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Abstract

Granger-causality measures of interconnectedness between financial institu-
tions are useful indicators of systemic risk (Billio et al., 2012, Journal of Financial
Economics), as they help to evaluate to which extent the distress of one institution
disseminates across the whole financial system due to the network. This article
provides a critical assessment of Granger-causality networks, showing that they
can lead to inconsistent measures of systemic risk contributions due to the presence
of spurious causalities arising from indirect contagion effects. Traditional solutions
to control for these effects - via inference on conditional Granger-causality - lead
however to the curse of dimensionality. To solve this issue, we provide a mea-
sure of financial network systemic risk contributions based on the leave-one-out
(LOO) concept. For a given financial institution, the new measure evaluates to
which extent the total number of significant Granger-causality breakdowns when
this institution is excluded from the system. We control for spurious causalities
between the remaining institutions due to the indirect contagion effect of the ex-
cluded financial institution using a conditional Granger-causality test, which is
free of the curse of dimensionality. Empirical applications are conducted using
daily market returns for a sample of the world’s largest banks. Results show that
our measure gives a meaningful ranking of the systemic importance of financial
institutions which is consistent with the ranking of global systemically important
banks (G-SIBs) provided by the Financial Stability Board (FSB). Moreover, our
measure appears as a robust significant early-warning indicator of large losses in
the case of a systemic event, and is strongly driven by balance-sheet variables
related to size, business model and profitability.
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1 Introduction

The US financial market turmoil that began in August 2007 and amplified by the
collapse of Lehman Brothers had spread to the global financial market, with severe
impacts on the worldwide real economy. The amplitude of these negative externalities
and the related social costs in most countries raised the need for new macro-prudential
devices for a more efficient stabilization of systemic risk in the financial sector. The
Financial Stability Board (FSB) and the Basel Committee on Banking Supervision
(BCBS) as regulatory authorities, responded to these challenges initiating a number
of reforms, with the main element of the agenda being the identification of the so-
called global systemically important financial institutions (G-SIFIs). The objective
is to allocate G-SIFIs into buckets according to their required level of additional loss
absorbency. In a country-level, a set of principles had also been established to allow
national authorities to identify domestic systemically important financial institutions
(D-SIFIs).

Methodologically, the identification of SIFIs requires a deep knowledge of the nature
of systemic risk and the development of suitable tools for its measurement. In this
line, the academic literature has evolved over recent years, offering different models
or methodologies to evaluate the level of systemic risk for financial institutions. The
profusion of the different methodologies springs from the fact that systemic events can
have different sources or facets, including size, contagion or interconnectedness, lack
of substitute financial products, global cross-jurisdictional activity, and complexity of
business models. Indeed, Bisias et al. (2012) in their survey of systemic risk analytics,
identify thirty one (31) quantitative measures of systemic risk in the economics and
finance literature, that can be classified in six (06) homogenous groups: macroeconomic
measures like credit-gap indicators, cross-sectional measures including among others,
the delta conditional value-at-risk (CoVaR) of Adrian and Brunnermeier (2016) and
the systemic expected shortfall (SES) of Acharya et al. (2017), forward-looking risk
measures like contingent claims analysis, measures of illiquidity and insolvency, stress
tests scenarios, and network measures.

In this article, our interest lies on the last group, i.e., network measures based
on the interconnections between financial institutions. Even though this group of
measures represents only a small part of the literature, the related subject has always
been and is still the interest of major studies. On the theoretical ground, the literature
on network measures of systemic risk is related to financial contagion with major
contributions including among others, Allen and Gale (2000), Freixas et al. (2000),
Dasgupta (2004), Acemoglu et al. (2015) and Glasserman and Young (2015). The
core of these papers is to analyze the role played by the linkages among financial
institutions in the amplification of exogenous shocks that hit the system. The analyses
are generally undertaken under various angles related either to the shape of the network
(complete or incomplete), the level of uncertainty prevailing in the financial markets,
the complexity and concentration of the network (for a recent review, see Chinazzi and
Fagiolo, 2015). Empirical papers on network measures of systemic risk contributions
are also broad and can be categorized in two main groups depending on the nature
(private, public) of the input data sets. The first category of measures uses private
data on contractual obligations that measure the counterparty connections, to establish
the so-called counterparty network graph. An illustrative example of such a graph is
described in International Monetary Fund (2009), with the systemic importance of



a financial institution approximated by the degree of connectivity of its associated
node in the graph. The second category is based on publicly available data such as
asset returns or credit default swaps. The differences between the many contributions
arise from the econometrical or statistical methodologies used to establish the network,
which range from variance decomposition (Diebold and Yilmaz, 2014; Demirer et al.,
2018) to tail risk dependencies (Hautsch et al., 2015; Betz et al., 2016), the combination
of both approaches (Hérdle et al., 2016) and Granger-causality inference (Billio et al.,
2012; Basu et al., 2017; Etesami et al., 2017).

This article is specifically devoted to the last group of contributions, that tries to
evaluate systemic risk contributions based on Granger-causality network. The seminal
paper is Billio et al. (2012) who propose to evaluate the systemic risk contribution of a
given financial institution by its importance in a network based on pair-wise Granger-
causality tests. Precisely, they define a statistics equal to the frequency of statistically
significant pair-wise Granger-causality relations (regardless of the direction of causal-
ity) in which an institution is involved. Thus, higher (lower) values of this statistics
correspond to more (less) systemic financial institutions. This statistics can be fur-
ther disentangled focusing on the direction of causality. With empirical applications
using monthly returns data for hedge funds, broker/dealers, banks and insurers, they
show that these statistics help identifying financial crisis periods, and have good out-
of-sample predictive powers.

Nevertheless, some recent papers provide a critical assessment of Granger-causality
networks d la Billio et al. (2012) for measuring systemic risk contributions (Basu et al.,
2017; Etesami et al., 2017). The focal point of the criticism is the pair-wise Granger-
causality inference that underlies this approach, which can lead to spurious causalities
driven by the existence of indirect contagion effects. Indeed, as underlined by Basu
et al. (2017), the pair-wise approach evaluates the statistical association between any
two institutions A and B, focusing on the direct connectivity between them, as well
as indirect connectivities through all the other nodes (institutions) in the network.
Therefore, Granger-causality networks based on the direct and indirect effects do not
reveal the most systemic institutions, i.e., those that are central in spreading shocks
in the whole system. The consequences on the empirical side is that the pair-wise ap-
proach generally leads to networks that are highly dense, due to spurious causalities,
with potentially misleading ranking of the systemic importance of financial institutions.
This stylized fact is well known in the statistical literature about Granger-causality
inference and is usually tackled using conditional Granger-causality (Geweke, 1984) in
a vector autoregressive (VAR) model. Precisely, the autoregressive equations of the
bivariate Granger-causality tests, are extended using controlling variables that cor-
respond to lagged values of the returns on the other n — 2 institutions, with n the
total number of institutions in the system. However, with realistic large values of n,
one has to deal with a large dimensional VAR model, with traditional estimation via
the least squares method subject to overfitting. As proposed by Basu et al. (2017),
penalized least squares methods can be used to overcome the curse of dimensionality,
but with a no less important challenge related to the choice of the penalty parame-
ter. Indeed, there are many methods to calibrate the penalty parameter (information
criteria, cross-validation), and it is known in the statistical literature, that estimation
results can be sensitive to the retained choice.

Our main goal in this article is to rehabilitate the pair-wise Granger-causality
approach for the evaluation of systemic risk contributions, adressing these two short-



comings (indirect causalities and curse of dimensionality). Indeed, we show that this
approach when combined with the leave-one-out (LOO) concept is still valuable in
providing consistent measures of systemic risk contributions. Formally, for a given fi-
nancial institution A, we introduce a new measure of systemic risk importance, which
evaluates to which extent the total number of significant Granger-causality breakdowns
when this institution is excluded from the system. We control for causalities between
the remaining n — 1 institutions which are due to the indirect effect of the excluded
financial institution A, using a conditional Granger-causality test. Remark that the
use of the conditional version for each of the (n —1)(n — 2) pair-wise Granger-causality
tests in the system that excludes the financial institution A, allows us to clean all
spurious causalities between the remaining n — 1 institutions and which arise from the
indirect effect of the institution A. Moreover and importantly, this conditional version
is free of the curse of dimensionality, as it only involves lagged values of the returns on
the financial institution A.

Empirical applications are conducted using daily market returns for a sample of
90 large banks worldwide. The data range from September 12, 2003 to February
19, 2018, and include the global financial crisis of 2007-2008. The data set includes
almost every global systemically important banks (G-SIBs) identified by the Financial
Stability Board (FSB). Results show that our measure gives meaningful ranking of
the systemic importance of financial institutions, that is found to be consistent with
the ranking of G-SIBs provided by the FSB. Moreover, the new measure of systemic
importance from the viewpoint of interconnectedness, appears as a robust significant
early-warning indicator of large losses in the case of a systemic event. The predictive
power is larger than the one associated to the measures in Billio et al. (2012). These
results demonstrate that the pair-wise approach is more valuable when the effects of
indirect causalities are clean out in a meaningful way.

Lastly we search for the economic contents of our measure by estimating panel
regression models with balance-sheet variables as predictors. Results show that our
measure of systemic risk importance is strongly related to the size, the business model
and the profitability of banks. In line with the existing literature on systemic risk,
we find a positive and significant relationship between the size, as measured by the
logarithm of total assets, and our measure of systemic risk contribution. We also
assess whether the business model of banks drives our measure of systemic risk. Simi-
larly to Brunnermeier et al. (2012) and Laeven et al. (2016), our results suggest that
banks specialized in market-based activities tend to have a higher level of systemic
risk than banks specialized in traditional intermediation activities. Furthermore, we
investigate the link between the profitability of banks, proxied by the return on equity,
and their contribution to systemic risk. We find a positive and statistically significant
relationship between these two variables.

It is worth noting that the use of the LOO approach in the literature of systemic
risk measures is not new. Indeed, Zedda and Cannas (2017) employ this methodology
to analyze the systemic risk and the determinants of contagion in a banking system.
Formally, they base their approach on a simulated distribution of losses of the entire
system, and of each subsystem in which one bank was removed. Recently, Li et al.
(2017) also use the LOO concept applied to the z-score, as measured by the return
of asset (ROA) plus equity-to-assets ratio divided by the standard deviation of ROA.
They define an aggregate z-score for the whole system, and the so-called "Minus one
bank z-score" which represents the z-score of the system when one bank is removed. The



difference between these two measures is the contribution of the removed bank to the
systemic risk of the system. Note that as underlined by Zedda and Cannas (2017), the
LOO methodology presents some similarities with the Shapley value (Shapley, 1953),
which is used by many authors to measure systemic risk contributions (Tarashev et al.,
2010; Drehmann and Tarashev, 2013). Nonetheless, to our knowledge, our paper is the
first that mobilizes the LOO concept for measuring systemic risk contributions based
on Granger-causality networks.

The remainder of the article is structured as follows. Section 2 is devoted to a re-
view of literature on network measures of systemic risk, covering both theoretical and
empirical issues. Second 3 provides, in the line of Basu et al. (2017), a critical assess-
ment of systemic risk contribution’s measures based on pair-wise Granger-causality
tests. In Section 4, we present the new measure based on the LOO approach, and
assess its reliability using real data sets in Section 5. Section 6 searches for the micro-
economic determinants of the LOO measure using balance-sheet data, and the last
section concludes the article.

2 Literature Review

2.1 Theoretical Literature

The theoretical literature on network measures of systemic risk is related to contagion,
induced from direct or indirect linkages. Most of the works! on network contagion
focuses on risk channels issued from direct linkages, such as credit exposures, financial
market relationships (Allen and Gale, 2000; Freixas et al., 2000; Eisenberg and Noe,
2001; Dasgupta, 2004; Leitner, 2005; Vivier-Lirimont, 2006; Brusco and Castiglionesi,
2007; Nier et al., 2007; Gai et al., 2011; Acemoglu et al., 2015; Glasserman and Young,
2015). The literature can be categorized depending on the dimension of the contagion
analyzed, such as the density of the network (complete or incomplete), the level of
uncertainty in the markets, the complexity and concentration of the network.

Pioneering works from Allen and Gale (2000) and Freixas et al. (2000) focus on
the first dimension, studying the effect of the density of the network on the resilience
of the system to the insolvency of an individual bank. For instance, Allen and Gale
(2000) set up a basic network structure involving four banks in a model a la Diamond
and Dybvig (1983). In order to protect themselves against liquidity shocks (due to the
uncertainty about the timing of this shock), banks hold inter-regional claims on each
other. While those cross-holdings of deposits increase the resilience of the network
(since the proportion of the losses of one bank is spread across multiple agents) it
exposes the system to contagion. More precisely, the degree of contagion depends on
the pattern of interconnectedness between banks. A fully connected network spreads
the liquidity shock across the network and reduces its impact, while an incomplete
(not fully connected) network increases its impact and leads to contagion. Freixas
et al. (2000) also propose a model in the tradition of Diamond and Dybvig (1983) with
banks facing liquidity shocks. However, they are connected through interbank credit
lines due to uncertainty about the location of withdrawal deposits. As in Allen and
Gale (2000), they find that interconnections increase the resilience of the network to
the insolvency of a single bank.

!See Allen and Babus (2009), Chinazzi and Fagiolo (2015) and Hiiser (2015) for surveys on financial
networks contagion.



Nevertheless, these theoretical predictions should be contrasted to those of Vivier-
Lirimont (2006) and Brusco and Castiglionesi (2007) who obtain opposite results. Con-
sidering network structures d la Allen and Gale (2000) with multiple regions and one
representative bank per region, Brusco and Castiglionesi (2007) study the contagion
of financial crises across regions in which banks are connected through cross-holdings
of deposits. However, contrary to Allen and Gale (2000), bankruptcies are caused by
the moral hazard problem instead of a liquidity shock. They find that a more con-
nected interbank deposit market increases the number of regions hit by bankruptcies as
compared to the case where an incompletely connected market is considered. Similar
conclusions can be found in Vivier-Lirimont (2006) who analyzes the optimal network
architecture where transfers through the interbank market improve the utility of the
depositors. He finds that the higher is the network density, the higher is the likelihood
of the system to collapse.

Acemoglu et al. (2015) try to reconciliate these opposite results by analyzing the
network as a contagion mechanism in which institutions can be exposed to counterparty
risk due to unsecured debt contracts shared among each others. They observe that
the resilience of the network depends on an endogenous threshold for the number of
shocks. Precisely, if the magnitude or the number of shocks are below this threshold,
the more interconnected the network is, the less fragile is the system. However, as the
magnitude or the number of shocks become higher than the threshold, the opposite
result appears, i.e., more financial interconnections make the system more sensitive
and more prone to contagion.

This branch of the literature about contagion arising from direct linkages has
evolved with the years. The debate around the connectivity of the network and its
resilience to negative shocks has spread beyond the form of the network (complete or
incomplete). Indeed, other features of the network have been studied, such as its com-
plexity, concentration or leverage (Gai and Kapadia, 2010; Nier et al., 2007; Glasserman
and Young, 2015). For example, Gai et al. (2011) observe that the complexity and
the concentration are important characteristics. They propose a network of 250 banks
linked through unsecured claims and subject to funding liquidity shocks. Based on
different simulations’ scenarios, they find that complex and concentrated networks are
more sensitive to financial shocks and may amplify their effects.

Another part of the literature studies the contagion process of a negative shock
via indirect linkages arising from exposure to common assets and mark-to-market
losses from fire sales (Lagunoff and Schreft, 2001; De Vries, 2005; Elliott et al., 2014;
Cabrales et al., 2014; Caccioli et al., 2015). For instance, Lagunoff and Schreft (2001)
build a model in which agents have portfolios whose returns depend on the portfolio
allocations of others. Some agents are subject to shocks which lead them to reallocate
their portfolios, and consequently to break the links between them. They exhibit two
types of crises. The first one happens gradually. Agents do not anticipate the possible
losses and thus do not instantaneously break links. Losses spread across the network
and break more and more links. The second one happens instantly, as agents foresee
losses and preemptively break links to avoid losses from contagion. More recently,
Elliott et al. (2014) propose a model in which institutions are linked through cross-
holdings of shares (debt or liabilities). If the value of an institution become low enough
that it falls below a failure threshold, this one fails and affects its counterparties which
then propagate the initial failure. The authors identify two main features of the cross-
holdings that impact the probability of cascades and their extent: integration and



diversification. The integration corresponds to how much an institution is privately
held - cross-held by other institutions. The diversification represents how much the
cross-holdings of a single institution are spread out through the network (by only a
few ones or by a high number of them). Another example is Cabrales et al. (2014)
who analyze the trade-off between risk sharing and contagion. They consider a model
in which firms are linked through the exchanges of assets they are endowed with,
and more precisely, the securitization of mortgage loans sold to other firms. These
exchanges allow firms to diversify, but expose them to counterparties’ default. They
stress two alternatives that allow to reduce the contagion. The first one is by isolating
the firms in each component (which represents a region of the network). The second
one is by reducing the number of firms to which a firm is linked to. They observe
that when the probability distribution of the shocks has fat tails (high probability of
large shocks), the optimal network is the most segmented one with small components.
However, when the tails are thin, the best one is a single component with the minimum
segmentation in order to maximize risk sharing.

It is worth noting that the analysis of only direct or indirect linkages is not real-
istic. Indeed in practice, banks have many simultaneous direct and indirect linkages.
Drawing on this stylized fact, some authors incorporated both type of linkages in their
models (Cifuentes et al., 2005; Nier et al., 2007; Gai and Kapadia, 2010; Caballero
and Simsek, 2013; Glasserman and Young, 2015; Caccioli et al., 2015). Cifuentes et al.
(2005) build a complete network combining direct linkages via mutual credit exposures,
and indirect linkages through overlapping asset banks’ portfolios. They find that the
effect of an initial shock can be substantial and amplified if the prices of fire-sold as-
sets can change endogenously. Indeed, the initial failure of one bank leads to the sale
of the remaining assets of this bank. Under certain condition, this can decrease the
market prices of these assets, and thus, spreads the initial shock across the network,
particularly to the banks that hold the same assets. Finally, Gai and Kapadia (2010)
propose an interbank network with direct exposures based on the models used in the
epidemiological literature. They find two interesting facts. First, rare shocks can have
significantly large impacts on the network when they occur. Second, the impact of a
shock, regardless of its size, depends on the node of the network it hits. Indeed, more
central node, i.e., more interconnected ones, facilitate and amplify the contagion. To
take into consideration indirect linkages, they also include the setup used in Cifuentes
et al. (2005). However, they find that it does not modify the result of their initial
model.

2.2 Empirical Literature

On the empirical side, the many contributions available in the literature differ by the
type (private or public) of data used as well as by the econometrical or statistical
methods mobilized to construct the network and to extract measures of systemic risk
contributions. For instance, in the spirit of theoretical works, Drehmann and Tarashev
(2013) use direct and indirect linkages to measure the systemic importance of banks
in a network. More precisely, they propose two measures. The first one quantifies the
losses that a bank imposes on its non-bank investors (participation approach), and
the second one corresponds to the contribution of this bank to the contagion of an
idiosyncratic shock, i.e., its degree of connectedness (contribution approach). Using
balance sheet data of 20 international banks, they highlight that interconnectedness



is an important feature as it increases banks’ systemic importance, and that both
approaches allocate risk differently between banks.

Another representative paper is that of Diebold and Yilmaz (2014). They develop
networks based on variance decompositions and proposed various interconnectedness
measures. By focusing on major American financial institutions from May 1999 to
April 2010, they show that Citigroup has the highest value of connectedness, and more
generally the largest commercial banks are the most interconnected. However, their
methodology is sensible to the curse of dimensionality, and they limit the sample to
only a small part of G-SIBs. Demirer et al. (2018) extend this methodology to compute
high-dimensional networks. Indeed, they consider penalization methods to reduce the
dimensionality of the network, and render the model estimable even in presence of a
high number of banks. Thus, in their empirical applications, they consider a sample of
96 international banks from the world’s top 150, and find that there are strong clusters
within and between countries.

Other studies focus on firms’ tail risk to build networks. For example, Hautsch
et al. (2015) initially propose the "realized systemic risk beta" which corresponds to
the marginal effect of the value-at-risk of a given institution on the value-at-risk of
the network. Using the 57 largest financial institutions from North America, they find
a high degree of interconnectedness and a rise of their measure of systemic risk con-
tributions during the 2007-2008 financial crisis. This work is extended to a dynamic
setup by Hautsch et al. (2014) to compute time-varying realized systemic risk. Their
empirical results based on a sample of 20 banks and insurers from Europe, highlight
country-specific risk channels, as well as cross-country and industry-specific channels.
Betz et al. (2016) extend both previous papers by allowing their methodology to be
feasible in presence of high-dimensional financial systems. They apply their model to
European banks and show that the network’s density increases during the financial
crisis but decreases afterward, and that the size, leverage and degree of interconnect-
edness increase banks’ systemic importance. In the same vain, Hérdle et al. (2016)
combine firms’ tail risk with variance decomposition. They build their network by
using the approach of Diebold and Yilmaz (2014), but the so-called adjacency matrix
(with elements indicating whether pairs of vertices are adjacent or not in the graph)
is based on the value-at-risk of institutions instead of conditional correlations. Using
100 US financial institutions (depositories, insurers, broker-dealers and others), they
find that the banking (insurance) sector is the one that gives more (less) the pace in
risk transmission.

Another empirical approach that gains interest in recent years is Granger-causality
networks. A representative contribution is Billio et al. (2012) who use pair-wise
Granger-causality tests to measure the systemic risk contributions of financial insti-
tutions. To build their network, they consider linear and nonlinear versions of these
tests and develop several measures of interconnectedness. Using data from the 25
largest banks, hedge funds, broker-dealers and insurers, they show that these sectors
are strongly interconnected, and that the connections are dynamic. Moreover, their
findings suggest that the banking and insurance sectors might have a central position
in the network. The pair-wise approach is recently extended to a multivariate setting
to deal with indirect causalities (Basu et al., 2017; Etesami et al., 2017; Barigozzi
and Brownlees, 2013). These works consider large dimensional vector autoregressive
model estimated via penalization to deal with the issue of dimensionality. For in-
stance, Barigozzi and Brownlees (2013) propose two network representations for large



sparse VARs and a new algorithm based on the Lasso method. The first one is a
combination of directed linkages, represented through Granger-causality connections,
and undirected ones, corresponding to partial contemporaneous correlation connec-
tions. The second one is made up of undirected linkages which represents long run
partial correlation connections. Considering ninety US bluechips, they find that the
most interconnected institutions are the largest ones, such as AIG, Bank of America
or Citigroup. As already stressed, our paper focuses on this last group of works, i.e.,
measures of systemic risk contributions based on Granger-causality networks.

3 Measuring Systemic Risk via Granger-Causality Net-
work: a Critical Assessment

This section motivates our contribution to the literature on network systemic risk
contributions. The first part of the section describes the concept of Granger-causality
inference, the building block of Granger-causality networks, and the second part shows
through an illustrative example and Monte Carlo simulations, the negative effect of
indirect causalities in measuring systemic risk contributions through Granger-causality
networks.

3.1 Granger-Causality Inference

Consider a system of n interconnected financial institutions, and denote yi; =
Alog Py ; = log Py ; — log P ;—1 the market returns as measured by the log-difference
of market prices for the financial institution number &, with £ = 1,...,n. With two
financial institutions ¢ and j, the Granger-causality test as formalized by the seminal
paper of Granger (1969) can be used to check whether information conveyed by y;;
the returns of the financial institution j helps predict the dynamics of y;; the returns
of the financial institution ¢. The null hypothesis corresponds to

Ho : Pr(yis < yl|Fi—1) =Pr(yis <yl|Fii-1), (1)

for all values of y, where the information sets F;_1 and F;;_1 are given by
ft—l = {(yi,&yj,s)/ ;S <t- 1} ) (2)

Fit—1={vis,s <t —1}. (3)

Remark that the concept of causality carried out by this null hypothesis is strong,
as it aims of testing for the lack of predictive content over the whole distribution. Since
the seminal paper of Granger (1969), the academic literature has evolved focusing on
some weak versions of the concept, i.e., causality in specific moments of the conditional
distribution (mean, variance, tail). For instance, the well-known concept of Granger-
causality in mean (Granger, 1980, 1988; Sims, 1972, 1980) is based on the following
modified null hypothesis

Hoa : B (yig |[Fio1) = E (yie [ Fie-1), (4)

which can be tested in a parametric framework relying on the following test statistics

=2

0;
Ujsi = Tlog(=22), (5)
01




where T' is the sample length, 82-27 ; and 81.272 are respectively the sample variances of the
fitted residuals &; 1 and &; 2, from the following autoregressive models

M M
Yit =C1+ Z GsYit—s + Z VsYjt—s T Eilts (6)
s=1 s=1
M
Yit = C2 + Z QsYit—s T €i2t; (7)
s=1

with M the lag-order, ci1, co, ¢s, Vs, @s, s = 1,..., M some parameters. Under the
null hypothesis Hy 1 of absence of Granger-causality in mean, the test statistics U;_,;
has an asymptotic chi-square distribution with degree of freedom equal to M. Hence,
it Uj; > X%_W(M ), one rejects the null hypothesis of no Granger-causality in asset
returns from the financial institution j to the financial institution i, with x7_, (M) the
fractile of order 1 — 7 of the chi-square distribution with M degree of freedom, n being
the nominal significance level.

Note that Granger et al. (1986) also introduce the concept of Granger-causality in
variance to test for transmission in the second order moment.? More recently, some
papers focus on testing for Granger-causality in extreme quantiles or tail-events to
capture spillover effects on higher-order moments like skewness and kurtosis (Hong
et al., 2009; Jeong et al., 2012; Han et al., 2016; Candelon and Tokpavi, 2016). In
this paper, our contribution to the literature on network systemic risk contributions
is developed (without loss of generality) around the concept of Granger-causality in
mean as described above.

3.2 Indirect Causalities and Network Systemic Risk Contributions

For a system of n financial institutions, Granger-causality tests can be used for all
pairs of financial institutions to assess the existence of interconnectedness. This issue
is investigated in the literature by Billio, Getmansky, Lo and Pellizon (2012) (hereafter
BGLP) to establish the network of a financial system, and to derive global as well as
institution-specific measure of systemic risk. Following their approach, we can measure
the systemic importance of a financial institution k by its contribution to the Granger-
causality network as follows

M=

Oty = 5y [1(Uksj > 33, (00) + (Ui > 23, (00)] . (8)

<. .

]
=

where Uj_,; corresponds to the statistics of the Granger-causality test in mean from
the financial institution k to the financial institution j, as defined in (5), and X%—W(M )
the fractile of order 1 — n of the chi-square distribution with M degree of freedom.
The first term in the bracket measures the number of financial institutions that are
significantly Granger-caused by the reference institution k& (Out-part of the measure),
while the second term measures the number of financial institutions that significantly
Granger-causes the institution & (In-part of the measure). Hence, the statistics InOuty
measures the fraction of the total number of financial institutions that are involved in

2See also Engle and Ng (1988), Engle et al. (1990), Cheung and Ng (1996), Hong (2001), Sensier
and van Dijk (2004), to cite but a few.
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a significant connection with the financial institution k. Note that higher (resp. lower)
values of the statistics InOuty correspond to more (resp. less) systemic institution
from the viewpoint of interconnectedness.

A central point that motivates our paper, is that the statistics InOut; can lead
to inconsistent rankings of financial institutions in term of systemic risk, due to the
existence of indirect causalities. To give more insight on this statement, let us consider
a simple financial system with n = 3 institutions 1, 2 and 3. The connections between
the three financial institutions are displayed in Figure 1.

Institution 3

Institution 1 i

Figure 1: True network for a system of three financial institutions

In this simplified financial system, there is transmission in asset returns from the
financial institution 2 to the financial institution 3 and from the institution 3 to the
institution 1. This form of network can arise from indirect contagion due to common
assets (Greenwood et al., 2015), overlapping portfolios (Caccioli et al., 2014, 2015)
and linked portfolio returns (Lagunoff and Schreft, 2001), with propagation of shocks
driven by fire sales. Precisely, the institution 2 facing an idiosyncratic shock that
impacts negatively its equity, sells its assets to maintain its target level of leverage. In
case of illiquid assets, fire sales depress prices, and this in turn can impact the equity
of the financial institution 3 due to common exposures to those assets. The same
phenomenon involving institutions 3 and 1 would take place with common exposures
to other assets, leading to this type of network.

Using (8), the true levels of the contribution of each financial institution to the
Granger-causality network are thus equal to

1 2 1
InOuty = 1= 0.25,InOuts = 1= 0.5,InOut; = 1= 0.25. (9)

Hence, the financial institution number 3 is the most systemic. Nevertheless, the
network that would arise most often from the application of the Granger-causality test
is depicted in Figure 2. In fact, an indirect spillover effect should be detected from the
financial institution 2 to the financial institution 1, due to the financial institution 3.3
The information one extracts from this network is that all three financial institutions

3Note that the probability with which one detects this indirect effect is theoretically equal to the
power of the Granger-causality test.
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are systemically equivalent, because we have

2 2 2
InOuty = 1= 0.5, InOuts = 1= 0.5,InOut; = 1= 0.5. (10)

L Institution 3 Institution 1 i

Figure 2: Detected network using Granger-causality tests

The following Monte Carlo experiments give more insights about this point. We
consider that the data generation processes of asset returns for our three financial
institutions 1, 2 and 3 are as follows

Y2, = 0.5y24—1 + U2t

U2t = 02tV ¢t (11)

U%,t = 005 + 0'85U§,t71 + 0'1u%’t717

y3,c = 0.5y34—1 + 0.2y 11 + u3

U3t = 03,tV3 ¢ (12)
03, =0.05+0.8503, | +0.1u3, |,

Y16 = 0.5y1,4—1 +0.2y3 41 + u1 4

Ul = 014Vt (13)

o3, = 0.05+0.8507,_1 +0.1u3,_,

where each vy, k = 1,2, 3, follows a Student-t distribution with degree of freedom
equal to 5. Thus we make the assumption that each serie of asset returns follows an
AR(1)-GARCH(1,1) model. This model is calibrated to capture important stylized
facts in the dynamics of asset returns such as autocorrelation, heteroskedasticity, and
fat taildness. Moreover, we suppose that there is causality in mean from the financial
institution 2 to the financial institution 3, and from the financial institution 3 to the
financial institution 1. Hence, with the application of the Granger-causality test in
mean, one should detect a significant connection from 2 to 3 and from 3 to 1. Hence,
the specified data generation processes are consistent with the true network in Figure
1.

However as we stress above, although there is no connection between 2 and 1,
the Granger-causality test in mean should detect an indirect spillover effect from the
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financial institution 2 to the financial institution 1. Figure 3 reports the rejection
frequencies over 1,000 simulations of the Granger-causality test in mean from 2 to 1,
at the nominal significance level n = 5%. Results are displayed for different values of
the sample size T € {100, 250, 500, 1000, 1500, 2000, 2500, 3000}. The lag-order M for
the computation of the test statistics in (5) is set to M = 5. We observe in Figure 3
that the rejection frequencies of the test are high and increase with the sample size.
To summarize, outcomes from our Monte Carlo experiments show that the ranking of
financial institutions using the statistic InOuty can indeed be misleading due to the
detection of spurious indirect causalities in the network.

Rejection Frequencies
o
~
T
|

01 H -
0
100 250 500 1000 1500 2000 2500 3000
Sample length

Figure 3: Rejection frequencies of the Granger-causality test from 2 to 1

A traditional solution to deal with this issue would be to consider network based
on conditional Granger-causality test. Indeed, the conditional Granger-causality test
introduced by Geweke (1984) has the ability to resolve whether the interaction between
two time series is direct or is mediated by another time series. From a computational
point of view, the test statistic U;_,;; for the Granger-causality test in mean from j
to i conditionally to k is identical to its unconditional version U;_,; in (5), that is

~2

Ujsie = Tlog(JQ’ )s (14)
i1

where again T is the sample length, 512’ 1 and 522 are respectively the sample variances
of the fitted residuals u; 1 and u; 2, from the autoregressive models

M M M
Yit =cC1+ Y Oslit—s + D VsUjt—s + D VsUki—s + Ui, (15)
s=1 s=1 s=1
M M
Yit =C2+ Y Qsllip—s + Y Osyki—s + Uiy, (16)
s=1 s=1

with g, 05, s = 1,..., M, some additional parameters. These two specifications are the
extended versions of the autoregressive models in (6-7), where the residuals are cleaned
out from the effect of the time series y; ; that is suspected to drive the causality.
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Figure 4: Comparison of conditional and unconditional Granger-causality tests

To illustrate the relevance of the conditional test in managing indirect causalities,
we consider once again the simplified network depicted in Figure 1 along with the asso-
ciated data generating processes in (11-13). The rejection frequencies (at the nominal
risk level n = 5%) over 1,000 simulations of the Granger-causality test from the finan-
cial institution 2 to the institution 1, conditionally to the institution 3 are displayed
in Figure 4. The lag-order is set to M = 5 and we consider different sample sizes
T € {100,250, 500, 1000, 1500, 2000, 2500, 3000}. For comparison, we also report the
rejection frequencies of the unconditional test for the same experiments. We observe
that while the rejection frequencies of the unconditional test are high and increase with
the sample size, the rejection frequencies of the conditional test are low and converge
to the nominal significance level n = 5% at the highest sample length. Hence, based
on the statistics InOutyg, the conditional test would lead to a consistent ranking of the
systemic importance of the three financial institutions, as it is designed to exclude the
spurious causality from the institution 2 to the institution 1, due to the effect of the
indirect contagion.

<
CL_

Institution 2

T

/_-FH_ [nstituion 1 )
& _,_..//

—_— e T

___\)
-

Figure 5: True network for a system of three financial institutions: second scenario
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The conditional test as described above is also adapted to manage another form
of indirect causality resulting from the joint exposure of the financial institutions 1
and 2 to the institution 3. The related true network is depicted in Figure 5, with the
institution 3 that Granger-causes both institutions 1 and 2, but with a time-delay. The
following data generating processes are consistent with this network, with y; ¢, y2; and
y3,t simulated as

Y3t = 0.5y3,4—1 + u3y

U3t = 03,tV3¢ (17)
03;=0.05+0.8503, ; 4+ 0.1u3, i,

Y2, = 0.5y24—1 +0.2y3 11 + u2y

Ut = 094V ¢ (18)
05, =0.05+0.8503, | +0.1u3, |,

Y1t = 0.5y14—1 +0.2y3 12 + u1 4

Ut = O1,tV1,t (19)

0%, =0.05+0.8507,_; +0.1u?,_,

where again v, £ = 1,2,3, follows a Student-t distribution with degree of freedom
equal to 5. Based on these data generating processes, rejection frequencies (over 1000
simulations) of the conditional and the unconditional Granger-causality tests from the
financial institution 2 to the financial institution 1 are displayed in Figure 6. We
observe once again that the conditional version of the test helps to control for the
spurious causality arising from indirect contagion, while the unconditional test fails to
do so with strong rejections of the null hypothesis.

[ Junconditional test
[ Conditional test

Rejection frequencies
o
=
T
|

Hl O O O T PO P

100 250 500 1000 1500 2000 2500 3000
Sample length

Figure 6: Comparison of conditional and unconditional Granger-causality tests: second
scenario

Nevertheless, one can notice that if the conditional test is simple to implement in
our simplified financial system including n = 3 institutions, its implementation for real
system with many institutions will lead to the curse of dimensionality. Indeed, the

15



conditional Granger-causality test from the financial institution j to the institution 4
should be run by controlling for the potential indirect effects coming from all other
n — 2 institutions. This leads to the following two autoregressive models

M M n—2 M
Yit = CLA D Osiv—s T O VsUjtos T D O Uk sUhies T Uit (20)
s=1 s=1 k=1s=1
M n—2 M
Yit =C2+ > Qelit—s + D O Okski—s + Ui, (21)
s=1 k=1s=1

with ¢y s, Oks, s =1,...., M, k =1,...,n — 2, the parameters of the controlling autore-
gressive terms. These specifications involve many explanatory variables. Indeed, in
each model, the number of controlling variables is equal to M (n — 2), and even with
a financial system of limited size, the estimation of both equations will be subject to
multicollinearity and over-fitting. As analyzed by Basu et al. (2017), these issues can
be handled within a lasso penalized vector auto-regressive (LVAR) model, which is
designed to provide estimates of large dimensional vector autoregressive model with
sparse coefficients. Their empirical applications based on a set of large US financial
institutions show indeed that the LVAR succeeds in controlling for spurious indirect
causalities, and hence helps recovering less dense networks in comparison to the BGLP
approach. Note that in their work, a multivariate instead of the pair-wise approach
of BGLP is adopted, with a VAR model specified for all firms simultaneously, taking
into account all interactions in the system. See also Etesami et al. (2017) for a similar
approach in the context of systemic risk, and Barigozzi and Brownlees (2013) in a more
general context of network modeling.

4 Breaking the Curse of Dimensionality: a Leave-One-
Out Approach

In this section, we show that the pair-wise approach of BGLP when combined with
the leave-one-out (LOO) concept can still be used to consistently estimate Granger-
causality network systemic risk contributions. As it will appear clearer in the sequel,
the LOO methodology allows us to deal with the issue of indirect causalities, without
facing the inherent curse of dimensionality arising in the multivariate approach (Basu
et al., 2017; Etesami et al., 2017).

To present our LOO measure of systemic risk contributions, let us first define the
following statistics which summarizes the level of Granger-causality (LGC) in the sys-
tem, i.e., the number of statistically significant Granger-causality relationships among
all n(n — 1) pairs of financial institutions in the system

Lac=331 (UH > X%_U(MD . (22)
i=1j=1
J#i

This statistics can be considered as a global measure of systemic risk in the system,
from the viewpoint of interconnectedness. Now, for a given financial institution k,
consider the system of size n — 1 which includes all the n institutions, except the
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institution number k. We can similarly define as in (22), the level of Granger-causality
in this system, yielding

n—1 n—1

LGC(_ 1(Ujsi > x3_y(M)) . (23)

HM

o

£
‘H\w
=

; ,J#

The statistics LGC(_j) measures the number of remaining significant connections
in asset returns, when the financial institution k is excluded from the system. One
can notice however that this statistics removes direct causalities in the network due to
the financial institution k, but fails to clean indirect causalities between the remaining
n — 1 financial institutions which are due to the financial institution k. To overcome
this shortcoming, we re-define the statistics LGC(_y, as follows

LGC(_p = I (Uj—>z'|k > X%_n(M)) ; (24)

where Uj_,;;; is the conditional Granger-causality test as defined in (14). Remark
that the use of the conditional version for each of the (n—1)(n —2) pair-wise Granger-
causality tests in the system that excludes the financial institution k, allows us to clean
all spurious causalities that exist in the remaining n — 1 institutions and which arise
from the indirect effect of the institution k. Moreover and importantly, this conditional
version is free of the curse of dimensionality, as it involves, as controlling variables,
only lagged values of the returns on the financial institution & (see equations 15-16).

Based on the two statistics LGC and LGC(_y,), we define our LOO measure of the
systemic importance of the financial institution k as follows

(LGC ~LGC ()
LGC '

This statistics evaluates to which extent the total number of significant Granger-
causality breakdowns when the institution k is excluded from the system, and hence
appears as a proxy of its systemic importance. Note that the statistics ALGCy, takes
positive values, and higher (resp. lower) values correspond to more (resp. less) systemic
institutions. Moreover, dealing with spurious causalities arising from indirect contagion
effects, it should lead to consistent ranking of the systemic importance of financial
institutions.

To provide some supports to the relevance of the LOO approach, we consider the
true network depicted in Figure 1 along with the associated data generating processes
n (11-13). Recall that from the viewpoint of interconnectedness, in this simplified
financial system including three institutions, the most systemic is the third (3), with the
other two (1 and 2) being systemically equivalent. Based on the true data generating
processes, we simulate the returns of the three financial institutions, and compute
both measures of systemic risk contributions InOut; and ALGCy, k = 1,2, 3. Figure
7 displays the box plots of these measures obtained over 1,000 simulations.

The first panel of the figure that displays the measures InOuty, for the three insti-
tutions, shows that the median values (emphasized in red color) are equal, confirming
that this measure leads to inconsistent ranking of the financial institutions. Indeed,
the equality of the median values means that with a high frequency, one will conclude

ALGCy, = (25)
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Figure 7: Box plots of alternative measures of systemic risk contributions

that the three institutions are systemically equal. In contrast, the box plots of our
statistics ALGCy confirm the relevance of the LOO approach. Indeed, the median
values are equal for the institutions 1 and 2. This means that most frequently (across
the 1,000 simulations), these two institutions are found to be systemically equivalent.
Moreover and importantly, the median value for the institution 3 takes the highest
value, with the consequence that this institution is diagnosed as the most systemic
in most simulations. Hence, these Monte Carlo experiments show that the ranking
from the LOO measure is consistent, as least for the considered simulation setup. The
next section is devoted to a thorough analysis of the new measure of systemic risk
contributions using real data.

5 Reliability of the New Measure

In this section, we first introduce the data used to illustrate our new measure and give
some summary statistics. Then, we compare the new measure to the one of BGLP and
highlight the differences between the two measures. Finally, we evaluate its predictive
power, that is, to what extent it can be considered as an early-warning indicator of
the fragility of financial institutions in the case of a systemic event.

5.1 Data and Summary Statistics

To analyze the performance of our measure, we use daily assets returns, denominated
in local currency, of 90 banks from 28 countries worldwide. The data are downloaded
from Datastream, and range from September 12, 2003 to February 19, 2018, with a
total of 3766 daily observations. The banks are mostly from developed countries: 80
are from 21 developed countries and 10 from 7 emerging countries. The sample of banks
considered is the one used by Demirer et al. (2018), except six banks: CIMB Group
Holdings (Malaysia), Pohjola Bank (Finland), Woori Finance Holdings (Korea), Bank
of Yokohama (Japan), Banco Popular (Spain), and Banco Espirito Santo (Portugal).
These banks are excluded for various reasons including data availability, failure or
merger and acquisition. Table B1 in Appendix B displays the list of banks with their
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respective country and label.

One important feature of our data set is that it includes almost every G-SIBS
identified by the Financial Stability Board (FSB). This will allow us to compare the
banks that we identify as the "most systemic" based on our new measure, to those
identified by the FSB. Starting from September 2003 to February 2018, our data set is
large enough for sub-samples analyzes. For further analysis, we will thus consider three
sub-periods: pre-crisis, crisis and post-crisis. We follow Laeven et al. (2016) by setting
the beginning of the crisis period to July 2007 and the ending of the crisis to June
2009, which corresponds to the recovery of financial markets. Table B2 in Appendix
B reports for the full sample and each sub-sample, the mean, the standard deviation,
the skewness and the kurtosis of the banks’ asset returns regrouped by continent. As
expected, the average returns highly decreased for all regions during the crisis period
and became negative except for Africa. The standard-deviation also increased during
this period, and particularly for American’s and European’s banks.

5.2 Comparative Assessment

As underlined in the previous sections, spurious causalities arising from indirect con-
tagion, can severely impair the results of Granger-causality tests, and can lead to
inconsistent rankings of the systemic importance of financial institutions based on
Granger-causality network. This is particularly the case for the measure InOuty of
BGLP. We thus introduced a new measure we denoted ALGCj based on the LOO
concept. The goal of this section is to highlight the differences between our mea-
sure and that of BGLP. To this end, we compute these two measures for our three
sub-periods.*

Remark that both the BGLP measure InOut; and our LOO measure ALGC,, are
summaries of outcomes from multiple pair-wise Granger-causality tests, and hence are
subject to data snooping (White, 2000), a phenomenon that occurs when the same
dataset is used more than once for inference. Data snooping should be taken with
cautious, since with multiple testing, there is an increased probability of rejecting
the null hypothesis (here, absence of causality) just by chance, with an inflation of the
overall significance level. Hence, we correct both measures for multiple testing problem,
using the two-stage linear step-up procedure of Benjamini et al. (2006). Appendix A
is devoted to a brief review of the data snooping problem, along with the motivation
underlying our choice of this procedure.

Tables 1-3 provide the ten most systemic banks identified by both measures as
well as the ten less systemic, for the three sub-periods. For the pre-crisis period (see
Table 1), JPMorgan Chase & Co appears as the most systemic bank identified by our
LOO approach, with the value of the measure ALGC equal to 0.938. This means
that when this institution is excluded from the system, controlling for the impact of
spurious causalities, the number of significant connections in the system has dropped
by 93.8%. This decline is notable, and reflects the importance of this institution in the
network. Figure 8 displays for the pre-crisis period, the network for the whole system
including all of the 90 banks in the sample. The number of significant connections, i.e.,
the statistics LGC is equal to 1312. The same network excluding JPMorgan Chase &

“Following BGLP and Basu et al. (2017), we control the two measures for the presence of het-
eroskedasticity in asset returns, basing both the unconditional and conditional Granger-causality tests
to the filtered returns innovations obtained from the estimation of GARCH models.
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Co is exhibited in Figure 9, with the statistics LGC(_j) equal to 81. Hence, when this
institution is excluded from the system, the number of significant connections drops
from 1312 to 81, with our measure ALGC}, taking value (1312 — 81)/1312 = 93.8%.
This result should be contrasted with the one obtained for the least systemic institution
(Ping An Bank) with the statistics ALGCy equal to 0.031. Figure Bl in Appendix
B displays the network that excludes this institution. As we can see, the network is
indistinguishable from the one that includes all institutions (see Figure 8). Indeed the
number of statistically significant connections in the system that excludes Ping An
Bank is equal to 1271 and therefore very close to 1312.

Figure 8: Network for all 90 banks: pre-crisis period

Figure 9: Network for the system excluding JPMorgan Chase & Co: pre-crisis period

Results in Table 1 also indicate that the most systemic banks identified are mostly
American for both measures, whereas the less systemic are from Japan and China for
the measure ALGCy, but from China, Europe and Canada for the measure InOuty.
The differences between the most systemic institutions are thus weak. However, when
one considers all of the 90 financial institutions, some divergences appear between the
two measures of systemic risk contributions, as illustrated in Figure 10 which displays
the scatter plot of the ranks of financial institutions. The most (less) systemic institu-
tion is ranked one (90) for both measures. We observe that if both measures identify
American banks as the most systemic during the pre-crisis period, some differences ex-
ist for the rest of the sample.? Indeed, banks from Asia and Pacific, except from China

5The overall correlation between the ranks is equal to 0.423.
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and India, are identified as much more systemic by the InOut; measure than by the
ALGC} measure. This difference arises mainly from the negative impact of spurious
indirect causalities on the measure InOuty. In other words, the unconditional Granger-
causality test that underlines the measure InOut; detects many spurious causalities
involving many banks from Asia and Pacific.
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Figure 10: Comparison of the ranks of InOut; and ALGCy: pre-crisis period

Note : This figure represents the ranks of banks for both measures over the pre-crisis period. Banks
from US are filled in blue, Australia, Japan, Korea, Malaysia and Singapore in red, China and India

in green, and the others are not filled.

The patterns are different when analyzing the results for the crisis period dis-
played in Table 2. Indeed, while our measure still identifies American banks as the
most systemic, the measure InOuty, from BGLP identifies banks from US and Canada.
Moreover, banks from China, India, Europe and Canada are ranked as the less sys-
temic by the latter measure, while our measure still identifies banks from China and
Japan. The overall picture of the differences between the two measures are displayed
in Figure 11 which represents the scatter plot of the ranks. The figure shows a clear
cut divergence between both measures with the value of the correlation between ranks
that drops from 0.423 (pre-crisis period) to 0.127. As already stressed, this result arises
from indirect spurious causalities, which seems most prominent in the crisis period.
Lastly, results in Table 3 (see also Figure B2 in Appendix B) confirm the divergence
between both measures of systemic risk, with an overall rank correlation equal to 0.058.

As the true levels of systemic risk contributions are latent, one can wonder whether
our measure is more accurate to that of BGLP. One way to convince the reader is to
compare both rankings to the one provided by the Financial Stability Board (FSB).
Indeed, since 2011, this institution publishes each year a ranking of the most systemic
banks worldwide, denoted as G-SIBs (global systemically important banks), organized
by buckets. The latter differ by the required level of additional common equity loss
absorbency as a percentage of risk-weighted assets that each G-SIB will be required
to hold. We thus consider the last ranking of G-SIBs published in 2017 by the FSB
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Figure 11: Comparison of the ranks of InOut; and ALGCy: crisis period

Note : This figure represents the ranks of banks for both measures over the crisis period. Banks from
US are filled in blue, Australia, Japan, Korea, Malaysia and Singapore in red, China and India in

green, and the others are not filled.

and make a comparison with our ranking and that from the BGLP approach over the
2016-2017 period. We consider this period as it includes the time-span over which the
2017 FSB ranking is generated. As our sample does not include (for lack of data over
the whole sample) four Chinese banks among the G-SIBs identified in 2017 by the
FSB (Bank of China, China Construction Bank, Industrial and Commercial Bank of
China Limited and Agricultural Bank of China), we do not consider these banks for
the purpose of comparison. This leads to a total of 26 G-SIBs over the 30 identified
by the FSB.

The first two columns in Table 4 display these 26 G-SIBS, along with the associated
buckets according to the FSB, while the third (fourth) column indicates whether each
G-SIB is identified as systemic by the ALGCy, (InOuty) measure, with the related rank-
ings in parentheses (between 1 and 26). Among the 26 banks, our measure identifies
16 of them (61.54%). This represents a large proportion, and especially, most of those
not identified (Mizuho Financial Group, Nordea Bank, Royal Bank of Canada, Royal
Bank of Scotland, Standard Chartered, State Street Corporation, Sumimoto Mitsui
Financial Group) are classified by the FSB as the less systemic institutions among
the 26 banks (bottom bucket). In contrast, the measure from BGLP only identifies
6 of these G-SIBs, which corresponds to a low level of accuracy percentage (23.08%).
Moreover, those not identified are not only from the bottom bucket, but also from the
top buckets (most systemic banks). One illustrative example is JPMorgan Chase & Co
(top systemic institution according to the FSB) that is not identified. Moreover, Bank
of America, another top systemic institution is only present by a small margin as it is
identified at the 23th place. These stylized facts are in accordance with the results in
Table 3 (post-crisis period) which show that the most systemic banks identified by the
ALGC}, are mostly from the US, while those identified by the InOut; are mainly from
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Table 4: Comparison of G-SIBs identifid by InOuty and ALGCy

Bucket G-SIBS 2017 ALGCy InOutg
(ALGCy,’s rank) (InOuty’s rank)
JPMorgan Chase & Co X
4
(5)
Bank of America X X
1) (23)
Citigroup X
3 (10)
Deutsche Bank X
(16)
HSBC Holdings X
9)
Barclays
BNP Paribas X
(12)
9 Goldman Sachs Group X
(21)
Mitsubishi UFJ Financial Group X
(8)
Wells Fargo X
(7)
Bank of New York Mellon X
(25)
Credit Suisse Group X
(20)
Credit Agricole X
(23)
ING Groep X
9)
Mizuho Financial Group X
(5)
Morgan Stanley X
(2
Nordea Bank X
(22)
Royal Bank of Canada
! Royal Bank of Scotland
Banco Santander X
(15)
Societe Generale X
(13)
Standard Chartered
State Street Corporation
Sumimoto Mitsui Financial Group X
(3)
UBS X
(6)
Unicredit X
(26)
Number of G-SIBS identified Number of G-SIBS identified
16 6
[61.54%] [23.08%]

Note : This Table displays the G-SIBs identified by the FSB with their respective buckets. We also re-
port those identified by the systemic risk contributions statistics InOuty and ALGCy over the period
2016-2017 (followed by their respective ranking in parentheses), as well as the total number identified
(percentage in brackets).
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Japan. As the G-SIBs and especially the most systemic ones are mostly American
banks, our measure appears as a more reliable indicator of systemic risk.

5.3 Predictive Power

As stressed by Sedunov (2016), an institution-level measure of systemic risk should
be a good forecast of a financial institution’s performance in crisis period. In other
words, any consistent measure of the systemic risk profile of an institution should be
an early-warning indicator of losses in the case of a systemic event. In this section, we
check whether this characteristic is fulfilled by our measure ALGC}, of systemic risk
contributions. More precisely, we focus on the crisis period, i.e., the period ranging
from July 2007 to June 2009, with a total of T, = 522 daily observations. Over the crisis
period, we compute for each bank its performance given by the average of downside
returns. For a given financial institution & = 1, ..., 90, the performance is given by

T,
1 c

Perfy, = o > Ukt Zig, (26)
t=1

fort =1,...,T,, where y;, ; is the return at time ¢ on the asset of bank %k, Zj, ; a downside
indicator at time t defined as

Lt =

’ { 1 if Ykt < 1) (27)

0 else,

with 0 < 0 a threshold. The parameter m is the number of times Z, ; takes value one
over the crisis period, i.e.,

T.
m = Z Zyes. (28)
t=1

The performance measure in (26) gives the average value of the losses experienced
by the bank k in the crisis period. Since our goal in this section is to check whether
banks with high levels of systemic risk perform more poorly (out-of-sample) than banks
with low levels of systemic risk, we consider the following regression

[Perfk] = P+ b1 [InOutk] + B [Ink] + B3 [Outk] + B4 [ALGCk] + €k, (29)

where [Perfy] is the rank (in ascending order) of the performance of bank k, with the
less (most) performing bank taking value 1 (90). The variable [ALGCy] is the rank
(in descending order) of our measure ALGCy, for the bank k, over the pre-crisis period
ranging from September 2003 to June 2007, with the most (less) systemic bank taking
value 1 (90). Hence, in the case of predictive content, we expect a positive sign for
B4, i.e., more (less) systemic institutions in the pre-crisis period have higher (lower)
realized losses in the crisis period.

Remind that our institution-level measure of systemic risk contribution is built
on the pitfall of the measure InOut; of BGLP in ranking institutions. Indeed, we
argued that the ranking of financial institutions based on the latter measure can be
misleading in the presence of spurious indirect causalities. Therefore, to evaluate the
relevance of this statement, we include in the regression the rank (in descending order)
of the measure InOut;. We also consider the two components of the latter measure,
separately, i.e., the statistics Iny and Outy, with their respective ranks (in descending
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order). Therefore, as for the parameter (4, the other slope parameters should also take
positive values in the case of predictive content.%

Table 5 exhibits the estimation results for 6 = —3%. The estimations are performed
using ordinary least squares with inference based on White’s robust method (White,
1980). We consider three values of the lag-order M in running the Granger-causality
tests, with M € {3,5,10}. For each value of M we display the results of eight different
specifications. In specifications [1] to [4], we consider separately each of the alternative
systemic risk measures. In specifications [5] to [7], we include our measure of systemic
risk and each of the three measures of BGLP. Finally, in the column [8], we report
the results from a specification that includes the four alternative measures of systemic
risk.

First, as we can see in specifications [1] to [4], the slope parameter associated with
each measure of systemic risk is statistically significant at the conventional levels. This
means that, individually, each measure of systemic risk contributions is significantly
related to the losses suffered by banks in the case of a systemic event. The BGLP
measures (InOuty and Outg) and our measure (ALGCy) appear with the expected
sign: the riskier is a bank in the pre-crisis period, the more severe are the losses during
the crisis period. Surprisingly, the measure Ing of BGLP appears with a negative sign,
which indicates that banks with a higher systemic risk level are more resilient during the
crisis. Furthermore, it is worth noting that our measure seems to predict a larger part of
the variance of those losses compared to the three measures of BGLP. Indeed the values
of the adjusted R-squared are always higher. For instance, with M = 3, the adjusted
R-squared is equal to 31.3% with our measure ALGC},, while it is equal to 28.2%,
7.5%, and 3.2% for the BGLP measures Outy, InOut;, and Iny, respectively. Second, if
we turn to specifications [5] to [7], we can see that the coefficients associated with the
three measures of BGLP loose their statistical significance, while the one associated
with our measure remains significant. This result is very important, as it suggests
that all the information conveyed by the three measures of BGLP is included in our
measure, with an additional information which probably arises from our methodology
to clean indirect spurious causalities. This result is robust when we consider jointly
the four measures of systemic risk (see specification [8]).

Table 6 presents the same results with § = —5%. Results are qualitatively similar
to those obtained in Table 5. Through Tables 5 and 6, we observe that the lag-order
M does not seem to have a substantial impact neither on the estimated parameters nor
on the adjusted R-squared. This is also the case for the parameter § that measures the
severity of the losses. Figures B3 and B4 in Appendix represent for the case (9, M) =
(—5%, 3) the performance of each bank as measured by the mean of realized losses as a
function of the systemic risk contribution measures InOut; and ALGCy, respectively.
We observe that there is almost no correlation between the average realized losses and
the measure InOuty, whereas on the contrary, our new measure ALGCj can predict
the average realized losses relatively well.

5We consider using the ranks of the variables instead of their true values to avoid possible multi-
collinearity between the measures InOuty, Ing and Outy. See Billio et al. (2012) for a similar approach.
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Table 5: Predictive content of systemic risk measures for realized mean losses, 6 = -3%

(1] 2] (3] (4] [5] (6] [7] (8]
M=3
Constant ~ 32.173%%%  54.876%%%  21.014%%%  19.796%%*  17.693%%*  10.725 19.515%** 4.961
(4.485) (4.646) (4.232) (3.898) (3.997)  (7.994) (4.052)  (10.452)
InOuty, 0.203%%* 0.078 -0.045
(0.088) (0.090) (0.119)
Ing -0.206%* 0.130 0.217
(0.102) (0.107) (0.159)
Outy 0.538%* 0.090 0.303
(0.074) (0.249)  (0.275)
ALGCy 0.565%F%  0.534%F*  0.634%FF  0.481%%  (0.416%
(0.068) (0.078)  (0.092) (0.231)  (0.233)
R? 0.075 0.032 0.282 0.311 0.309 0.316 0.305 0.309
M=5
Constant ~ 32.607%%%  54.786***  21.432%F%  19.007+F*  19.445%F%  [3.716%  10.725%* 7.400
(4.587) (4.606) (4.194) (3.889) (3.955)  (7.494) (4.023)  (9.584)
InOuty, 0.283 %% 0.019 -0.123
(0.090) (0.102) (0.135)
Ing -0.204* 0.092 0.216
(0.102) (0.103) (0.150)
Outy, 0.520%** 0.055 0.239
(0.074) (0.224)  (0.251)
ALGCy 0.562%%%  0.553%**  0.607*F*  0.512%%  0.505%
(0.067) (0.084)  (0.087) (0.207)  (0.231)
R? 0.070 0.031 0.272 0.309 0.301 0.307 0.301 0.300
M =10

Constant ~ 35.927%%F  53.117FFF  23.941%%%  20.243%%%  20.666***  13.345% 21.007***  10.212
(4.788) (4.809) (4.230) (3.910) (4.093)  (7.597) (3.982)  (9.271)

InOuty, 0.210%%* -0.016 -0.167
(0.094) (0.094) (0.122)

Iny, -0.167 0.104 0.222
(0.108) (0.105) (0.155)

Outy 0.474%%% -0.190 -0.027
(0.080) (0.229)  (0.242)

ALGCy 0.555%F%  0.561%FF  0.602%FF  (.728%%F (. 748%%*
(0.069) (0.079)  (0.087) (0.218)  (0.230)

R? 0.033 0.017 0.216 0.300 0.292 0.301 0.298 0.298

Note : This Table displays the results (parameter estimates followed by the standard errors in parentheses) of
various predictive regressions, with the dependent variable measuring the rank of realized losses for each of the
93 financial institutions in the crisis period (July 2007-June 2009). We approximate the realized losses by the
average value of returns below a given threshold § = —3%. The regressions differ by the number of predic-
tors considered, among a set including the ranks of systemic risk contributions statistics InOuty, Ing, Out; and
ALGCy, measured over the pre-crisis period (September 2003-June 2006). We consider different configurations
of the lag-order M for causality tests, with M € {3,5,10}. For the causality tests used to compute the predic-
tors, inference is based on the two-stage linear step-up procedure of Benjamini et al. (2006). Significances at 1%,
5% and 10% are emphasized by *** ** and *  respectively.
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Table 6: Predictive content of systemic risk measures for realized mean losses, 6 = -5%

(1] 2] (3] (4] [5] (6] [7] (8]
M=3
Constant ~ 32.122%%% 54 55A%FE 2] 218%FF  20.252%FF  [7.982%FF 11011 19.857FF* 4.495
(4.543) (5.059) (4.203) (3.926) (3.944)  (7.652) (4.074)  (9.710)
InOuty, 0.204%%% 0.084 -0.044
(0.086) (0.092) (0.129)
Ing -0.199* 0.133 0.228
(0.104) (0.099) (0.148)
Outy 0.534%%* 0.127 0.351
(0.076) (0.230)  (0.243)
ALGCy 0.555%F%  0.521%F%  0.625%FF  0.437%F  (.367*
(0.068) (0.085)  (0.083) (0.208)  (0.200)
R? 0.076 0.029 0.277 0.300 0.298 0.305 0.294 0.301
M=5
Constant ~ 32.151%%%  53.971%F%  22.363%F%  20.245%FF  19.365%F*  12.786%  20.383%** 8.774
(4.471) (5.014) (4.169) (3.884) (3.932)  (7.175) (4.007)  (9.418)
InOuty, 0.203 %% 0.037 -0.094
(0.086) (0.103) (0.146)
Ing -0.186* 0.110 0.196
(0.103) (0.095) (0.147)
Outy, 0.509*%** -0.041 0.128
(0.078) (0.233)  (0.257)
ALGCy 0.555%F%  0.537HFF  0.609%FF  (.593%%* (57T
(0.066) (0.090)  (0.078) (0.211)  (0.222)
R? 0.076 0.024 0.250 0.300 0.293 0.302 0.292 0.289
M =10
Constant ~ 35.254%%%  52346%%%  24.231%F%  20.642%FF  20.471¥FF  12.668%  21.367FF* 9.854
(4.801) (5.242) (4.296) (3.897) (4.089)  (7.162) (4.042)  (9.005)
InOuty, 0.225%%% 0.006 -0.148
(0.091) (0.099) (0.146)
Ing -0.150 0.121 0.226
(0.110) (0.097) (0.150)
Outy 0.467%%* -0.180 -0.020
(0.085) (0.237)  (0.268)
ALGCy 0.546%F%  0.544%FF  0.601%FF  (.710%%%  (.726%%*
(0.068) (0.086)  (0.076) (0.211)  (0.215)
R? 0.040 0.012 0.210 0.291 0.282 0.294 0.288 0.288

Note : This Table displays the results (parameter estimates followed by the standard errors in parentheses) of
various predictive regressions, with the dependent variable measuring the rank of realized losses for each of the
93 financial institutions in the crisis period (July 2007-June 2009). We approximate the realized losses by the
average value of returns below a given threshold § = —5%. The regressions differ by the number of predic-
tors considered, among a set including the ranks of systemic risk contributions statistics InOuty, Ing, Out; and
ALGCy, measured over the pre-crisis period (September 2003-June 2006). We consider different configurations
of the lag-order M for causality tests, with M € {3,5,10}. For the causality tests used to compute the predic-
tors, inference is based on the two-stage linear step-up procedure of Benjamini et al. (2006). Significances at 1%,
5% and 10% are emphasized by *** ** and *  respectively.
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6 Determinants of Network Systemic Risk Contributions

Following the existing empirical literature on the determinants of systemic risk, we
attempt in this last section to understand why some banks tend to contribute more
to the global systemic risk than others. Indeed, since the last financial crisis, there
is a considerable debate about the potential channels and drivers of transmission of
financial distress between banks. In particular, some recent studies investigate whether
the size and business model of banks significantly drive their contribution to systemic
risk. They find strong evidence that large and market-oriented financial institutions
are more prone to contribute to the build-up of systemic risk in the financial system
than their peers.

Against this background, we check whether we find results in line with the existing
literature when we consider our measure of systemic risk as dependent variable. This
issue is particularly interesting in our case as our measure of systemic risk is a measure
of interconnections between financial institutions, and then is more likely to be driven
by size and activities of banks than other "traditional" measures of systemic risk, such
as the marginal expected shortfall (MES), the SRISK or the ACoVaR. To this end, we
consider a panel data framework and regress different balance-sheet variables on our
measure of systemic risk. We consider annual data over the 2004-2017 period. More
precisely, we consider seven non-overlapping sub-periods: 2004-05, 2006-07, 2008-09,
2010-11, 2012-13, 2014-15, 2016-17. For each bank of our sample, we then compute our
systemic risk measure for these different sub-periods, while we use a two-year average
for balance sheet data. Individual balance sheet data are taken from Thomson Reuters
Worldscope.

We start our empirical investigation by assessing the link between bank size and our
measure of systemic risk. Indeed, as highlighted above, a number of recent empirical
studies find strong evidence that systemic risk increases with bank size (see, e.g.,
De Jonghe, 2010; Brunnermeier et al., 2012; Kleinow and Nell, 2015; Black et al.,
2016; Laeven et al., 2016; Varotto and Zhao, 2018). As it is usual in the literature,
bank size is measured by the logarithm of total assets. Specifically, we estimate the
following benchmark regression specification:

ALGCk,t =+ BlSizem,l + pk Y+ Ao+ kg (30)

where k and ¢ are respectively the bank and time period indicators, ALGC}; is our
measure of systemic risk contribution, and Sizey ;1 represents the bank size. Follow-
ing Brunnermeier et al. (2012) and Laeven et al. (2016), the right-hand side variable
is lagged one period to reduce a potential endogeneity bias associated with reverse
causality. The term py is an individual specific effect, 7, is an unobserved time effect
included to capture common time-varying factors, A. is a country fixed effect, and ey,
is the random error term. Country-specific effects are included to control for cross-
country differences in financial regulation and supervision. Because bank fixed effects
and country fixed effects are perfectly collinear, we cannot use a fixed effects (FE)
estimator, and then estimate Equation (30) using the random effects (RE) estimator.

Results that we obtain are reported in the first column of Table 7. As we can
see, we find a positive and significant relationship between bank size and our measure
of systemic risk. As higher values of our statistics mean more systemic institutions,
this result suggests that the systemic risk contributions of banks increase with their
size. As Laeven et al. (2016) argue, this result is consistent with the view that large
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banks enjoy "too big to fail" subsidies, making them pay less attention to the risks they
take, and then creating strong externalities in the market when they are distressed.
Moreover, as larger banks are often highly interconnected with their competitors, this
result is consistent with the measure of network systemic risk we propose in this paper.

In a second step, we extend our previous findings by investigating whether the
business model of banks drive their contribution to systemic risk. To this end, we
augment our benchmark regression specification by considering an additional regressor
capturing differences in banking activities. More precisely, we distinguish between
traditional intermediation activities and non-traditional banking activities, such as
investment banking, venture capital and trading activities. By this way, we distinguish
between retail-oriented and market-oriented banks, and then assess the effect of banks
asset structure on systemic risk. We proxy the importance of traditional activities
by the loans to assets ratio, while the share of non-interest income to total income is
used as a proxy for non-core activities. As shown by Laeven et al. (2016), the loans to
assets ratio is negatively related to the systemic risk, while Brunnermeier et al. (2012)
find that banks with higher non-interest income tend to have a higher contribution to
systemic risk than traditional banks.

Results that we obtain are reported in the columns [2] and [3] of Table 7. As
we can see in the column [2], similarly to Laeven et al. (2016), we find that the
relationship between the loans to assets ratio and our systemic risk measure is negative
and statistically significant. This suggests that traditional intermediation activities
tend to reduce the systemic risk contribution of banks as lending-based activities make
banks less exposed to common shocks. On the contrary, results reported in the column
[3] show a positive and significant relationship between the share of non-interest income
to total income and our measure of systemic risk. This result is consistent with the view
that banks with more market-based activities are more prone to contribute to systemic
risk. Indeed, in contrast to lending exposures, market-based exposures are relatively
more correlated across banks, increasing the risk of contagion from a distressed bank.

Finally, we assess the influence of banks’ profitability on systemic risk. We proxy
for the profitability of a bank using the return on equity (ROE). However, as Weif§
et al. (2014) and Kleinow and Nell (2015) argue, the link between the profitability of
a bank and its contribution to systemic risk remains unclear. On the one hand, one
may expect that a higher profitability shields banks from the risk of defaulting, and
then should be associated with a lower systemic risk contribution. On the other hand,
a higher profitability could be the result of the bank engaging in risky "side activities",
such as market-based investments and trading activities. Furthermore, as our previous
results suggest, profits from non-lending activities significantly drive our measure of
systemic risk. As a consequence, a higher profitability could induce a higher systemic
risk contribution. As we can see in the column [4] of Table 7, the estimated coefficient
associated with ROE appears positive and statistically significant, confirming the fact
that the profitability of a bank increases its contribution to the systemic risk.
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Table 7: Determinants of systemic risk

(1) (2) (3) (4)

Dependent variable ALGC ALGC ALGC ALGC
Size (t — 1) 2.931%**  2.200%F  2.233%FF 2,921 %H*
(0.858)  (0.944)  (0.861)  (0.880)
Loans to assets ratio (¢t — 1) -0.114*
(0.063)
Non-interest income (¢t — 1) 0.213%%*
(0.060)
ROE (t — 1) 0.074%%*
(0.017)
Constant -43.262*F%F 24218  -36.306** -44.279%**

(16.200)  (18.857) (15.977)  (16.521)

Nb. of observations 621 557 570 605
Nb. of banks 90 85 4 90
R-squared 0.781 0.778 0.789 0.781

Note: Robust standard errors clustered at bank level are reported below their coefficient estimates.
* ¥ and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. Due to the
magnitude of the estimated coefficients, the dependent variable ALGCY ;. is multiplied by 100.

To conclude, results that we obtain suggest strong evidence that bank size is one
of the key driver of systemic risk. This result is not surprising if we refer to the recent
academic literature on systemic risk (see, e.g., Laeven et al., 2016). In line with the
existing literature, we also find that the specialization and business model of banks,
but also their profitability, are significant drivers of systemic risk. In particular, our
results support the fact that traditional lending activities reduce the risk of contagion.

7 Conclusion

In the wake of the recent global financial crisis, a wide variety of systemic risk measures
have been proposed to quantify the risk contribution of financial institutions to the
financial system, and then identify the so-called G-SIBs (global systemically important
banks). Among these measures, some of them focus on one fundamental aspect of
systemic risk: the connectedness of financial firms. Indeed, the linkages between banks
can act as a contagion channel during a crisis. However, measuring interconnectedness
in relatively large and complex financial systems is empirically challenging. Especially,
the fact that linkages between firms and contagion in the financial system can stem
from both direct and indirect exposures to counterparties is of critical importance.
However, to the best of our knowledge, there are few measures in the existing liter-
ature on systemic risk that try to explicitly take into account the existence of indirect
contagion effects. In their seminal paper, Billio et al. (2012) propose to evaluate the
systemic risk contribution of a given financial institution using a pair-wise Granger
causality approach. Within this framework, a financial institution is defined as highly
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systemic if a large number of firms in the network are involved in a significant connec-
tion with this financial institution. The main shortcoming of such an approach is that
the existence of indirect contagion effects can lead to spurious causalities, and then
a misleading ranking of systemically important financial institutions. More recently,
Basu et al. (2017) propose to address this shortcoming of the pair-wise approach by
estimating a large dimensional VAR model that includes all firms simultaneously, and
then that takes into consideration all interactions in the system. An inherent compu-
tational difficulty with this type of modeling is the curse of dimensionality, since the
number of parameters grows quickly with the size of the network.

Against this background, the aim of this paper is to propose an alternative mea-
sure of systemic risk contribution that overcomes these two shortcomings. It formally
manages indirect causalities between firms in the network and breaks the curse of
dimensionality. To this end, we combine the pair-wise Granger-causality approach
with the leave-one-out (LOO) concept. More precisely, our approach is based on a
conditional Granger causality test and consists of measuring the extent to which, the
proportion of statistically significant connections in the system breakdowns when a
given financial institution is excluded, controlling for the indirect effects of this latter
institution. Hence, the systemic risk contribution of this given institution is high when
this proportion is large.

Using daily assets returns for a sample of the world’s largest banks from September
12, 2003 to February 19, 2018, we then assess the reliability of our systemic risk measure
in different ways. First, we rank the systemic importance of each bank of our sample
using our systemic risk measure and that developed by Billio et al. (2012). Results that
we obtain show substantial differences between the two rankings. More importantly,
when we compare both rankings with the ranking of G-SIBs published in 2017 by the
Financial Stability Board (FSB), we observe that our measure is better able to identify
the G-SIBs than that proposed by Billio et al. (2012). Indeed, among the 26 G-SIBs
included in our sample, our measure identifies 16 of them (61.54%), while the measure
of Billio et al. (2012) identifies 6 (23.08%). Second, we assess the predictive power of
our systemic risk measure and show that our measure is a robust and significant early-
warning indicator of downside returns during the last financial crisis. Its predictive
power is larger than the one associated with the measure of Billio et al. (2012). These
findings reinforce the idea that a pairwise Granger causality approach is more reliable
when the effects of indirect causalities are cleaned out in a meaningful way.

Finally, as it is usual in the literature on systemic risk, we empirically investi-
gate the potential drivers of the systemic risk contribution of banks. To this end, we
consider a panel data framework and regress different balance-sheet variables on our
measure of systemic risk. Following the previous results in the literature, we primarily
focus our analysis on the size of banks. Results that we obtain suggest that systemic
risk increase with bank size. This result clearly indicates that the largest banks are
more prone to contribute to systemic risk. We also find that the degree of special-
ization in non-traditional banking activities is an important driver of systemic risk.
Indeed, our results indicate that the systemic risk contribution is higher for banks
with more market-based activities. On the contrary, we find a negative relationship
between the specialization in lending-based activities and our systemic risk measure.
Furthermore, we find that profitability of a bank significantly increases its contribution
to the systemic risk.

Of course, a systemic event like the last global financial crisis is a rare phenomenon.
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Consequently, an interesting extension of this work would be to consider a Granger-
causality network based on the transmission of tail risks. Precisely, our leave-one-out
(LOO) metrics for measuring systemic risk contributions could be extracted from a
network generated using Granger-causality tests in tail events or extreme risk. An
example of such a test can be found in Hong et al. (2009). In this context, the main
challenge to resolve is the extension of this test to a conditional setup. We leave this
as an issue for future research.
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Appendix

Appendix A: The Multiple Testing Problem

The measures InOuty, and ALGCy are summaries of outcomes from multiple pair-wise
Granger-causality tests and are obviously subject to the multiple testing problem.
This phenomenon arises when several hypotheses are tested simultaneously. Among
the different hypotheses tested, some of the null hypotheses are false and thus some
will be rejected. In a perfect world, every false hypothesis and only these ones would
be rejected. However, in reality, all false hypotheses will not be rejected and among
those rejected, some will be mistakenly rejected. This issue is of great interest because
it can mislead authors to wrong conclusions. Therefore, to solve this problem, one
might want to reduce false rejections and make as many true ones as possible. The
literature provides many methods to control for the problem of multiplicity in statistical
inference, with two main alternative controlling methods: the Family Wise Error Rate
(FWE) and the False Discovery Rate (FDR).

The FWE is defined as the probability of rejecting at least one of the true null
hypothesis. To control the FWE, it requires that its value is lower or equal to the sig-
nificance level a, at least asymptotically. Different methodologies have been developed
to control FWE and the most widely used is the Bonferroni method. Its popularity
comes from two main reasons. First, it is really simple as it consists only to compare
all p-values to a single critical value. More precisely, each null hypothesis is rejected
if the p-value is no bigger than a/M, with M the total number of hypotheses tested.
Second, this method can be applied to any statistical test.

However, the FWE (and therefore the Bonferroni correction as well), substantially
loses power as the number of hypotheses increases. Indeed, the critical values become
very small, making it difficult to barely reject at least one hypothesis. For example,
for each institution, (n — 1) (n — 2) hypotheses are tested using our LOO measure,
resulting in M = 7832 hypotheses for our sample of n = 90 institutions. Applying
the Bonferroni correction in this set-up would lead to compare every p-values to the
threshold 0.05/7832, and obviously some false null hypotheses will not be rejected
due to this very small significance level. Some less conservative methods have been
developed in the literature (éidék, 1967; Holm, 1979; Hommel, 1988; Hochberg, 1988)
but failed to do so as they are still conservative. Thus, the traditional approach is
to control the FWE when the number of tested hypotheses is relatively small, and to
control the FDR when this number becomes very large.

The FDR is defined as the expected proportion of false rejections among all hy-
potheses tested. Indeed, in some applications, a certain number F' of false-positives is
tolerable if there is a large number R of total rejections. The main idea is to relax the
worst-case approach underlying the FWE methodology by allowing a small proportion
of false rejections. In this case, one can base the error control on the False Discovery
Proportion (FDP) defined as FDP = F/R if R > 0, and 0 otherwise. Then, the FDR
is finally the expected value of FDP. The most popular method to control the FDR is
the linear step-up procedure from Benjamini and Hochberg (1995) that is very simple.
First, order each individual p-value from the smallest to the largest : p1 < po < ...
and define i* = max{i : p; < ;}, with v; = vi/M, with ~ the level of control. If such
1* exists, reject the i* respective hypotheses for each p-value below ~;+, otherwise do
not reject any hypothesis.
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Benjamini and Hochberg (1995) show that under p-values independence, their lin-
ear step-up procedure controls the false discovery rate at precisely yMy/M, where
the unknown parameter My is the number of true null hypotheses among the M hy-
potheses.” From this result, it is obvious that if the true value of M is known, an
improved (in power) linear step-up procedure can be obtained using the level of con-
trol v* = yM/My. Indeed the FDR bound in this case will be equal to v*My/M = 7.
Benjamini et al. (2006) suggest using as an estimate for My, Mg = M — R, with R
the number of rejected hypothesis in the linear step-up procedure. This leads to their
two-stage linear step-up procedure that works as follows:

e Use the linear step-up procedure at level 4/ = /(14 7). Let R be the number of
rejected hypotheses. If R = 0 do not reject any hypothesis and stop; if R = M
reject all M hypotheses and stop; otherwise continue.

e Let My =M — R.
e Use the linear step-up procedure with v* =~ M/ ]\//70.

For both measures InOut; and ALGCy, we use this two-stage linear step-up pro-
cedure to correct the many pair-wise Granger-causality tests for multiple testing. We
prefer this method because it is less conservative and more powerful than the FWE
methods as the number of hypotheses tested is very large, and for its better power
property (as discussed above) compared to the one-step procedure of Benjamini and
Hochberg (1995). Moreover, Monte Carlo simulations in Stevens et al. (2017) show
that the two-stage linear step-up procedure of Benjamini et al. (2006) performs better
in comparison to alternative FDR procedures, under various forms of p-values depen-
dences.

It is worth mentioning that among both types of methodologies (FWE and FDR),
there is a class of controlling methods based on resampling procedures. For example, to
control for the FWE, White (2000) proposes the Bootstrap Reality Check (BRC) and
Romano and Wolf (2005) the StepM method. See also Lehmann and Romano (2005)
who develop a bootstrap method to control for the FDR. However, the deployment of
such approaches can be computationally demanding when the number of hypotheses
tested is very large. As this is the case for both measures used in this paper, we cannot
use such a class of approach. Indeed, for each institution, (n — 1) x (n —2) = 7832
hypotheses are tested for our LOO measure, and n x (n — 1) = 8010 for the one of
BGLP.

"Note that Benjamini and Yekutieli (2001) also show that the bound yMo/M holds under some
type of positive dependences.
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Appendix B: Additional Tables and Figures
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Figure B2: Comparison of the ranks of InOut; and ALGCy: post-crisis period
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Table B2: Summary Statistics

Full sample

Mean (%) St.dev (%) Skewness Kurtosis
Africa 0.07% 1.82% 0.145 6.217
America 0.05% 2.30% 0.948 35.402
Asia and Pacific 0.04% 2.06% 0.296 10.341
Europe 0.02% 2.78% 0.483 22.707
Pre-Crisis
Mean (%) St.dev (%) Skewness Kurtosis
Africa 0.13% 1.73% 0.208 4.469
America 0.05% 1.09% 0.121 7.178
Asia and Pacific 0.10% 1.87% 0.159 7.155
Europe 0.08% 1.29% 0.012 5.646
Crisis
Mean (%) St.dev (%) Skewness Kurtosis
Africa 0.03% 2.74% 0.349 4.291
America -0.01% 4.92% 0.726 11.167
Asia and Pacific -0.03% 3.32% 0.312 5.770
Europe -0.11% 4.26% 0.508 10.154
Post-Crisis
Mean (%) St.dev (%) Skewness Kurtosis
Africa 0.05% 1.59% -0.139 6.659
America 0.06% 1.60% -0.054 7.336
Asia and Pacific 0.03% 1.72% 0.211 7.969
Europe 0.02% 2.71% 0.216 11.193
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