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Abstract

Hawkes-process models of the order flow allow to capture self- and cross-excitation effects

between market events. However, as opposed to Markov-process models, the arrival rates of

orders do not depend on the state of the limit order book, which seems to contradict the

empirical evidence. This motivates us to extend Hawkes processes to state-dependent Hawkes

processes, where the counting process is fully coupled to a piecewise constant state process. In

particular, the kernels that determine the self- and cross-excitation effects can now depend on

the state process. We give existence and uniqueness results for these new processes and explain

in what sense they replicate the event–state structure of limit order books. Finally, we apply a

low-dimensional state-dependent Hawkes process with exponential kernels to high-quality limit

order book data.

Keywords: Hawkes processes, state dependence, existence and uniqueness, limit order book mod-

elling, high-frequency data, maximum likelihood estimation, simulation.

1 Introduction

The term limit order book refers to an intermediary-free trading mechanism now employed in

more than half of financial markets [7] where agents can submit buy and sell orders at the price of

their choice. Orders that result in an instant trade (e.g., an incoming buy order matches the price of

an outstanding sell order) are called market orders. When no instant trade is possible, new orders

enter the queue of outstanding orders. Such orders are called limit orders and the collection of

outstanding orders is called the limit order book (LOB). The state of the LOB conveys information

on the current supply and demand and evolves at each submission or cancellation.
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Hawkes processes [8] form one popular approach to model the LOB activity [3, 11, 2, 16, 1, 15].

A linear Hawkes process is a d-dimensional counting process N(t) := (N1(t), . . . , Nd(t)) whose

FN -intensity λ(t) := (λ1(t), . . . , λd(t)) satisfies

λi(t) = νi +

d∑
j=1

∫
[0,t)

kji(t− s)dNj(s), t ≥ 0, i = 1, . . . , d,

where FN is the natural filtration generated by N , νi ≥ 0 and kji : R>0 → R≥0. Loosely speaking,

λi(t) corresponds to the arrival rate of events of type i (e.g., aggressive buy limit orders) and, thus,

the kernel kji describes how events of type j (e.g. sell cancellations) impact the arrival rate of

events of type i. Essentially, this modelling approach assumes that the aggregated market reaction

to LOB events can be properly captured by the self- and cross-excitation effects that characterise

Hawkes processes. By learning the kernels kji from market data, the models cited above have

enabled the community to gain or validate valuable insights into market microstructure.

In spite of their success and attractiveness, we note that these Hawkes-process models ignore

the state of the LOB, i.e., they only describe the order flow. In fact, these models can be contrasted

with another prominent LOB modelling trend, that is, continuous-time Markov chains [6, 4, 9, 10].

These Markovian models do capture the state of the LOB, but the order flow dynamics can only

depend on the state, meaning that interactions like in general Hawkes processes are not possible.

The goal of this talk will be to propose and apply an extension of Hawkes processes, namely

state-dependent Hawkes processes, that merges the event and state viewpoints just discussed. In

this new model, the counting process N is endowed with a state process X that is fully coupled

with N . The FN,X -intensity λ of N is now given by

λi(t) = νi +
d∑

j=1

∫
[0,t)

kji(t− s,Xs)dNj(s), t ≥ 0, i = 1, . . . , d,

meaning that the kernels kji now depend on the state process. In return, each event in N prompts

a state change according to transition probabilities that vary with the event type.

This paper is organised as follows. Section 2 introduces the data that we will use. Section 3

presents a preliminary empirical analysis that motivates the introduction of state-dependent Hawkes

processes. In Section 4, we define state-dependent Hawkes processes, discuss their existence and

uniqueness and compare them to classical Hawkes processes in the context of LOB modelling. In

Section 5, we propose a LOB model that is based on a state-dependent Hawkes process and expose

our plans to estimate it from market data. We also illustrate the model with a simulation of a

simple state-dependent Hawkes process.

2 Data

We will use high quality LOB data provided by LOBSTER‡, a company that reconstructs the

level-II LOB using the original NASDAQ data files. For each stock and trading day, the data

‡https://lobsterdata.com/
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consists of two files: a message file and order book file. The former contains the sequence of orders

submitted to the exchange. We stress that all events are recorded with nanosecond precision, which

is rare and crucial when estimating Hawkes processes. The order book file records the state of the

LOB after each submission and cancellation.

3 Preliminary empirical analysis

To motivate the extension to state-dependent Hawkes processes presented in this paper, we

study the influence of the queue imbalance on the impact that ask and bid events have on their

arrival rates.

The normalised queue imbalance is a well-known quantity [12] that describes the state of the

LOB. It is defined as

QI(t) :=
Qbid(t)−Qask(t)

Qbid(t) +Qask(t)
∈ [−1, 1],

where Qbid(t) and Qask(t) denote the volume of outstanding orders at the best bid and ask prices,

respectively. In this paper, following Cont et al. [5], we count as bid (resp. ask) events: buy (resp.

sell) market orders, level-1 buy (resp. sell) limit orders and level-1 sell (resp. buy) cancellations.
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Figure 1: Influence of the queue imbalance on the impact that ask and bid events have on their

arrival rates. We use the data from 10.30am to 4pm on March 8, 2016, for the stock Twitter.

Similar results are obtained on all the trading days between January and April 2016.
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For the stock TWTR on March 8, 2016, we obtained Figure 1, where we plot the amount by

which the arrival rate of ask/bid events increases just after an ask/bid event, conditional on the

queue imbalance right after the ask/bid event. For instance, the point on the curve b > a with the

largest horizontal coordinate tells us that, right after a bid event that moves the queue imbalance

to a value in the range (0.6, 1], the arrival rate of ask events increases on average by nearly 10,000

shares per second.

Our key observation is the following: for different values of the queue imbalance, the impact of

ask and bid events on their arrival rates can change drastically. Since the Hawkes-process models

discussed in the introduction would fail to capture this effect, this motivates the introduction of

state-dependent Hawkes processes in the next section.

4 State-dependent Hawkes processes

4.1 Definition

Let E := {1, . . . , de}, denote the set of event types and X := {1, . . . , dx} denote the set of

possible states. Let φ := (φe)e∈E be a collection of dx × dx transition probability matrices. Let

νe > 0, e ∈ E , and ke′e : R>0 ×X → R≥0, e′, e ∈ E . A state-dependent Hawkes process with base

rates νe, kernels ke′e and transition probabilities φ consists of a de-dimensional counting process N

and piecewise constant càdlàg X -valued state process X such that:

(i) N has an FN,X -intensity λ that satisfies

λe(t) = νe +
∑
e′∈E

∫
[0,t)

ke′e(t− s,Xs)dNe′(s), t ≥ 0, e ∈ E ;

(ii) at each event of type e ∈ E in N , the state process X jumps according to the transition

probabilities φe.

Note that when dx = 1, we recover a classical linear Hawkes process.

We remind that, given a filtration F = (Ft)t≥0 and an F-predictable non-negative process λ, a

counting process N admits λ as its F-intensity if, for all s < t, e ∈ E ,

E [Ne(t)−Ne(s) | Fs] = E
[∫ t

s
λe(u)du | Fs

]
.

4.2 Characterisation, existence and uniqueness

The full coupling betweenN andX implied by the above definition raises questions regarding the

existence and uniqueness of state-dependent Hawkes processes. In particular, these new processes

fall outside the classical framework for interacting point process [13]. We address this fundamental

issue in [14], where we generalise state-dependent Hawkes processes to hybrid marked point processes

and obtain strong existence and uniqueness under flexible conditions. The results that are important

for this paper are summarised in the following theorem.
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Theorem 1 (Characterisation, existence and uniqueness).

(i) Let N be a state-dependent Hawkes process as defined in Subsection 4.1. Then N is equivalent

to a dedx-dimensional counting process Ñ = (Ñ11, . . . , Ñdedx) with FÑ -intensity λ̃ given by

λ̃ex(t) = φe(Xt−, x)

(
νe +

∑
e′∈E

∑
x′∈X

∫
[0,t)

ke′e(t− s, x′)dÑe′x′(s)

)
, t ≥ 0, e ∈ E , x ∈X ,

(1)

and such that FÑ = FN,X , where φe(i, j) denotes the ithjth entry of the matrix φe. An event

of type (e, x) in Ñ corresponds to an event of type e in N that moves X to x.

(ii) If all the kernels ke′e are bounded, then there exists a non-explosive counting process Ñ with

FÑ -intensity λ̃ that satisfies (1), i.e., there exists a non-explosive state-dependent Hawkes

process with base rates νe, kernels ke′e and transition probabilities φ.

(iii) Let (N,X) and (N ′, X ′) be two state-dependent Hawkes processes such that their base rates,

kernels and transition probabilities coincide. Then the distributions of (N,X) and (N ′, X ′)

coincide as well.

4.3 Comparison with classical Hawkes processes

To jointly model the events and the state process, one could think instead of simply using a dedx-

dimensional classical Hawkes process N = (N11, . . . , Ndedx) and, as in statement (i) of Theorem 1,

interpret an event (e, x) ∈ E ×X in N as an event of type e that moves the state process to x.

We will now give two reasons why state-dependent Hawkes processes should be preferred in the

context of LOB modelling.

First, with such a classical Hawkes process N , if an event of type e ∈ E occurs, the probability

distribution of the next state x ∈ X does not depend on the current state but on the entire

event history. However, for LOBs, knowing the current state and the next event type suffices

to (approximately) determine the next state. As opposed to classical Hawkes processes, state-

dependent Hawkes processes do replicate this event–state structure.

Second, the classical Hawkes process N requires d2ed
2
x kernels (i.e., functions from R>0 into

R≥0) whereas a state-dependent Hawkes process is specified using only d2edx kernels. Hence, not

only have state-dependent Hawkes processes more flexible dynamics in the context of event–state

modelling, but they can also be specified in a more parsimonious manner.

5 Application to limit order book modelling

Our main goal for this final section is to check whether we retrieve the effect illustrated in

Figure 1 when we estimate a state-dependent Hawkes process from market data.
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5.1 Model specification

We will work with the event space E := {ask, bid} (that is, de = 2), meaning that we consider

only two different types of event: ask and bid events as defined in Section 3. Regarding the state

space, we split the interval [−1, 1] into 5 bins of equal width. The state process Xt will track the

number of the bin corresponding to the current normalised queue imbalance QIt, i.e.,

X := {buy++,buy+, balanced, sell+, sell++}

with dx = 5. For example, Xt = buy++ means that QIt ∈ [−1,−0.6). To summarise, the event

and state spaces are chosen in order to mirror the experiment of Section 3.

For this first application of state-dependent Hawkes processes, we will consider exponential

kernels of the form

ke′e(t, x) = αe′e(x) exp(−βe′e(x)t), t > 0, x ∈X , e, e′ ∈ E , (2)

where the parameters αe′e(x) and βe′e(x) are non-negative. Thereby, this model of the order flow

and the normalised queue imbalance is fully specified by 92 parameters, 50 of which are just the

transition probabilities φ. Still, this is perhaps the most simple state-dependent Hawkes process

that one can apply to LOBs.

5.2 Simulation and very preliminary estimation results

Figure 2 shows a simulated sample path for a state-dependent Hawkes process with de = 1 and

dx = 2.

We have recently also implemented an estimation procedure for state-dependent Hawkes pro-

cesses that is based on a maximum likelihood approach. In our preliminary experiment, we esti-

mated the model using the specification described in Section 5.1 on TWTR data. We illustrate the

estimation results by plotting the estimated state transition probabilities in φ in Figure 3 and the

truncated kernel norms ∫ t

0
|ke′e(s, x)|ds, t ≥ 0, (3)

for e, e′ ∈ E and x ∈ X in Figure 4. The truncated kernel norm as a function of t provides a

convenient visualisation of the magnitude of cross- and self-excitation effects and of the effective

time scales at which they occur. Remarkably, we observe that the cross- and self-excitation effects

indeed depend on the state variable, being more pronounced in the states buy++ and sell++ of

strong queue imbalance. We also observe an intriguing (mirror) symmetry between the excitation

effects with respect to the state variable.
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Figure 2: Simulation of a state-dependent Hawkes process with de = 1 and dx = 2. The upper

plot shows the evolution of the state process. The blue dots indicate the event times and the

lower plot represents the intensity of events. In state 2 the process exhibits exponentially decaying

self-excitation whereas no self-excitation occurs in state 1.
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