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Abstract

This paper develops measures of transaction costs in the absence of trans-
action timestamps and information about who initiates transactions, which
are data limitations that often arise in studies of over-the-counter markets.
I propose new measures of the effective spread and study the performance
of all estimators analytically, in simulations, and present an empirical il-
lustration with small-cap stocks for the 20052014 period. My theoretical,
simulation, and empirical results provide new insights into measuring trans-
action costs and may help guide future empirical work.
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1 Introduction

This paper develops measures of transaction costs that do not require observing
the intraday transaction times or knowing who initiates trades (buyers vs. sellers).
A recent and growing literature on large and previously opaque over-the-counter
(OTC) markets employs transaction data that suffer from these limitations. Ex-
amples include studies of the credit default swap market (Chen et al., 2011; Benos,
Wetherilt, and Zikes, 2013; Biswas, Nikolova, and Stahel, 2014; Du et al., 2017),
the interest rate swap market (Chen et al., 2012; Benos, Payne, and Vasios, 2016),
the U.K. sovereign bond market (Benos and Zikes, 2016), and the U.S. corporate
bond market (Bessembinder et al., 2006). But to the best of my knowledge, the
literature has not yet formally tackled the problem of estimating transaction costs
when timestamps and trade direction are missing.! The contribution of this paper
is to fill this gap.

I propose three consistent estimators of the effective spread and study their
sampling properties. The first one develops the idea of Benos and Zikes (2016),
who suggest inferring the effective spread from the dispersion of the transaction
prices from (1) some benchmark or reference price (e.g., end-of-day composite
quote) and (2) the average transaction price. The estimator is available in closed
form, which allows me to establish its finite-sample properties analytically and
compare them to some well-known (infeasible) measures, explicitly quantifying
the loss of information due to the missing timestamps, trade direction, or both. I
also show that the estimator is robust to stochastic volatility.

The other two measures I propose are also moment-based and combine the ideas
of Corwin and Schultz (2012) and Benos and Zikes (2016). The first one is based
on the daily range, which is the difference between the daily high and low prices,

together with the sample variance of the transaction prices. The advantage of this

!Throughout this paper, I use the term “missing timestamps” to mean not only that trans-
action times are not known, but also that transactions are not chronologically ordered so that
intraday price changes cannot be calculated.



measure is that it is based solely on transaction prices and does not require a daily
benchmark or reference price, which may be difficult to obtain for some illiquid
assets. At the same time, it utilizes all available data (transaction prices), unlike
the Corwin and Schultz (2012) measure, which only uses the daily high and low
prices. If a benchmark price is available, however, it is, of course, optimal to use all
three moment conditions—the two dispersion metrics and the daily range—and this
is how I construct my third estimator. Because I do not assume that the number of
transactions is large, I have to resort to the simulated method of moments (SMM).
Despite having to approximate the expected range by simulation, the estimator
turns out to be computationally cheap and easy to implement in practice. I provide
simple yet accurate small-sample approximations to the unknown moment that
significantly speed up computations.

To summarize my theoretical results, I find that the absence of timestamps or
trade direction lead to a reduced convergence rate of the effective spread estimators.
While in the case of full information the effective spread can be estimated n-
consistently as the number of intraday transactions (n) increases, when timestamps
or trade direction are missing, only y/n-consistency can be achieved, and when both
are missing, the effective spread cannot be estimated consistently from intraday
data alone—averaging over an increasing number of days (T') is necessary. Thus,
accurate estimates can only be obtained from weeks or months worth of transaction
data.

To corroborate the theoretical findings and to study how the various estimators
perform in practice, both in absolute terms and relative to alternative measures,
I conduct two experiments. First, I run Monte Carlo simulations to assess the
performance in a controlled environment. Second, I provide an empirical illustra-
tion with small-cap stocks listed on the New York Stock Exchange (NYSE) using
data from the Trade and Quote Database (TAQ). The second exercise therefore

uses real-world rather than simulated data to assess and compare performance,



similar to e.g. Goyenko, Holden, and Trzcinka (2009), who compare low-frequency
liquidity measures with their high-frequency counterparts for selected U.S. stocks.

To summarize the findings of these exercises, I find that the loss of information
due to missing timestamps and/or trade direction is generally large. The measures
I propose in this paper deliver accurate estimates of transaction costs in situa-
tions where the transactions costs are high relative to the volatility of the efficient
price and when the number of intraday transactions is small; in such situations,
my estimators often perform on par or even better than their infeasible counter-
parts. They may be, therefore, suitable for relatively illiquid, infrequently traded
assets that exhibit relatively low fundamental volatility, such as some corporate
and municipal bonds. They should not be applied, however, to highly liquid as-
sets, such as listed equities, which trade with a tight spread and tend to be quite
volatile. Fortunately, for these assets, high-quality time-stamped transaction data
are typically available.

In OTC markets, timestamps are often inaccurate or outright missing for vari-
ous reasons. In the credit default swap and interest rate data mentioned previously,
transaction times are simply not reported, and the trade reporting time does not
necessarily correspond to the actual trade time, making it impossible to chronolog-
ically order transactions. In the U.K. sovereign bond market data used by Benos
and Zikes (2016), the timestamps are not accurate in the sense that two parties
to the same transaction report widely different transaction times. More generally,
though, the trading protocol in OTC markets often involves negotiation that may
stretch over a period of time, and so the exact timing of the trade may be ambigu-
ous; consider, for example, the “workup” protocol recently studied in Duffie and
Zhu (forthcoming).

Trade direction cannot be easily inferred because trades cannot be aligned
with intraday quotes when timestamps are missing and because data on intraday

quotes are rarely available in OTC markets, making it impossible to use popular



trade-signing algorithms such as that of Lee and Ready (1991). Researchers often
assume that clients initiate trades with dealers, motivated by the fact that dealers
are the main liquidity providers in these markets (Bessembinder, Maxwell, and
Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007). However, as recently
shown by Choi and Huh (2017) for the U.S. corporate bond market, dealers often
initiate trades with clients as well, implying potentially serious missclassification
issues associated with this identification method. Moreover, in some markets,
interdealer trades account for more than two-thirds of all transactions (Benos et
al., 2013) and so the vast majority of transactions cannot be signed using this
approach anyway. Thus, standard methods cannot be used to measure transaction
costs in these large and important financial markets given the limitations of the
available data.

Apart from the literature on measuring transaction costs (see Harris, 2015,
Section 3.1 for a recent overview), my paper is also related to the recent litera-
ture on measuring volatility using high-frequency data starting with Andersen and
Bollerslev (1998) and Barndorff-Nielsen and Shephard (2002); see Ait-Sahalia and
Jacod (2014) for a recent textbook treatment. Some of my estimators employ the
range—that is, the difference between intraday high and low prices—and here I
draw on the ideas of Christensen and Podolskij (2007) and Christensen, Podolskij,
and Vetter (2009). Although the data-generating process I assume is very similar
to many papers in this literature, the problem studied in my paper is different in
three important ways.

First, my goal is to estimate the effective spread. Thus, what the realized
volatility literature (e.g. Ait-Sahalia, Mykland, and Zhang, 2005; Zhang, Myk-
land, and Ait-Sahalia, 2005, Hansen and Lunde, 2006; Barndorff-Nielsen, Hansen,
Lunde, and Shephard, 2008a,b; Kalnina and Linton, 2008; Christensen, Podolskij,
and Vetter, 2009) treats as microstructure noise is precisely my object of interest,

and what that literature is interested in estimating—the variation of the efficient



price—is a source of noise in my framework. Second, in-fill asymptotics do not
always apply—that is, increasing the number of intraday observations (n) does
not generally improve the precision of the effective spread estimator. I have to rely
on an increasing number of days (7") and employ large-T" asymptotics or double
asymptotics (both n — oo and T' — o0). Finally, my estimation framework is
model based, unlike the estimation methods in the realized volatility literature
that operate in a model-free environment.

The rest of the paper is organized as follows. In Section 2, I set out my theoreti-
cal framework. In Section 3, I propose a closed-form measure of the effective spread
that does not require either timestamps or trade direction and study its properties
analytically, explicitly quantifying the loss of information associated with miss-
ing timestamps, trade direction, or both. In Section 4, I introduce range-based
estimators of the effective spread and propose simple computational methods to
implement the estimator in practice. In Section 5, I discuss robustness to stochas-
tic volatility. Section 6 reports Monte Carlo simulations. In Section 7, I present
an empirical application to small-cap equities, and Section 8 concludes. Proofs are

collected in the Appendix.

2 Framework

The effective spread is defined as two times the difference between the actual
transaction price (P) and the prevailing mid-quote or some proxy for the true
value of the asset (efficient price) (M) at the time of the transaction. It can be
expressed in absolute terms—that is, 2|P — M|—or in relative terms—that is,
2|P — M|/M or 2|1log(P) —log(M)|. Like the bid-offer spread, the effective spread
measures round trip transaction costs, but it is based on actual transaction price
rather than on quoted prices. The effective spread can also be seen as a measure

of the price impact of a trade, and because the price impact and transaction costs



tend to vary inversely with liquidity, it is frequently used as a measure of liquidity
(Foucault, Pagano, and Roell, 2013).

My theoretical framework is essentially borrowed from Roll (1984) and it can
be easily cast in continuous time as in Christensen, Podolskij and Vetter (2009).
Suppose we have a sample of T' days and divide each day into n subintervals
of equal length. I assume that a transaction arrives at the beginning of each
of these subintervals and that the associated logarithmic transaction prices—p; ;
t=1,...,n;t=1,..,T—are related to the logarithmic efficient price, m;, by

s

Pix = My + §Qi,t7 (1)

where s is the proportional effective spread and g¢;; is a binary variable indicating
whether the i-th transaction on day ¢ is buyer initiated (¢;; = 1) or seller initiated
(gi+ = —1). L initially assume that the efficient price is observable at the end of the
day—that is, at the end of the last subinterval n. I later relax this assumption and
propose estimators that do not require observing m at all. Following Roll (1984)
and Benos and Zikes (2016), I assume that the logarithmic efficient price m follows

a random walk with independently and identically distributed (iid) increments:
Mir1t = M4z + €114, (2)

where E(e; ;) = 0 and E(e},) = ¢®/n. Thus, the daily integrated variance of the
efficient price equals o2 for any n and ¢. Finally, I assume that ¢;; is uncorrelated
with m s for all 4, j, ¢, s and that g, is serially uncorrelated with E(g; ;) = 0—that
is, there is the same number of buyer- and seller-initiated trades on average. I

make no assumptions on the overnight return of the efficient price, mp; — mp ¢—1.



3 Baseline estimator

Inspired by Jankowitsch, Nashikkar, and Subrahmanyam (2011), Benos and Zikes
(2016) rely on the dispersion of transaction prices around some benchmark price,
but they recognize that the dispersion metric is affected by the intraday volatility
of the benchmark price in a nontrivial way. They suggest using two dispersion
metrics,

1 n n

. - 1 _
d? = - Z(pi,t —moy)?, dF = —— Z(pi,t — )’ (3)
i=1 =1

and show that under the assumptions stated in the previous section, the two met-

rics satisfy

. s> o2 (n+1 - 2 o n+1
B -5+ 5 (M) B -S4 (). (1)

2 n n

Solving for s2, censoring at zero, and taking the square root yield the relative

effective spread measure:

ES, = \/max{2(3& — &), 0}. (5)

My baseline estimator develops the idea of Benos and Zikes (2016). I define
§2 = 2(3d2 — d?), where d? and d? are given in equation (3) and start by deriving

the variance of §2, as it will be invoked repeatedly in the paper.

Proposition 1 Provided that the fourth moment of €11 exists,

9s* 25%02(2n* +3n + 1) +2(277,04 + ot + 2r) (20 + Tn* + Tn + 2)
2n(n —1) n?(n—1) 15n3(n — 1) ’

(6)

Var(s?) =

where k = E(e] 1) — 30 is the excess kurtosis of €;1.

Equation (6) implies that although §? is an unbiased estimator of s?, it is not

consistent as the number of intraday transactions increases because Var(s?) =



%04 + O(n™1) as n — oo. This result is due to the fact that we are averaging
random walks in levels (prices) as opposed to first differences (returns), which
cannot be constructed due to missing timestamps.

To derive a consistent estimator of s based on 57, we need to average 52 over
an increasing number of days before censoring at zero and taking the square root
as in equation (5). The resulting estimator, which I denote by ES(T1 ), is thus given

by

1 ~ A
ESY = max{TZQQdf—df),O}. (7)

t=1
Given the nonlinear nature of the estimator, E(ES(TU) and Var(ES(T1 )) are not
available in closed form. I employ a Taylor series expansion of ES(TI) around s,
s > 0, together with equation (6), to establish the leading terms (as 7" — 00). The
leading term of the bias reads
1 o* 1ot 1 x 1o0%2\1 1

lim B[T(ESY —s)]=——— — (- =+ —=4-— ) —+0 (= 8

Tosos [T(EST” = 5)] 15 3 3s3+15s3+25 n+ n?)’ (8)
implying that ESF}1 ) tends to underestimate the true effective spread. The limiting

variance reads

T—o0 15 s2 n?

lim Var[VT(ESY — s)] = 2o, (20—4 L 2R 02) Lio ( ! ) . (9)

As expected, the absolute bias and variance decrease with the signal-to-noise ratio
(SNR) s/o, so it is more difficult to estimate the effective spread when it is small
relative to the volatility of the efficient price. The absolute bias and variance of
E'S(T1 ) also increase with excess kurtosis, but this only matters when the number
of transactions is small; the contribution of x vanishes as n — oo. The second
terms in the expansions also show that for sufficiently large n, the absolute bias
and variance of ES?) decrease with the number of transactions, as the coefficients

on the n~! terms in equations (8) and (9) are always positive.



It follows from the assumptions stated in Section 2 and standard limit theorems
that as 7' — oo, ES(I) —, s and if s > 0 and kK < oo, \/T(ES;I) —8) =y
N(0,w?), where w? = 75 Var(5?). The limiting variance of ESC(pl) has a particularly

simple form if we consider the asymptotics where both T, n — oo, which may be

appropriate in situations where the number of daily transactions is large. Then,

from equation (9), we obtain \/T(ES:(FU — ) —q N(0, 22;

75 ). Feasible inference can

be obtained by replacing the unknown s and ¢? in the limiting variance with their

sample counterparts, ES(T1 ) and 2., respectively, where

=1

T
1
67 = max { Z 3(d } (10)
t
is a consistent estimator of 2.

3.1 Comparison with estimators that use timestamps or

trade direction

In this section, I compare the baseline estimator with several well-known measures
of the effective spread that require timestamps or trade direction, or both. The
goal is to assess how serious the loss of information associated with these data

limitations is.?

3.1.1 Observable timestamps

Should timestamps be available, one would typically use the Roll (1984) estimator,
which is equal to minus 4 times the sample first-order autocovariance of intraday

returns:
. 1 ¢
%2 = — E (pi,t - pz‘—l,t)(Pz‘—Lt - pi—2,t)- <11)

=3

n—2

2In the rest of this section, all analytical results are presented without proof to save space.
The derivations follow similar steps as the derivation of equation (6) and can be obtained upon
request.
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It is easy to show that in my setup the estimator is unbiased for s2, and its variance

R 160  16s%0? 2s'(n —3) 1
Var(47) = ( 3 + - + (n—2) —|—3S4) -t (12)

reads

Clearly, Var(4?) = 2 + O(n™2), s0 47 is a consistent estimator of s> as n — 0.
Similar to ESél), 42 can be averaged over T days and censored at zero to obtain a

nonnegative estimator of s:

T
1 .
Rolly = | max {T t; 2, 0}. (13)

Unlike ESC(pl ). Rolly is consistent for s as n — oo for any T
But the Roll estimator is not the only y/n-consistent measure of s. Christensen,
Podolskij, and Vetter (2009) propose an estimator based on realized volatility,

which can be tailored to my framework as follows:

n—1

2
pz t) - (14)

=1

It is straightforward to show that

202 st 8s%o? 4(k — o?)
E(@f) =s*+—— and Var(d;) =
(@) ="+ n o ar(@;) n—1+n(n—1)+n2(n—1)

(15)

where k = E(e] ), which implies that & is asymptotically unbiased and its variance
satisfies Var(w?) = % + O(n%). The limiting variance is five times smaller than
that of the Roll estimator 42, but the finite-sample bias can be large when o2 is
large. Unlike §% or 42, the estimator &7 is non negative by construction, and hence
there is no need for censoring when constructing a consistent estimator of s based

on T days worth of data:

Rvall

11



Similar to Rollr, and unlike ES:(Fl), RV is consistent for s as n — oo regardless

of T.

3.1.2 Observable trade direction

As suggested by Warga (1991) and Schultz (2001), when the trade direction is
observable one can simply regress the difference between the transaction price
and some benchmark price on the trade indicator. Here I continue assuming that
the benchmark price equals the end-of-day mid-quote and suggest running the

following OLS regression:
Dit — Mot = ﬂt(l)%,t + “Elt) (17)

If the daily benchmark prices are not available, one can use the average transaction
price instead and run the regression

Dit — Dt = 615(2)%’,75 + Uﬁ) (18)

If model (1) is the data-generating process, the regression innovations are given by
uﬁ) = m;; — Mo and uf? = m;; — my — (5/2)q, respectively. It is easy to show
that the ordinary least squares (OLS) estimators of ﬁfl) and Bt@)in regressions (17)

and (18) satisfy, under my assumptions:

A A 202%(n+1
B@AM) =5 Var(d?) = 22D, (19)
52y S 52)\ 202(n—|—1)(n— 1) 9 1 1
E(26,7) =s— - Var(28,”) = 53 + 2s v Rl (20)

Replacing m;; with mg; or p; therefore does not render the regression-based esti-
mator inconsistent as it did for d? and d2 in Section 3. The OLS estimators 2@(1‘)’
i = 1,2 will converge in probability to s at rate /n as n — oo as did the Roll and

RV-based measures in Section 3.1.
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Similar to the effective spread measures in the previous section, none of these
OLS estimators are guaranteed to be non-negative. Thus, I censor them at zero
and denote the regression-based estimators of the effective spread s for day ¢ by
RSt(i) = maX{ZBAt(i), 0}, i = 1,2. When estimating the effective spread using the full
sample of T' days with n transactions each, one simply runs the regressions (17)
and (18) using all nT" observations. I denote these estimators by RS¥), 1 =1,2.
Note that in practice, n does not have to be the same for all days in the sample; I
only make this assumption here to simplify derivations.

Hong and Warga (2000) propose an estimator that is closely related to the
regression-based estimators discussed in the previous paragraph. They suggest to
compare the same-day same-bond purchase prices with sales prices. Formally, their
estimator for day t is given by

i pitl{ais=1} 3 pitl{gi,=—1}
St _ i Hai=1} oo Haie=—1}

0 otherwise,

if EIZ,] s.t. qit = 1 and qjt = _17

(21)
where I explicitly account for the fact that there may be no buys or sales on any
given day. In a sample of n transactions, this case occurs, under my assumptions,
with probability (1/2)"! and has a negligible effect on the properties of the esti-
mator. Due to the nonlinearity of the estimator, it is difficult to derive the exact
variance of ¢, in closed form, but it can be shown that

E()) =5—s (%)n 1, JLIEOnVar(St) = %‘2. (22)
Thus, the Hong and Warga (2000) estimator has the same limiting variance as
the estimator based on regression (18). In fact, it can be shown that the two
estimators are asymptotically equivalent—that is, \/ﬁ(& — 2@@)) 20 asn — .
They can differ in small samples, however, so I will consider both estimators in

the simulation and empirical application later in the paper. &; is not guaranteed
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to be non negative and so I censor it at zero. Finally, to obtain an estimator that
utilizes the full sample of T" days, I simply average the daily estimates &, before

censoring. Denoting the resulting estimator by RST(F?’ ), it is given by

T
1 .
RST(?)—maX{? E 5t,0}. (23)
=1

3.1.3 Observable timestamps and trade direction

Finally, I investigate the loss of efficiency associated with both missing timestamps
and trade direction. If timestamps were available, one could run the regression of

p on ¢ in first differences:
Ap; = ,8,5(3)AQi7t + uﬁi) (24)

The gain in efficiency compared with the regressions in levels is simply due to

(1)

the fact that ug? = €1, which has much smaller variance than either u;, or

uf? and is serially uncorrelated. A complication with the standard OLS estima-
tor B(B) in regression (24) is that it is not always well defined. We have pB =
S ApiiAGi/ > 5 (Agiy)? and it is not difficult to show that P(D) ,(Agis)? =
0) = (1/2)"*. But because —= > ,(Ag;;)? converges in probability to 2 as
n — 00, an asymptotically equivalent, well-defined estimator can be obtained by
simply setting Y7 ,(Ag;¢)? equal to 2(n — 1) in B whenever S o (Agiy)* = 0—
that is, I define

5(3) _ D ieo ApitAgiy
b L(Ag)? = 032(n — 1) + 301, (Agiy)?

(25)
Clearly, E(2ﬂ~t(3)) = s, SO 23,5(3) is an unbiased estimator of s. It is difficult to

derive the exact variance of @(3)7 but it is easy to show that the limiting variance

satisfies lim,,_, o nZVar(QBt(?’)) = 20?% and that 261(3) is a n-consistent estimator of s.

14



Thus, observing both timestamps and trade direction at the same time improves
the convergence rate further: recall that the RMSE of the estimators Rolly, RVAY,
RSC(;), i = 1,2 only decays at rate n'/2. In small samples, Bt(g) can be negative with
positive probability, so I define RSt(g) = maX{QBt(?’), 0} as an estimator of s for day
t and RS;S) = max{Qﬁp}g ),0}, where 6;3) is obtained by running regression (24)

using all nT" observations (7" days with n transactions each).

3.1.4 Summary

The analytical comparison reveals that the absence of timestamps and/or trade
direction reduces the convergence rates of the effective spread estimators. In the
full-information case, one can achieve n-consistency, while in the absence of either
timestamps or trade direction, only \/n-consistency is possible. In the absence
of timestamps, the limiting RMSE only depends on s (equations (12) and (15)),
while in the case of missing trade direction, it is solely driven by o2 (equations (19),
(20), and (22)). Finally, when both are missing, consistency cannot be achieved by
increasing the number of intraday observations and averaging over an increasing
number of days is necessary. The limiting variance of the effective spread estimator
depends on the ratio of 02 and s, see equation (9).

Now, in practice this means that the relative performance of the various esti-
mators depends on the parameter configuration and the number of intraday ob-
servations. Clearly, when the signal-to-noise ratio o?/s is high, the absence of
time stamps and trade direction lead to significant deterioration in RMSE for any
n. But when 0?/s is small, there may exists a range for n where the infeasible
estimators do not really improve much upon the estimator that does not require
either timestamps or trade direction. This is a useful result because in practice
it is precisely illiquid, infrequently traded asses for which these data limitations

occur.

15



4 Range-based estimators

The baseline estimator is simple to compute, but it requires observing the bench-
mark price mp,. When these prices or mid-quotes are not available, d, cannot be
calculated and we need an alternative moment condition to use together with E(Jf)

in equation (4). Inspired by Corwin and Schultz (2012), I use the daily range:
7 = (maxpj; — minp;q)”. (26)

The range has a long tradition in financial econometrics, dating back to Parkin-
son (1980), and has been widely used for estimating volatility from intraday data
(Christensen and Podolskij, 2007; Christensen, Podolskij, and Vetter, 2009; Do-
brev, 2007). It is clear that #? is expected to depend on both s and ¢, as do d?
and d?. Corwin and Schultz (2012) combine equation (26) with a second moment

condition based on the squared range over two consecutive days:

ft2:t+1 = (mj‘?‘xpj,t:tﬂ - mjinpmtﬂ){ (27)

where pj ;.41 denotes the j-th transaction price in a two-day window starting on day
t. They assume that trading takes place continuously (n — 00), the overnight re-
turns are zero, and the observed high and low prices are related to the high and low
efficient prices by max; p;; = (1+.5/2) max; m;; and min; p;; = (1—.5/2) min; m; ,
where S is the proportional effective spread. These assumptions permit Corwin
and Schultz (2012) to derive the expectations of the range in equations (26) and
(27) in closed form and solve the two equations for S. In particular, they show

that S can be estimated by

_2(e* —1) V20 + ) — T+ T P
PR - 28)
3-2V2 3-2v2
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Note that Corwin and Schultz (2012) estimate the proportional effective spread S
rather than the log spread s that I focus on in this paper. The two are related
by s = 2log(1 4+ S/2), and the difference is very small for small values of S and
does not materially affect any simulation or empirical results reported later in the
paper.

The estimator S; is not guaranteed to be non-negative. Corwin and Schultz
(2012) suggest to either censor S; at zero before calculating the average over T

days:

T-1
m_ 1
C8y) = gmax{St,O}, (29)

or to censor at zero the average S;:

T-1
1
05512) :maX{ﬁZSt,O} . (30)

It is not hard to see that C’Sr}l ) cannot be a consistent estimator of S, as the
censoring before averaging produces an asymptotic bias.

Now the Corwin and Schultz (2012) measures, while simple, require two strong
assumptions that I do not want to make here: continuous trading and zero overnight

3. in OTC markets, the daily number of transactions is typically much

returns.
smaller than in equity markets, where assuming large n is perfectly plausible.
Moreover, relying solely on the range means throwing away a lot of data, so I de-
velop measures that use all available transaction data. My range-based estimators

therefore use only the daily range in equation (26) and work for any finite n.

3Corwin and Schultz (2012) suggest a simple correction for the overnight return, but the
correction does not eliminate the overnight return problem completely and the estimator remains
generally biased and inconsistent. Abdi and Ranaldo (2016) propose a solution: they suggest
using the statistics (¢; — (7441 +n¢)/2)? and (1 —n:41)?, where ¢; denotes the closing transaction
price on day ¢ and 7, = (max;p;; + min;p;;)/2 is the daily midrange. Although this is an
ingenious solution, it will not work in my context, as the closing transaction price ¢; is not
known in the absence of timestamps. Replacing c; with the closing efficient price mg; does not
solve the problem because it is precisely the half-spread component of ¢; that allows Abdi and
Ranaldo (2016) to identify s.

17



I continue with the assumptions stated in Section 2 and additionally assume
that the innovations of the efficient price are normally distributed. The expectation
of the squared range can then be approximated by simulation for any finite n
and the SMM employed to consistently estimate s. I proceed as follows. Let
0 = (s,0%) and let p* = (p},, P, .-, P,)" denote a random draw from model (1)

given 0. Taking S independent draws, I approximate the expectation of #? by

1

S
ms(60,n) = Z(mjaxpjs - mjinp;s)Q. (31)
s=1

|

The SMM estimator is then obtained by

7 = arg min gjgr, (32)
R+

where gr = %23:1 9, 9¢ = (911, 92)", 91:(0,n) = Jf - E(CZ?)’ and g9(0,n) =
72 —mg(0,n). The objective function g/-gr must be minimized numerically under
the restrictions that s and o are nonnegative. The range-based estimator of s,
which I denote by ES' | is then given by ESY = 6, 1. It follows that if T/ — 0
as T — oo, ESi(FQ) % s and the SMM estimator is asymptotically equivalent to the
generalized method of moments (GMM) (see chapter 2 in Gourieroux and Monfort,
1996), and the usual GMM inference applies.

My final estimator follows naturally from the previous two. If the benchmark
prices are observable, it is clearly desirable to use all three moment conditions at
the same time. Formally, define g5,(0,n) = d? — E(d?) and g, = (g1t gors g31) s
where gi; and go; are previously given. The over-identified SMM estimator of 0 is
given by

Or = arg min g7 Wrgr (33)

96R++
for some positive definite matrix Wy. [ follow the standard two-stage approach,

whereby I first use W = I to obtain a preliminary estimate 67 and then use the
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optimal Wr (sample variance of g; evaluated at éT) in the second stage to obtain
O7. My third estimator of s is then given by ESi(;’) = 517T. Again, if T/S — 0 as

T — oo, ES;B) 2 s, and we obtain asymptotic equivalence with GMM.

4.1 Computational aspects

When the number of transactions is large, the previously described simulation-
based estimation may be slow. The minimization must be done numerically and the
evaluation of the objective function can be costly. Fortunately, simulation-based
or analytical approximations for E(r?) can be devised that significantly speed up
computations.

Observe that the price process in equation (2) can be approximated by a process
oW (t) + 5q(t), where W (t) is standard Brownian motion and ¢(#) is a continuous-
time process such that for any ¢, ¢(t) = 1 with a probability of 1/2, and ¢(t) = —1
otherwise. Now due to continuity of Brownian motion, the range of oW (t) + 5q(t)
equals the range of oW (u) plus s. Thus, for large n, we can approximate the range

of p;; by the range of m;; plus s:

E[(maxp;; — mjnpj,t)Z] ~ E[(o(max z; — min z;) + s)?], (34)
j j j j

where z;, j =0, ...,n, is a discretized Brownian motion on [0, 1]. All that has to be
simulated, then, is the expectation of the range and squared range of a discretized
Brownian motion. This simulation needs to be done only once, before the SMM
estimation begins, and not every time the objective function is evaluated. When
n is large, this approximation leads to significant gains in computational speed.
The approximation can be further improved by using the decomposition of
Christensen, Podolskij, and Vetter (2009), Lemma A.1, where the maximum of
the efficient price is only taken over buyer-initiated transactions and the minimum

over seller-initiated transactions when calculating the range of z in (34). Formally,
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let b;, © = 0,...,n be an iid binary process independent of z, where b; = 1 with a
probability of 1/2 and b; = —1 otherwise. Given a sample path of b and z, the range
of z is calculated over the set I = {(i,7)|b; = 1,b; = —1]}. The approximation

then becomes

Bl(ma e — minp3)?) & Bl(or ma (5 = 2) + 5)7) (35)

As before, the range on the right-hand side of equation (35) needs to be simulated
only once and not every time the objective function is evaluated.

But the simulation can be avoided altogether because accurate analytical ap-

proximations for the range of discretized Brownian motion in equation (34) exist.

Using Lemma A.8 in Andersen, Dobrev, and Schaumburg (2013) together with

equation (34) leads to the approximation

E[(mﬁxpj,t—rnjinpj,t)?]~(410g2)02+2\/§ s+s°+ E/lg) (\/§ +08>%
(36)

where ((1/2)/+/2m ~ —0.5826.

To see how these approximations work, I plot expressions (34),(35), and (36)
together with the true value E[(max; p;;—min; p;;)?] in Figure 1 for different values
of n. I find that all approximations are generally quite close to the true value for
n > 1000. Interestingly, there is virtually no difference between the analytical
approximations in equations (36) and (34); clearly, the first-order correction in
Andersen, Dobrev, and Schaumburg (2013) works very well, even for small n. But
both of these approximations are significantly upward biased when n is small.
Fortunately, the approximation in equation (35), based on the idea of Christensen,
Podolskij, and Vetter (2009), is significantly more accurate for all values of n and
is very close to the true value when n > 100. Thus, it seems that in practice one

should simulate E[(max; p;; —min; p;;)?] when n is small-—say, less than 100—and
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use the approximation in equation (35) to speed up computations when n > 100.
For very large values of n, one can avoid simulations altogether and use equation
(36).

Another issue that obviously arises in practice is that the number of transac-
tions is not the same every day. This issue poses no problems for my estimators.
All one needs to do is to replace n in equations (3) and (36) with n;, where n,
denotes the number of transactions on day t. Similarly, in the SMM estimation,
one would simply simulate the squared range with the appropriate n; for each ¢

and then take the average.

5 Stochastic volatility

The assumption of constant volatility I have maintained so far is a strong one,
but it is easy to show that, under certain conditions, the estimator ES;I) is robust
to stochastic volatility. It follows from the proof of Proposition 1 and the Law
of Iterated Expectations that if E(eit) = const, 2 remains an unbiased estima-
tor of s%; see Section B of the Appendix. If, in addition, the long-run variance
of u?, where Un(t—1)+i = €, © = 1,...,n, t = 1,....,T, goes to zero as T" — oo,
Var(1/TY.}_, ?) — 0 and hence ES(Tl ) % 5. These conditions allow for long-
memory in volatility and the so-called leverage effect, i.e. the correlation between
volatility and the efficient price innovations. Now, when the variance is nonsta-
tionary or deterministic (and time-varying), E(8?) # s; in general, and ES;l) can
be asymtotically biased and inconsistent. The bias is a function of the entire path
of o, and it cannot be evaluated analytically in the absence of timestamps.
Unlike ES(T1 ), the range-based estimators are not generally consistent in the
presence of time-varying volatility. The expectation of the range cannot be easily
expressed in terms of moments of the volatility of the efficient price, and so the

previously used argument does not apply.
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6 Performance assessment with simulated data

To assess the performance of my estimators ES,?), 1 = 1,2,3, in a controlled
environment—both in absolute terms and relative to the other measures discussed
in the paper—I run a Monte Carlo experiment. I set the daily integrated volatility
of the efficient price (o) to 35 basis points, which is approximately equal to the
daily volatility of the 10-year Treasury futures price, and let the efficient price in-
novations follow a normal distribution. I vary the true effective spread (s) between
5 and 50 basis points, the number of daily transactions (n) between 10 and 250,
and the number of days (7') in the sample between 25 and 250. Recall that the
absolute values of s and o are not that important for the RMSE of my measures—
what matters are their relative values. Each simulation is based on 10,000 Monte
Carlo replications.

Table 2 reports the average effective spread obtained in the simulation together
with the associated RMSE. Starting with the results for the baseline estimator
ES(T1 ), which are reported in the top two rows of each panel, I find that the bias
of the estimator can be either positive or negative in small samples depending on
the true effective spread. But as predicted by theory (see equation (8)), the bias
does become negative for sufficiently large T" before eventually converging to zero
as T — oo. The RMSE of the estimator approaches zero at a rate that is broadly
in line with /T consistency.

Turning to the just-identified range-based estimator, ES(T2), reported in rows 3
and 4 of each panel in Table 2, I find that the estimator exhibits a bias that can
be either positive or negative depending on n, T', and s, but both the bias and
the RMSE decline as T" — o0, as expected. Comparing the performance of ES(T2 )
with the baseline estimator ES;I), I find that the two estimators can perform quite
differently. On the one hand, ES;1 ) does well when s is large and T is small; for
example, when s = 50, n = 50, and T" = 50, the RMSE of ES%D is around three
times smaller than that of ESg). On the other hand, ESFSF2 ) works relatively well
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when s is small and T is large; for example, when s = 5, n = 250, and T' = 250,
the RMSE of ES(TI) is more than three times larger than that of ES(TQ).

It is therefore not surprising that the over-identified estimator, ES&? ), which
combines the moment conditions underlying ES;D and ES;2 ) using the optimal
weighting matrix, generally performs the best. The results reported in rows 5
and 6 of Table 2 show that the estimator is typically the most precise in terms of
RMSE, except when T is very small.

The Corwin and Schultz (2012) estimators CS;D and CSg) perform markedly
different from my estimators and from each other. The C’S;l) estimator is sig-
nificantly upward biased, especially for small values of s, and the bias does not
disappear as n — oo, T" — oo, or both. The bias remains simply due to the fact
that S; is censored at zero before averaging (see equation (29)). The alternative
estimator, 05’;2), which is obtained by censoring the average S;, performs better
when n is large, and its RMSE declines with 7" as expected. For small values
of n, the estimator does not work very well, but recall that the Corwin-Schultz
estimators are derived under the assumption of n — oo, so this is hardly surpris-
ing; in contrast, my range-based estimators work for any finite n as they rely on
simulated moments. I should also stress that the Corwin-Schultz estimators only
use intraday high and low prices, while my estimators use all available transaction
prices and therefore more information.

Turning to the measures that require transactions to be ordered in time but
do not need the trade direction—Rollr and RVA—1 find that in line with my
analytical results, they generally perform better than my estimators, except when
the number of transactions (n) is small (Panel A) and the effective spread is large;
see, for example, the case of n = 10 and s = 50, where the ES(TS) estimator
outperforms both measures in terms of RMSE. The bias associated with RV2!
tends to be quite large for small n, which compromises its RMSE, and it makes

the estimator competitive with that of Roll only for large n.
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Turning to the measures that require observing the trade direction but no
ordering of transaction in time—RS(Tl), RSg), and RS;?’ )1 find that the Hong and
Warga (2000) measure delivers the most accurate estimates across different sample
sizes and values of s. Centering by the average transaction price (RS;2 )) produces
biased estimates for small n as expected. For large n, the estimator outperforms its
competitor RSZ(Fl), especially for small values of s, where it reaches accuracy similar
to that of Hong and Warga (2000). Note that in line with the theoretical results,
the bias—and, hence, RMSE—of RSg) do not vanish as 7' increases, a property
not shared by the other estimators. Finally, observing both the time stamps and
trade direction—RSéfl)—produces the most accurate estimates uniformly across n,
T, and s, as expected. Relative to my estimators that require neither time stamps
nor trade direction, the improvement in efficiency is large: the RMSE is an order

of magnitude smaller.

7 Performance assessment with small-cap equity

data

Having explored the behavior of the various effective spread estimators in a con-
trolled environment, I now repeat the exercise with empirical data. Ideally, I
would like to employ data from an OTC market, since that is where I expect my
measures would naturally find applications, but to the best of my knowledge, no
time-stamped OTC trade and quote data are publicly available that would allow
me to do this exercise. I therefore employ the widely-used TAQ data for selected
NYSE-listed stocks; the TAQ data are time stamped to the second and contain in-
formation about m and ¢, so that the true effective spread can be readily computed

and used as a benchmark.
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7.1 Data and descriptive statistics

The universe of NYSE-listed stocks is too broad to consider here in full. Because
my measures of effective spread would typically be applied to OTC-traded con-
tracts, which tend to be less liquid and trade less frequently than exchange-traded
instruments, I focus on stocks with small market capitalization. In particular, I
take all stocks in the TAQ database that satisfy two criteria. The first is that the
stock was included in the S&P Small-Cap 600 Index for the entire period between
January 2, 2005, and December 31, 2014. The second is that there are trade and
quote data available for this stock in the TAQ database for every trading day in
this period. These criteria select 147 stocks; the list of TAQ tickers of these stocks
is provided in Appendix C.

For each stock and day in my sample, I download from the Wharton Research
Data Services (WRDS) the WRDS-derived trades files (WCT data sets), which
contain trades matched with the prevailing National Best Bid and Offer quotes.
I then filter the data and retain only those trades with trade times between 9:35
a.m. and 4:00 p.m., positive transaction price, positive prevailing mid-quote, and
positive quoted spread. In addition, I drop all quotes where the prevailing quoted
spread is greater than 50 times the median quoted spread for the same day, and
all trades where the implied proportional effective spread is greater than 50 times
the median proportional effective spread for the same day; these rules are similar
to those proposed by Barndorff-Nielsen et al. (2008a).

Table 3 reports some descriptive statistics for the data, separately for five two-
year periods that span my sample. The average daily number of trades varies
between 1,000 and 2,000 for a typical stock-day. The average effective spread
varies between 12 and 16 basis points, while the average daily realized volatility
varies between 150 and 250 basis points. The average SNR, which I define here as
the ratio of effective spread and realized volatility (s/c), fluctuated between 6 and

9 percent. Thus, despite being small cap, the typical stock in my sample traded
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relatively frequently and with a fairly tight spread during my sample period. At
the same time, there are stocks and trading days with relatively little trading and
fairly large effective spreads as indicated by the 5th and 95th percentiles reported
in the table.

My main empirical results are summarized in Panel A of Table 4. I run the
effective spread estimations separately for each stock-month, stock-quarter, stock-
half-year, and stock-year in the sample period and compare the estimates with
the actual effective spreads observed for a given stock in a given time period.
Specifically, I calculate the bias and RMSE associated with each estimator and
the correlation of the estimated spread with the actual effective spreads calculated
from TAQ.

I find that estimating the effective spread without timestamps and trade di-
rection is very challenging. The infeasible estimators are significantly less biased
and an order of magnitude more accurate in terms of RMSE than my estimators
or the Corwin and Schultz (2012) ones; they are also much more closely correlated
with the actual effective spreads. In line with theory, the over-identified estimator
ES%)’ ) is generally most accurate in terms of RMSE out of my three estimators,
although ESé? ) tends to be more closely correlated with the actual spread. The
results do not improve as the number of observations used for estimation increases.
As expected, all infeasible estimators deliver RMSE that is an order of magnitude
lower than that of my feasible estimators. The estimator based on realized volatil-
ity performs remarkably well, exhibiting almost no bias and having significantly
lower RMSE than the Roll measure.

The relatively poor performance of the feasible estimators should not come as
a surprise: The average SNR for the 147 stocks in my sample is very small, and
the analytical and simulation results presented previously clearly indicate that in
such circumstances all feasible estimators struggle. To shed more light on the

relationship between the SNR and RMSE, I perform the following experiment.
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Rather than using the original transaction prices when computing effective spread
estimates, I construct a new set of transaction prices p where I set p;; = m;; +
10(p;r —myy) for all ¢ and t—that is, I artificially inflate the actual effective spread
by a factor of 10. This procedure leaves the intraday volatility and time-series
dynamics of the mid-quote unchanged, but it increases the SNR tenfold. I then
reproduce the results reported in Panel A of Table 4 using the artificial transaction
prices p in place of the actual transaction prices p.

The results are reported in Panel B. I find that the relative performance of
my estimators improves significantly. Although they are still upward biased, their
RMSE is now much smaller relative to the actual spread. Also, while the two
estimators that utilize timestamps (Roll and RV%) still outperform my estimators,
the differences in terms of RMSE have become smaller. The regression-based
estimators that require trade direction perform better that either Roll or RV,
Finally, the correlation between my estimates and the true spreads has increased
significantly.

In addition to the experiment with the SNR, I study how the intraday number
of transactions (n) affects performance. I do this by sampling sparsely from the
set of transaction prices, retaining only every 10th observation on a given day for
a given stock, and re-run all estimations on the sparsely sampled data. The results
are reported in Panels C and D of Table 4; the former reports results based on
the original data, while the latter shows results based on the artificial transaction
prices previously described (inflated true effective spreads).

Starting with Panel C, I find that the performance of my estimators is largely
unaffected by sparse sampling. This finding is in line with the theoretical result
that n has only a second-order effect on the RMSE of these estimators. In contrast,
the infeasible Roll and RV-based estimators exhibit a significant deterioration in
precision as n decreases. Notably, the RV-based estimator now exhibits a signifi-

cant upward bias and a substantial increase in RMSE. When [ artificially inflate
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the actual effective spreads by a factor of 10 (Panel D), the differences between
the RMSE of my estimators and the infeasible ones become even smaller.

In summary, the empirical results based on the 147 stock in my sample are
largely consistent with the theoretical and simulation results reported previously.
The key driver of the performance of my estimators is the SNR. To illustrate this
finding graphically, Figure 2 plots the RMSE expressed as a fraction of the true
spread separately for stock-months sorted into deciles by their SNR. The figure is
based on the same data as Panel D in Table 4. Clearly, as the SNR increases, the
performance improves, and gradually approaches the performance of the infeasible

estimators. This is very much in line with the analytical results in Section 3.

8 Conclusion

In this paper, I have studied the problem of estimating transaction costs in the
absence of timestamps and trade direction, which are data limitations that often
occur in OTC datasets. Building on insights from the previous literature, I pro-
posed several measures of the effective spread, studied their sampling properties,
and compared their performance with some well-known, infeasible measures within
the simple framework of Roll (1984); table 1 lists the various measures studied in
this paper together with the data required to implement them. I corroborated my
theoretical findings using a Monte Carlo simulation and additionally assessed the
performance of my estimators in an empirical application to selected NYSE-listed
small-cap stocks.

The theoretical, simulation-based, and empirical results show that the loss of
information due to missing timestamps and trade direction is large. My estima-
tors are suitable for measuring transaction costs in illiquid OTC markets, where
effective spreads tend to be wide relative to the fundamental volatility and where

trading is infrequent, but not necessarily in highly liquid exchange-based markets
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such as those for equities and futures contracts, where the opposite is generally
true. But in those cases, accurate transaction timestamps are typically available
and trade direction can be reliably inferred, so my estimators would not be neces-
sary.

Throughout the paper, I have worked in the widely used framework of Roll
(1984). Whereas the simplicity of this framework allows for straightforward analyt-
ical derivations, future work may consider more elaborate microstructure models,
such as those by Huang and Stoll (1997); Madhavan, Richardson, and Roomans
(1997); Bessembinder, Maxwell, and Venkataraman (2006); and Edwards, Harris,
and Piwowar (2007). These models allow for a richer relationship between order
flow and returns, and they relax some of the arguably restrictive assumptions of
the Roll (1984) model. It would be interesting to explore whether these models

can be reliably estimated when timestamps and trade direction are missing.
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A Proof of Proposition 1

Dropping the subscript ¢ to simplify notation, we have

§2— 2 =2(3d —d) — s, (37)
82 -
- [(nil > —q)?) - 1]
=1
3 < _ I R
+25 | == > (mi—m)(gi—q) =~ > (mi— mO)Qi]
i=1 =1
r2 3 - 2 -] )
=1 i=1
= A, + B, + C,. (39)

By construction, E(4,) = E(B,) = E(C,,) = 0, and it is easy to show that E(A,B,) =
E(A4,C,) = E(B,C,) = 0 because E(m;g;) = 0 for all i and j. Thus, Var(s?) =
E(A2) + E(B2) + E(C?). Tt is clear from the equation above that 52 does not depend on
mg, so we will set it to zero to simplify notation.

Starting with E(A2), write

n

84 n n
A2 = 97 !(n _1 2 > (a— (g -9 -~ i - (6 -9+ 1] . (40)

i=1 j=1 i=1

Because E(g;q;) = 0if i # j and ¢7 = 1, we have

E (Z > (@i —)*(q; - Q)Q) —=n’—2F (Z Z%%) + %E (Z QinQkQI) ,

i=1 j=1 i=1 j=1 i=1 j=1k=1 =

—_

2
=n?-2n+3-=. (42)
n
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This, together with E (3", (¢ — 9)*) = n — 1, gives after some algebra

9s*

B(An) = 2n(n —1)

Turning to E(B2), write
9 6 =
2 _ 2
[m_l)u(n_l | L2

n

6 n
+ 457 {nQ(n RETCEE } Zzgmzmmqk

i=1 j=1

n n n n

2 Z Z Z m;m;qrq- (44)
=1

i=1 j=1 k=1

Because E(ejej) = 0if i # j,

> D mimaid ZZE mim;)E(giqj) =) E(m ZZE n+1)
=1

=1 j=1 =1 j=1 i=1 p=1
(45)

Similarly, E (Ei 252k mz'mj%'%) =32 E(mym;) and E <Zi 252k 2 mmﬂle) =
ny ;> E(mim;). Thus, it remains to derive }_, > E(m;m;). The case i = j follows
from above, so we focus on the case when ¢ # j:

Z ZE mim;) = 2 Z Z (mymy), (46)

i=1 j=1 =1 j=i+1
i#]

=1 j=i+1 p=1 \r=1 r=i+1
n n 7
23" Y R a3
i=1 j=i+1p=1
942 n n
=7 i, (49)
n -
i=1 j=i+1
=o?n(n+1)— ~o*(n+1)(2n+1) (50)

Plugging (44) and (49) into the expectation of (43) and simplifying gives

2s%0%(2n? +3n + 1)

B(B) = n?(n—1)

(51)
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Finally, we derive E(C2). Write

n (= 2 Z Z Z Z mmmem;. (52)

i=1 j=1 k=1 I=1

We focus on the last term because the other two terms follow from the derivation of this
term. Observe that

n

S35 e = 3 333 i 43" i

i=1 j=1k=1[=1 i=1 j=1 =1 j=1
i#] i#]
n n n n n n
F12305° S g 12303 S iy
i=1 j=1 k=1 1=1 j=1 k=1
i<j<k i<j<k
n n n n n n n
+ 122 Z Zm,m]mz + 242 E Z Zmimjmkml.
i=1 j=1 k=1 i=1 j=1k=1I=1
1<j<k 1<j<k<l

(53)

To save space, we derive here only the expectation of the last term; the other terms
follow using the same approach:

n o n o n o on
E E E E E m;mgimeginy
1=1 j=1k=11[=1
i<j<k<l

i

n n n n i k l
=E Z Z Z Z ZZ;ﬁpﬁrﬁset , (54)

i=1 j=i+1 k=j+11=k+1 p=1 r=1 s=1 t=

(e sy i(rz}:i) S,

i=1 j=i+1 k=j4+11=k+1 p=1 r=i+1 s=1  s=i+l s=j+1
i 7 k l
+ E + E + g €p€reset | (55)
t=i+1  t=j+1 t=k+1
n n n n z z ) 7 i 7 7 7
= g g epereser | + 3E E g E E €p€r€s€t
i=1 j=14+1k=j p 1r=1s=1t=1 p=1r=1 s=i+1t=i+1
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i % k k

+E Z Z Z €pEr€s€y

p=1r=1 s=j+1t=j+1

1 n n n n
= EZ T30 ) 30" 4 ki 4 30%i(j — i) + oti(k — ),

i=1 j=i+1k=j+1l=k+1

ot 4_1_(4_1_5) 3 130’4+/€ 2, a4+/{ +a4 k1
=—n ot +=n —+=n —+ < nt ==
3 5 12 2 2 3 12 30n’
where k = E(e}) — 30%. Above, we use the fact that
10353 3SR B 35 3) 9 DGR
p=1r=1s=1 t=1 p=1r=1s=1 t=1
=3) D Blge) +>_E(e),
p=1r=1 p=1

p#r

1
= ﬁ(304i2 + i),

and

i j J i1 J J
E Z Z ep€reser | =B ZZEPET E(Z Z €s€t),

p=1r=1 s=i+1t=i+1 p=1r=1 s=i+1t=i+1

_ (sre) ( 5 E<ez>) |
p:l r=i+1
1

_ A
n20’l(] i).

The expectation of the other terms in C2 can be obtained analogously. We obtain

2(20%n + ot + 2k)(2n3 + % + Tn + 2)

B(Cr) = 15n3(n — 1)

The variance of §2 then follows after some algebra.
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B Stochastic volatility

Clearly, E(A4,,) = E(B,,) = 0 even under time-varying volatility because ¢ and m are
independent. Now for C,,, we have after some algebra

BCHobn) = |5+ g — gy | DBl - L3 S Yo B(aR)

i=1 p=1 =1 j=i4+1p=1

(66)

Now, because ¢; = %zi, where z; is éd with zero mean and unit variance, E[E(e3|02)] =
LE(0?), and if E(0?) = const, by the LIE, E[E(Cy|{os}?,)] = 0. Thus, E(3%) = s2,

C List of TAQ tickers used in the empirical il-
lustration

AIR, ABM, CHE, PNK, GFF, IVC, LZB, MCS, MYE, NJR, NWN, OXM, PNY, AGYS,
KWR, AWR, SWX, SMP, RGR, WDFC, WGO, WWW, SKYW, JJSF, HTLD, CSH,
LNN, MLI, TG, DGIL, FBP, SIGI, VICR, ACAT, BHE, ETH, SONC, 10, PRGS, SMRT,
UIL, CDI, LDL, APOG, UFPI, SXI, CBM, PKE, AXE, CBR, UTEK, CKP, GNCMA,
SWM, KLIC, MW, BRC, ESIO, B, CTS, FMBI, UBSI, NSIT, SGY, CKH, SSD, BBOX,
GPI, WTS, CNMD, MRCY, RLI, COHU, DEL, LG, POOL, ASGN, HSII, VSAT, AVA,
FWRD, PSEM, HLIT, CRY, KOPN, BELFB, ROG, GCO, BRKS, HAE, BGG, MSCC,
SRDX, CENX, DCOM, EXAR, STC, EE, MINI, EME, BPFH, RTEC, VECO, LNCE,
FRED, CW, PLCE, DSPG, HVT, ICUIL, KNX, WTFC, CUB, IART, FUL, SHLM, AIN,
PZZA, JCOM, CCRN, BRKL, EPIQ, LXP, GB, PJC, MTH, DAKT, WPP, ITG, MMSI,
LFUS, HIBB, SCSC, PRA, WRLD, EPR, SAFM, VVI, PVTB, CBU, ALE, AMED,
PKY, SAH, NP, MTSC, SUP.
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D Figures and Tables

(@) 0=35bps, s =10 bps (b) 0=35bps, s =5 bps

I 40- \
45 5
35 %0

(7 —+—+ True ¢

F -5 Simulated approx. (34) 8
25+ -e—e- Simulated approx. (33) 20%

B! -#—% Analytical approx. (35)

P R AR LA RS R

i A

P It
1.0 15 20 25 3.0 35 40 10 15 20 25 3.0 35 4.0

Figure 1: Expected squared range of p and its approximations as a function
of log;yn. The line labeled “True” shows the true expectation E[(max;p;; —
min; p;,;)?], “Simulated approx. (34)” shows the right-hand side of (35), “Simu-
lated approx. (33)” shows the right-hand side of (34), and “Analytical approx.
(35)” shows the right-hand side of (36). The various expectations are approxi-
mated by simulation with 100,000 replications. The efficient price innovations are
normally distributed with a volatility of 35 bps.

T T T
3 4 5 6 7 8 9 10

2
2

B X

Figure 2: Average RMSE expressed as a fraction of the true effective spread for
deciles based on the signal-to-noise (SNR) ratio. Every month, the stocks in the
sample are sorted into deciles by their SNR. The RMSE for each stock-month
decile is then calculated by averaging across all stock-month observations in the

decile.
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Trade Time- Benchmark Closed

Direction stamps Price Form
ESM no no yes yes
ES® no no no no
ES®) no no yes no
cst no no no yes
cs® no no no yes
Roll no yes no yes
RV, no yes no yes
RSW yes no yes yes
RS® yes no no yes
RS®) yes no no yes
RSW yes yes no yes

Table 1: Estimators of effective spread studied in this paper. The table shows the
data required to implement the estimators and whether they are available in closed
form.
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2005-6 2007-8 2009-10 2011-12 2013-14

A. Number of transactions

Mean 975 2098 1947 1697 1757
Std. dev. 1023 2001 2635 2019 1836
5th percentile 174 409 283 228 268

95th percentile 2740 5831 5867 5248 4874
B. Effective spread (bps)

Mean 12.6 13.1 15.6 13.2 13.0
Std. dev. 7.3 9.0 12.1 9.0 8.7
5th percentile 5.8 5.3 5.4 4.8 4.8

95th percentile 25.9 27.7 36.2 30.0 31.0

C. Realized volatility (bps)

Mean 168.8 246.0 252.3 192.0 156.3
Std. dev. 67.7 151.8 133.4 92.3 64.4
5th percentile 86.6 89.7 100.6 84.6 80.9
95th percentile  293.4  559.1 498.0 362.4 272.5

D. Signal-to-noise ratio

Mean 0.078  0.058 0.063 0.071 0.084
Std. dev. 0.046  0.025 0.030 0.036 0.047
5th percentile 0.039  0.030 0.031 0.033 0.040
95th percentile  0.144  0.103 0.116 0.136 0.169

Table 3: The descriptive statistics are calculated over all stock-days in a given
two-year period. The effective spread and realized volatility were winsorized at the
99.5% level, separately for each stock, before pooling and calculating the stock-day
descriptive statistics. The sample consists of 147 small-cap stocks over the period
from January 2005 to December 2014, spanning 2,517 business days.
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