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We propose new methods for estimating the effective bid-ask spread and classifying trading 

intentions without access to quotes. Our state space approach utilizes both classical and 

Bayesian estimators. We extend Hasbrouck’s (2004) methodology by simultaneously 

allowing for both unbalanced and autocorrelated order flow, and a role for informational 

asymmetry. Our methods are easy to implement in practice and provide simple parametric 

alternatives to both the nonparametric bid-ask spread estimators proposed by Chen, Linton, 

Schneeberger, and Yi (2016) and the various trade classification algorithms discussed in 

Easley, Lopez de Prado and O’Hara (2016). For illustrative purposes, we apply our approach 

to an analysis of the trading patterns in the CME’s gold futures contract during a period 

incorporating uncertainty in financial markets as a result of the UK’s 2016 Brexit referendum.   
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1. INTRODUCTION 

 

A variety of approaches exist in the literature to compute accurate estimates of trading costs 

in financial markets in order to evaluate the impact of changing liquidity conditions on 

market performance. These liquidity proxies are typically computed based on quotes and 

employ various methods of assigning trading intentions, where a trade is classified as a buy 

(sell) if the active (i.e., liquidity consuming) side of the trade is a buyer (seller). Trade 

direction indicators based on such classifications are then used to measure the information 

content of trades (e.g., Hasbrouck (1991)) and to predict liquidity crashes (e.g., Easley, Lopez 

de Prado and O’Hara (2012)).  

Accurately estimating liquidity often proves to be an elusive task. A major obstacle relates to 

the stipulations placed on the data, since liquidity estimates often require accurate 

observations on both intra-daily bid-ask quotes and transaction prices. As a result, trade 

classification is never straightforward. Historically, the Lee and Ready (1991) algorithm (LR), 

based on both quote and price changes, is the most popular trade classification algorithm. 

However, recent literature suggests that with the advent of high frequency trading in markets, 

the accuracy of LR algorithm is potentially undermined. For example, Easley, Lopez de 

Prado and O’Hara (2016) argue that in electronic limit order markets, some with order 

cancellation rates of 98% or more, trade classification algorithms based on proximity to bid 

and ask quotes are severely compromised.  Holden and Jacobsen (2014) using the TAQ data, 

and Panayides, Shohfi, and Smith (2014) employing Euronext Paris data provide empirical 

support for these claims. Furthermore, as Holden, Jacobsen, and Subrahmanyam (2015) 

observe, the trading environment in many financial markets (such as futures and foreign 

exchange trading) lacks transparency, in the sense actual quotes are not directly observable in 

the intra-daily data record. Such information must somehow be discerned from the data. 

To overcome these data limitations requires developing an empirical methodology to extract 

a liquidity proxy and classify trading intentions without access to quotes. In this regard, 

Hasbrouck (2004) develops both a liquidity measure and trade classification algorithms in the 

absence of quotes using variations of the Roll (1984) model, proposing a new Bayesian 

approach by assuming an i.i.d. normal distribution for price innovations and latent 

independent trade indicators. Four representative CME futures contracts illustrate application 
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of the methodology. Subsequently, Van der Wel, Menkveld, and Sarkar (2009) develop the 

equivalent classical maximum likelihood estimation (MLE) methods by mapping the Roll 

model onto the regime switching state space model of Kim and Nelson (1999).  

Chen, Linton, Schneeberger, and Yi (2016) document several concerns with the Hasbrouck 

(2004) approach, including its assumptions of normal price innovations, balanced market 

order flow, the absence of serial correlation in the trade direction indicators, symmetric 

information, and constant spreads within the sample period (e.g., for a month). They argue 

these assumptions could lead to inaccurate estimates, at least during certain trading episodes. 

These reservations lead Chen, Linton, Schneeberger, and Yi (2016) to propose new 

nonparametric methods for estimating the bid-ask spread using only transaction prices. 

Initially, they relax  the normality assumption for prices innovations using an empirical 

characteristics function while maintaining the other assumptions of the Hasbrouck (2004) 

method. They find that their method produces nearly identical results to  the Roll (1984) and 

Hasbrouck (2004) methods during normal times but performs much better during periods of 

extreme turbulence. Specifically,  analyzing movements in the E-mini futures contract on 

the S&P 500 during the Flash Crash, they discover  that while their estimator is comparable 

to other methods during most of Flash Crash day, during its  peak period,  i.e., between 

2:45 pm and  2:49 pm ET, their spread estimates seem to provide better approximations. 

The paper also suggests how their proposed framework can accommodate  certain other 

extensions, such as: unbalanced order flow, serially dependent latent trade indicators, or 

adverse selection. However, there are several caveats to  their approach. First, no empirical 

analysis is undertaken involving these extensions, possibly reflecting the pervasive curse of 

dimensionality when applying  such nonparametric methods. Second, they develop each 

extension in isolation, without simultaneously relaxing the limiting features they identify in 

prior models. Finally, as their focus is on developing new methods to estimate the bid-ask 

spread, they do not provide a filtering algorithm to obtain the latent trade direction indicators. 

The central contribution of this paper is to develop easy-to-implement Bayesian and MLE 

estimators by extending both Hasbrouck (2004) and Van der Wel, Menkveld, and Sarkar 

(2009) to simultaneously accommodate several of the omitted features evaluated in Chen, 

Linton, Schneegerger, and Yi (2016), namely unbalanced and autocorrelated order flow and 

informational asymmetries. 
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The second major contribution of this paper is to provide trade direction classification 

mechanism without recourse to quotes. These classification systems utilise both Bayesian 

MCMC methods and classical filtering and smoothing algorithms for latent trade direction 

indicators. Recently, Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual 

framework for classifying trades, taking the perspective of a Bayesian statistician with priors 

on the unobservable information (buy or sell indicator), who is trying to extract trading 

intentions from observable trade data. They compare the strengths and weakness of several 

rules against an ideal Bayesian rule. We propose that certain familiar structural empirical 

market microstructure models, such as those we employ in this analysis, provide plausible 

approximations to their ideal Bayesian trade classification approach. In particular, these 

models employ a Markov switching process as the underlying process governing the 

dynamics of the unobservable buy-sell indicator, and treat the measurement equations as a 

plausible data generating process for the observed data relating to the indicator. Thus, we 

propose using estimates of the autocorrelated trade direction indicators, or the buy-sell 

indicator, as the model consistent, trade classification algorithm.  

For purposes of illustration, we apply our proposed approach to analyse trading behaviour in 

the gold futures contract trading on the CME over the two month period from May 2016 to 

June 2016, a timeframe incorporating the UK Brexit referendum. Specifically, we first 

estimate the effective spread, and subsequently decompose it into non-informational and 

informational components, computing daily correlation estimates of classified trades between 

our model-consistent trade classification rules and those we obtain from the Tick rule.  

The main findings are as follows. First, we obtain almost identical results from both classical 

MLE and Bayesian methods in all empirical models throughout the sample period. Second, 

we find estimates of daily trade direction indicators to be highly autocorrelated, leading to 

measured bid-ask spreads being larger, in an economically meaningful sense, than those 

obtained from alternative estimates employing independent trade direction indicators. Third, 

we find strong statistical support for asymmetric information models of the type proposed by 

Glosten and Harris (1988) in the presence of latent and autocorrelated trade direction 

indicators. The results provide evidence that the trade impact coefficients implied by the 

asymmetric information model, which reflect Kyle’s lambda, are important elements of 

liquidity. Fourth, when comparing the Roll model and Tick rule we find that the daily 
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correlation estimates of the classified trades are almost always above 0.99, indicating that the 

trade classification we obtain from the Roll model used in Hasbrouck (2004) and the Tick 

rule are essentially identical. Finally, our model consistent trade classification algorithm 

based on an extended GH model provides very similar results to the Tick rule during normal 

trading periods. However, in the presence of greater uncertainty when trading potentially 

generates a greater price impact (relating from to order flow imbalances), our trade 

classification indicator often diverges significantly from those we obtain using the Tick rule.  

As Easley, Lopez de Prado, and O’Hara (2016) maintain that Tick rule classifications appear 

particularly problematic in periods of high volatility exhibiting imbalances in order flow, we 

believe the approach to trade classification we propose shows some promise. Importantly, we 

do not claim that our trade classification system is superior to other rules. As Easley, Lopez 

de Prado, and O’Hara (2016) note, each trade classification rule may demonstrate both 

strengths and weakness, depending on the underlying market characteristics. Instead, we 

maintain that our approach may be best suited to classifying trades consistently in 

environments where a variant of state space models with regime switching yields a realistic 

approximation to the trading conditions. Moreover, our methods have the advantage of 

providing  easy-to-implement model consistent trade classification algorithms using both 

Bayesian and Classical estimation  methods. As such, we believe they may be a useful 

addition to the empirical microstructure tool kit. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the Roll (1984) 

structural market microstructure model and its subsequent generalizations leading to richer 

information-based models. Our focus here is on resolving estimation issues linked to the 

model parameters. Section 3 presents the classical and Bayesian estimation methods we 

propose. We outline data sources and present and discuss the main empirical results in 

section 4. Section 5 concludes the paper. 

 

 

 

 



6 

 

2. Empirical Structural Market Microstructure Models 

 

2.1.  The Roll model 

The Roll (1984) model is a parsimonious structural market microstructure model of the bid-

ask spread. The model decomposes the dynamics of the asset pricing process into two 

components, namely: (i) changes in the “efficient price” reflecting  the fundamental value of 

the security conditional on all publicly available information, and (ii) the costs associated 

with the trading process. This model is initially derived by assuming a competitive dealer 

market with fixed transaction costs and symmetric information, in which dealers set their bid-

ask quotes to recover their costs of making a market. However, in modern financial markets, 

high frequency trading firms typically act as market makers, by placing passive orders at 

various levels of the order book to earn tiny margins on large bets (Easley, Lopez de Prado, 

O’Hara (2012)). Indeed, Hendershott and Menkveld (2014) propose a more general definition 

of liquidity suppliers (market makers) in modern financial markets as agents who trade 

against price pressures. This interpretation of the market maker is consistent with the Roll 

model, where the market maker buys at a discount (negative price pressure) and sells at a 

premium (positive price pressure).  

The price dynamics in the Roll model can be represented as follows. Denote the efficient 

price by 
t

M  with log (
t

M ) = 
t

m  and the transaction price by
tP  with log (

t
P ) = p . The 

evolution of these two prices can be depicted as: 

t t t
p m cq  , 2

1
, ~ (0, )                                                      (1)

t t t t u
m m u u N 


         

where 
t

q  is a regime switching variable with { 1, 1}
t

q     and   

 1 1
Pr[ 1| 1] 0.5,Pr 1| 1 0.5

t t t t
q q q q

 
        . 

The Roll model contains two sources of randomness. It assumes the efficient price evolves as 

a random walk, with the i.i.d. innovation term ( t
u ) reflecting public information. The trade 

direction indicator t
q  is a random variable taking one of two values, +1 (-1) for a buyer 

(seller) initiated trade. Buyer and seller initiated trades are assumed to be equally probable, 

and in the Roll model t
q  is independent of t

u , so the direction of trade is independent of 
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changes in the efficient price. This effectively eliminates any influence of asymmetric 

information in the model, and it is one of the key assumptions we relax later in the paper. The 

term c is interpreted as the (log of) the effective execution cost paid by an active buyer or 

seller. The Roll specification implies: 

1 1
,                                                          (2)

t t t t t t t
p m cq m cq c q u

 
          

Roll proposes a moment estimator to compute estimates of bid-ask spreads based only on 

transaction prices. However, Roll’s estimate is feasible only if the first-order sample 

autocovariance is negative and as a result Roll’s reported spread estimator is often biased 

downward. To reduce this downward bias, Hasbrouck (2004) proposes a Bayesian method to 

estimate model parameters, assuming normal distributions characterise the innovation term 

(ut) and latent independent trade indicators. Van der Wel, Menkveld, and Sarkar (2009) 

develop alternative classical MLE methods for the Hasbrouck (2004) model , and Chen, 

Linton, Schneeberger, and Yi (2016) use nonparametric methods to relax the  normality 

assumption. . However, Chen, Linton, Schneeberger, and Yi (2016) also point out several 

remaining problems with these econometric approaches, such as the assumptions of balanced 

market order flow, symmetric information and the absence of serial correlation in the trade 

direction indicators. In the following section we proceed to relax these assumptions and 

provide an extension to the econometric methods developed by Hasbrouck (2004) and Van 

der Wel, Menkveld, and Sarkar (2009). 

 

2.2  Generalizations of the Roll model 

 

(i) Autocorrelation in order arrival and unbalanced market order flow 

Choi, Salandro and Shastri (1988) provide several reasons, such as information disclosure 

concerns leading to strategic trading behaviour (order fragmentation), for the existence of 

serially correlated trade arrival in financial markets, and extend the Roll model to incorporate 

autocorrelated trade direction indicators. In this paper we use the following model 

(henceforth the extended Roll model (MS)) to accommodate these stylised facts. 

 2

1
, , 0,                                                          (3)

t t t t t t t u
p m cq m m u u N 


     
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where the trade direction indicator, t
q  is a random variable taking values of 1 or -1, 

governed by the following Markov process: 

 1
Pr 1| 1

t t
q q P


    and   1

Pr 1| 1
t t

q q Q


      

 

 (ii) Adverse selection 

Easley, Lopez de Prado, and O’Hara (2012, p.1457) define adverse selection in modern limit 

order markets as the “natural tendency for passive orders to fill quickly when they should fill 

slowly and fill slowly (or not at all) when they should fill quickly”. They also explain that 

such a definition is consistent with market microstructure models proposed by Glosten and 

Milgrom (1985) and Kyle (1985). In these models, order flow is informative for subsequent 

price moves as it reflects the level of informed trading. These models provide insights into 

the behaviour of market participants in the presence of informational asymmetries and 

motivate further modifications to the original Roll model. These modifications allow the 

efficient price to be at least partially driven by the trade direction indicator variable, capturing 

a key feature of asymmetric information microstructure models, namely that trade 

characteristics may convey information correlated with a trader’s private information.  

To accommodate the above stylised features of trading, we propose a model extension which 

incorporates both a term capturing latent and autocorrelated trade direction indicators and an 

additional one reflecting potential adverse selection costs.. In this model, only the unexpected 

component of the trade direction indicator series produces any effect on the efficient price. 

We represent this model (henceforth the extended GH model (GH)) as follows: 

    2

1 0 1 1
, ( ) | , ~ 0,           (4)

t t t t t t t t t t t u
p m cq m m V q E q u u N   

 
         

where 
0

  and 
1
  represent that fixed and variable permanent price impact costs, 

respectively, and 
1t




 denotes the available information set, up to time t-1. The trade 

direction indicator,
t

q , follows the Markov process in (3). Following a straightforward 

reformulation, we can express this process as the autoregressive (AR) process. 

     1 1 1
1 ,  E | 0                                          (5)

t t t t t
q P Q P Q q q 

  
        



9 

 

This formulation of the AR(1) process for the trade direction indicators is used previously in 

the literature on several occasions (e.g., Madhavan, Richardson, and Roomans (1997)). In 

summary, in our proposed model,  1
|

t t
E q 


 can be expressed as    1 

t
P Q P Q q    , 

and in its final form, the empirical model we estimate may be depicted as follows: 

 

    2

1 0 1 1

,

, ~ 0,                                  (6) 

t t t

t t t t t t t u

p m cq

m m V q q u u N    
 

 

     
  

where      1 1
1, 1 ,Pr 1| 1 ,  Pr 1| 1  

t t t t t
q q q P q q Q

 
          and = ,   = 1P Q P Q    .    

The model has a reduced form representation, given by: 

    2

0 1 1
, ~ 0,                              (6')

t t t t t t t u
p c q V q q u u N    


         

In this framework, the market-maker requires compensation not only for the costs of 

processing an order ( c ) as in the Roll model, but also for the adverse selection risk of 

supplying liquidity to an informed trader, where 
1 t

V  captures the adverse selection 

component of a trade’s price impact. The literature has a variety of interpretations of the 

coefficient 
1
  from a measure of Kyle’s lambda, the slope of the price impact curve arising 

from asymmetric information effects,  to the (inverse) market depth parameter (Brennan and 

Subrahmanyam (1996)). Prior to proceeding, we note that Chen, Linton, Schneeberger, and 

Yi (2016) provide several theoretical extensions of their model, selectively incorporating 

unbalanced order flow, serially dependent latent trade indicators, and adverse selection. 

However, in contrast to the present model formulation, no attempt is made to simultaneously 

accommodate these features, and they do not conduct any extensive empirical analyses.   

 

3. Estimation Methods for Structural Market Microstructure Models  

 

Van der Wel, Menkveld, and Sarkar (2009) show that the Roll model used in Hasbrouck 

(2004) can be interpreted as a state space model. For example, one natural interpretation of 

equation (3) is a state space system with measurement and transition equations as follows:  

Measurement equation: , { 1, 1}
t t t t

p m cq q       
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Transition equation: 2

1
, ~ (0, )

t t t t u
m m u u N 


            

Employing the same reasoning, we can reformulate the extended GH model with asymmetric 

information (equation (6)) as a state space model, with associated equations given by:  

Measurement equation:
t t t

p m cq   

Transition equation:      1 0 1 1
( 1)   

t t t t t t
m m V q P Q P Q q u 

 
          

Recently, many papers adopt similar state space formulations to estimate market 

microstructure models. For example, Menkveld, Koopman, and Lucas (2007) model a high-

frequency price series as the sum of efficient price series, reflecting permanent price effects 

as above, and stationary series capturing transitory price effects. A similar framework also is 

subsequently adopted in Menkveld (2013), Brogaard, Hendershott, and Riordan (2014), and 

Hendershott and Menkveld (2014). 

 

3.1.   Bayesian Markov chain Monte Carlo (MCMC) methods   

Hasbrouck (2004) develops a Bayesian Gibbs sampling approach to estimating the Roll 

model with normality assumption governing price innovations (equation (3)), in which the 

parameters ( c  and 
u

 ) are considered to be random variables (reflecting the statistician’s 

uncertainty). He motivates the technique’s adoption with reference to its ability to 

accommodate important economically meaningful latent data such as trade direction 

indicators (
1 2

{ , , , }
T

q q q q ), which are “suppressed in the GMM estimation” (Hasbrouck 

2004, p.311). Inference is based upon a series of transaction prices through time: 

 1 2
, , ,

T
p p p p , with knowledge of 

1 2
{ , , , }

T
q q q q  and p  sufficient to determine the 

efficient price,  1 2
, , ,

T
m m m m . The respective joint distribution function ( , , | )

u
F c q p ,  

summarizes the full posterior over parameters and latent data. To estimate the present model, 

we use Hasbrouck’s MatLab codes available in his website 

(http://people.stern.nyu.edu/jhasbrou/).  

In this paper, we extend the Roll model of Hasbrouck (2004) by adding unbalanced order 

flow and autocorrelated trade direction indicators. Our extension (equation (4)) has two extra 
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transition probability parameters ( P  and Q ) and ( , , , , | )
u

F c q P Q p  summarizes the full 

posterior over parameters and latent data. While there is no tractable closed-form 

representation for this joint distribution function, ( , , , , | )
u

F c q P Q p , the full conditional 

(posterior) distributions for the parameters are often tractable. In estimating both equations (3) 

and (4), for example, conditional on q , the equation 
t t t

p c q u     can be treated as a 

simple normal linear regression specification in which c  and 
u

  are the regression 

coefficient and residual standard deviation, respectively. It is also possible to express the 

conditional distribution of q  based on the model parameters and data. The major differences 

between Hasbrouck’s (2004) Gibbs sampling algorithm and the Gibbs sampling method we 

adopt to estimate the model in equation (4) arises in relation to the simulation of
t

q .
1
  

The power of Bayesian analysis using the Gibbs sampler is that it requires only the 

conditional distributions to numerically recover the joint distribution function. The Gibbs 

sampler is an iterative procedure of drawing each parameter, or latent trade direction 

indicator, sequentially. Initially, the parameters and latent trade direction indicators are set 

equal to some arbitrary values  0 (0) (0) (0) (0)
, , , , }{

u
c q P Q , although efficient estimation typically 

requires  specifying reasonable starting values, such as GMM estimates of ( c  and 
u

 ), 

whenever they are available. In the subsequent iterations, all parameters and latent trade 

direction indicators except for the component being drawn are taken as given, and each 

component is updated sequentially. For example, the second iteration starts with a draw of  

(2)c  conditional on  (1) (1) (1) (1)
, , ,

u
q P Q . By repeating this procedure we generate a sequence 

of draws of unknowns for 1, ,j n . The Gibbs principle demonstrates that the limiting 

distribution of the n
th

 draw after burn-in samples (as n  ) is ( , , , , | )
u

F c q P Q p , the 

desired posterior, and the limiting draw for any parameter is distributed as the corresponding 

marginal posterior. For example, the limiting density of ( )nc  is ( | )f c p . The number of 

simulation must be sufficiently large so that dependence on the initial conditions becomes 

insignificantly small.  

                                           
1
 We explain the details of the Gibbs sampling algorithms for these two methods and the differences between 

them in Appendices A1 and A2. 
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In any MCMC estimation, it is crucial to ensure convergence of the chain in order to 

undertake correct statistical inference. In this paper, as a diagnostic to check for the 

convergence of our MCMC algorithm, we compute and report the effective sample size based 

on the inefficiency factors and the p-value of Geweke’s (1992) convergence diagnostics test 

for the model parameters.
2
 Finally, based on the simulation outputs, we estimate population 

parameters of the posterior using standard time series analysis techniques, noting that the 

sample mean of ( )j
c  is a consistent estimate of  |E c p  and the sample variance is a 

consistent estimate of  |Var c p . We can also interpret trade direction indicators we estimate 

as outputs from a model-consistent trade classification algorithm. 

To estimate the most complex model which incorporates adverse selection (equation (6)), we 

need to develop a new Bayesian Algorithm to simulate iteratively 

0 1
( , , , , , , | )

u
F c P Q q p   .This is for the following reasons. First, the innovation in 

autocorrelated 
t

q  impacts the efficient price. Second, this model involves two extra 

parameters capturing the price impact of trades (
0
 ,

1
 ), while the two transition probabilities 

( P  and Q ) also appear in the regression specification. The implication is that we cannot use 

the customary Gibbs sampling estimation algorithm to estimate these parameters. In response, 

we develop a tailored random walk Metropolis Hastings algorithm to undertake this task.
3
  

 

3.2   Classical MLE methods  

Van der Wel, Menkveld, and Sarkar (2009) develop alternative MLE methods for 

Hasbrouck’s (2004) Roll model formulation (equation (3)). In this paper, we extend their 

approach in two ways. First we incorporate order flow imbalances and autocorrelated trade 

direction indicators (equation (4)), and second, we include an adverse selection term 

(equation (6)). We can interpret these models as state space models with regime switching, as 

explained in the previous section. In ordinary state space models with normally distributed 

                                           
2
 We provide more details in Appendix B. 

3
 We present the details in Appendix A3.  
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shocks, a Kalman filtering technique is employed to construct the likelihood function 

utilising prediction error decomposition. However, several models used in this paper 

incorporate a discrete regime switching variable ( tq ). In such cases, Kim and Nelson (1999) 

demonstrate we can estimate the model with a composite filter, which is a combination of a 

Kalman and a Hamilton filter. Based on this nonlinear filter we obtain an approximate 

likelihood function, and utilise MLE methods for estimation.
4
 One critical issue with this 

approach is that it is difficult to precisely quantify the bias caused by using this approximate 

filter. Fortunately, we can avoid undertaking the approximation by expressing several models 

in their reduced form. For example, as previously shown (equation (6’)), the extended GH 

model with asymmetric information can be written as: 

     0 1 1
( 1)     

t t t t t t
p c q V q P Q P Q q u 


             

On this basis, we can interpret this version of the extended GH model as a standard regime 

switching model and use a Hamilton filter to construct likelihood function values.
5
  

 3.3   Discussion of the estimated trade direction indicator, tq   

Our core proposal is that the  autocorrelated trade direction indicators, 
t

q , we estimate from 

the previous models can be considered to be  model consistent trade classification 

algorithms. Specifically, we can directly recover the trade direction indicator, 
t

q , from the 

outputs of Bayesian estimation, while for classical MLE methods, we can employ filtering 

and smoothing algorithms to compute the probability of tq  for each trade. In other words, 

once we estimate the empirical market microstructure models we present in this paper, we 

can determine whether each trade is initiated by a buyer ( 1
t

q  ) or a seller ( 1
t

q   ).  

We note earlier that the advent of high frequency trading platforms calls into question the 

accuracy of traditional trade classification systems such as the Lee and Ready (1991) 

algorithm (LR In lieu, Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual 

                                           
4
 Chapter 5 of Kim and Nelson (1999) provides more details. 

5
 We provide precise details of how we implement MLE methods for estimation in Appendix C.  
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framework for classifying trades. They adopt the perspective of Bayesian statisticians with 

priors on the unobservable information (here 
t

q ), who are trying to extract trading intentions 

from observable trading data. Ideally, we would like to specify the data generating processes 

for both the underlying unobservable variables and subsequently for the observed data, 

conditional on the realizations of the underlying unobservable data. Formulating such 

specifications may prove a daunting task, and computing closed-form solutions for 

conditional probabilities is likely to be complex, even when such solutions exist. They claim 

that every trade classification algorithm can be regarded as an approximation to this Bayesian 

approach, and that their bulk volume classification (BVC) methodology is conceptually 

closer to this ideal than traditional approaches such as the Tick rule, since BVC assigns a  

probability to a given trade being either a buy or sell.  

We believe that the empirical market microstructure models we outline in this paper provide 

another plausible approximation to the ideal Bayesian trade classification approach. For 

example, in relation to equations (3) and (6), we can interpret the relevant transition equations 

as the data generating process for the underlying unobservable variables, 
t

q , and the 

measurement equations as the plausible data generating process for the observed data relating 

to tq . While the extent to which these empirical market microstructure models capture 

market reality remains unclear, much research employs these models as the empirical basis 

for their investigations in this area.
6
  

Note, we do not claim that our trade classification system is generally superior to other 

existing rules such as the Tick and BVC rules. As Easley, Lopez de Prado and O’Hara (2016) 

maintain, each trade classification rule may have advantages which are only manifest in 

differing trading environments: with less noisy data the Tick rule may prove to be generally 

superior to the BVC, while with noisy data the BVC may prevail. We believe that our 

approach is better suited to situations where a variant of state space models incorporating 

regime switches better approximates the dynamics of the trading environment. In such 

situations, our proposed methods provide model consistent trade classification algorithms 

using both Bayesian and Classical methods which are easy to implement in practice.  

                                           

6 Hasbrouck (2007) provides a comparative summary of relevant literature. 



15 

 

4. EMPIRICAL ANALYSIS 

 

4.1   Data decription 

We conduct the empirical implementation of our proposed trade classification methods using 

data from gold futures trading on the Chicago Mercantile Exchange (CME) during May and 

June 2016. We select this particular asset and time period for the following reasons. First, 

gold futures (ticker symbol GC), are among the most widely traded of all futures contracts 

worldwide, and gold is often considered a “safe haven” asset at times of global economic 

uncertainty, such as the period surrounding the UK’s Brexit referendum on June 23, 2016 

which we deliberately include in our sample for precisely this reason. Second, as Easley, 

Lopez de Prado, and O’Hara (2016) explain, the gold futures market is less fragmented than 

its spot market. Each contract trades on a single market, and trading data is less noisy, since 

all trades are mandated to occur at either the best bid or the best offer and trades between the 

spread are not permitted. Further, while New York futures volume is less than a tenth of the 

London spot volume, the futures contract plays the key role in the process of price discovery, 

leading the spot market in incorporating new, gold price-relevant information into asset 

values, (Hauptifleisch, Putnin, and Lucey (2016)).  

Specifically, we select our sample data from the gold futures contract trading on CME’s 

Globex electronic trading platform during the period from May 1, 2016 to June 30, 2016. 

Electronic trading on CME Globex is available virtually 24 hours a day from Sunday 6:00 

p.m. through to Friday 5:00 p.m. Eastern Standard Time (EST)
7
, with only a 60-minute break 

each day beginning at 5:00 p.m. EST
8
. For the empirical analysis, with reference to trading 

volume, we identify the most actively traded gold futures contract on any given day to 

construct a continuous series. The most active gold futures contract from May 1 to May 26 is 

the June contract deliverable on any business day in June 2016 (GCM6). On May 27 volume 

shifts to another contract deliverable during August 2016 (GCQ6). The transaction price 

series and trading volume data, time-stamped to the microsecond, are sourced from the 

                                           
7
 Thus, the trading activity on any given date starts at 6:00 p.m. and finishes at 5:00 p.m. EST the following day. 

For example, on May 1 trading starts at 6:00 p.m. on May 1 and finishes at 5:00 p.m. on May 2. 

8
 There is one exception during our sample period: trading on Globex halted at 1:00 p.m. and reopened at 6:00 

p.m. on Monday, May 30, 2016 because of the Memorial Day holiday trading schedule.  
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Thomson Reuter Tick History (TRTH) database. When several orders are time-stamped to 

the same microsecond they are aggregated to obtain volume-weighted prices and total 

volumes. Finally, following Marshall, Nguyen, and Visaltanachoti (2012), we winsorize all 

return variables at the 0.5% and 99.5% levels so data errors are not driving the results.
9
 

Table 1 describes relevant features of the gold futures contracts. Each gold futures contract 

represents 100 troy ounces and is quoted in US dollars per troy ounce. Minimum tick size on 

the contract is 10 cents per troy ounce. As a proportion of the contract price, average tick size 

is 0.008% and the standard deviation of the price change is approximately 7 ticks after 

winsorization at the 0.5% and 99.5% levels. The contracts evidence a fast pace of trading 

activity, with an average 1.6 seconds between trades. Figure 1 illustrates the daily series of 

average prices and trading volumes during the sample period.  

4.2  The Roll model  

As our benchmark, we estimate the Roll model each day during our sample period, using 

both Hasbrouck’s (2004) Bayesian, and Van der Wel, Menkveld and Sarkar’s (2009) MLE 

models. To clarify notation and facilitate ensuing discussions, we re-state the Roll model as: 

t t tp m cq  , 2

1 , ~ (0, )t t t t um m u u N          

where 
t

q  is a regime switching variable with { 1, 1}
t

q     and   

 1 1
Pr[ 1| 1] 0.5,Pr 1| 1 0.5

t t t t
q q q q

 
         . 

All model parameters are assumed to be constant during any given day, but can change across 

days. To guarantee accurate statistical inference, we implement the Bayesian estimations with 

a 100,000 iteration burn-in period and 250,000 total iterations, increasing these numbers by 

10,000 until we simultaneously satisfy both the convergence criteria for the inefficiency 

factors and Geweke’s (1992)’s diagnostic tests for all parameters
10

.  

                                           
9
 Marshall, Nguyen, and Visaltanachoti (2012) clean the data in two steps. They first compute the 5%-trimmed 

sample mean and standard deviation for each high-frequency liquidity measure, meaning the top and bottom.5% 

observations are excluded from the trimmed mean and standard deviation calculations. Then they remove 

observations that are outside the trimmed mean by +/- three standard deviations. 

10
 Refer to Appendix B for more details on the inefficiency factors and the Geweke (1992) diagnostic tests. 

Table A.1 (the column ‘Roll (Bayesian)) indicates that convergence criteria are achieved for the Roll model, 

since the effective size exceeds 1,000 and Geweke’s (1992) p-values are greater than 0.05 for all parameters. 
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[Table 2 in here] 

Table 2 reveals that we obtain benchmark MLE estimates very close to the Bayesian 

estimates, validating the use of MLE methods in estimating the  model. Computing the daily  

differentials between the estimates of c and u  we obtain from the two  methods, the 

average value is zeros and the maximum of the absolute differential values is minuscule (0.1 

x 10
-7

)
11

, confirming  the methods provide almost identical estimates. The averages of the 

percentage effective half spread, c , and the standard deviations, u , are 0.26 x 10
-4

 and 

0.43 x 10
-4 

, respectively. Noteworthy is the fact that on the day of the UK’s Brexit 

referendum(June 23), the estimate of c  is 0.33 x 10
-4

 , one of the largest values in the 

sample, while that for the standard deviation, u , is 0.96 x 10
-4 

, an increase of close to 90% 

when compared to its value the previous day.  

 

4.3  The Roll model with autocorrelated tq : a simulation exercise 

We now proceed to introduce autocorrelated trade direction indicators into the analysis,  by 

re-stating  the extended Roll model as: 

t t tp m cq  , 2

1 , ~ (0, )t t t t um m u u N          

where tq  is a regime switching variable with { 1, 1}tq    , and to capture autocorrelation in 

the trade direction indicators we specify:   

 1 1Pr[ 1| 1] ,Pr 1| 1t t t tq q P q q Q           

Simulations are undertaken both to validate the computational accuracy of our estimations 

and to compare the results we obtain using alternative approaches to estimation. To establish 

a sound basis for a plausible data generating process in the simulations, we generate the data 

employing the averages of the parameter estimates we report in Table 4, on the assumption 

that the trade direction indicator is autocorrelated and has persistent regimes. To minimize 

simulation errors, for each model we generate the data 50 times, and estimate the parameters 

and trade direction indicators for each data sample, enabling us to compute simulated sample 

averages. We then compare the estimation results from the MLE approach with those from 

our proposed Bayesian Gibbs sampling methods. 

                                           
11

 Table A.2 provides further details..  
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[Table 3 in here] 

Table 3 presents the results from these simulations. The estimates of the standard deviation of 

changes in the (log) efficient price and the (log) half-spread are σu and c , respectively. 

Finally, P and Q are the transition probabilities of the latent regime switching process for the 

trade direction indicators. The results we label “Bayesian" derive from the Bayesian Gibbs 

sampler in which trade direction indicators are conditionally simulated and autocorrelated. 

The results are based on 12,000 sweeps of the sampler, with the first 2,000 discarded.  We 

obtain the alternative estimates MLE estimates applying classical MLE methods to the 

regime switching models. Once again, we conclude that both methods provide estimates close 

to the true parameter values we use in the simulations.   

 

4.4   The Roll model with autocorrelated qt: gold futures contract estimation 

We believe the outcome of the simulation exercises in section 4.3 enable us to confirm  the 

integrity of our chosen estimation methodology, so , using the CME gold futures contract 

data we now proceed to generate daily estimates of the Roll model incorporating 

autocorrelated trade direction indicators. As before, we assume constant parameters for this 

model during any given day, although parameters can vary across days. The Bayesian 

estimations follow an identical approach to simulation as described in section 4.2.
12

 We 

compare results from the MLE method based on Regime Switching (RS) and our proposed 

extended MCMC method. 

[Table 4 in here] 

Table 4 presents our estimation results, and once again reveals that the MLE and Bayesian 

estimates are very similar. First, the average value of the differentials between the  daily 

estimates of the coefficient values of c and u  are close to zero, and the maximum of the 

absolute differential values are minuscule (0.2 x 10
-7

). We also note very small differences in 

the sets of transition probability estimates
13

. Second, the values of both c  and u  remain 

                                           
12

 Refer to Appendix B for more details on the inefficiency factors and the Geweke (1992) diagnostic tests. 

Table A.1 (the column ‘Roll (Bayesian)) indicates that convergence criteria are achieved for the Roll model, 

since the effective size exceeds 1,000 and Geweke’s (1992) p-values are greater than 0.05 for all parameters. 

13
 Table A.2 provides more details.  
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significant across days, and the sample averages of the percentage effective half spread c , 

and of standard deviations u , are 0.43 x 10
-4

 and 0.35 x 10
-4 

, respectively. The transition 

probabilities for the trade direction indicators are autocorrelated with coefficient values close 

to 0.7. These empirical results indicate the presence of moderately persistent trade direction 

indicator regimes. It is interesting to note that on the Brexit referendum day (23 June 2016), 

the estimate for c  is a1.12 x 10
-4

 , which represents the largest single value in the sample, 

standard deviation estimate is 0.78 x 10
-4 

, reflecting an increase of close to 90% in 

comparison to the previous day.  Finally, the persistence measure for the regime ( 1P Q  ) 

is 0.55, which is much larger than the average estimate of 0.4.  

Attention is drawn to another feature of the Brexit referendum day estimates. Both the MLE 

and Bayesian methods generate substantially larger c estimates using the formulation of the 

Roll model incorporating autocorrelated tq  in comparison to those we derive from our 

benchmark Roll model (Table 2). One potential explanation helping to justify the relative size 

of these c coefficient estimates (with and without autocorrelated tq )  is apparent following 

consideration of the nature of the GMM estimates we obtain following Roll (1984). 

Specifically, consider the following moment condition we derive from the autoregressive 

form of the regime switching process:    1 1
1

t t t
q P Q P Q q 

 
      .               

The GMM estimates of c in this model are given by:  

           2 22 2

1 1 1 1 1
cov , 1 1

t t t t t t t t
p p E c q u c q u c E q q c P Q P Q

   
                

 

implying:  

   
1

2 2
1 1

c
P Q P Q




    
 

As the Roll model assumes 0.5P Q  , the resulting GMM estimate of c is: 

1 1
cov( , )

t t
c r p p


      . 

The critical point to note is that once we account for autocorrelation in the trade direction 

indicators, the transition probabilities for both buy and sell orders enter into the determination 

of the value of c . From the formula, the fact we experience much more persistent regimes on 
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the Brexit referendum day justifies the substantially larger (log) half-spread estimates we 

obtain for c. 

  

4.5 The extended Glosten and Harris model with autocorrelated tq : a simulation 

exercise 

We are now in a position to apply our proposed estimation procedures in an asymmetric 

information setting which allows for informed trading activity to have a permanent impact on 

the efficient price. Our model incorporates an adverse selection cost component of the 

effective bid-ask spread which in the present specification is a function of the square root of 

the signed trade volume 
t t

q V
14

. This reflects existing evidence that larger orders are more 

likely to contain information which has a permanent effect on the efficient price. Moreover, 

our estimates of the asymmetric information model assume latent and autocorrelated trade 

direction indicators, so only innovations in qt impact the efficient price. This differs from the 

Hasbrouck (2004) formulation which incorporates independent qt , implying the entire signed 

order flow impacts the efficient price. 

Once again, to facilitate explanations and to clarify notation, we re-state this model: 

t t t
p m cq  ,    2

1 0 1 1
, ~ (0, )

t t t t t t t t u
m m V q E q u u N  

 
            

where 
t

q  is a regime switching variable with { 1, 1}
t

q     and   

 1 1
Pr[ 1| 1] ,Pr 1| 1

t t t t
q q P q q Q

 
         

We validate the computational integrity of our estimation algorithms, and undertake a 

comparison of the results from our proposed estimation method using simulations. As before, 

to establish a sound basis for a plausible data generating process in the simulations, we 

generate the data using the sample period averages of the parameter estimates we report in 

Table 6 assuming autocorrelation and regime persistence in the trade direction indicators. 

And we use the trading volume data on June 29 in simulation. To minimize simulation errors, 

we generate the data 50 times, and estimate the model parameters and trade direction 

indicators for data sample we generate and compute the simulated sample averages. We then 

                                           
14

  We incorporate the square root of trading volume following Hasbrouck (2004). The estimated relation 

between order size and price impact is then concave.  
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compare the estimation results obtained from MLE methods with the Bayesian MCMC 

methods we propose. 

[Table 5 in here] 

Table 5 presents the results from this simulation Here 
u

  is the estimate of the standard 

deviation of changes in the (log) efficient price and c  is that of the order processing 

component of the (log) half spread; 
0
  and 

1
  are the fixed and variable permanent price 

impact costs, respectively. Finally, P  and Q  are the transition probabilities of the latent 

regime switching process for trade direction indicators. The “Bayesian" results are those we 

obtain from the Bayesian Tailored Random-walk Metropolis-Hastings Gibbs sampler in 

which the trade direction indicators are both conditionally simulated and autocorrelated. We 

generate results using 12,000 sweeps of the sampler, discarding the first 2,000. We obtain the  

alternative “MLE” estimates using classical MLE method to estimate the regime switching 

models. Once more we find that both methods provide accurate estimates of the true 

parameter values we use in the simulations.   

 

4.6 The extended Glosten and Harris model with autocorrelated qt: gold futures 

contract estimation 

Following confirmation of the integrity of the selected estimation methodology on the basis 

of the simulations in section 4.5, we proceed to obtain daily estimates of the GH model with 

autocorrelated trade direction indicators using the gold futures data. As before, the 

assumption is that the parameters of this model are constant during the day may change 

across days. The Bayesian estimations follow an identical approach to simulation as 

described in section 4.2
15

. We compare the following two methods: the MLE incorporating 

regime switching (RS) and our extended MCMC approach. 

Prior to a detailed discussion of the empirical results, we report the results of a model 

comparison among three models: the Roll model, the extended Roll model, and the extended 

GH model. Specifically, we compute: 

                                           
15

 Table A.1 (the column ‘GH (Bayesian)) indicates that we achieve the convergence criteria for the GH model 

since the effective size is greater than 1,000 and Geweke’s (1992) p-values exceed 0.05 for all parameters  
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
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where ˆ
R

L  and ˆ
U

L  are the likelihood values under the restricted and unrestricted model, so 

in comparing the Roll model with the extended GH model, ˆ
R

L  and ˆ
U

L  are the likelihood 

values under the Roll and the extended GH model, respectively. As we impose parameter 

restrictions on 
0

, ,P Q  , and 
1
 in the extended GH model to obtain the Roll model, the test 

statistics follows a chi-square distribution with 4 degrees of freedom. We consistently reject 

the Roll model and the extended Roll model in favour of the extended GH model for each 

day in our sample
16

. 

[Table 6 in here] 

In table 6 we present the estimation results from the extended GH model, which again reveal 

that the MLE estimates and Bayesian estimates align closely in magnitude. The difference 

between the daily estimates of c  and 
u

  we obtain from both methods exhibits an average 

value close to zero, and the maximum of the absolute differential value is also minuscule 

(0.12 x 10
-4

). Other parameter values also exhibit very small differences,
17

 leading us to 

conclude that both methods provide the very similar estimates. Moreover, the results reveal a 

consistent pattern in relation to those we obtain from the Roll and extended Roll models. The 

estimates of the effective trading cost parameter, c , with a value of 0.29 x 10
-4 

are significant 

and comparable to the corresponding estimates from the Roll model, albeit somewhat lower 

than those from the extended Roll model. The daily estimates of the standard deviation of 

changes in the (log) efficient price,
u

 , are also significant, with an average value of 0.33 x 

10
-4

. The transition probability estimates again closely approximate those from the extended 

Roll model, again indicating the presence of moderately persistent regimes for the trade 

direction indicator.  

                                           

16 Table A.3 reports detailed results on the model comparison among these three models.  

17
 Table A.2 provides more details on this.  
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Our attention is drawn to two particularly noteworthy features of the parameter estimates. 

First, on Brexit referendum day 23 June, the relevant estimate for c  is 0.84 x 10
-4

 , which is 

the largest value in the sample, and that for 
u

 is 0.78 x 10
-4 

, an increase of more than 250% 

in comparison to the previous day’s. Moreover, the regime persistence coefficient, ( 1P Q  ) 

is 0.5, which is significantly in excess of the average estimate, 0.4. Second, although the daily   

0
  estimates are statistically significant in only around 50% of the time, those for the slope 

of the price impact function arising from the effect of asymmetric information, the Kyle’s 

lambda (
1
 ) parameter are positive and always statistically significant.

18
 The empirical 

results corroborate the implications that private, fundamental-relevant information is 

conveyed through trading decisions and the adverse selection costs per transaction are 

increasing in trade size. We further discuss the economic significance of these results in 

terms of the decomposition of the effective spread in section 4.8. 

[Table 7 in here] 

Prior to further analysis of the trade classification indicator, we pause to undertake some 

additional analysis, of the extended GH model. We motivate this on the basis of the extreme 

values we observe for the transition probability estimates on two dates, namely 0.9789 and 

0.9278 on 19
th

 June and 23
rd

 June, respectively. In comparison to the remaining (sell-side) 

transition probability estimates we obtain, these parameter values appear as potentially 

implausible outliers. We conjecture that this may relate to our assumption that the model 

parameters remain constant throughout the day. As the above dates lie in very close proximity 

to the Brexit referendum, it may be implausible to impose such a restrictive assumption on 

the parameters. To mitigate any concerns over model misspecification, we re-estimate the 

extended GH model on the 19
th

 and 23
rd

 June using MLE methods after dividing each of 

these days into 10,000 trade intervals, with the resulting estimates given in Table 7. Overall, 

we find that the parameter estimates exhibit significant intraday variation on these two dates, 

with (sell-side) transition probabilities ranging from 0.6812 to 0.9756 on 19
th

 June and 0.668 

to 0.9656 on 23
rd

 June, respectively. As such, we conclude that the initial estimates we 

provide in Table 6 may indeed reflect model misspecification, arising from the assumption of 

                                           
18

 For an illustration see Figure 2. 
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constant daily parameter values.  

Specifically, panel A of Table 7 reports the empirical results for 19
th

 June. A significant 

change in market sentiment occurs early in the trading session on 19
th

 June 19, after the 

publication of an influential survey favoring the outcome of the U.K. voting to remain in 

the EU. A reduction in market anxiety over a Brexit initiates an initial sell-off in safe haven 

assets, including gold in the early trades, and this trading behavior appears to be manifest in 

the estimates of two parameters in particular. First, in a much higher value for the transaction 

cost parameter ( c  = 6.469), and second in that capturing the persistence of the transition 

probability of sell orders ( Q  = 0.995) relative to that of buy orders ( P  = 0.778) in the first 

10,000 trades. After the first 10,000 trades, overall trading activity within subsequent 10,000 

trade buckets appears relatively balanced, with similar P  and Q  parameter estimates and a 

much smaller c , albeit the c estimate for trades in the 30,000 to 40,000 interval is also higher. 

We conclude that the extreme differences in the transition probabilities reported in Table 6 

seem to mainly reflect the impact of the first 10,000 trades.  

Panel B of Table 7 reports the empirical results for 23
rd

 June, the day of the Brexit 

referendum. The time varying nature of the transition probability estimates over each 10,000 

trade interval throughout this day clearly reveals the uncertainty relating to the outcome of 

the voting process. Initially, selling pressure in gold futures appears much higher with the 

first half of the trading day generating a very high persistence in the transition probability of 

sell orders. In contrast, gold futures buying pressure appears to be manifest during the second 

half of the trading day with the transition probability of buy orders evidencing more 

persistence. This structural break in the transition probability, combined with the fact that 

gold prices increase in uncertain times, captures the dynamics of the information flow 

relating to the Brexit vote result. We attribute the extreme differences in the two transition 

probabilities we report in table 6 to this structural break in the trading process.  

To mitigate the effect of the early trading distortions on parameter estimates evident in panel 

A and the structural break in panel B of table 7, we decide to use the relatively moderate 

average estimates in the analyses of trade classification and the economic decomposition of 

the bid-ask spread we conduct in the next section..  
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4.7 Classification of trades for buy-sell indicator: the extended GH model  

Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual framework for classifying 

trades. They adopt the perspective of a Bayesian statistician who has priors regarding the 

status of the unobservable information (e.g.,
t

q ), and is trying to extract investors underlying 

trading intentions from observable trade data. Our claim is that the empirical market 

microstructure models we use in this paper can provide plausible approximations to the 

Bayesian trade classification approach which constitutes their ideal. In particular, we 

maintain that we may interpret the Markov switching process in the Roll or GH models as the 

underlying process governing the evolution of the unobservable variables 
t

q , and the 

measurement equations as a plausible data generating process for the observed data relating  

to 
t

q . Thus, we can use estimates of the autocorrelated trade direction indicators, 
t

q , as our 

model-consistent trade classification algorithm.  

In order to provide appropriate benchmarks with which to compare our results on the 

classified trades, we proceed to classify trades using the standard Tick rule
19

 and generate 

daily correlation estimates of classified trades using the Tick rule and our model consistent 

rules. Specifically, on the basis of the Roll and extended GH models, using Kim (1994)’s 

smoothing methods and MLE parameter estimates, we calculate whether each trade is 

initiated by buyer ( 1
t

q  ) or seller ( 1
t

q   ).
20

  

[Table 8 in here] 

Table 8 presents the daily correlation estimates of trade classifications using the Tick rule, the 

Roll model, and the extended GH model. Two features are noteworthy. First, the daily 

correlation between the Tick rule and the Roll model (labelled Roll) estimates are almost 

always above 0.99, indicating that the Roll model essentially classifies trades on the basis of 

up- or down-ticks, as in the Tick rule. Second, while  the daily correlation of the Tick rule 

                                           
19

 The tick rule classification uses movements in trade prices to classify a trade as either a buy or a sell. 

Specifically, if the transaction is above (below) the previous price, then it is a buy (sell). If there is no price 

change, but the previous tick change was up (down), then the trade is classified as a buy (sell). 

20
 As both Bayesian and MLE methods produce almost identical results, we report only the latter. The Bayesian 

results are available on request. Appendix D  discuses  Kim’s (1994) smoothing algorithms. 
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and extended GH model (labelled GH) estimates are also high on the majority of days, they 

are significantly lower on both the 19
th

 June and 23
rd

 June, namely 0.61 and 0.45, 

respectively.   

We conjecture a potential explanation for the second finding is as follows. Easley, Lopez de 

Prado, O’Hara (2016) maintain that when the underlying data is less noisy, Tick rule 

classifications can be superior to other rules. However, they also show  that in situations 

where underlying data noise is substantial or order flow is imbalanced, such as when private 

information motivates trading, trade classifications using the Tick rule may be unreliable. In 

particular, the Tick rule underestimates (overestimates) the probability of buys when the 

direction of order flow imbalances signals positive (negative) information. As we explain in 

the previous section, over the days surrounding the Brexit referendum incorporate a period of 

great uncertainty as reflected in the results of opinion polls regarding its outcome. For 

example the reduction in market anxiety relating to the possibility of a leave vote on 19
th

 June, 

following the release of an influential survey, initiated a major unwinding of long positions in 

the gold futures market in early trading, the selling pressure generating high illiquidity costs. 

During the remainder of this day, trades are balanced overall. This trading pattern is reflected 

in the daily volatility estimate, which is 0.52, much higher than its value on most other days. 

The day of the Brexit referendum, 23
rd

 June also generates an abnormally high volatility 

estimate of 0.78. Moreover, the transition probability estimates we obtain from the extended 

GH model also indicate a structural break in the trading process on this day. There is initial 

selling pressure as the consensus in overnight opinion polls indicates a remain outcome, but 

the buying pressure dominates in the latter part of trading after the Brexit vote result, 

consistent with evidence documenting that gold prices rise during times of economic 

uncertainty (Erb and Harvey (2013)). The value of Kyle’s lambda on June 23 is 0.324, its 

highest value in our sample.  

In summary, the model consistent trade direction classification algorithm based on the 

extended GH formulation generates very similar results to the Tick rule during normal trading 

periods, but in periods characterised by higher uncertainty and the existence of a potentially 

larger price impact of trades (closely related to order imbalances), the classifications obtained 

from the two methods diverge significantly. As these are precisely the circumstances under 

which Easley, Lopez de Prado, and O’Hara (2016) argue that the Tick rule appears most 



27 

 

problematic in classifying trades, this suggest our proposed extended GH methods may be 

useful in such an environment. 

Ii is important to state that we certainly do not intend to claim that our trade classification 

system is in any sense superior to other rules such as the Tick and BVC rules. As Easley, 

Lopez de Prado, and O’Hara (2016) note, perhaps each trade classification rule manifests 

both strengths and weakness, depending upon market conditions and the nature of the 

information environment. We believe that our approach to classifying trades is particularly 

well- suited to situations in which researchers use a variant of state space models 

incorporating regime switching to model trading environments. Moreover, our approach 

provides easy-to-implement model-consistent trade classification algorithms using both 

Bayesian and Classical methods. As such, we believe they provide a useful addition to the 

empirical microstructure tool kit. 

 

4.8 Components of the effective spread: the relative contribution of order processing 

and adverse selection costs 

How important are adverse selection costs arising from information asymmetries as 

constituents of the effective bid-ask spread?  We address this issue by computing the 

relative importance in spread composition of our estimated measure of non-informational 

(order processing) costs and informational asymmetry components in spread composition. To 

facilitate the ensuing explanation, consider the log bid-ask spread implied by our model, 

namely:  

  

    

1 0 1 1

1 0 1 0 1 1

,
t t t t t t t t t t

t t t t t t t t

p m cq m m V q E q u

p m V q cq u V q

 

     

 

 

      

        
  

It follows that we can express the ask (
t

a ) and bid ( tb ) prices in our model as:  
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a b c V
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[Table 9 in here] 

Based on this representation of the ask and bid prices, Table 9 and Figure 3 provide the daily 

estimates of transaction costs for a trade measured in ticks, 
,GH cs

S . We calculate this as 

, ,GH cs GH cs
S sp P   where 

,GH cs
sp  is the log spread estimate (

t t
a b  in the above model) with the 

daily average volume (
t

V ) (computed as 
, 0 1

2 ( )
GH cs t

sp c V      ), and P  is the daily 

average price in ticks. We also present the log spread and the daily average price in ticks in 

the table. For example, 
,GH csS  on 1 May is 1.1970 (i.e., 42 (0.4615 10 )   (1,296.9/0.1)   ) 

where 1,296.9 is the mean of the daily prices and 0.1 is the tick size on that day.  

To summarise our findings, the daily estimates of transaction costs for a trade are in the 

region of 1.2 ticks, reflecting the high liquidity of the gold futures markets. However, there 

are two exceptions to these estimates on 19 and 23 June. On these two days, the daily 

estimates of transactions costs for a trade are significantly higher, namely 6.265 (3.299) ticks 

on June 19 (June 23), respectively. This reflects the illiquidity arising from the enhanced 

uncertainty in the trading environment. Based on the parameter estimates from Table 6, in the 

final two columns of table 9 present the contribution of information and non-information 

related components to the spread (for an illustration see Figure 4). Specifically, the proportion 

of the spread attributable to the order processing cost component is   0 0 0 1
TC = /

t
c c V   , 

and the proportion arising from adverse selection costs, the information asymmetry 

component, is     0 1 0 0 1
IC= /

t t
V c V      . These two components are calculated by 

including the estimate of 
0
  only when it is statistically significant. In summary, the 

proportion of effective trading costs arising from non-information related components are 

higher than those from the information components on  all days. In most cases, the former 

lies in the range from 55% to 70%. The exception is on  June 19 where the proportion 

attributable to the non-information components increases to 90%. However, in general, the 

proportion contributed by the information related components in the gold futures market is 

sizeable and significant. The extended Glosten-Harris type models we estimate identify 

permanent price impacts arising from asymmetric information as movements in the efficient 

price, which is ultimately reflected in transaction prices. Viewed from this perspective, given 
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the nature of the gold futures market, it is perhaps not too surprising that 35 to 50% of the 

average bid-ask spreads reflects a compensation for bearing adverse selection risk.  

 

5. CONCLUSION 

Generating accurate measures of liquidity, and measuring trading costs and the price impact 

of trades is difficult when an absence of quotes makes classifying investor’s trading 

intentions problematic. Existing literature incorporates several proposed resolutions to this 

problem but the dynamic evolution of trading mechanisms and the advent of electronic 

platforms creates further difficulties for some of these approaches. For example, Easley, 

Lopez de Prado and O’Hara (2016) maintain that in electronic limit order markets, often 

manifesting order cancellation rates of 98% or more, trade classification algorithms based on 

proximity to bid and ask quotes are severely compromised.  

To overcome these data limitation, Hasbrouck (2004) proposes a new Bayesian approach by 

assuming an i.i.d. normal distribution for price innovations and latent independent trade 

indicators. Subsequently, Van der Wel, Menkveld, and Sarkar (2009) develop the equivalent 

classical maximum likelihood estimation (MLE) methods by mapping the Roll model onto 

Kim and Nelson’s (1999) regime switching state space model. The first contribution of this 

paper is to develop easy-to-implement Bayesian and MLE estimators by extending both 

Hasbrouck (2004) and Van der Wel, Menkveld, and Sarkar (2009) to simultaneously 

accommodate several of the features which are omitted from these models, namely 

unbalanced and autocorrelated order flow and informational asymmetries. These omissions 

are evaluated in Chen, Linton, Schneeberger, and Yi (2016), but the present paper is the first 

to undertake a comprehensive empirical implementation which addresses these drawbacks. 

The second contribution of this paper is to provide robust trade direction classification 

mechanisms without recourse to quotes. Our proposed classification systems utilise both 

Bayesian MCMC methods and classical filtering and smoothing algorithms for latent trade 

direction indicators.  

Simulation results reveal that the methods we propose are reliable. For purposes of 

illustration, we analyse the empirical behaviour of gold futures prices from the CME contract 

during a period of market uncertainty surrounding the UK’s Brexit referendum in 2016. This 
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analysis reveals several noteworthy features. First, trade direction indicators appear highly 

autocorrelated, leading to measured bid-ask spreads being larger, in an economically 

meaningful sense, than those obtained from alternative estimates employing independent 

trade direction indicators. Second, they provide statistical support for asymmetric information 

models of the type proposed by Glosten and Harris (1988) in the presence of latent and 

autocorrelated trade direction indicators, thereby evidence that the trade impact coefficients 

implied by the asymmetric information model, which reflect Kyle’s lambda, are important 

elements of liquidity. Third, they reveal that the trade classifications we obtain from the Roll 

model used in Hasbrouck (2004) and the Tick rule are essentially identical. Finally, our 

model consistent trade classification algorithm provides very similar results to the Tick rule 

during normal trading periods. However, in the presence of greater uncertainty when trading 

potentially generates a greater price impact (resulting from order flow imbalances), our trade 

classification indicator often diverges significantly from those using the Tick rule. Easley, 

Lopez de Prado, and O’Hara (2016) maintain that Tick rule classifications appear particularly 

problematic in periods of high volatility exhibiting imbalances in order flow. We believe the 

approach to trade classification we propose shows some promise in this type of trading 

environment. However, we certainly do not claim that our trade classification system is 

superior to other rules. As Easley, Lopez de Prado and O’Hara (2016) note, each trade 

classification rule may demonstrate both strengths and weakness, depending on the 

underlying market characteristics. Instead, we maintain that our approach may be best suited 

to classifying trades consistently in environments where a variant of state space models with 

regime switching yields a realistic approximation to the trading conditions. Moreover, our 

methods have the advantage of providing easy-to-implement model consistent trade 

classification algorithms using both Bayesian and Classical estimation methods. As such, we 

believe they may be a useful addition to the empirical microstructure tool kit. 
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Table 1. Contract Descriptions and Summary Sample Statistics 

 
Contract Gold futures  

Expiration months  June, 2016 (GCM6) and August, 2016 (GCQ6) 

Trading sample months  May, 2016 - June, 2016  

Numbers of trading days  44 

Avg. price 1269.0 

Price units U.S. dollars and cents per troy ounce 

Tick $0.10 per troy ounce 

Avg. tick/price 0.008% 

Size of contract 100 troy ounce 

Avg. dollar value  $126,900.00  

Std. Dev. Of price change (log price X 10,000) 0.5579  

Std. Dev. Of price change (ticks)  7.0849  

Avg. daily trades 58,205 

Avg. time between trades (seconds) 1.618808  
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Table 2. The Roll Model: MLE and Bayesian Methods 
 

   2

1
, , ~ 0, , 1,1

t t t t t t t u t
p m cq m m u u N q


         

1 1
where Pr 1 | 1 Pr 1 | 1 0.5

t t t t
q q q q

 
         

This table provides daily parameter estimates of the above model for the gold futures contract traded on the 

CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. Electronic trading on CME 

Globex is available virtually 24 hours a day from Sunday 6:00 p.m. through Friday 5:00 p.m. EST, with a 60-

minute break each day beginning at 5:00 p.m EST. Thus, we assume the trading activity on any given date 

starts at 6:00 p.m. and finishes at 5:00 p.m. EST next day. For example, the May 1 trading starts at 6:00 p.m. on 

May 1 and finishes at 5:00 p.m. on May 2. 
u

  is the standard deviation of the log efficient price changes, and 

c  is the (log) half spread. Estimates labelled “Roll(Bayesian)” are Hasbrouck (2004)'s Gibbs sampler 

estimates in which trade direction indicators are conditionally simulated. Estimates labelled “ Roll(MLE)” are 

MLE estimates based on the Roll model. In this table, 10,000 fold of c  and 
u

 estimates are reported. And to 

guarantee a correct statistical inference, we start all Bayesian estimations with 100,000 burn-in period and 

250,000 total numbers of iterations and increase these numbers by 10,000 until the convergence criteria for the 

inefficiency factors and the Geweke (1992)’s diagnostic tests are satisfied simultaneously for all parameters. 

    Roll (MLE) Roll (Bayesian) 

Date Parameters 10, 000c   10, 000
u

   10, 000c  10, 000
u

   

1-May Mean 0.2108  0.4510  0.2107  0.4510  

  Std [0.0023]  [0.0026]  [0.0026]  [0.0023]  

2-May Mean 0.2441  0.4346  0.2442 0.4346 

  Std [0.0024] [0.0027] [0.0025] [0.0024] 

3-May Mean 0.2273  0.4511  0.2273 0.4511 

  Std [0.0023] [0.0025] [0.0025] [0.0023] 

4-May Mean 0.2237  0.4433  0.2237 0.4434 

  Std [0.0025] [0.0028] [0.0027] [0.0025] 

5-May Mean 0.2181  0.4674  0.2181 0.4675 

  Std [0.0021] [0.0023] [0.0023] [0.0021] 

8-May Mean 0.2112  0.4271  0.2113 0.4270 

  Std [0.0024] [0.0026] [0.0025] [0.0023] 

9-May Mean 0.2135  0.4363  0.2135 0.4363 

  Std [0.0026] [0.0028] [0.0028] [0.0025] 

10-May Mean 0.2421  0.4113  0.2421 0.4114 

  Std [0.0029] [0.0032] [0.0031] [0.0030] 

11-May Mean 0.2390  0.4274  0.2390 0.4273 

  Std [0.0026] [0.0029] [0.0027] [0.0026] 

12-May Mean 0.2302  0.4392  0.2302 0.4392 

  Std [0.0026] [0.0029] [0.0028] [0.0026] 

15-May Mean 0.3073  0.3688  0.3061  0.3702  

  Std [0.0033] [0.0043] [0.0062] [0.0063] 

16-May Mean 0.2505  0.4147  0.2506 0.4147 

  Std [0.0027] [0.0031] [0.0029] [0.0028] 

17-May Mean 0.2463  0.4616  0.2463 0.4616 

  Std [0.0024] [0.0026] [0.0025] [0.0024] 

18-May Mean 0.2614  0.4127  0.2616 0.4125 

  Std [0.0029] [0.0032] [0.0032] [0.0031] 

19-May Mean 0.2632  0.3982  0.2637 0.3977 

  Std [0.0039] [0.0044] [0.0048] [0.0047] 

22-May Mean 0.2403  0.3942  0.2407 0.3939 

  Std [0.0038] [0.0041] [0.0041] [0.0038] 

23-May Mean 0.3548  0.3062  0.3547 0.3062 
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  Std [0.0016] [0.0024] [0.0013] [0.0011] 

24-May Mean 0.3463  0.3071  0.3463 0.3072 

  Std [0.0017] [0.0027] [0.0015] [0.0013] 

25-May Mean 0.2304  0.4424  0.2304 0.4423 

  Std [0.0031] [0.0033] [0.0033] [0.0030] 

26-May Mean 0.2503 0.4331 0.2503 0.4330 

  Std [0.0032] [0.0035] [0.0033] [0.0032] 

29-May Mean 0.2765  0.4867  0.2766 0.4867 

  Std [0.0037] [0.0043] [0.0040] [0.0039] 

30-May Mean 0.3359  0.3473  0.3356 0.3476 

  Std [0.0026] [0.0039] [0.0026] [0.0026] 

31-May Mean 0.3553  0.3256  0.3553 0.3257 

  Std [0.0018] [0.0029] [0.0016] [0.0015] 

1-Jun Mean 0.2734  0.4109  0.2739 0.4105 

  Std [0.0041] [0.0047] [0.0052] [0.0051] 

2-Jun Mean 0.2425  0.5173  0.2425 0.5173 

  Std [0.0024] [0.0026] [0.0026] [0.0024] 

5-Jun Mean 0.2398  0.4202  0.2398 0.4202 

  Std [0.0031] [0.0033] [0.0031] [0.0029] 

6-Jun Mean 0.3456  0.3020  0.3455 0.3020 

  Std [0.0018] [0.0029] [0.0016] [0.0014] 

7-Jun Mean 0.3400  0.2914  0.3400 0.2914 

  Std [0.0016] [0.0026] [0.0014] [0.0012] 

8-Jun Mean 0.3304  0.3001  0.3304 0.3002 

  Std [0.0017] [0.0028] [0.0015] [0.0014] 

9-Jun Mean 0.3227  0.3074  0.3226 0.3075 

  Std [0.0019] [0.0030] [0.0018] [0.0016] 

12-Jun Mean 0.2350  0.4005  0.2352 0.4004 

  Std [0.0027] [0.0030] [0.0029] [0.0027] 

13-Jun Mean 0.3273  0.2840  0.3273 0.2841 

  Std [0.0014] [0.0023] [0.0012] [0.0011] 

14-Jun Mean 0.2248  0.4496  0.2248 0.4496 

  Std [0.0024] [0.0027] [0.0026] [0.0024] 

15-Jun Mean 0.2463  0.4026  0.2464 0.4025 

  Std [0.0022] [0.0024] [0.0023] [0.0022] 

16-Jun Mean 0.2374  0.3886  0.2375 0.3885 

  Std [0.0029] [0.0032] [0.0030] [0.0029] 

19-Jun Mean 0.1846  0.5301  0.1845 0.5302 

  Std [0.0026] [0.0026] [0.0031] [0.0024] 

20-Jun Mean 0.2169  0.4635  0.2169 0.4635 

 
Std [0.0024] [0.0026] [0.0027] [0.0024] 

21-Jun Mean 0.2151  0.4446  0.2151 0.4446 

  Std [0.0028] [0.0031] [0.0031] [0.0028] 

22-Jun Mean 0.2087  0.5066  0.2087 0.5066 

  Std [0.0027] [0.0029] [0.0032] [0.0027] 

23-Jun Mean 0.3313  0.9604  0.3312 0.9604 

  Std [0.0027] [0.0025] [0.0030] [0.0023] 

26-Jun Mean 0.2081  0.5356  0.2081 0.5356 

  Std [0.0022] [0.0023] [0.0026] [0.0021] 

27-Jun Mean 0.2396  0.4474  0.2396 0.4474 

  Std [0.0025] [0.0028] 0.0027 0.0026 

28-Jun Mean 0.2280  0.4369  0.2280 0.4369 

  Std [0.0025] [0.0028] 0.0027 0.0025 

29-Jun Mean 0.2231 0.4189 0.2230 0.4189 

  Std [0.0025] [0.0028] 0.0026 0.0024 

Average Mean 0.2591  0.4252  0.2591  0.4251  

 

 

 

 



37 

 

Table 3. The extended Roll Model (MS) : Simulation Study I 

 

   2

1
, , ~ 0, , 1,1

t t t t t t t u t
p m cq m m u u N q


         

1 1
where Pr 1 | 1 , Pr 1 | 1

t t t t
q q P q q Q

 
         

This table provides parameter estimates of the above model using simulated data. In order to establish a sound 

basis for a plausible data generating process in the simulations, we generate the data using the averages of 

parameter estimates (labelled as TRUE) reported in Table 4.  

u
  is the standard deviation of the (log) efficient price changes: c  is the (log) half spread. P and Q are 

transition probabilities. Estimates labeled “MS (Bayesian)” are our single-move Gibbs sampler estimates in 

which trade direction indicators are conditionally simulated and autocorrelated. Estimates labelled “MS (MLE)” 

are MLE estimates based on the extended Roll model. To minimize simulation errors, we simulate data 50 

times, and estimate the parameters and trade direction indicators of these models for each generated data sample 

and compute simulated sample averages of c , u
 , P and Q . In this table, 10,000 fold of c  and u

  

estimates are reported. 

 

    TRUE MS (MLE) MS (Bayesian) 

Model Parameters Average estimate Estimate STD Estimate STD 

MS 

10, 000c   0.43 0.4297 0.0021 0.4297 0.0019 

10, 000
u

    0.35 0.3498 0.0025 0.3499 0.0014 

P   0.70 0.6990 0.0043 0.6991 0.0042 

Q   0.72 0.7193 0.0041 0.7194 0.0039 
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Table 4. The extended Roll Model (MS) : MLE and Bayesian Methods 

  

   2

1
, , ~ 0, , 1,1

t t t t t t t u t
p m cq m m u u N q


         

1 1
where Pr 1 | 1 , Pr 1 | 1

t t t t
q q P q q Q

 
         

This table provides daily parameter estimates of the above model for the gold futures contract traded on the CME 

Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further 

details on the dating convention used in the paper) u
  is the standard deviation of the (log) efficient price 

changes: c is the (log) half spread. P  and Q  are transition probabilities. Estimates labeled “MS (Bayesian)” 

are our single-move Gibbs sampler estimates in which trade direction indicators are conditionally simulated and 

autocorrelated. Estimates labelled “MS (MLE)” are MLE estimates based on the extended Roll model. In this table 

10,000 fold of c  and u
 estimates are reported. And to guarantee a correct statistical inference, we start all 

Bayesian estimations with 100,000 burn-in period and 250,000 total numbers of iterations and increase these 

numbers by 10,000 until the convergence criteria for the inefficiency factors and the Geweke(1992)’s diagnostic 

tests are satisfied simultaneously for all parameters. 

    MS(MLE) MS(Bayeisan) 

Date Parameters 10, 000c   10, 000
u

   P  Q   10, 000c   10, 000
u

   P  Q  

1-May Mean 0.3823  0.3565  0.7128  0.7241  0.3823  0.3566  0.7129  0.7240  

  Std [0.0021]  [0.0027]  [0.0058]  [0.0058]  [0.0021]  [0.0016]  [0.0058]  [0.0055]  

2-May Mean 0.3874  0.3481  0.6848  0.7000  0.3875  0.3481  0.6848  0.7002  

  Std [0.0018] [0.0025] [0.0054] [0.0052] [0.0018]  [0.0013]  [0.0053]  [0.0050]  

3-May Mean 0.3999  0.3492  0.7106  0.7153  0.3999  0.3493  0.7103  0.7158  

  Std [0.0018] [0.0025] [0.0054] [0.0054] [0.0018]  [0.0013]  [0.0053]  [0.0052]  

4-May Mean 0.3900  0.3463  0.7127  0.7102  0.3900  0.3464  0.7129  0.7102  

  Std [0.0020] [0.0027] [0.0053] [0.0054] [0.0020]  [0.0014]  [0.0052]  [0.0053]  

5-May Mean 0.4024  0.3631  0.7139  0.7271  0.4024  0.3632  0.7136  0.7275  

  Std [0.0018] [0.0025] [0.0055] [0.0055] [0.0018]  [0.0014]  [0.0056]  [0.0052]  

8-May Mean 0.3886  0.3241  0.7057  0.7441  0.3887  0.3241  0.7058  0.7440  

  Std [0.0018] [0.0025] [0.0050] [0.0045] [0.0018]  [0.0011]  [0.0051]  [0.0043]  

9-May Mean 0.3856  0.3390  0.7247  0.7183  0.3856  0.3390  0.7246  0.7185  

  Std [0.0021] [0.0028] [0.0055] [0.0056] [0.0021]  [0.0014]  [0.0054]  [0.0054]  

10-May Mean 0.3850  0.3266  0.7052  0.7006  0.3850  0.3266  0.7053  0.7007  

  Std [0.0019] [0.0026] [0.0052] [0.0053] [0.0019]  [0.0012]  [0.0052]  [0.0053]  

11-May Mean 0.3883  0.3365  0.6897  0.7090  0.3883  0.3365  0.6901  0.7088  

  Std [0.0018] [0.0026] [0.0052] [0.0050] [0.0018]  [0.0013]  [0.0052]  [0.0049]  

12-May Mean 0.3891  0.3449  0.6928  0.7181  0.3891  0.3450  0.6929  0.7180  

  Std [0.0020] [0.0027] [0.0055] [0.0051] [0.0020]  [0.0014]  [0.0055]  [0.0049]  

15-May Mean 0.3909  0.3293  0.6695  0.6860  0.3910  0.3293  0.6696  0.6861  

  Std [0.0017] [0.0025] [0.0052] [0.0051] [0.0017]  [0.0012]  [0.0053]  [0.0050]  

16-May Mean 0.3850  0.3332  0.6909  0.6936  0.3850  0.3332  0.6909  0.6937  

  Std [0.0018] [0.0025] [0.0052] [0.0051] [0.0018]  [0.0012]  [0.0051]  [0.0051]  

17-May Mean 0.4002  0.3686  0.6885  0.6976  0.4002  0.3686  0.6885  0.6977  

  Std [0.0019] [0.0025] [0.0056] [0.0055] [0.0019]  [0.0015]  [0.0056]  [0.0054]  

18-May Mean 0.3996  0.3278  0.6846  0.7088  0.3997  0.3279  0.6847  0.7089  

  Std [0.0016] [0.0022] [0.0045] [0.0042] [0.0016]  [0.0011]  [0.0045]  [0.0041]  

19-May Mean 0.3907  0.3238  0.6822  0.7107  0.3907  0.3239  0.6826  0.7106  

  Std [0.0021] [0.0028] [0.0057] [0.0053] [0.0020]  [0.0013]  [0.0057]  [0.0052]  

22-May Mean 0.3897  0.3075  0.7042  0.7312  0.3897  0.3075  0.7045  0.7309  

  Std [0.0019] [0.0025] [0.0054] [0.0050] [0.0019]  [0.0011]  [0.0054]  [0.0049]  

23-May Mean 0.4098  0.3035  0.7051  0.7187  0.4098  0.3034  0.7054  0.7186  

  Std [0.0015] [0.0021] [0.0048] [0.0046] [0.0016]  [0.0010]  [0.0047]  [0.0045]  
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24-May Mean 0.4025  0.3055  0.7208  0.7053  0.4025  0.3055  0.7207  0.7054  

  Std [0.0018] [0.0023] [0.0049] [0.0052] [0.0018]  [0.0010]  [0.0049]  [0.0052]  

25-May Mean 0.4055  0.3369  0.7081  0.7255  0.4055  0.3369  0.7080  0.7257  

  Std [0.0021] [0.0029] [0.0056] [0.0053] [0.0021]  [0.0014]  [0.0055]  [0.0052]  

26-May Mean 0.4085 0.3356 0.7040 0.7075 0.4085 0.3357 0.7042 0.7074 

  Std [0.0020] [0.0027] [0.0052] [0.0051] [0.0020] [0.0013] [0.0052] [0.0051] 

29-May Mean 0.4116  0.4079  0.6459  0.6978  0.4117  0.4081  0.6464  0.6979  

  Std [0.0034] [0.0041] [0.0098] [0.0087] [0.0034]  [0.0027]  [0.0096]  [0.0079]  

30-May Mean 0.4023  0.3312  0.6935  0.6882  0.4023  0.3313  0.6937  0.6881  

  Std [0.0020] [0.0027] [0.0052] [0.0053] [0.0019]  [0.0013]  [0.0052]  [0.0053]  

31-May Mean 0.4080  0.3208  0.6865  0.6933  0.4080  0.3209  0.6866  0.6933  

  Std [0.0018] [0.0025] [0.0050] [0.0049] [0.0018]  [0.0011]  [0.0049]  [0.0048]  

1-Jun Mean 0.4039  0.3362  0.6967  0.6979  0.4040  0.3362  0.6969  0.6979  

  Std [0.0023] [0.0030] [0.0059] [0.0058] [0.0022]  [0.0014]  [0.0058]  [0.0057]  

2-Jun Mean 0.7386  0.5375  0.4476  0.9773  0.7406  0.5375  0.4550  0.9774  

  Std [0.0150] [0.0028] [0.0206] [0.0013] [0.0110]  [0.0020]  [0.0175]  [0.0011]  

5-Jun Mean 0.4045  0.3204  0.7063  0.7267  0.4045  0.3204  0.7063  0.7267  

  Std [0.0018] [0.0025] [0.0052] [0.0049] [0.0018]  [0.0012]  [0.0052]  [0.0049]  

6-Jun Mean 0.3913  0.3019  0.6896  0.6881  0.3913  0.3020  0.6897  0.6882  

  Std [0.0020] [0.0027] [0.0057] [0.0057] [0.0020]  [0.0012]  [0.0056]  [0.0056]  

7-Jun Mean 0.3908  0.2921  0.7036  0.7176  0.3908  0.2921  0.7039  0.7174  

  Std [0.0017] [0.0023] [0.0049] [0.0047] [0.0017]  [0.0010]  [0.0049]  [0.0046]  

8-Jun Mean 0.3802  0.2984  0.6956  0.6994  0.3803  0.2984  0.6957  0.6995  

  Std [0.0019] [0.0025] [0.0051] [0.0051] [0.0018]  [0.0011]  [0.0050]  [0.0049]  

9-Jun Mean 0.3795  0.3019  0.7091  0.6943  0.3795  0.3019  0.7092  0.6944  

  Std [0.0019] [0.0025] [0.0052] [0.0054] [0.0018]  [0.0011]  [0.0051]  [0.0054]  

12-Jun Mean 0.3822  0.3102  0.7173  0.6964  0.3822  0.3103  0.7174  0.6963  

  Std [0.0016] [0.0023] [0.0046] [0.0049] [0.0016]  [0.0010]  [0.0045]  [0.0048]  

13-Jun Mean 0.3766  0.2848  0.7065  0.7152  0.3766  0.2848  0.7068  0.7150  

  Std [0.0016] [0.0021] [0.0046] [0.0045] [0.0016]  [0.0009]  [0.0045]  [0.0045]  

14-Jun Mean 0.4022  0.3423  0.7234  0.7054  0.4022  0.3423  0.7232  0.7057  

  Std [0.0018] [0.0026] [0.0059] [0.0061] [0.0018]  [0.0013]  [0.0059]  [0.0063]  

15-Jun Mean 0.3808  0.3154  0.6889  0.6915  0.3809  0.3154  0.6890  0.6915  

  Std [0.0012] [0.0019] [0.0037] [0.0037] [0.0012]  [0.0008]  [0.0036]  [0.0036]  

16-Jun Mean 0.3767  0.3057  0.7022  0.7132  0.3767  0.3057  0.7026  0.7129  

  Std [0.0017] [0.0023] [0.0048] [0.0046] [0.0016]  [0.0010]  [0.0048]  [0.0046]  

19-Jun Mean 0.8509  0.5325  0.6238  0.9883  0.8516  0.5325  0.6244  0.9883  

  Std [0.0146] [0.0024] [0.0238] [0.0007] [0.0133]  [0.0018]  [0.0189]  [0.0006]  

20-Jun Mean 0.3881  0.3629  0.7117  0.7022  0.3881  0.3630  0.7121  0.7020  

  Std [0.0020] [0.0027] [0.0058] [0.0060] [0.0021]  [0.0016]  [0.0056]  [0.0059]  

21-Jun Mean 0.3830  0.3463  0.7262  0.6948  0.3830  0.3464  0.7265  0.6945  

  Std [0.0023] [0.0031] [0.0060] [0.0065] [0.0023]  [0.0016]  [0.0056]  [0.0065]  

22-Jun Mean 0.3988  0.4140  0.7303  0.7289  0.3987  0.4143  0.7315  0.7280  

  Std [0.0029] [0.0033] [0.0098] [0.0097] [0.0030]  [0.0025]  [0.0096]  [0.0095]  

23-Jun Mean 1.1238  0.7851  0.5974  0.9404  1.1237  0.7851  0.5981  0.9404  

  Std [0.0047] [0.0022] [0.0060] [0.0009] [0.0043]  [0.0017]  [0.0057]  [0.0008]  

26-Jun Mean 0.6137  0.5204  0.9633  0.5514  0.6144  0.5205  0.9634  0.5527  

  Std [0.0106] [0.0028] [0.0018] [0.0174] [0.0077]  [0.0019]  [0.0015]  [0.0164]  

27-Jun Mean 0.3827  0.3605  0.6557  0.7129  0.3827  0.3606  0.6559  0.7129  

  Std [0.0020] [0.0029] [0.0070] [0.0063] [0.0021]  [0.0016]  [0.0069]  [0.0057]  

28-Jun Mean 0.3777  0.3472  0.7101  0.6823  0.3777  0.3473  0.7103  0.6822  

  Std [0.0021] [0.0028] [0.0062] [0.0066] [0.0021]  [0.0015]  [0.0059]  [0.0065]  

29-Jun Mean 0.3803  0.3251  0.7091  0.7118  0.3803 0.3252 0.7094 0.7115 

  Std [0.0018] [0.0026] [0.0052] [0.0053] [0.0018]  [0.0012]  [0.0052]  [0.0051]  

Average Mean 0.4320  0.3570  0.6966  0.7220  0.4392  0.3651  0.7011  0.7215  
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Table 5. The extended GH Model (GH) : Simulation Study II 
 

      2
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 
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0 1t t

V     

This table provides parameter estimates of the above model using simulated data. In order to establish a sound 

basis for a plausible data generating process in the simulations, we generate the data using the averages of 

parameter estimates (labelled as TRUE) reported in Table 6.  

u
  is the standard deviation of the (log) efficient price changes: c  is the order processing component of the 

(log) half spread. P  and Q are transition probabilities.
0

  and 
1
  are the fixed and variable permanent price 

impact costs, respectively. Estimates labeled “GH (Bayesian)” are our tailored Random-walk MH sampler 

estimates in which trade direction indicators are conditionally simulated and autocorrelated. Estimates labelled 

“GH (MLE)” are MLE estimates based on the extended GH model. To minimize simulation errors, we simulate 

data 50 times, and estimate the parameters and trade direction indicators of these models for each generated 

data sample and compute simulated sample averages of 
u

 , c ,
0

 ,
1
 , P and Q . In this table, 10,000 fold of 

c ,
0

 , 
1
  and 

u
  estimates are reported. 

    TRUE GH (MLE) GH (Bayesian) 

Model Parameters Average estimate Estimate STD Estimate STD 

GH 

10, 000c  0.30 0.3005 0.0032 0.3005 0.0033 

10, 000
u

   0.33 0.3299 0.0024 0.3299 0.0013 

0
10, 000   0.02 0.0191 0.0047 0.0191 0.0052 

1
10, 000   0.10 0.1000 0.0023 0.1000 0.0021 

P   0.70 0.6995 0.0035 0.6996 0.0034 

Q   0.71 0.7098 0.0034 0.7099 0.0033 
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Table 6. The extended GH Model (GH) : Estimation using MLE and Bayesian Methods 
 

This table provides daily parameter estimates of the above model for the gold futures contract traded on the CME Globex electronic trading platform from May 1, 2016 to 

June 30, 2016. (See the caption of Table 2 for further details on the dating convention used in the paper.) 
u

  is the standard deviation of the (log) efficient price changes: 

c  is the order processing component of the (log) half spread. P  and Q  are transition probabilities. 
0 and 

1  are the fixed and variable permanent price impact 

costs, respectively, due to adverse selection. Estimates labeled “GH (Bayesian)” are our tailored random-walk MH sampler estimates in which trade direction indicators 

are conditionally simulated and autocorrelated. Estimates labelled “GH (MLE)” are MLE estimates based on the extended GH model. In this table, 10,000 fold of c , 

0 ,
1 , and 

u
 estimates are reported. And to guarantee a correct statistical inference, we start all Bayesian estimations with 100,000 burn-in period and 250,000 total 

numbers of iterations and increase these numbers by 10,000 until the convergence criteria for the inefficiency factors and the Geweke (1992)’s diagnostic tests are satisfied 

simultaneously for all parameters. 

  
 

GH(MLE) 
 

GH(Bayeisan) 

Date Parameters 10,000c   
10,000u




  
0 10,000



  

1 10,000



  P  Q    10,000c  

10,000u



 

0 10,000



 

1 10,000



 P  Q  

1-May Mean 0.2425 0.3265 0.0409 0.1052 0.7013 0.7082   0.2426 0.3266 0.0405 0.1052 0.7017 0.7078 

  Std [0.0030] [0.0028] [0.0049] [0.0025] [0.0036] [0.0035] 
 

[0.0033]  [0.0014]  [0.0064]  [0.0025]  [0.0037]  [0.0037]  

2-May Mean 0.2677 0.3197 0.0102 0.1113 0.6764 0.6865   0.2677 0.3198 0.0102 0.1113 0.6765 0.6864 

  Std [0.0026] [0.0026] [0.0043] [0.0021] [0.0035] [0.0034] 
 

[0.0029]  [0.0013]  [0.0057]  [0.0022]  [0.0036]  [0.0034]  

3-May Mean 0.2719 0.3235 0.0289 0.1010 0.7022 0.6970   0.2719 0.3235 0.0290 0.1009 0.7021 0.6973 

  Std [0.0027] [0.0026] [0.0043] [0.0022] [0.0034] [0.0034] 
 

[0.0030]  [0.0012]  [0.0056]  [0.0022]  [0.0035]  [0.0035]  

4-May Mean 0.2597 0.3206 0.0437 0.0956 0.7013 0.7044   0.2598 0.3207 0.0435 0.0956 0.7013 0.7045 

  Std [0.0030] [0.0028] [0.0047] [0.0022] [0.0036] [0.0036] 
 

[0.0033]  [0.0013]  [0.0062]  [0.0023]  [0.0037]  [0.0037]  

5-May Mean 0.2708 0.3354 0.0207 0.1073 0.6915 0.7088   0.2708 0.3355 0.0204 0.1075 0.6920 0.7084 

  Std [0.0027] [0.0025] [0.0043] [0.0022] [0.0034] [0.0032] 
 

[0.0029]  [0.0013]  [0.0055]  [0.0022]  [0.0034]  [0.0033]  

8-May Mean 0.2611 0.3026 0.0425 0.0864 0.7125 0.7197   0.2611 0.3026 0.0426 0.0864 0.7124 0.7199 

  Std [0.0029] [0.0025] [0.0042] [0.0019] [0.0034] [0.0032] 
 

[0.0031]  [0.0011]  [0.0057]  [0.0019]  [0.0036]  [0.0034]  

9-May Mean 0.2444 0.3120 0.0537 0.0993 0.7150 0.7140   0.2443 0.3120 0.0538 0.0993 0.7151 0.7142 

  Std [0.0032] [0.0028] [0.0050] [0.0023] [0.0036] [0.0036] 
 

[0.0035]  [0.0013]  [0.0066]  [0.0024]  [0.0037]  [0.0038]  

10-May Mean 0.2649 0.3016 0.0215 0.1018 0.6928 0.6947   0.2649 0.3017 0.0216 0.1018 0.6929 0.6950 
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  Std [0.0028] [0.0026] [0.0045] [0.0022] [0.0036] [0.0036] 
 

[0.0030]  [0.0012]  [0.0060]  [0.0022]  [0.0037]  [0.0037]  

11-May Mean 0.2723 0.3120 0.0152 0.1029 0.6838 0.6937   0.2722 0.3120 0.0151 0.1031 0.6841 0.6937 

  Std [0.0027] [0.0026] [0.0044] [0.0022] [0.0036] [0.0034] 
 

[0.0029]  [0.0012]  [0.0059]  [0.0022]  [0.0037]  [0.0035]  

12-May Mean 0.2584 0.3166 0.0388 0.1034 0.6916 0.7048   0.2584 0.3166 0.0387 0.1035 0.6917 0.7047 

  Std [0.0029] [0.0028] [0.0047] [0.0023] [0.0036] [0.0034] 
 

[0.0032]  [0.0013]  [0.0061]  [0.0023]  [0.0037]  [0.0035]  

15-May Mean 0.2893 0.3077 0.0291 0.0847 0.6657 0.6884   0.2893 0.3077 0.0291 0.0847 0.6660 0.6882 

  Std [0.0026] [0.0027] [0.0041] [0.0020] [0.0037] [0.0035] 
 

[0.0028]  [0.0012]  [0.0053]  [0.0019]  [0.0037]  [0.0036]  

16-May Mean 0.2692 0.3086 0.0325 0.0949 0.6897 0.6893   0.2691 0.3086 0.0327 0.0948 0.6899 0.6894 

  Std [0.0027] [0.0027] [0.0044] [0.0022] [0.0035] [0.0035] 
 

[0.0029]  [0.0012]  [0.0057]  [0.0022]  [0.0036]  [0.0036]  

17-May Mean 0.2785 0.3375 0.0023 0.1194 0.6772 0.6788   0.2784 0.3375 0.0026 0.1193 0.6773 0.6790 

  Std [0.0026] [0.0026] [0.0044] [0.0023] [0.0034] [0.0033] 
 

[0.0028]  [0.0013]  [0.0057]  [0.0023]  [0.0034]  [0.0034]  

18-May Mean 0.2839 0.3057 0.0457 0.0810 0.6970 0.7007   0.2859 0.3080 0.0634 0.0680 0.6904 0.7102 

  Std [0.0025] [0.0023] [0.0037] [0.0016] [0.0030] [0.0030] 
 

[0.0052]  [0.0016]  [0.0157]  [0.0093]  [0.0049]  [0.0048]  

19-May Mean 0.2779 0.3022 0.0391 0.0869 0.6878 0.7030   0.2780 0.3023 0.0389 0.0869 0.6877 0.7031 

  Std [0.0031] [0.0029] [0.0048] [0.0023] [0.0040] [0.0038] 
 

[0.0034]  [0.0013]  [0.0065]  [0.0023]  [0.0042]  [0.0039]  

22-May Mean 0.2783 0.2909 0.0308 0.0851 0.7086 0.7169   0.2783 0.2909 0.0309 0.0851 0.7087 0.7169 

  Std [0.0031] [0.0027] [0.0047] [0.0023] [0.0039] [0.0037] 
 

[0.0034]  [0.0011]  [0.0065]  [0.0023]  [0.0041]  [0.0039]  

23-May Mean 0.3097 0.2871 0.0163 0.0783 0.7040 0.7026   0.3096 0.2871 0.0164 0.0784 0.7037 0.7029 

  Std [0.0025] [0.0022] [0.0037] [0.0016] [0.0033] [0.0034] 
 

[0.0027]  [0.0009]  [0.0049]  [0.0016]  [0.0034]  [0.0034]  

24-May Mean 0.2995 0.2877 0.0003 0.0902 0.7073 0.6925   0.2995 0.2878 0.0000 0.0903 0.7073 0.6924 

  Std [0.0027] [0.0023] [0.0043] [0.0020] [0.0037] [0.0039] 
 

[0.0030]  [0.0010]  [0.0059]  [0.0020]  [0.0039]  [0.0041]  

25-May Mean 0.2783 0.3150 0.0267 0.1026 0.6991 0.7116   0.2783 0.3150 0.0268 0.1026 0.6992 0.7118 

  Std [0.0034] [0.0030] [0.0056] [0.0030] [0.0041] [0.0038] 
 

[0.0037]  [0.0014]  [0.0074]  [0.0029]  [0.0043]  [0.0040]  

26-May Mean 0.2840 0.3109 0.0161 0.1012 0.6936 0.6912   0.2840 0.3109 0.0162 0.1012 0.6936 0.6914 

  Std [0.0029] [0.0027] [0.0047] [0.0022] [0.0037] [0.0038] 
 

[0.0032] [0.0012] [0.0062] [0.0022] [0.0039] [0.0039] 

29-May Mean 0.2783 0.3706 0.0279 0.1219 0.6524 0.6839   0.2783 0.3708 0.0276 0.1220 0.6526 0.6839 

  Std [0.0043] [0.0042] [0.0074] [0.0038] [0.0058] [0.0050] 
 

[0.0048]  [0.0025]  [0.0097]  [0.0039]  [0.0059]  [0.0051]  

30-May Mean 0.2883 0.3094 0.0395 0.0871 0.6899 0.6906   0.2883 0.3094 0.0395 0.0871 0.6900 0.6907 

  Std [0.0030] [0.0028] [0.0047] [0.0022] [0.0038] [0.0038] 
 

[0.0033]  [0.0012]  [0.0063]  [0.0022]  [0.0039]  [0.0040]  

31-May Mean 0.3055 0.3030 0.0319 0.0801 0.6902 0.6880   0.3056 0.3030 0.0319 0.0800 0.6903 0.6881 

  Std [0.0029] [0.0026] [0.0043] [0.0020] [0.0037] [0.0037] 
 

[0.0031]  [0.0012]  [0.0058]  [0.0020]  [0.0038]  [0.0039]  

1-Jun Mean 0.2841 0.3155 0.0597 0.0830 0.7038 0.7000   0.2841 0.3156 0.0597 0.0829 0.7039 0.7001 

  Std [0.0036] [0.0033] [0.0055] [0.0029] [0.0041] [0.0042] 
 

[0.0038]  [0.0014]  [0.0073]  [0.0028]  [0.0042]  [0.0044]  

2-Jun Mean 0.3428 0.3876 -0.0602 0.1151 0.6933 0.6910   0.3156 0.3328 0.0269 0.0850 0.6825 0.6797 

  Std [0.0034] [0.0030] [0.0051] [0.0023] [0.0049] [0.0050] 
 

[0.0028]  [0.0012]  [0.0051]  [0.0017]  [0.0033]  [0.0034]  

5-Jun Mean 0.2854 0.3014 0.0411 0.0809 0.7075 0.7157   0.2852 0.3014 0.0415 0.0809 0.7080 0.7155 

  Std [0.0031] [0.0026] [0.0044] [0.0019] [0.0037] [0.0035] 
 

[0.0033]  [0.0011]  [0.0058]  [0.0019]  [0.0038]  [0.0036]  

6-Jun Mean 0.2984 0.2866 0.0212 0.0770 0.6939 0.6861   0.2984 0.2867 0.0213 0.0770 0.6941 0.6862 

  Std [0.0031] [0.0028] [0.0048] [0.0023] [0.0042] [0.0044] 
 

[0.0034]  [0.0012]  [0.0068]  [0.0023]  [0.0044]  [0.0047]  
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7-Jun Mean 0.2918 0.2764 0.0335 0.0662 0.6963 0.7154   0.2917 0.2764 0.0336 0.0662 0.6963 0.7157 

  Std [0.0028] [0.0024] [0.0039] [0.0015] [0.0038] [0.0036] 
 

[0.0030]  [0.0010]  [0.0055]  [0.0015]  [0.0040]  [0.0038]  

8-Jun Mean 0.2780 0.2809 0.0372 0.0744 0.6977 0.7013   0.2780 0.2809 0.0372 0.0744 0.6978 0.7014 

  Std [0.0028] [0.0025] [0.0042] [0.0018] [0.0038] [0.0037] 
 

[0.0031]  [0.0011]  [0.0057]  [0.0018]  [0.0039]  [0.0039]  

9-Jun Mean 0.2740 0.2848 0.0473 0.0710 0.7067 0.7022   0.2740 0.2848 0.0470 0.0711 0.7067 0.7022 

  Std [0.0029] [0.0027] [0.0044] [0.0020] [0.0037] [0.0039] 
 

[0.0032]  [0.0011]  [0.0060]  [0.0020]  [0.0040]  [0.0041]  

12-Jun Mean 0.2704 0.2900 0.0280 0.0819 0.6982 0.7003   0.2703 0.2901 0.0282 0.0818 0.6985 0.7002 

  Std [0.0025] [0.0024] [0.0038] [0.0016] [0.0034] [0.0034] 
 

[0.0027]  [0.0010]  [0.0051]  [0.0016]  [0.0035]  [0.0037]  

13-Jun Mean 0.2808 0.2692 0.0216 0.0722 0.6994 0.7052   0.2808 0.2692 0.0216 0.0722 0.6995 0.7052 

  Std [0.0024] [0.0022] [0.0036] [0.0016] [0.0036] [0.0035] 
 

[0.0026]  [0.0009]  [0.0050]  [0.0016]  [0.0037]  [0.0037]  

14-Jun Mean 0.2834 0.3213 0.0471 0.0792 0.7045 0.7086   0.2835 0.3215 0.0467 0.0792 0.7045 0.7086 

  Std [0.0030] [0.0028] [0.0043] [0.0020] [0.0037] [0.0037] 
 

[0.0032]  [0.0013]  [0.0055]  [0.0019]  [0.0037]  [0.0037]  

15-Jun Mean 0.2804 0.2945 -0.0012 0.0942 0.6768 0.6736   0.2805 0.2945 -0.0013 0.0942 0.6770 0.6735 

  Std [0.0018] [0.0019] [0.0030] [0.0015] [0.0027] [0.0028] 
 

[0.0020]  [0.0008]  [0.0039]  [0.0015]  [0.0028]  [0.0029]  

16-Jun Mean 0.2665 0.2867 0.0361 0.0794 0.6972 0.7111   0.2664 0.2867 0.0362 0.0794 0.6976 0.7109 

  Std [0.0025] [0.0023] [0.0038] [0.0017] [0.0034] [0.0033] 
 

[0.0027]  [0.0010]  [0.0051]  [0.0017]  [0.0035]  [0.0034]  

19-Jun Mean 0.5552 0.5191 0.0163 0.0829 0.5173 0.9789   0.5523 0.5189 0.0170 0.0837 0.5243 0.9788 

  Std [0.0985] [0.0158] [0.1181] [0.0406] [0.0398] [0.0113] 
 

[0.0201]  [0.0024]  [0.0265]  [0.0073]  [0.0199]  [0.0017]  

20-Jun Mean 0.2551 0.3324 0.0216 0.1089 0.6974 0.6866   0.2550 0.3325 0.0213 0.1092 0.6973 0.6867 

  Std [0.0029] [0.0027] [0.0047] [0.0023] [0.0036] [0.0038] 
 

[0.0031]  [0.0014]  [0.0061]  [0.0023]  [0.0037]  [0.0039]  

21-Jun Mean 0.2455 0.3182 0.0431 0.1031 0.7172 0.6920   0.2454 0.3182 0.0431 0.1031 0.7171 0.6922 

  Std [0.0034] [0.0032] [0.0055] [0.0027] [0.0039] [0.0043] 
 

[0.0037]  [0.0015]  [0.0070]  [0.0027]  [0.0040]  [0.0044]  

22-Jun Mean 0.2467 0.3794 -0.0091 0.1424 0.6907 0.6939   0.2465 0.3797 -0.0094 0.1424 0.6906 0.6941 

  Std [0.0037] [0.0032] [0.0061] [0.0032] [0.0050] [0.0048] 
 

[0.0042]  [0.0025]  [0.0084]  [0.0034]  [0.0051]  [0.0049]  

23-Jun Mean 0.8224 0.7571 -0.0164 0.2003 0.5713 0.9278   0.8216 0.7572 -0.0166 0.2008 0.5712 0.9277 

  Std [0.0072] [0.0022] [0.0095] [0.0037] [0.0050] [0.0010] 
 

[0.0068]  [0.0017]  [0.0095]  [0.0037]  [0.0048]  [0.0009]  

26-Jun Mean 0.2759 0.4503 -0.1332 0.1794 0.7824 0.6354   0.2600 0.3801 -0.0108 0.1281 0.6979 0.6735 

  Std [0.0108] [0.0034] [0.0055] [0.0047] [0.0222] [0.0110] 
 

[0.0032]  [0.0019]  [0.0052]  [0.0024]  [0.0042]  [0.0045]  

27-Jun Mean 0.2684 0.3322 0.0086 0.1072 0.6744 0.6796   0.2684 0.3323 0.0085 0.1073 0.6745 0.6796 

  Std [0.0029] [0.0029] [0.0046] [0.0023] [0.0040] [0.0040] 
 

[0.0032]  [0.0015]  [0.0061]  [0.0023]  [0.0041]  [0.0040]  

28-Jun Mean 0.2571 0.3190 0.0003 0.1126 0.6886 0.6757   0.2570 0.3191 0.0005 0.1126 0.6889 0.6759 

  Std [0.0028] [0.0028] [0.0047] [0.0023] [0.0038] [0.0040] 
 

[0.0031]  [0.0014]  [0.0060]  [0.0023]  [0.0039]  [0.0041]  

29-Jun Mean 0.2597 0.3010 0.0179 0.0979 0.7011 0.6973   0.2598 0.3011 0.0179 0.0978 0.7013 0.6974 

  Std [0.0028] [0.0027] [0.0043] [0.0021] [0.0036] [0.0036]   [0.0030]  [0.0012]  [0.0057]  [0.0021]  [0.0036]  [0.0037]  

Average Mean 0.2945 0.3298 0.0208 0.0986 0.6897 0.7079   0.2970  0.3350  0.0264  0.0982  0.6910  0.7086  
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Table 7. The extended GH Model (GH) : MLE on 19 and 23 June 2016 

      2

1 1
, | , ~ 0, , 1,1

t t t t t t t t t t t u t
p m cq m m q E q u u N q 

 
        

   
1 1

where  Pr 1 | 1 , Pr 1 | 1
t t t t

P Qq q q q
 

         and 
0 1t t

V     

This table provides the MLE estimates of the above model for every 10,000 trade using the gold futures contract 

traded on the CME Globex electronic trading platform on May 19, 2016 and June 23, 2016. (See the caption of 

Table 2 for further details on the dating convention used in the paper.) 
u

  is the standard deviation of the (log) 

efficient price changes: c  is the order processing component of the (log) half spread. P and Q are transition 

probabilities. 
0

  and 
1
  are the fixed and variable permanent price impact costs, respectively, due to adverse 

selection. In this table, 10,000 fold of c , 
0

 ,
1
 , and 

u
 estimates are reported.  

Panel A. GH 

Intervals 19.Jun 10, 000c  10, 000
u

    
0

10, 000   
1

10, 000    P   Q   

1 to 10,000 6.4691  1.1455  0.4026  0.2973  0.7779  0.9952  

    [0.2488]  [0.0092]  [0.2663]  [0.0296]  [0.0285]  [0.0007]  

2 to 20,000 0.2369  0.3296  0.0224  0.1079  0.6998  0.6812  

    [0.0070]  [0.0067]  [0.0112]  [0.0045]  [0.0093]  [0.0103]  

3 to 30,000 0.2618  0.3253  -0.0045  0.1143  0.6932  0.6696  

    [0.0067]  [0.0067]  [0.0107]  [0.0045]  [0.0084]  [0.0093]  

4 to 40,000 3.8289  0.4982  0.1617  0.0132  0.9756  0.9978  

    [0.3346]  [0.0047]  [0.3525]  [0.0140]  [0.0055]  [0.0005]  

5 over 40,000 0.2338  0.3163  0.0279  0.1034  0.7129  0.7193  

    [0.0056]  [0.0051]  [0.0088]  [0.0037]  [0.0070]  [0.0066]  

  Average 2.2061  0.5230  0.1220  0.1272  0.7719  0.8126  

    [0.0726]  [0.0067]  [0.0910]  [0.0072]  [0.0083]  [0.0011]  

        
Panel B. GH 

Intervals 23.Jun 10, 000c   10, 000
u

    
0

10, 000    
1

10, 000   P   Q  

1 to 10,000 0.5888  0.8663  0.0013  0.2801  0.6134  0.8806  

    [0.0379]  [0.0154]  [0.0413]  [0.0159]  [0.0293]  [0.0113]  

2 to 20,000 0.4937  0.7023  -0.1802  0.3249  0.6875  0.7321  

  
[0.0178]  [0.0096]  [0.0266]  [0.0132]  [0.0224]  [0.0199]  

3 to 30,000 0.5979  0.6508  -0.0602  0.2135  0.7514  0.6862  

    [0.0160]  [0.0085]  [0.0237]  [0.0118]  [0.0121]  [0.0158]  

4 to 40,000 0.7480  0.8385  -0.2228  0.3381  0.8047  0.6680  

  
[0.0229]  [0.0118]  [0.0331]  [0.0152]  [0.0117]  [0.0198]  

5 to 50,000 0.6967  0.7770  -0.1401  0.3168  0.5469  0.7715  

    [0.0161]  [0.0099]  [0.0247]  [0.0107]  [0.0126]  [0.0072]  

6 to 60,000 1.9791  1.4917  -0.3999  0.5310  0.4938  0.9656  

  
[0.0767]  [0.0144]  [0.0944]  [0.0365]  [0.0215]  [0.0026]  

7 to 70,000 1.8634  1.6498  -0.6026  0.7196  0.5066  0.9635  

    [0.0993]  [0.0175]  [0.1156]  [0.0381]  [0.0268]  [0.0035]  

8 to 80,000 0.9524  0.9531  -0.2908  0.4380  0.5595  0.8842  
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[0.0301]  [0.0120]  [0.0418]  [0.0199]  [0.0173]  [0.0061]  

9 to 90,000 0.7291  0.8546  -0.3889  0.4027  0.3652  0.9482  

    [0.0530]  [0.0115]  [0.0559]  [0.0250]  [0.0323]  [0.0077]  

10 to 100,000 0.6063  0.8177  -0.2904  0.3642  0.9135  0.5138  

  
[0.0479]  [0.0141]  [0.0448]  [0.0216]  [0.0122]  [0.0281]  

11 to 110,000 0.4745  0.6399  -0.0942  0.2284  0.6774  0.7772  

    [0.0192]  [0.0100]  [0.0242]  [0.0110]  [0.0261]  [0.0203]  

12 to 120,000 0.4426  0.6456  -0.1777  0.2620  0.8207  0.5577  

  
[0.0207]  [0.0108]  [0.0264]  [0.0133]  [0.0133]  [0.0259]  

13 to 130,000 0.4085  0.5672  -0.2453  0.2824  0.9430  0.5707  

    [0.0757]  [0.0111]  [0.0387]  [0.0199]  [0.0172]  [0.0281]  

14 to 140,000 0.1929  0.4566  -0.1674  0.2202  0.6016  0.6904  

  
[0.0117]  [0.0071]  [0.0150]  [0.0070]  [0.0173]  [0.0168]  

15 to 150,000 0.2419  0.3689  -0.0944  0.1850  0.6870  0.6956  

    [0.0082]  [0.0069]  [0.0131]  [0.0066]  [0.0126]  [0.0114]  

16 to 160,000 0.0879  0.4589  -0.2227  0.2584  0.4040  0.2585  

  
[0.0107]  [0.0055]  [0.0214]  [0.0085]  [0.0489]  [0.0313]  

17 over 160,000 0.8761  0.5628  -0.0550  0.1364  0.9928  0.5789  

    [0.0719]  [0.0052]  [0.0754]  [0.0192]  [0.0013]  [0.0604]  

  Average 0.7047  0.7825  -0.2136  0.3236  0.6688  0.7143  

    [0.0318]  [0.0106]  [0.0370]  [0.0156]  [0.0082]  [0.0085]  
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Table 8. Classified Trades: Correlations 

This table provides daily correlation estimates of the classified trades using the Tick rule, the Roll model, and 

the extended GH model for the gold futures contract traded on the CME Globex electronic trading platform 

from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further details on the dating convention used 

in the paper). The daily correlations of classified trades between the Tick rule and the Roll model (the extended 

GH model) is labelled as Roll (GH) respectively. 

Date Roll GH 

1-May 0.9999 0.9984 

2-May 1.0000 0.9991 

3-May 0.9980 0.9988 

4-May 0.9994 0.9995 

5-May 1.0000 0.9975 

8-May 0.9995 0.9998 

9-May 1.0000 0.9996 

10-May 1.0000 0.9998 

11-May 0.9999 0.9995 

12-May 1.0000 0.9994 

15-May 1.0000 0.9996 

16-May 1.0000 0.9999 

17-May 0.9996 0.9991 

18-May 1.0000 0.9999 

19-May 1.0000 0.9999 

22-May 0.9999 0.9998 

23-May 1.0000 1.0000 

24-May 1.0000 0.9990 

25-May 0.9999 1.0000 

26-May 0.9995 0.9997 

29-May 0.9998 0.9949 

30-May 1.0000 1.0000 

31-May 1.0000 1.0000 

1-Jun 1.0000 0.9999 

2-Jun 0.9998 0.9939 

5-Jun 1.0000 0.9998 

6-Jun 1.0000 1.0000 

7-Jun 1.0000 1.0000 

8-Jun 1.0000 0.9999 

9-Jun 1.0000 1.0000 

12-Jun 0.9995 0.9997 

13-Jun 1.0000 1.0000 

14-Jun 0.9995 0.9996 

15-Jun 1.0000 0.9997 

16-Jun 1.0000 0.9998 

19-Jun 0.9887 0.6063 

20-Jun 0.9995 0.9977 

21-Jun 0.9991 0.9960 

22-Jun 0.9989 0.9839 

23-Jun 0.9988 0.4455 

26-Jun 0.9991 0.8260 

27-Jun 0.9993 0.9976 

28-Jun 1.0000 0.9979 

29-Jun 0.9997 0.9996 
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Table 9. The Bid-Ask Spread (ticks) and Relative Decomposition 
 

      2

1 1
, | , ~ 0, , 1,1

t t t t t t t t t u tt t m m q E q u u N qp m cq  
 

         

   
1 1

where  Pr 1 | 1 , Pr 1 | 1
t t t t

P Qq q q q
 

         and 
0 1t t

V     

This table gives daily bid-ask spread in ticks and estimates of liquidity components of the above model with 

data from gold futures contracts traded on the CME Globex electronic trading platform from May 1, 2016 to 

June 30, 2016. (See the caption of Table 2 for further details on the dating convention used in the paper) In this 

model, 
u

  is the standard deviation of the log efficient price changes: c  is the order processing component of 

the (log) half spread. P and Q  are transition probabilities. 
0

  and 
1
  are the fixed and variable permanent 

price impact costs, respectively. In particular, this table first reports 
,GH cs

S  which is the spread in ticks 

computed as 
, ,GH cs GH cs

S sp P   where 
,GH cs

sp  is the log spread estimates implied by the model with the daily 

average volume per trade(
t

V ) (i.e., computed as 
, 0 1

2 ( )
GH cs t

sp c V      ) , and P  is the average daily 

tick price. For example, the 
,GH cs

S  on 1, May is 1.1970 (i.e., 4
2 (0.4615 10 )   (1,296.9/0.1)


   ) where 1,296.9 is 

the mean of the daily prices and 0.1 is the tick size on 1, May. In the last two columns, the estimates of 

informational and non-informational components of the bid-ask spread (
,GH cs

S ) are computed using the results in 

Table 6 as follows.  

Proportion of spread arising from order processing cost component :
0 1

TC = / ( ( ))
t

c c V     

Proportion of spread arising from the information asymmetry component:
0 1 0 1

IC=( ) / ( ( ))
t t

V c V        

Date AVG. daily price V  ,GH cssp  ,GH csS  TC IC 

1-May 1296.9  2.87  0.9229  1.1970  0.5254  0.4746  

2-May 1294.3  2.85  0.9312  1.2053  0.5749  0.4251  

3-May 1283.4  2.90  0.9457  1.2138  0.5751  0.4249  

4-May 1280.6  2.84  0.9288  1.1894  0.5593  0.4407  

5-May 1289.1  2.88  0.9471  1.2209  0.5719  0.4281  

8-May 1274.3  3.03  0.9081  1.1572  0.5751  0.4249  

9-May 1265.0  2.80  0.9288  1.1750  0.5262  0.4738  

10-May 1275.5  2.93  0.9217  1.1755  0.5749  0.4251  

11-May 1273.2  2.93  0.9274  1.1808  0.5872  0.4128  

12-May 1270.9  2.82  0.9419  1.1971  0.5486  0.4514  

15-May 1281.0  3.06  0.9330  1.1952  0.6201  0.3799  

16-May 1277.5  2.96  0.9294  1.1873  0.5792  0.4208  

17-May 1271.3  2.93  0.9656  1.2275  0.5768  0.4232  

18-May 1252.7  3.32  0.9545  1.1956  0.5948  0.4052  

19-May 1255.3  2.95  0.9327  1.1708  0.5960  0.4040  

22-May 1249.8  2.82  0.9038  1.1296  0.6159  0.3841  
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23-May 1237.6  3.34  0.9385  1.1615  0.6601  0.3399  

24-May 1223.2  3.16  0.9197  1.1250  0.6512  0.3488  

25-May 1226.5  2.71  0.9481  1.1627  0.5871  0.4129  

26-May 1216.6  3.18  0.9614  1.1320  0.5909  0.4091  

29-May 1207.7  2.82  1.0215  1.2336  0.5448  0.4552  

30-May 1215.3  2.96  0.9551  1.1608  0.6037  0.3963  

31-May 1216.4  2.99  0.9518  1.1577  0.6420  0.3580  

1-Jun 1215.7  2.70  0.9601  1.1672  0.5919  0.4081  

2-Jun 1234.1  3.30  0.9830  1.2132  0.6974  0.3026  

5-Jun 1246.2  3.05  0.9357  1.1660  0.6101  0.3899  

6-Jun 1243.9  3.02  0.9068  1.1279  0.6582  0.3418  

7-Jun 1258.8  3.39  0.8941  1.1254  0.6527  0.3473  

8-Jun 1267.0  3.09  0.8917  1.1298  0.6234  0.3766  

9-Jun 1273.8  3.13  0.8936  1.1383  0.6131  0.3869  

12-Jun 1284.0  3.19  0.8893  1.1419  0.6081  0.3919  

13-Jun 1286.5  3.14  0.8607  1.1073  0.6525  0.3475  

14-Jun 1289.6  3.01  0.9358  1.2068  0.6057  0.3943  

15-Jun 1305.1  3.17  0.8965  1.1699  0.6256  0.3744  

16-Jun 1290.6  3.07  0.8832  1.1398  0.6034  0.3966  

19-Jun 1287.6  3.18  4.8659  6.2654  0.9068  0.0932  

20-Jun 1278.5  3.03  0.9329  1.1927  0.5469  0.4531  

21-Jun 1269.4  2.84  0.9245  1.1735  0.5312  0.4688  

22-Jun 1266.0  2.69  0.9600  1.2154  0.5140  0.4860  

23-Jun 1315.0  2.88  2.0815  3.2990  0.6771  0.3229  

26-Jun 1330.2  2.83  0.8891  1.1827  0.6206  0.3794  

27-Jun 1317.7  2.96  0.9061  1.1940  0.5925  0.4075  

28-Jun 1323.8  3.01  0.9052  1.1982  0.5681  0.4319  

29-Jun 1320.8  3.03  0.8958  1.1359  0.5799  0.4201  
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Figure 1: Daily series of average prices (Price) and trading volumes (Volume) 

This figure presents the daily series of average prices (Price) and trading volumes (Volume) of the gold futures 

contract from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further details on the dating 

convention used in the paper) 
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Figure 2: Daily estimates of the permanent price impact  
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This figure provides daily 
1
  estimates from the above model using data on gold futures contracts trading on 

the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for 

further details on the dating convention used in the paper.) In this model, 
u

  is the standard deviation of the 

log efficient price changes: c  is the order processing component of the (log) half spread. P  and Q  are 

transition probabilities. 
0

 and 
1
  are the fixed and variable permanent price impact costs, respectively. 
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Figure 3: The Bid-Ask Spread in ticks  
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This figure presents daily bid-ask spread in ticks of the above model using data from gold futures contracts 

trading on the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of 

Table 2 for further details on the dating convention used in the paper.) In this model, 
u

  is the standard 

deviation of the log efficient price changes: c  is the order processing component of the (log) half spread. P

and Q  are transition probabilities. 
0

  and 
1
  are the fixed and variable permanent price impact costs, 

respectively. In particular, this table first reports 
,GH cs

S  which is the spread in ticks computed as 

, ,GH cs GH cs
S sp P   where 

,GH cs
s  is the log spread estimates implied by the model with the daily average volume 

(
t

V ) (i.e., computed as 
, 0 1

2 ( )
GH cs t

sp c V      ) , and P  is the average daily tick price. For example, the 

,GH cs
S  on 1, May is 1.1970 (i.e.,

4
2 (0.4615 10 )   (1,296.9/0.1)


   ) where 1,296.9 is the mean of the daily prices 

and 0.1 is the tick size on 1, May. 

 

 

 

 

 

0

1

2

3

4

5

6

7

1-May 8-May 15-May 22-May 29-May 5-Jun 12-Jun 19-Jun 26-Jun



52 

 

 

 

Figure 4: Daily estimates of informational (IC) and non-informational (TC) components 
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This figure presents daily estimates of liquidity components of the above model using gold futures data from 

contracts trading on the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016 (See the 

caption of Table 2 for further details on the dating convention used in the paper.) In this model, u is the 

standard deviation of the log efficient price changes: c  is the order processing component of the (log) half 

spread. P and Q  are transition probabilities. 
0

  and 
1  are the fixed and variable permanent price impact 

costs, respectively. In particular, the estimates of informational and non-informational components of the bid-

ask spread (
,GH cs

S ) are computed using the results in Table 6 as follows.  

Proportion of spread arising from order processing cost component: 
0 1

TC = / ( ( ))
t

c c V     

Proportion of spread arising from the information asymmetry component: 
0 1 0 1

IC=( ) / ( ( ))
t t

V c V       
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APPENDICES 

Table A1. Convergence diagnostics for the Bayesian estimation 

This table provides two convergence diagnostics for the Bayesian estimation of the three models: Roll, the extended Roll, and the extended GH. In particular, we compute 

and report the effective sample size based on the inefficiency factors and the p-value of Geweke(1992)'s convergence diagnostics test for the model parameters.  

1) Geweke(1992)’s convergence diagnostic: if Geweke’s p-value is less than 0.05, we interpret the burn-in period is too small and we can’t guarantee the 

convergence of the chain. In general, as Geweke’s p-value is close to 1, we have more efficient samples. 

2) Inefficiency factor and effective sample size: the effective sample size should be larger than 1000 for all parameters to guarantee sufficient number of the 

MCMC draws.  

Refer to Appendix B for more details on the inefficiency factors and the Geweke(1992)’s diagnostic tests.  

    Roll (Bayesian) MS(Bayeisan) GH(Bayeisan) 

Date Parameters c  
u

   c  
u

  P  Q  c  
u

  
0

  
1
  P   Q   

1-May Geweke P 0.9274  0.7340  0.7009  0.4356  0.5952  0.6594  0.5929  0.7866  0.5419  0.8123  0.6971  0.1978  

  Effective size 8413  8998  11709  9239  1761  1809  9405  6301  5210  9793  3988  3772  

2-May Geweke P 0.7120  0.8444  0.7632  0.7944  0.9771  0.6380  0.9897  0.9338  0.9901  0.9178  0.3291  0.9217  

  Effective size 6693  6940  13726  13494  2203  2292  10202  8163  5358  11294  4305  4866  

3-May Geweke P 0.9605  0.9132  0.8327  0.7237  0.9632  0.9860  0.6982  0.9823  0.8535  0.9734  0.7017  0.8055  

  Effective size 8322  8432  13122  11211  1586  1615  10009  7062  5094  7955  3083  3163  

4-May Geweke P 0.7671  0.7688  0.9416  0.7742  0.8531  0.8939  0.5546  0.4763  0.7750  0.9529  0.7296  0.1347  

  Effective size 7091  7830  14005  13976  2098  2068  8863  7376  4871  10748  3995  3889  

5-May Geweke P 0.9031  0.8974  0.5375  0.6463  0.1675  0.3989  0.5032  0.0945  0.3977  0.8397  0.7748  0.7234  

  Effective size 8556  9566  12791  8561  1410  1440  10337  6100  5620  10743  3702  3730  

8-May Geweke P 0.7246  0.9435  0.9898  0.8651  0.7313  0.8059  0.3239  0.6552  0.6819  0.8941  0.8464  0.8006  

  Effective size 7552  8164  15635  16948  2039  2308  6978  9673  4153  8696  3292  4265  

9-May Geweke P 0.9923  0.9756  0.6797  0.5197  0.6723  0.7198  0.9466  0.6883  0.7881  0.9219  0.8683  0.8723  

  Effective size 7312  8065  13524  16028  2228  2239  9148  9055  4902  10650  4548  4300  

10-May Geweke P 0.8597  0.8468  0.9085  0.9910  0.8637  0.8849  0.9912  0.9483  0.8477  0.9829  0.5173  0.5464  

  Effective size 4355  4450  16384  22530  2478  2411  9797  10977  5277  11881  4414  4630  

11-May Geweke P 0.7258  0.7233  0.9749  0.9444  0.7256  0.7679  0.9873  0.8992  0.6461  0.9855  0.8663  0.7997  

  Effective size 6011  6048  15662  16480  2442  2521  9102  9629  5154  9822  4496  4650  

12-May Geweke P 0.4671  0.1306  0.8781  0.8194  0.5045  0.4020  0.8810  0.8251  0.4436  0.6628  0.7698  0.8778  
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  Effective size 5998  6269  15485  14156  2336  2521  10673  8176  5254  10002  4387  5525  

15-May Geweke P 0.9804  0.9910  0.7367  0.9856  0.2007  0.8215  0.5584  0.6684  0.7590  0.8321  0.9885  0.9578  

  Effective size 1110  1104  19063  22743  2440  2581  9392  9749  5663  14534  4491  4378  

16-May Geweke P 0.9861  0.9982  0.9812  0.8226  0.8437  0.9154  0.9140  0.6349  0.9917  0.8659  0.9325  0.9850  

  Effective size 4731  4964  16268  21081  2479  2479  10010  10550  5697  11989  4254  4262  

17-May Geweke P 0.9408  0.9837  0.9529  0.9817  0.8258  0.7747  0.9903  0.7454  0.8285  0.6952  0.9203  0.9801  

  Effective size 6925  7316  13956  11694  1777  1823  9781  7233  5551  9936  3902  4169  

18-May Geweke P 0.9808  0.9915  0.7779  0.8919  0.5869  0.5827  0.9980  0.9564  0.9744  0.9993  0.9060  0.7648  

  Effective size 2755  2765  18418  23314  2695  2865  22352  25950  47455  170478  10429  12956  

19-May Geweke P 0.8704  0.8706  0.9976  0.7876  0.9471  0.9925  0.8460  0.9024  0.7672  0.7379  0.8028  0.6164  

  Effective size 1915  1920  17516  25642  2995  3043  9078  11419  5420  14514  4634  5869  

22-May Geweke P 0.8781  0.8970  0.9675  0.9082  0.9316  0.9432  0.7572  0.9166  0.9321  0.2853  0.6214  0.5764  

  Effective size 2498  2554  16569  33538  2555  2635  6881  12558  4287  12419  3653  4609  

23-May Geweke P 0.7080  0.8577  0.8650  0.8628  0.4451  0.0017  0.8091  0.9661  0.9791  0.9982  0.9101  0.9036  

  Effective size 10768  10680  18213  39618  1970  2016  7423  15025  4428  11320  3793  3681  

24-May Geweke P 0.4406  0.6900  0.7203  0.8073  0.9700  0.8814  0.6428  0.7684  0.7129  0.7195  0.8326  0.4196  

  Effective size 9734  8897  17721  40108  2246  2086  8064  22279  4768  9563  4227  4033  

25-May Geweke P 0.8894  0.8665  0.9421  0.8548  0.7626  0.7971  0.9654  0.9888  0.8617  0.6404  0.9288  0.9292  

  Effective size 6131  6708  18609  20088  2407  2504  8048  9792  4614  8849  3835  4483  

26-May Geweke P 0.4039 0.8067 0.9523 0.9749 0.9754 0.9128 0.2232 0.6810 0.4580 0.6544 0.3993 0.4403 

  Effective size 5997 6121 17895 21393 2468 2548 10901 13522 5272 8721 4332 4447 

29-May Geweke P 0.8549  0.8375  0.9162  0.9685  0.7571  0.1063  0.7973  0.5983  0.6381  0.8937  0.5263  0.0568  

  Effective size 7427  7657  11083  9611  2219  2498  10980  6422  6110  11504  3862  5104  

30-May Geweke P 0.8045  0.8141  0.7647  0.9484  0.7140  0.6880  0.6616  0.9484  0.8442  0.9858  0.4684  0.9291  

  Effective size 3001  2921  19121  28204  3115  3053  8867  11798  5117  13621  4875  4487  

31-May Geweke P 0.8063  0.7697  0.5694  0.9738  0.6201  0.7709  0.6797  0.7483  0.1615  0.4906  0.8193  0.8537  

  Effective size 11536  10198  22675  40217  3217  3210  8190  12667  5347  14808  4416  4129  

1-Jun Geweke P 0.9828  0.9945  0.9642  0.6798  0.9261  0.9397  0.5620  0.6319  0.2861  0.7874  0.4802  0.9943  

  Effective size 1921  1920  16855  23509  3054  2898  8539  10738  5241  11107  4903  4214  

2-Jun Geweke P 0.9627  0.8922  0.8057  0.6785  0.8385  0.7904  0.4829  0.6432  0.5624  0.1216  0.7074  0.9768  

  Effective size 9166  10011  2100  3996  1593  2303  8562  8948  5794  16780  3924  3970  

5-Jun Geweke P 0.7646  0.7154  0.9174  0.8756  0.9172  0.8797  0.8476  0.7030  0.2764  0.6942  0.5404  0.8952  

  Effective size 4603  4810  17471  25441  2046  2098  7583  10716  4823  12453  3758  4054  

6-Jun Geweke P 0.9076  0.8397  0.8185  0.9313  0.9465  0.8586  0.9260  0.5150  0.7924  0.7595  0.9570  0.9982  

  Effective size 14111  12035  20441  46255  3599  3606  7152  14816  4388  11504  4585  3779  

7-Jun Geweke P 0.9111  0.9243  0.3407  0.9785  0.6226  0.7852  0.8492  0.7661  0.7781  0.6150  0.3032  0.6276  

  Effective size 12290  11849  20534  44770  2900  2987  6984  16289  4173  13000  4067  4286  

8-Jun Geweke P 0.9028  0.7456  0.9511  0.9431  0.6865  0.6674  0.6449  0.6903  0.3703  0.7814  0.9207  0.9178  

  Effective size 9966  9624  20373  41532  3583  3449  8571  15989  5009  12590  4736  4527  

9-Jun Geweke P 0.6104  0.4483  0.9445  0.9229  0.9531  0.9779  0.6278  0.8647  0.1998  0.8142  0.6720  0.1087  

  Effective size 6233  6095  17409  34046  3001  2882  8419  13675  4854  12705  4078  3924  
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12-Jun Geweke P 0.8979  0.8997  0.8840  0.7422  0.5844  0.8830  0.8565  0.3687  0.5347  0.6629  0.8213  0.5067  

  Effective size 4340  4408  16462  24304  2508  2432  8792  12149  4823  11415  3772  3205  

13-Jun Geweke P 0.2990  0.7920  0.9485  0.9339  0.9445  0.8870  0.9135  0.9903  0.9949  0.9700  0.7857  0.8169  

  Effective size 10497  9993  18318  44846  2824  2754  7583  19914  4421  11163  3725  3829  

14-Jun Geweke P 0.9301  0.9365  0.7596  0.8193  0.7304  0.7161  0.8014  0.9051  0.8559  0.9507  0.9008  0.7635  

  Effective size 7551  7924  14613  11401  1299  1278  7698  7484  5386  11745  2985  2777  

15-Jun Geweke P 0.9551  0.9655  0.9315  0.9434  0.8175  0.7730  0.9280  0.8710  0.9975  0.9427  0.6644  0.6701  

  Effective size 3767  3785  19552  24541  2649  2604  6351  12261  3669  6334  3840  3211  

16-Jun Geweke P 0.9779  0.9994  0.9391  0.9648  0.5655  0.5579  0.7463  0.7460  0.7892  0.7972  0.5594  0.9741  

  Effective size 3350  3386  17458  28623  2255  2355  8194  12251  4583  11865  4021  4214  

19-Jun Geweke P 0.9612  0.9813  0.3395  0.3643  0.1126  0.3096  0.3752  0.4261  0.4189  0.3922  0.3181  0.3925  

  Effective size 10292  12942  1795  5090  1443  2416  1761  1855  1800  1754  1336  1130  

20-Jun Geweke P 0.9796  0.9958  0.9473  0.5442  0.9371  0.8569  0.8620  0.9588  0.9405  0.9189  0.9376  0.9126  

  Effective size 8563  9767  10851  9542  1813  1761  10706  7066  5464  8889  3483  3194  

21-Jun Geweke P 0.6503  0.8400  0.9390  0.7055  0.7626  0.8244  0.8835  0.7967  0.8501  0.4754  0.7167  0.9325  

  Effective size 8429  9114  12092  11998  2339  2167  10139  8849  5454  10399  4308  3487  

22-Jun Geweke P 0.7910  0.9317  0.8806  0.9841  0.8713  0.8793  0.9420  0.8065  0.8815  0.9087  0.7090  0.7914  

  Effective size 8430  9672  8324  5570  1102  1119  2765  2468  1689  2426  2231  2358  

23-Jun Geweke P 0.9840  0.9498  0.9698  0.2067  0.0281  0.3924  0.5930  0.8584  0.8570  0.8807  0.3825  0.7881  

  Effective size 12473  16675  3445  3441  1404  3537  2175  3563  2160  2260  1533  2951  

26-Jun Geweke P 0.9672  0.9994  0.9156  0.7016  0.9716  0.3641  0.8711  0.7982  0.9228  0.7864  0.4213  0.3246  

  Effective size 10103  12038  2206  3219  2184  1168  1272  2429  1068  1255  2002  1894  

27-Jun Geweke P 0.7884  0.7695  0.9528  0.9358  0.9717  0.9076  0.7976  0.5119  0.5352  0.7927  0.5152  0.3013  

  Effective size 8078  8351  12859  8734  1761  1914  9493  6378  5683  11834  3190  3189  

28-Jun Geweke P 0.7134  0.9336  0.9197  0.7476  0.3981  0.3297  0.7854  0.9133  0.9032  0.9169  0.8185  0.8430  

  Effective size 7551  7955  13293  11938  1875  1817  8604  6969  4565  8044  4115  3649  

29-Jun Geweke P 0.7966  0.6836  0.9112  0.8719  0.8441  0.9496  0.8172  0.8332  0.8920  0.8856  0.7177  0.7762  

  Effective size 7797  8246  14997  15705  2072  2067  9272  9592  5147  9459  4436  4205  
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Table A.2 The difference of estimates from Bayes and MLE 
 

This table presents average and maximum absolute differences between parameter estimates based on MLE and 

Bayesian estimates from the Roll, the extended Roll (MS), and the extended GH (GH) model. 

 

Bayes - MLE parameters Roll  MS GH 

Average difference  c  10,000 0.0000  0.0001  -0.0010  

 u
  10,000 0.0000  0.0000  -0.0027  

 
 

0
  10,000 - - 0.0052  

 1
   10,000 - - -0.0021  

 
P   - 0.0003  -0.0021  

  Q   - 0.0000  0.0009  

 
  

Bayes - MLE Parameters Roll  MS GH 

Max abs(difference) c  10,000 0.0013  0.0019  0.0272  

 u
  10,000 0.0013  0.0004  0.0702  

 0
  10,000 - - 0.1223  

 1
  10,000 - - 0.0513  

 
P   - 0.0074  0.0845  

  Q   - 0.0013  0.0381  
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Table A3. Model comparison (Likelihood ratio test) 

 
This table presents model comparison results from the Roll, and the extended Roll (MS), and the extended GH 

(GH) models based on the likelihood ratio tests as follows. 

 

2
ˆ

2 ln
ˆ

R

k

U

L

L


 
 
 

  

where ˆ
R

L  and ˆ
U

L  are the likelihood value under restricted model and unrestricted model, respectively. For 

example, when we compare the Roll model with the extended GH model, ˆ
R

L  and ˆ
U

L  are the likelihood value 

under the Roll model and under the extended GH model, respectively. Since we need to put restrictions on four 

parameters ( P , Q ,
0

 and
1
  ) on the extended GH model to obtain the Roll model, the test statistics follows a 

chi-square distribution with 4 degrees of freedom. 

 

Crit(1%), 6.6349 (Roll-MS), 11.3449 (Roll-GH), 9.2103 (MS-GH) 

Date Model Likelihood Likelihood ratio test 

1-May Roll 506516.3411 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 507429.8096 Chi-stat 1826.9369 4544.4196 2717.4827 

  GH 508788.5509 P-value 0 0 0 

2-May Roll 534907.565 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 536174.3543 Chi-stat 2533.5785 5993.3090 3459.7305 

  GH 537904.2195 P-value 0 0 0 

3-May Roll 563875.5491 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 565407.3009 Chi-stat 3063.5037 6233.1780 3169.6743 

  GH 566992.1381 P-value 0 0 0 

4-May Roll 480310.5331 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 481533.6496 Chi-stat 2446.2331 4987.4244 2541.1914 

  GH 482804.2453 P-value 0 0 0 

5-May Roll 643872.5622 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 645299.3172 Chi-stat 2853.5099 6354.5856 3501.0757 

  GH 647049.855 P-value 0 0 0 

8-May Roll 521049.5271 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 523056.4188 Chi-stat 4013.7834 6790.0208 2776.2374 

  GH 524444.5375 P-value 0 0 0 

9-May Roll 429310.7187 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 430505.897 Chi-stat 2390.3566 4884.1660 2493.8094 

  GH 431752.8017 P-value 0 0 0 

10-May Roll 445413.9822 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 447043.2221 Chi-stat 3258.4798 6198.8750 2940.3953 

  GH 448513.4197 P-value 0 0 0 

11-May Roll 498291.7839 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 499815.2659 Chi-stat 3046.9641 5984.7968 2937.8328 

  GH 501284.1823 P-value 0 0 0 

12-May Roll 463180.7376 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 464474.9132 Chi-stat 2588.3511 5352.4716 2764.1205 

  GH 465856.9734 P-value 0 0 0 

15-May Roll 479958.3703 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 481619.7409 Chi-stat 3322.7412 5761.2219 2438.4807 

  GH 482838.9813 P-value 0 0 0 

16-May Roll 488362.0101 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 
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MS 489909.8219 Chi-stat 3095.6235 5825.5533 2729.9298 

  GH 491274.7868 P-value 0 0 0 

17-May Roll 582443.3422 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 583638.2658 Chi-stat 2389.8472 6063.9801 3674.1329 

  GH 585475.3323 P-value 0 0 0 

18-May Roll 581842.2541 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 584348.0668 Chi-stat 5011.6255 8264.8027 3253.1771 

  GH 585974.6554 P-value 0 0 0 

19-May Roll 362660.0529 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 364184.207 Chi-stat 3048.3083 4902.4966 1854.1883 

  GH 365111.3011 P-value 0 0 0 

22-May Roll 391784.1099 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 394046.2345 Chi-stat 4524.2491 6184.3464 1660.0972 

  GH 394876.2831 P-value 0 0 0 

23-May Roll 504834.4489 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 507961.0369 Chi-stat 6253.1761 9019.2506 2766.0745 

  GH 509344.0742 P-value 0 0 0 

24-May Roll 426820.3463 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 429332.9695 Chi-stat 5025.2465 7617.5436 2592.2971 

  GH 430629.1181 P-value 0 0 0 

25-May Roll 368283.5937 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 369811.1244 Chi-stat 3055.0614 4982.7536 1927.6922 

  GH 370774.9705 P-value 0 0 0 

26-May Roll 409937.9610  Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 411698.1906  Chi-stat 3520.4591 6524.8684 3004.4093 

  GH 413200.3952  P-value 0 0 0 

29-May Roll 245069.8893 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 245384.3328 Chi-stat 628.8869 2015.8596 1386.9727 

  GH 246077.8191 P-value 0 0 0 

30-May Roll 387333.0538 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 388964.1733 Chi-stat 3262.2390 5358.2592 2096.0202 

  GH 390012.1833 P-value 0 0 0 

31-May Roll 410784.406 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 412664.8679 Chi-stat 3760.9238 5602.1671 1841.2433 

  GH 413585.4895 P-value 0 0 0 

1-Jun Roll 322725.4681 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 324025.2884 Chi-stat 2599.6405 3893.7146 1294.0740 

  GH 324672.3254 P-value 0 0 0 

2-Jun Roll 570025.7323 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 571681.6274 Chi-stat 3311.7902 4866.7338 1554.9435 

  GH 572459.0992 P-value 0 0 0 

5-Jun Roll 432138.5773 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 434409.7598 Chi-stat 4542.3650 6720.9511 2178.5861 

  GH 435499.0528 P-value 0 0 0 

6-Jun Roll 315554.1838 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 316977.6943 Chi-stat 2847.0210 4228.0255 1381.0045 

  GH 317668.1966 P-value 0 0 0 

7-Jun Roll 408143.8464 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 410522.4484 Chi-stat 4757.2040 6898.4437 2141.2397 

  GH 411593.0683 P-value 0 0 0 

8-Jun Roll 392998.4378 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 394881.2157 Chi-stat 3765.5559 5779.1010 2013.5452 

  GH 395887.9883 P-value 0 0 0 

9-Jun Roll 389712.6362 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 391565.2274 Chi-stat 3705.1824 5361.7774 1656.5950 

  GH 392393.5249 P-value 0 0 0 

12-Jun Roll 517206.8955 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 
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MS 519606.3378 Chi-stat 4798.8845 8008.6417 3209.7572 

  GH 521211.2164 P-value 0 0 0 

13-Jun Roll 489502.5198 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 492309.1285 Chi-stat 5613.2175 8273.0244 2659.8069 

  GH 493639.032 P-value 0 0 0 

14-Jun Roll 511532.4208 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 513162.2615 Chi-stat 3259.6815 5427.8531 2168.1716 

  GH 514246.3473 P-value 0 0 0 

15-Jun Roll 867118.8519 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 870552.3898 Chi-stat 6867.0758 12740.2098 5873.1340 

  GH 873488.9568 P-value 0 0 0 

16-Jun Roll 530716.4036 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 533219.1178 Chi-stat 5005.4283 7886.3863 2880.9580 

  GH 534659.5968 P-value 0 0 0 

19-Jun Roll 474641.9255 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 476240.678 Chi-stat 3197.5050 3469.1268 271.6218 

  GH 476376.4889 P-value 0 0 0 

20-Jun Roll 519765.9536 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 520691.8947 Chi-stat 1851.8821 5246.3840 3394.5018 

  GH 522389.1456 P-value 0 0 0 

21-Jun Roll 369354.6134 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 370201.8094 Chi-stat 1694.3920 3876.7641 2182.3721 

  GH 371292.9955 P-value 0 0 0 

22-Jun Roll 444442.935 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 444883.4025 Chi-stat 880.9349 3413.8757 2532.9408 

  GH 446149.8729 P-value 0 0 0 

23-Jun Roll 1374533.738 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 1386969.649 Chi-stat 24871.8216 29075.2245 4203.4029 

  GH 1389071.351 P-value 0 0 0 

26-Jun Roll 683033.9206 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 684608.0586 Chi-stat 3148.2760 5604.7667 2456.4907 

  GH 685836.304 P-value 0 0 0 

27-Jun Roll 480307.2243 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 481121.4758 Chi-stat 1628.5031 4280.9591 2652.4561 

  GH 482447.7039 P-value 0 0 0 

28-Jun Roll 449722.4166 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 450602.4876 Chi-stat 1760.1420 4875.4327 3115.2907 

  GH 452160.133 P-value 0 0 0 

29-Jun Roll 480259.7110 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH 

 
MS 481791.8537 Chi-stat 3064.2856 6243.7616 3179.4760 

  GH 483381.5918 P-value 0 0 0 
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Appendix A 

 

A.  Bayesian Estimation of the empirical market microstructure models 

We proceed first by discussing briefly Hasbrouck's Gibbs sampling algorithm for the Roll 

model followed by the estimation algorithms we propose for the case of the extended Roll 

and Glosten and Harris models with autocorrelated trade direction indicators. 

 

A.1 Hasbrouck (2004) 

To facilitate the explanations to follow, we reproduce the Roll model, equation (1) in 

the text: 

 2

1 ,   ~ 0,

t t t

t t t t u

p m cq

m m u u N 

 

 
 

where tp  is the log transaction price, tm  is the efficient price, tq  is the independent trade 

direction indicator, and c is the (log) half bid-ask spread. To estimate this model, we use 

Hasbrouck (2004)’s codes downloaded from his website.  

Hasbrouck (2004) draws c, 2

u , and  1[ ,..., ]Tq q q  repeatedly from the posterior 

conditional density as follows given data  1[ ,..., ]Tp p p : 

 Draw (1)q from 
 0 (0)

1( ,..., | , , )T uf q q c p  

 Draw 
 1

c  from 
 0 (1)( | , , )uf c q p  

 Draw  1

u  from 
 1 (1)( | , , )uf c q p  

The final output is 
      , ,

j j j

uc q for j = number of simulations. 

A.1.1 Exact forms of conditional posterior densities 

The Roll model can be expressed in regression form as ' 2

1,   E( )= u TY Xc u uu I   . In 

the present setup, 2[ ,... ]TY p p   , 2[ ,..., ]TX q q   , and 2[ ,..., ]Tu u u . By using conjugate 

prior distributions, the conditional posterior distributions for the standard regression 

parameters are given as follows.  

 

i. Log half spread ( c ):  
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 Prior distribution :  ~ ,prior prior

c cc N    

 Posterior distribution:  | , ~ ,posterior posterior

c cc Y X N    

    
   

1 1
1 1 Prior 1 Prior Prior

where ,

 and 

posterior posterior

c c

u u u c c

Dd D

D X X d X Y




 

  

  

        
 

We impose a non-informative prior for c  by assuming a small value for Prior

c ( 610 ) 

and large number for Prior

c ( 610 ).  As economic theory dictates the half-spread is positive, 

Hasbrouck uses a truncated normal density to ensure a c  > 0.   

In this normal linear regression model, the conjugate prior distribution for the 

variance parameter is the inverted gamma distribution.   

ii. The variance parameter ( 2

u ):  

 Prior distribution: 0 0

2

1
| ,

2 2u

c
 



 
 
 

 

 Posterior distribution: 1 1

2

1
| , , ,

2 2u

c Y X
 



 
 
 

 

            
   1 0 1 0w h e r e  1 ,T Y X c Y X c            

iii. The independent trade direction indicator  

First, we express the joint distribution of  1[ ,..., ]Tq q q  using Bayes’ theorem and 

subsequently simplify as in this case Pr( ) 0.5q  , and ( )f p  does not depend on q. For 

economy of notation, parameters that are given will be dropped from the explicit conditioning 

set. 

1
( | ) ( | ) ( ) ( | )

( )
pr q p f p q pr q f p q

f p
     

Hasbrouck uses a single-move Gibbs sampling algorithm to draw tq  sequentially as follows.  

*

1 1 2 3

* *

2 2 1 3

* * * *

1 2 1

 Draw  from Pr( | , , , , )

 Draw  from Pr( | , , , , )

               

 Draw  from Pr( | , , , , )

T

T

T T T

q q p q q q

q q p q q q

q q p q q q 






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where *

tq  is the newly drawn value of tq  from those remaining after the previous draw. To 

complete this algorithm, Hasbrouck derives the conditional distribution 1 1( | , , )t t t tpr q p m m    

using Bayes’ theorem, simplifying it as neither 1 1( | , )t t tpr q m m   nor 1 1( | , )t t tf p m m   

depend on q. 

 

 

1 1 1 1
1 1 1 1

1 1

( | , , ) r( | , )
r( | , , ) ( | , , )

( | , )

t t t t t t t
t t t t t t t t

t t t

f p q m m p q m m
p q p m m f p q m m

f p m m

   
   

 


   

Hasbrouck demonstrates that 1 1( | , , )t t t tf p q m m   follows a normal distribution 

(
  2

2

( )1
( , , ) exp

22

t t x

x x t t

xx

p cq
p cq


  



  
   

 

) and derives posterior densities for three 

different scenarios. The non-normalized probabilities of a buy and a sell order are determined 

after evaluating each case at 1tq    and 1tq   , respectively. The normalized probability 

of a buy for the three different possibilities is given as follows. 

 

 For t=1, 

     
2 1

1 2 3

2 1 2 1

(0, , )
( 1| , , , , )

(0, , ) (0, , )

u

T

u u

m p c
pr q p q q q

m p c m p c

 

   

 
 

    
,  

where t t tm p cq    

 

 For  t=2,…..T-1, 

 

   

1 1

1 1 1

1 1 1 1

1
, ,

2 2
( 1 | , ,..., , , )

1 1
, , , ,

2 22 2

u

t t t

t t t T

u u

t t t t t t

m m p c

pr q p q q q q

m m p c m m c p




 
 

 

 

   

 

 

    

 
 
 

   
   
   

 

 For t=T, 

1

1 2 3 1

1 1

(0, , )
( 1| , , , , , )

(0, , ) (0, , )

u T T

T T

u T T u T T

p c m
pr q p q q q q

p c m p c m

 

   





 

 
 

    
 

For each scenario, the Hasbrouck (2004) algorithm draws a random number from the 

uniform distribution (0,1). If the random number is lower than the normalized probability of a 

buy it chooses 1 1q  
 

(and otherwise, 1 1q   ). 
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A.2 The extended Roll model with an autocorrelated trade direction indicator 

To facilitate the explanations to follow, we first reproduce the extended Roll model 

in the text: 

 2, ~ 0,                                            t t t t up c q u u N    

     1 1where 1, 1 , 1| 1  and 1| 1t t t t tq P pr q q Q pr q q            

The above model extends the Roll model (Hasbrouck's algorithm) by incorporating a 

single move Gibbs sampling algorithm to simulate the autocorrelated and latent trade 

direction indicator along with its transition probabilities. In sum, the estimation algorithm 

consists of the following five steps. 

 Draw (1)q from 
     0 0 0 (0)

1( ,..., | , , , , )T uf q q c P Q p  

 Draw 
 1

c  from 
 0 (1)( | , , )uf c q p  

 Draw  1

u  from 
 1 (1)( | , , )uf c q p  

 Draw (1)P from  0 (1)( | , , )f P Q q p  

 Draw (1)Q from  1 (1)( | , , )f Q P q p  

The final output is 
          , , , ,

j j j j j

uc P Q q for j = number of simulations. 

For the half spread ( c ) and the variance parameter ( 2

u ), we still adopt Hasbrouck's 

algorithms explained in A.1.  

 

i. The autocorrelated trade direction indicator  

First, after suppressing the conditioning on the parameters, the conditional distribution 

of tq  is derived via Bayes’ rule as follows: 

 
   

 
   

| |
| , | |  

|

t t

t t t t

t

f Y q pr q q
pr q q Y f Y q pr q q

f Y q



 



          

   2 1 1, 1 where , , , ,  and , ,, ,t t T t t t TY p p Y Y q q q q q        

 

The first term in the above equation is: 

     

     

   

2 1 1

2 2 1 1 1

1 1 1

 | | , | ,

              = | , | , | ,

                | , | ,

T T

t t t T T T

t t t t t t

f Y q f p p q f p Y q

f p q q f p q q f p q q

f p q q f p q q



 

  

   

  

  
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 The second line of the above equation arises from the fact that the likelihood 

function of ( 1, )tp t T   depends on the past state variables, 1,t tq q , while the third 

follows from the fact that all terms except for    1 1 1| ,  and | ,t t t t t tf p q q f p q q     are 

constant, since we are concerned with the probability of 
tq  conditional on Y and all the 

other 'tq s .  

The second term is given by: 

   

   

 

   

 

1 1 1

1 1 1 1

1, 1 1

1 1 1 1

1 1

| | , , , ,

, , | , , | , ,
                    

, | , ,

                   , , | , , | , ,

                    | , ,

t t t t t T

t T t t t

t T t

t T t t t

t t t

pr q q pr q q q q q

pr q q q q pr q q q

pr q q q q

pr q q q q pr q q q

pr q q q pr q

  

 

 

 

 







      

       

   

2 1 1 1 1 1 1

1 2 1 1 1

1 1

| , , , , | , , | , ,

                    = | | , , | |

                   | |

t T T t t

t t t t T T t t

t t t t

q q pr q q q pr q q q

pr q q pr q q pr q q pr q q

pr q q pr q q

  

    

 

 

 

Applying Bayes’ rule to the second line, and the Markov property of state variables to 

the fifth line and combining, we obtain the final conditional distribution. 

             1 1 1 1 1
| , | | | , | , | |

t t t t t t t t t t t t t t
pr q q Y f Y q pr q q f p q q f p q q pr q q pr q q

      
   

      Let  0
1| ,

t t
P pr q q Y


    and  1

1| ,
t t

P pr q q Y


  . These are un-normalized 

probabilities of a sell and a buy order, respectively. By using two values, we obtain the 

following normalized probabilities: 

0
0

0 1

Pr
P

P P


   

If the normalized probability of a sell  0Pr  is higher (lower) than a value from the 

uniform distribution (0,1), we set 1tq  
 
(+1). Specifically, the simulation algorithm can be 

stated as follows. 

 

 For t = 0,  

We use the unconditional probability to determine the direction of   

 0

1
1

2

Q
pr q

P Q


 

 
 

If  0 1pr q   is higher than a draw from uniform distribution [0,1], then . 

 

0q

0 1q 
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 For  t = 1,…..T-1, 

         1 1 1 1 1| , | , | , | |t t t t t t t t t t t tpr q q Y f p q q f p q q pr q q pr q q         

        
   

        

2 2

1 1 12

1 1

2 2

1 1 12

1
where  1| , exp ( 1 1

2

                                         | 1 1|

1
             1| , exp (1 1

2

 

t t t t t t

t t t t

t t t t t t

pr q q Y p c q p c q

pr q q pr q q

pr q q Y p c q p c q





   

 

   

 
            

 

     

 
          

 

   1 1                                        | 1 1|t t t tpr q q pr q q    

 

 For  t = T, 

     1 1| , | , |T T T T T T Tpr q q Y f p q q pr q q     

      

      

2

1 12

2

1 12

1
where  1| , exp ( 1 1|

2

1
           1| , exp (1 1|

2

T T T T T T

u

T T T T T T

u

pr q q Y p c q pr q q

pr q q Y p c q pr q q





  

  

 
          

 

 
       

 

 

ii. Transition probabilities: 

Finally, we are required to estimate the two transition probabilities P and Q. 

Following the discussion contained in Chapter 9 of Kim and Nelson (1999), we use the 

beta distribution as follows:  

 Independent prior distribution :  

   

 

1 111

111 1

11

11 1 1

11

1 1 1 1

~ , 1

~ ( , ) = 1

uu

uu

P beta u u P P

Q beta u u Q Q



 







  

 


  

where  , 1,1iju i j    are known parameters of the priors.  

 Posterior distribution :  

  
 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

| ,

| ( , )

P q beta u n u n

Q q beta u n u n

 

     

 

   

where ijn  refers to the transitions from state i  to j , which can be easily counted for 

given q . 
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A3. The extended Glosten and Harris Model  

To facilitate the explanations to follow, we reproduce the extended Glosten and Harris 

model in the text: 

       2

0 1 1( 1) ,  0,t t t t t t t up c q V q P Q P Q q u u N              

In this model, we have two extra parameters (
0 and 

1 ) and two transition 

probabilities ( P  and Q ) appearing in the main regression. Therefore, the conditional 

posterior densities for the transition probabilities parameters do not follow any known 

distributions. Therefore the Gibbs sampling estimation algorithm as employed in the previous 

section is not feasible to estimate these parameters. To overcome this issue, we adopt a 

variant of the tailored Random-Walk Metropolis-Hastings Algorithm developed by Chib and 

Ramamurthy (2010).  

Specifically, we draw 0 1, , , , , ,uc P Q   and q repeatedly as follows. First, the 

parameters and latent trade direction indicators are set equal to some arbitrary values. 

Denoting these initial values as      0 0 0 (0) (0) (0) (0)

0 1{ , , , , , , }uc P Q q   
 

, the first step is 

represented as follows. 

 Draw (1)q from      0 0 0 (0) (0) (0)

0 1( | , , , , , , )uf q c P Q Y   
 

 

 Draw      1 1 1 (1) (1)

0 1, , , ,c P Q  
 

 from 
(0) (1)

0 1( , , , , | , , )uf c P Q q Y    

 Draw  1

u  from      1 1 1 (1) (1) (1)

0 1( | , , , , , , )uf c P Q q Y   
 

 

By repeating this procedure many times, we generate a sequence of draws of 

unknowns for 1, ,j n . The Gibbs principle demonstrates that the limiting distribution of 

the n th
 draw after burn-in samples (as n ) is 

0 1( , , , , , , | )uf c P Q q Y     , the desired 

posterior, and the limiting draw for any parameter is distributed as the corresponding 

marginal posterior. The details for Bayesian algorithms are presented below. 

i. The autocorrelated trade direction indicator  

Once we suppress the conditioning on the parameters, the conditional distribution of 
tq  

is derived via Bayes’ rule following the procedure outlined in A.2. 
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             1 1 1 1 1| , | | | , | , | |t t t t t t t t t t t t t tpr q q Y f Y q pr q q f p q q f p q q pr q q pr q q         

 

Define  0 1| ,t tP pr q q Y    and  1 1| ,t tP pr q q Y  as the non-

normalized probabilities of a sell and a buy trade.
 
By using these two values, we obtain the 

following normalized probabilities for 1tq   .  

0
0

0 1

Pr
P

P P



  

If the normalized probability of a sell  0Pr  is higher (lower) than a value from the 

uniform distribution (0,1), we set 1tq  
 
(+1). Specifically, the simulation algorithm can be 

stated as follows. 

Specifically, the simulation algorithm can be stated as follows. 

 For t = 0,  

We use the unconditional probability to determine the . 

 0

1
1

2

Q
pr q

P Q


 

 
 

If  0 1pr q   is higher than a draw from uniform distribution [0,1], then . 

 

 For  t = 1,…..T-1, 

         1 1 1 1 1| , | , | , | |t t t t t t t t t t t tpr q q Y f p q q f p q q pr q q pr q q         

 
      

      
   

2

1 0 1 1

2 2

1 1 0 1 1 1

1 1

( 1 1
1

where 1| , exp
2

1

                                             | 1 1|

          

t t t t

t t

u
t t t t

t t t t

t

p c q V q

pr q q Y

p c q V q

pr q q pr q q

pr q

   


   

 



   

 

  
          

     
          

  

    

 
      

      
   

2

1 0 1 1

2 2

1 1 0 1 1 1

1 1

(1 1
1

1| , exp
2

1

                                       | 1 1|

t t t t

t

u
t t t t

t t t t

p c q V q

q Y

p c q V q

pr q q pr q q

   


   

 



   

 

  
          

    
          

  

  

 

0q

0 1q 
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where P Q    and 1P Q     

 For  t = T, 

     1 1| , | , |T T T T T T Tpr q q Y pr p q q pr q q   
 

        

 

        

2

1 0 1 12

1

2

1 1 0 1 12

1
where  1 | , exp ( 1 1

2

                                            1 |

1
           1 | , exp (1 1

2

   

T T T T T T

u

T T

T T T T T T

u

pr q q Y p c q V q

p q q

P p q q Y p c q V q

   


   


  



  

            

 

            

 
 
 

 
 
 

 1
                                        1 |

T T
p q q




  

ii. The mean parameters  0 1, , , ,c P Q   

We use the tailored random walk Metropolis Hastings algorithm to draw 

 0 1, , , ,c P Q    given other model parameters and the latent variables ( q ) with the 

positivity restriction on ( c >0) 

In order to compute an acceptance/rejection probability for the Metropolis Hastings 

algorithm, we need to derive the joint conditional posterior density of  0 1, , , ,c P Q   . 

 Prior distribution of  0 1, , , ,c P Q   : 

We assume independent prior distributions for the following parameters.  

a. Multivariate normal density prior for  0 1, ,c    

:    
   1

0 0 0

113
222

0 0 0, 2N e
   

  
   

  

 

 

b. Beta density prior for  and P Q  

:      1, 1 1,11,1 1, 1
1 11 1

, 1 1
u uu u

beta P Q P P Q Q  
  

  
 

Therefore, the joint prior density for  0 1, , , ,c P Q   is as follows.  
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     
   

11 1 111 1 1

1
0 0 01 11 1

113
222

01 1 2
u uu u

P Q Q P e
   

  


  

   
     

 Conditional likelihood function given q  

The conditional likelihood function  0 1, , , , | ,L c P Q q Y  of the extended Glosten 

and Harris (1988) model is formed by suppressing the conditioning on all the parameters 

and data except for q  and Y as follows. 

     0 1, , , , | ,  |L c P Q q Y f Y q pr q  
 

Where        1 1 0 0 2 2 1 1 1 1| | , , | , ,  | , ,T T T Tf Y q f y q q y f y q q y f y q q y    

       1 0 2 1 1 | | |T Tf q f q q f q q f q q   1 1 2 1 and  , , ,t ty y y y   

We can express the above likelihood function in the following compact form. 

     11 1 111 1 1

0 1, , , , | , (1) ( ) 1 1
n nn n

ij ijL c P Q q Y f f T P Q Q P           

where , {1, 1}i j    and ,i jn  is the total number of transitions from state 1tq i    to 

tq j , for t=1, 2,..,T. And  1 1( ) | , ,ij t t t tf t f p q j q i y       

       
2

1 0 1 122

1 1
exp

22

j i j i

t t t t t t

uu

p c q q V q q   


 

 
         

 
  

 Conditional Posterior density of  0 1, , , ,c P Q    given q  

By multiplying the joint prior density by the conditional likelihood function, we 

obtain the following conditional posterior density  
0 1

, , , ,  | ,f c P Q q Y  . 

     

 
   

11 11 1 1 1 111 11 1 1 1 1

0 1

1
0 0 0

1 11 1

113
222

0

, , , ,  | 1 1

                                        

  (1) ( )

2   

T

u n u nu n u n

ij ijf c P Q q P Q Q Pf f T

e
   

 



      



      

   

  



  



 

 Joint proposal density  0 1, , , ,c P Q    
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We follow the procedure underpinning the joint proposal density of the tailored 

Random-Walk Metropolis-Hastings Algorithm developed by Chib and Ramamurthy (2010) 

as follows.  

a. We first maximize the log conditional posterior density using a simulated 

annealing algorithm or another robust maximization algorithm (e.g. fminsearch in Matlab) 

to obtain maximum posterior estimates  * * * * * *

0 1, , , ,  c P Q    and corresponding 

variance estimate  *
Var  . Denote the old (new) parameter value  old new   in the 

MCMC iteration.
 21

 

b. We simulate a new candidate new  using the following proposal density, 

(denoted as  * | .newq  ). 

Multivariate t -density (   * * *| , ,newq Var nu   ). 

        * *, ,new MVT Var nu     

where nu is the degree of freedom parameter, and will be set to obtain 20%-50% of 

acceptance ratio for new defined below.  

Note: if new  satisfies the several restrictions on   (e.g. non-negativity 

restrictions for , ,c P Q ) then  we proceed to the next step. If that is not the case, we set 

old   and terminate the draw at this point. 

c. We compute the following ratio to accept or reject the proposed value for new . 

   
   

*

*

|

|

| .

| .

new

T

old

T

old

new

f q

f q

q

q















 

To implement the accept-reject step, we draw a uniform random variable, 

 0,1U U , and set   if new U      and  if old U     . 

                                           
21

 In the new Tailored MH algorithms, in each step of MCMC, we estimate the mode and variance of the 

proposal densities by maximizing the log posterior densities of all parameters using simulated annealing or 

Nelder-Mead simplex algorithm. 
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iv. The variance parameter ( 2

u ):  

We need to express first the Glosten and Harris (1988) model in the following 

regression format.  

1 1 1 0

1

, ,t t t t t t t t t t t

c

p q q q q q V V q V u    



  

 
          

   
    

In matrix notation, 

 2, 0,t t t t uy X u u N    

where t ty p  ,

1

1

1

t t

t t t

t t t t t

q q

X q q

q V V q V

 

 







 
 

    
 

  

, 0

1

c

 



 
 


 
  

 

Based on this notation, we can express the conditional posterior distribution for 

2

u  as follows. 

 Prior distribution: 0 0

2

1
| ,

2 2u

 




 
 
 

 

 Posterior distribution: 1 1

2

1
| , , ,

2 2u

Y X
 




 
 
 

 

   
   1 0 2 2 1 0w h e r e  1 , [ , . . . , ] , [ , . . . , ] ,T TT Y Y Y X X X Y X Y X               
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Appendix B 

 

B.  MCMC convergence diagnostics 

In any MCMC estimation, it is crucial to determine the convergence of the chain to 

conduct a correct statistical inference. In this paper, as a diagnostic to check the convergence 

of our MCMC algorithm, we compute and report the effective sample size based on the 

inefficiency factors and the p-value of Geweke's convergence diagnostics test for the model 

parameters. Specifically, we start all estimations with 100,000 burn-in period and 250,000 

total numbers of iterations and increase these numbers by 10,000 until the convergence 

criteria for both (explained below) are satisfied simultaneously for all parameters. 

B.1 Geweke’s convergence diagnostic (CD)  

The idea of Geweke’s diagnostic is simple and mimics the two-sample test of means. 

First we set the total number of iterations ( n ), the burn-in period ( 0n ), and the rest of 

iterations ( 1n ) (i.e., 0 1 =n n n ).  Then divide 1n  into three periods (e.g., 1 A B Cn n n n   ). 

Specifically, we set the first 40% ( An ), the second 20% ( Bn ), and the last 40% ( Cn ) as three 

sub-periods. And if the mean of the first 40% is not significantly different from that of the 

last 40%, then we conclude the target distribution converged somewhere in the first 40% of 

the chain.  

More formally, we compute Geweke’s CD as follows. 

CD  =  
ˆˆˆ ˆ /

A C

CA
n n

A Cn n


 

 
  

 
 

  

where ˆ ˆ ˆ, ,
A B Cn n n    ( ˆ ˆ ˆ, ,A B C   ) are the sample means (standard deviation) of each 

sub-period. Based on the Geweke’s CD, we compute Geweke’s p-value at 0.05 significance 

level to test if the means of the first and the last samples are same.  

 ' 2 1 | |Geweke p CD       

where     is the cumulative density function of the standard normal distribution. If 

Geweke’s p-value is less than 0.05, we interpret the burn-in period is too small and we can’t 
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guarantee the convergence of the chain. In general, as Geweke’s p-value is close to 1, we 

have more efficient samples. 

B.2. Inefficiency factor and effective sample size  

The inefficiency factor, as proposed by Kim, Shephard, Chib (1998), is defined as

 
1

1 2
k

k



   where  k  is the 

th
k  order autocorrelation coefficient and measures how 

well the MCMC sequence mixes. In this paper, we estimate it as 

   
200

1

ˆ1 (2 200) / (200 1) / B
j

K j j


     where  ˆ j  is the th
j order sample autocorrelation 

coefficient of the MCMC draws and  K   stands for the Parzen kernel. A value of 1 

indicates that the MCMC draws are uncorrelated with a good mixing, while large values 

indicate a slow mixing. The effective sample size is computed as the ratio of the number of 

iterations after the burn-in period to the inefficiency factor and should be larger than 1000 for 

all parameters to guarantee sufficient number of the MCMC draws. 
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Appendix C 

 

C. Maximum Likelihood Estimation (MLE) methods of the empirical market 

microstructure models 

The empirical market microstructure models employed in this paper imply that we 

can interpret them as a regime switching model. Based on the Hamilton filter, we obtain a 

likelihood function and subsequently use MLE methods for estimation (see chapter 4 of Kim 

and Nelson (1999) for more details).  

As an illustration, we demonstrate how to construct the likelihood function for the 

Glosten and Harris model with autocorrelated 
tq . This model implies that: 

       2

0 1 1( 1) ,  0,t t t t t t t up c q V q P Q P Q q u u N              

where tp  is the log transaction price, tq is the trade direction indicator with transition 

probabilities 1( 1| 1)t tP pr q q     and 1( 1| 1)t tQ pr q q      .  

On this basis, we interpret this form of the Glosten and Harris model with 

autocorrelated 
tq  as a standard regime switching model. The likelihood function 

 0 1 2, , , , | , , TL c P Q p p    of the extended Glosten and Harris (1988) model is formed by 

suppressing the conditioning on all the parameters. 

:      0 1 2 3 2 1, , , , | , ,  | |T T TL c P Q p p f p p f p p           

 

     

     
1

1

1 2 1

1 1 1 1 1

1 1 1 1 1

where , ,   and

        | | , , , |

                            | , , | |  

t t

t t

t t

t t t t t t t t t

q q

t t t t t t t t

q q

p p p

f p p f p q q p pr q q p

f p q q p pr q q pr q p





 

    

    

   

     

   





 

First the conditional likelihood function  1 1| , ,t t t tf p q q p    is expressed as 

follows. 
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        
2

1 1 0 1 122

1 1
| , , exp ( 1)

22
t t t t t t t t t

uu

f p q q p p c q V q P Q P Q q 


  
             

 
 
 

  

 

Second, in order to complete this likelihood function, we need to compute  

1

1 1 1( | ) ( , | )
t

t t t t t

q

pr q p pr q q p


      based on the Hamilton filter. The Hamilton 

filter for this model consists of the following:  

1 1 1 1 1( , | ) ( | ) ( | )t t t t t t tpr q q p pr q q pr q p        

We are required to initialize 1 0( | )P q p  using the steady-state probabilities. In 

order to get ( | )t tP q p for the next iteration, we need to compute the following equations 

repeatedly for all time t: 

1 1
1

1

1 1 1 1

1

( , , | )
( , | )

( | )

( | , ) ( , | )
                                   =

( | )

t t t t
t t t

t t

t t t t t t t

t t

f p q q p
pr q q p

f p p

f p q q p pr q q p

f p p

 




   



 
 

 

  

 

  and 

1

1( | ) ( , | )
t

t t t t t

q

pr q p pr q q p


    

where  1 1| , ,t t t tf p q q p    is already given in the above. In sum, an MLE for this model 

can be developed by summing  1|t tf p p    using the probability terms 

(  1 1, |t t tpr q q p  ) we computed in the Hamilton filter for each regime over the whole 

sample. 

    

1

0 1 1

2

1 1 1 1

2

, , , , | ln |

                                  = ln ( | , , ) ( , | )
t t

T

t t t

t

T

t t t t t t t

t q q

L c P Q p f p p

f p q q p pr q q p

 







   



   

 
   

 



 
 



76 

 

       

As nested special cases of this model, we can construct the likelihood functions of 

the Roll and the extended Roll model with autocorrelated tq  as follows. 

Case 1) the Roll model with 0 1 0    and 1
2

P Q   

Where    
2

1 1 22

1 1
| , , exp

22
t t t t t t

uu

f p q q p p c q


 

 
       

 
 and 

 1 1 1 1
1( , | ) ( | )

2t t t t tpr q q p pr q p       

 

Case 2) the extended Roll model with 0 1 0    

where      
2

1 1 22

1 1
| , , exp

22
t t t t t t

uu

f p q q p p c q


 

 
       

 
and  

1 1 1 1 1( , | ) ( | ) ( | )t t t t t t tpr q q p pr q q pr q p        
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Appendix D 

 

D. Kim (1994)’s smoothing algorithm. 

 

Given MLE estimates of the model, we can make inferences on the trade direction indicator 

tq  using all the information in the sample (called smoothing). This gives us the probability 

of buy-initiated (sell-initiated) trade  Pr 1|t Tq p   (  Pr 1|t Tq p   ) for every 

transaction.  

 

When the models in this paper are estimated by MLE as shown in appendix C, we already 

utilized Hamilton filter to construct the likelihood function. The Hamilton filter uses the 

information available up to time t to compute the buy-initiated (sell-initiated) trade at time t, 

 Pr 1|t tq p   (  Pr 1|t tq p   ). 

Consider the following derivation of the joint probability that tq j  and 1tq k    based 

on full information: 

 1Pr ,  |t t Tq j q k p     

   1 1Pr | Pr | ,t T t t Tq k p q j q k p          

Chapter 4 of Kim and Nelson (1999) explains that  1Pr | ,t t Tq j q k p     

 1P r | ,t t tq j q k p     because if 1tq   were somehow known, then  1, 2,...,t t Tp p p     

would contain no information about tq  beyond that contained in 1tq   and tp  .  

   1 1Pr | Pr | ,t T t t tq k p q j q k p         

   
 

1 1

1

Pr | Pr , |

Pr |

t T t t t

t t

q k p q j q k p

q k p

 



     


 
  

     
 

1 1

1

Pr | Pr | Pr |

Pr |

t T t t t t

t t

q k p q j p q k q j

q k p

 



       


 
 

and 

     1 1Pr | Pr , 1| Pr , 1|t T t t T t t Tq j p q j q p q j q p             for j = -1 and 1. 
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Given  Pr |T Tq p  at the last iteration of the Hamilton filter, the above can be iterated for 

1, 2, ,2t T T    to get the smoothed probabilities,  Pr | , 1, 2, ,2t Tq p t T T      

Once we obtain  Pr 1|t Tq p   and  Pr 1|t Tq p   , we can divide the sample into the 

two regimes using the following rule: 

If  Pr 1| 0.5t Tq p   , we set 1tq   

If  Pr 1| 0.5t Tq p    , we set 1tq    

The above rule is the one we propose to classify the trades. As an illustration purpose, we plot 

the estimated trade direction indicator series of the extended GH model using the first 1000 

observations on May 1.  

 


