R

1
2
3
4

16/06/1930
11/09,/2009
20,/11,/2008
12/12/1929

15/08,/1932
08,/08,/1932
09/11/1931
22/06,/1931

17/08/1932
13/09/1935
12/09/1935
16/09/1935

29/05,/2009
15/09/1932
11/10/1932
08,/09/1932

14/12/1962
19/12/1962
27/03/1931
26,/03,/1931

24/08/1932
25/08,/1932
26,/08,/1932
02,/02/1932

06,/11,/1929
29/10,/1929
10/02/1930
28,/10,/1929

24/09/1936
26,/09,/1936
23/09/1936
21/11/1986

0.0250
0.0240
0.0230
0.0220

0.1355
0.1196
0.1010
0.0744

0.0873
0.0861
0.0859
0.0850

0.2184
0.1475
0.1324
0.1206

0.1011
0.0990
0.0484
0.0471

0.0869
0.0854
0.0812
0.0427

0.0140
0.0130
0.0120
0.0110

0.0295
0.0294
0.0293
0.0292

29/10,/1929
14/12/1914
30/10/1930
13/12/1915

15/10/1935
18/10/1935
17/10/1935
16/10/1935

15/10/1935
18/10/1935
17/10/1935
16/10/1935

25/10,/1935
04/10/1935
28/10/1935
29/10/1935

02/06/1915
10/06/1915
01/03/1915
02/03/1915

08/06/1915
25/05/1915
03/03/1915
09/06/1915

28,/10,/1930
29/10,/1929
14/12/1914
19/10/1987

14/12/1914
07/05/1915
15/12/1914
14/05/1940

0.0980
0.0570
0.0300
0.0280

0.0930
0.0898
0.0897
0.0893

0.0964
0.0927
0.0925
0.0921

0.1212
0.1118
0.1041
0.1005

0.0990
0.0775
0.0744
0.0721

0.1041
0.1022
0.1002
0.0999

0.0760
0.0750
0.0540
0.0280

0.0285
0.0284
0.0283
0.0132

20,/04,/2009
30,03,/2009
05,/03,/2009
19/05 /2009

20/04,/2009
05,/03,/2009
30,03,/2009
05,/05,/2009

20,/04,/2009
05,/03,/2009
30,/03,/2009
05,/05,/2009

05,/03/2009
20,/04,/2009
30,/03,/2009
02/03/2009

29/03/1938
29/10/1929
14/04/1988
08,/08,/1930

08,/08,/1930
28,/10/1928
12/12/1929
21/07/1930

01/12/2008
08,/12/2008
29/12/2008
20/11,/2008

14/04/1988
25/03/1988
08,/01,/1988
10/03/1988

0.1186
0.1176
0.1172
0.1167

0.1241
0.1238
0.1229
0.1225

0.1433
0.1431
0.1421
0.1418

0.1315
0.1308
0.1300
0.1299

0.0408
0.0403
0.0397
0.0396

0.0118
0.0095
0.0086
0.0084

0.0975
0.0951
0.0933
0.0915

0.0360
0.0358
0.0344
0.0343

Note: The results are based on the DJIA index daily returns from the 1st January 1900
to the 23rd May 2017, downloaded from DataStream. We make the 2.5% one-step ahead
ES forecasts based on various models with a four-year moving window and backtest ES
estimates in the evaluation period of 250 days. C, Co and Cs denote the optimal correc-
tions required to pass the unconditional coverage test (UC test), the conditional coverage
test (C'C test) and the magnitude test (Zs test), respectively.
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Table 8: The highest values of the absolute minimum corrections made to the
GARCH(1,1)-GPD ES (a = 2.5%) for different assets by passing different backtests.

UC test CC test 7 test
Asset Dates (o Dates Oy Dates Cs
equity 1 30/10/2001 0.0283 27/08/2002 0.0033 21/01/2008 0.0093

[\]

26/10/2001 0.0282 05/09/2002 0.0028 12/02/2008 0.0063
3 22/10/2001 0.0281 19/09/2002 0.0027 10/10/2008 0.0057

bond

—_

05/07/2013 0.0033 14/05/1999 0.0004 05/08/1994 0.0034
01/08/2013 0.0027 21/04/1995 0.0001 16/09/1994 0.0033
3 09/08/2013 0.0026 15/08/1991 0.0000 06/05/1994 0.0032

]

commodity 1 30/04/1993 0.0065 20/12/1994 0.0007 17/02/2009 0.0211
2 28/04/1993 0.0064 19/12/1994 0.0005 20/02/2009 0.0198
3 26/04/1993 0.0063 07/03/2008 0.0004 19/11/2008 0.0190

Note: Downloaded from DataStream. For the equity, we use a composite index with 95%
“MSCI Europe Index” and 5% “MSCI World Index”; for the bond, we use the “Bank
of America Merrill Lynch US Treasury & Agency Index”; for the commodity, we use the
“CRB Spot Index”, from 31/10/1986 to 07/07/2017. We compute the GARCH(1,1)-GPD
ES of different assets at a 2.5% coverage level by using a four-year moving window and
backtest ES estimates in the evaluation period of 250 days. The variables C, Co and Cj
denote the optimal corrections required to pass the unconditional coverage test (UC test),
the conditional coverage test (CC test) and the magnitude test (Z3 test), respectively.
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Figure 9: The left tail of the cumulative distribution (using Gaussian Kernel smoothing)
of the negative of required optimal adjustments made to the daily ES estimates by passing

the UC, CC, and Z tests, respectively.
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Table 9: Means and standard deviations of the absolute and relative corrections made
to the daily 2.5% ES, the relative corrections made to the daily 1% VaR, and the relative
corrections required for the 2.5% ES after VaR model risk is excluded first, based on the
UC, CC and Z5 backtests.

Model Mean C; Mean Cy Mean C3 Std. dev Std. dev Std. dev
of Cy of Cy of Cs

Panel A: Means and standard deviations of the absolute optimal

corrections made to the daily ES (o = 2.5%).

Historical 0.0013 0.0020 0.0053 0.0039 0.0108 0.0157
EWMA (A=0.94) 0.0069 0.0037 0.0074 0.0133 0.0108 0.0179
Gaussian Normal — 0.0072 0.0042 0.0084 0.0135 0.0111 0.0200

Student’s ¢ 0.0113 0.0038 0.0073 0.0125 0.0098 0.0186
GARCH(1,1)-N 0.0020 0.0008 0.0033 0.0039 0.0038 0.0067
GARCH(1,1)-t 0.0029 0.0015 0.0001 0.0051 0.0063 0.0006
Cornish Fisher 0.0005 0.0014 0.0029 0.0019 0.0076 0.0104

GARCH(1,1)-GPD 0.0011 0.0008 0.0009 0.0039 0.0035 0.0038

Panel B: Means and standard deviations of the relative optimal

corrections made to the daily ES (o = 2.5%).

Historical 0.0451 0.0608 0.1818 0.1215 0.3050 0.5010
EWMA (A=0.94) 0.2599 0.1162 0.3070 0.4263 0.3034 0.6769
Gaussian Normal  0.2739 0.1344 0.3577 0.4339 0.3095 0.7991
Student’s ¢ 0.3964 0.0979 0.2550 0.3823 0.2167 0.5933
GARCH(1,1)-N 0.0840 0.0341 0.1341 0.1530 0.1471 0.2415
GARCH(1,1)-¢ 0.0868 0.0405 0.0016 0.1430 0.1556 0.0138
Cornish Fisher 0.0175 0.0222 0.0977 0.0586 0.1085 0.3373
GARCH(1,1)-GPD 0.0577 0.0296 0.0253 0.2087 0.1169 0.0952

Panel C: Means and standard deviations of the relative optimal corrections made
to the daily VaR (o =1%), by passing VaR backtests.

Historical 0.0286 0.0766 0.2256 0.0978 0.3168 0.3425
EWMA 0.0634 0.1075 0.4206 0.1565 0.3065 0.5226
Gaussian Normal 0.0730 0.1433 0.4165 0.1830 0.4392 0.5100
Student’s ¢ 0.0422 0.1004 0.2808 0.1275 0.3822 0.3974
GARCH(1,1)-N 0.0229 0.0652 0.6370 0.0601 0.2271 0.7828
GARCH(1,1)-¢ 0.0001 0.0149 0.3202 0.0019 0.1134 0.4904
Cornish Fisher 0.0077 0.0241 0.1260 0.0366 0.0989 0.2040

GARCH(1,1)-GPD 0.0020 0.0252 0.4325 0.0155 0.1461 0.6180

Panel D: Means and standard deviations of the relative optimal corrections made
to the daily ES (o = 2.5%), after VaR model risk is first removed.

Historical 0.0242 0.0563 0.0829 0.0648 0.2495 0.2437
EWMA 0.0455 0.0426 0.1529 0.1029 0.2460 0.3306
Gaussian Normal 0.0797 0.0463 0.1570 0.1835 0.1801 0.3545
Student’s ¢ 0.0810 0.0326 0.1073 0.1879 0.1183 0.2834

GARCH(1,1)-N 0.0597 0.0292 0.0939 0.1142 0.1479 0.1834
GARCH(1,1)-¢ 0.0027 0.0226 0.0015 0.0323 0.1349 0.0133
Cornish Fisher 0.0112 0.0310 0.0419 0.0317 0.0965 0.1462
GARCH(1,1)-GPD 0.0417 0.0296 0.0195 0.1736 0.1167 0.0750

Note: Based on the DJIA index from 01,/01/1900 to 23/05/2017, downloaded from DataS-
tream. 39
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