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1. INTRODUCTION

A variety of approaches exist in the literature to compute accurate estimates of trading costs
in financial markets in order to evaluate the impact of changing liquidity conditions on
market performance. These liquidity proxies are typically computed based on quotes and
employ various methods of assigning trading intentions, where a trade is classified as a buy
(sell) if the active (i.e., liquidity consuming) side of the trade is a buyer (seller). Trade
direction indicators based on such classifications are then used to measure the information
content of trades (e.g., Hasbrouck (1991)) and to predict liquidity crashes (e.g., Easley, Lopez
de Prado and O’Hara (2012)).

Accurately estimating liquidity often proves to be an elusive task. A major obstacle relates to
the stipulations placed on the data, since liquidity estimates often require accurate
observations on both intra-daily bid-ask quotes and transaction prices. As a result, trade
classification is never straightforward. Historically, the Lee and Ready (1991) algorithm (LR),
based on both quote and price changes, is the most popular trade classification algorithm.
However, recent literature suggests that with the advent of high frequency trading in markets,
the accuracy of LR algorithm is potentially undermined. For example, Easley, Lopez de
Prado and O’Hara (2016) argue that in electronic limit order markets, some with order
cancellation rates of 98% or more, trade classification algorithms based on proximity to bid
and ask quotes are severely compromised. Holden and Jacobsen (2014) using the TAQ data,
and Panayides, Shohfi, and Smith (2014) employing Euronext Paris data provide empirical
support for these claims. Furthermore, as Holden, Jacobsen, and Subrahmanyam (2015)
observe, the trading environment in many financial markets (such as futures and foreign
exchange trading) lacks transparency, in the sense actual quotes are not directly observable in

the intra-daily data record. Such information must somehow be discerned from the data.

To overcome these data limitations requires developing an empirical methodology to extract
a liquidity proxy and classify trading intentions without access to quotes. In this regard,
Hasbrouck (2004) develops both a liquidity measure and trade classification algorithms in the
absence of quotes using variations of the Roll (1984) model, proposing a new Bayesian
approach by assuming an i.i.d. normal distribution for price innovations and latent

independent trade indicators. Four representative CME futures contracts illustrate application
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of the methodology. Subsequently, Van der Wel, Menkveld, and Sarkar (2009) develop the
equivalent classical maximum likelihood estimation (MLE) methods by mapping the Roll

model onto the regime switching state space model of Kim and Nelson (1999).

Chen, Linton, Schneeberger, and Yi (2016) document several concerns with the Hasbrouck
(2004) approach, including its assumptions of normal price innovations, balanced market
order flow, the absence of serial correlation in the trade direction indicators, symmetric
information, and constant spreads within the sample period (e.g., for a month). They argue
these assumptions could lead to inaccurate estimates, at least during certain trading episodes.
These reservations lead Chen, Linton, Schneeberger, and Yi (2016) to propose new
nonparametric methods for estimating the bid-ask spread using only transaction prices.
Initially, they relax the normality assumption for prices innovations using an empirical
characteristics function while maintaining the other assumptions of the Hasbrouck (2004)
method. They find that their method produces nearly identical results to the Roll (1984) and
Hasbrouck (2004) methods during normal times but performs much better during periods of
extreme turbulence. Specifically, analyzing movements in the E-mini futures contract on
the S&P 500 during the Flash Crash, they discover that while their estimator is comparable
to other methods during most of Flash Crash day, during its peak period, i.e., between
2:45 pm and 2:49 pm ET, their spread estimates seem to provide better approximations.
The paper also suggests how their proposed framework can accommodate certain other
extensions, such as: unbalanced order flow, serially dependent latent trade indicators, or
adverse selection. However, there are several caveats to their approach. First, no empirical
analysis is undertaken involving these extensions, possibly reflecting the pervasive curse of
dimensionality when applying such nonparametric methods. Second, they develop each
extension in isolation, without simultaneously relaxing the limiting features they identify in
prior models. Finally, as their focus is on developing new methods to estimate the bid-ask
spread, they do not provide a filtering algorithm to obtain the latent trade direction indicators.

The central contribution of this paper is to develop easy-to-implement Bayesian and MLE
estimators by extending both Hasbrouck (2004) and Van der Wel, Menkveld, and Sarkar
(2009) to simultaneously accommodate several of the omitted features evaluated in Chen,
Linton, Schneegerger, and Yi (2016), namely unbalanced and autocorrelated order flow and

informational asymmetries.



The second major contribution of this paper is to provide trade direction classification
mechanism without recourse to quotes. These classification systems utilise both Bayesian
MCMC methods and classical filtering and smoothing algorithms for latent trade direction
indicators. Recently, Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual
framework for classifying trades, taking the perspective of a Bayesian statistician with priors
on the unobservable information (buy or sell indicator), who is trying to extract trading
intentions from observable trade data. They compare the strengths and weakness of several
rules against an ideal Bayesian rule. We propose that certain familiar structural empirical
market microstructure models, such as those we employ in this analysis, provide plausible
approximations to their ideal Bayesian trade classification approach. In particular, these
models employ a Markov switching process as the underlying process governing the
dynamics of the unobservable buy-sell indicator, and treat the measurement equations as a
plausible data generating process for the observed data relating to the indicator. Thus, we
propose using estimates of the autocorrelated trade direction indicators, or the buy-sell

indicator, as the model consistent, trade classification algorithm.

For purposes of illustration, we apply our proposed approach to analyse trading behaviour in
the gold futures contract trading on the CME over the two month period from May 2016 to
June 2016, a timeframe incorporating the UK Brexit referendum. Specifically, we first
estimate the effective spread, and subsequently decompose it into non-informational and
informational components, computing daily correlation estimates of classified trades between
our model-consistent trade classification rules and those we obtain from the Tick rule.

The main findings are as follows. First, we obtain almost identical results from both classical
MLE and Bayesian methods in all empirical models throughout the sample period. Second,
we find estimates of daily trade direction indicators to be highly autocorrelated, leading to
measured bid-ask spreads being larger, in an economically meaningful sense, than those
obtained from alternative estimates employing independent trade direction indicators. Third,
we find strong statistical support for asymmetric information models of the type proposed by
Glosten and Harris (1988) in the presence of latent and autocorrelated trade direction
indicators. The results provide evidence that the trade impact coefficients implied by the
asymmetric information model, which reflect Kyle’s lambda, are important elements of
liquidity. Fourth, when comparing the Roll model and Tick rule we find that the daily
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correlation estimates of the classified trades are almost always above 0.99, indicating that the
trade classification we obtain from the Roll model used in Hasbrouck (2004) and the Tick
rule are essentially identical. Finally, our model consistent trade classification algorithm
based on an extended GH model provides very similar results to the Tick rule during normal
trading periods. However, in the presence of greater uncertainty when trading potentially
generates a greater price impact (relating from to order flow imbalances), our trade

classification indicator often diverges significantly from those we obtain using the Tick rule.

As Easley, Lopez de Prado, and O’Hara (2016) maintain that Tick rule classifications appear
particularly problematic in periods of high volatility exhibiting imbalances in order flow, we
believe the approach to trade classification we propose shows some promise. Importantly, we
do not claim that our trade classification system is superior to other rules. As Easley, Lopez
de Prado, and O’Hara (2016) note, each trade classification rule may demonstrate both
strengths and weakness, depending on the underlying market characteristics. Instead, we
maintain that our approach may be best suited to classifying trades consistently in
environments where a variant of state space models with regime switching yields a realistic
approximation to the trading conditions. Moreover, our methods have the advantage of
providing easy-to-implement model consistent trade classification algorithms using both
Bayesian and Classical estimation methods. As such, we believe they may be a useful

addition to the empirical microstructure tool Kit.

The remainder of this paper is organized as follows. Section 2 briefly reviews the Roll (1984)
structural market microstructure model and its subsequent generalizations leading to richer
information-based models. Our focus here is on resolving estimation issues linked to the
model parameters. Section 3 presents the classical and Bayesian estimation methods we
propose. We outline data sources and present and discuss the main empirical results in

section 4. Section 5 concludes the paper.



2. Empirical Structural Market Microstructure Models

2.1. The Roll model

The Roll (1984) model is a parsimonious structural market microstructure model of the bid-
ask spread. The model decomposes the dynamics of the asset pricing process into two
components, namely: (i) changes in the “efficient price” reflecting the fundamental value of
the security conditional on all publicly available information, and (ii) the costs associated
with the trading process. This model is initially derived by assuming a competitive dealer
market with fixed transaction costs and symmetric information, in which dealers set their bid-
ask quotes to recover their costs of making a market. However, in modern financial markets,
high frequency trading firms typically act as market makers, by placing passive orders at
various levels of the order book to earn tiny margins on large bets (Easley, Lopez de Prado,
O’Hara (2012)). Indeed, Hendershott and Menkveld (2014) propose a more general definition
of liquidity suppliers (market makers) in modern financial markets as agents who trade
against price pressures. This interpretation of the market maker is consistent with the Roll
model, where the market maker buys at a discount (negative price pressure) and sells at a

premium (positive price pressure).
The price dynamics in the Roll model can be represented as follows. Denote the efficient

price by M, with log (m ) = m, and the transaction price byP with log (P) =p. The

evolution of these two prices can be depicted as:

p, =m +cq,, mt:rr]t—1+ut’ut~N(0'Gj) 1)
where g, is aregime switching variable with g, e{-1,+1} and

Pr[q, =1|q,, =1]=05,Pr[g =-1|q,, =-1]=05.

The Roll model contains two sources of randomness. It assumes the efficient price evolves as
a random walk, with the i.i.d. innovation term (U, ) reflecting public information. The trade
direction indicator 0, is a random variable taking one of two values, +1 (-1) for a buyer
(seller) initiated trade. Buyer and seller initiated trades are assumed to be equally probable,

and in the Roll model 0, is independent of U,, so the direction of trade is independent of



changes in the efficient price. This effectively eliminates any influence of asymmetric
information in the model, and it is one of the key assumptions we relax later in the paper. The
term c is interpreted as the (log of) the effective execution cost paid by an active buyer or
seller. The Roll specification implies:

Apt =m+cq,—Mm_,—Cq, = CAqt +Uu,, (2)

Roll proposes a moment estimator to compute estimates of bid-ask spreads based only on
transaction prices. However, Roll’s estimate is feasible only if the first-order sample
autocovariance is negative and as a result Roll’s reported spread estimator is often biased
downward. To reduce this downward bias, Hasbrouck (2004) proposes a Bayesian method to
estimate model parameters, assuming normal distributions characterise the innovation term
(up) and latent independent trade indicators. Van der Wel, Menkveld, and Sarkar (2009)
develop alternative classical MLE methods for the Hasbrouck (2004) model , and Chen,
Linton, Schneeberger, and Yi (2016) use nonparametric methods to relax the normality
assumption. . However, Chen, Linton, Schneeberger, and Yi (2016) also point out several
remaining problems with these econometric approaches, such as the assumptions of balanced
market order flow, symmetric information and the absence of serial correlation in the trade
direction indicators. In the following section we proceed to relax these assumptions and
provide an extension to the econometric methods developed by Hasbrouck (2004) and Van
der Wel, Menkveld, and Sarkar (2009).

2.2 Generalizations of the Roll model

(i) Autocorrelation in order arrival and unbalanced market order flow

Choi, Salandro and Shastri (1988) provide several reasons, such as information disclosure
concerns leading to strategic trading behaviour (order fragmentation), for the existence of
serially correlated trade arrival in financial markets, and extend the Roll model to incorporate
autocorrelated trade direction indicators. In this paper we use the following model

(henceforth the extended Roll model (MS)) to accommodate these stylised facts.

p =m +cq,m =m_, +u,u ~N(0,07) 3)



where the trade direction indicator, d, is a random variable taking values of 1 or -1,
governed by the following Markov process:

Prlo, =11, =1]=P and Pr[q =-1lq,=-1]-Q

(if) Adverse selection
Easley, Lopez de Prado, and O’Hara (2012, p.1457) define adverse selection in modern limit
order markets as the “natural tendency for passive orders to fill quickly when they should fill
slowly and fill slowly (or not at all) when they should fill quickly”. They also explain that
such a definition is consistent with market microstructure models proposed by Glosten and
Milgrom (1985) and Kyle (1985). In these models, order flow is informative for subsequent
price moves as it reflects the level of informed trading. These models provide insights into
the behaviour of market participants in the presence of informational asymmetries and
motivate further modifications to the original Roll model. These modifications allow the
efficient price to be at least partially driven by the trade direction indicator variable, capturing
a key feature of asymmetric information microstructure models, namely that trade

characteristics may convey information correlated with a trader’s private information.

To accommodate the above stylised features of trading, we propose a model extension which
incorporates both a term capturing latent and autocorrelated trade direction indicators and an
additional one reflecting potential adverse selection costs.. In this model, only the unexpected
component of the trade direction indicator series produces any effect on the efficient price.

We represent this model (henceforth the extended GH model (GH)) as follows:
pt = mt +th’mt = mt—l +(/10 +/’)’1\ﬁ)(qt - E[qt | l//tfl])—‘rut’ut ~N (O’ O-uz) (4)

where 1, and A, represent that fixed and variable permanent price impact costs,
respectively, and w,, denotes the available information set, up to time t-1. The trade
direction indicator, q,, follows the Markov process in (3). Following a straightforward

reformulation, we can express this process as the autoregressive (AR) process.

qm:(P—Q)+(P+Q—1)qt+5t+1v E[8t+1|qt]:O ©)



This formulation of the AR(1) process for the trade direction indicators is used previously in

the literature on several occasions (e.g., Madhavan, Richardson, and Roomans (1997)). In
summary, in our proposed model, E[q, |y, ,] can be expressed as (P-Q)+(P+Q-1)q,,

and in its final form, the empirical model we estimate may be depicted as follows:

p, =m, +cq,,

m=m_ +(/10 +A‘l\ﬁ)(qt —u-pg,,)+u,u, ~N(0,07) (6)
where g, ={1,-1},Pr[q, =1]|q_, =1]=P, Pr[q,=-1|q, =-1]=Q and u=P-Q, p=P+Q-1.
The model has a reduced form representation, given by:

Apt :CAqt +(2‘0 +ﬂ‘l\ﬁ)(qt _'u_pqt—l)_'_ut’ut ~N (O’O-UZ) (6‘)

In this framework, the market-maker requires compensation not only for the costs of

processing an order (C) as in the Roll model, but also for the adverse selection risk of
supplying liquidity to an informed trader, where ﬂj\ﬁ captures the adverse selection

component of a trade’s price impact. The literature has a variety of interpretations of the

coefficient 2, from a measure of Kyle’s lambda, the slope of the price impact curve arising

from asymmetric information effects, to the (inverse) market depth parameter (Brennan and
Subrahmanyam (1996)). Prior to proceeding, we note that Chen, Linton, Schneeberger, and
Yi (2016) provide several theoretical extensions of their model, selectively incorporating
unbalanced order flow, serially dependent latent trade indicators, and adverse selection.
However, in contrast to the present model formulation, no attempt is made to simultaneously

accommodate these features, and they do not conduct any extensive empirical analyses.

3. Estimation Methods for Structural Market Microstructure Models

Van der Wel, Menkveld, and Sarkar (2009) show that the Roll model used in Hasbrouck
(2004) can be interpreted as a state space model. For example, one natural interpretation of
equation (3) is a state space system with measurement and transition equations as follows:

Measurement equation: p, =m, +cq,,q, e{-1,+1}



Transition equation: m =m_, +u,,u, ~N(0,57)

Employing the same reasoning, we can reformulate the extended GH model with asymmetric

information (equation (6)) as a state space model, with associated equations given by:

Measurement equation: p, =m, +cq,

Transition equation:m =m_ +(/10 +ﬂﬂﬁ)(qt ~((P-Q)+(P+Q-1)q,,))+u,

Recently, many papers adopt similar state space formulations to estimate market
microstructure models. For example, Menkveld, Koopman, and Lucas (2007) model a high-
frequency price series as the sum of efficient price series, reflecting permanent price effects
as above, and stationary series capturing transitory price effects. A similar framework also is
subsequently adopted in Menkveld (2013), Brogaard, Hendershott, and Riordan (2014), and
Hendershott and Menkveld (2014).

3.1. Bayesian Markov chain Monte Carlo (MCMC) methods

Hasbrouck (2004) develops a Bayesian Gibbs sampling approach to estimating the Roll
model with normality assumption governing price innovations (equation (3)), in which the
parameters (¢ and o,) are considered to be random variables (reflecting the statistician’s
uncertainty). He motivates the technique’s adoption with reference to its ability to
accommodate important economically meaningful latent data such as trade direction
indicators (q={q,,q,,...,0;}), which are “suppressed in the GMM estimation” (Hasbrouck
2004, p.311). Inference is based upon a series of transaction prices through time:

p={p.P,..... P; | , With knowledge of q={q,,q,....,q,} and p sufficient to determine the
efficient price, m={m,,m,,...,m }. The respective joint distribution function F(c,c,,q|p),

summarizes the full posterior over parameters and latent data. To estimate the present model,
we use Hasbrouck’s MatLab codes available in his website

(http://people.stern.nyu.edu/jhasbrouy/).

In this paper, we extend the Roll model of Hasbrouck (2004) by adding unbalanced order
flow and autocorrelated trade direction indicators. Our extension (equation (4)) has two extra

10



transition probability parameters (P and Q) and F(c,o,,q,P,Q|p) summarizes the full
posterior over parameters and latent data. While there is no tractable closed-form
representation for this joint distribution function, F(c,o,,q,P,Q|p), the full conditional
(posterior) distributions for the parameters are often tractable. In estimating both equations (3)
and (4), for example, conditional on g, the equation Ap, =cAq, +u, can be treated as a
simple normal linear regression specification in which ¢ and o, are the regression
coefficient and residual standard deviation, respectively. It is also possible to express the
conditional distribution of  based on the model parameters and data. The major differences

between Hasbrouck’s (2004) Gibbs sampling algorithm and the Gibbs sampling method we

adopt to estimate the model in equation (4) arises in relation to the simulation of g, !

The power of Bayesian analysis using the Gibbs sampler is that it requires only the
conditional distributions to numerically recover the joint distribution function. The Gibbs
sampler is an iterative procedure of drawing each parameter, or latent trade direction

indicator, sequentially. Initially, the parameters and latent trade direction indicators are set

equal to some arbitrary values{c'”,c®,q®,P®,Q}, although efficient estimation typically

requires specifying reasonable starting values, such as GMM estimates of (¢ and o,),

whenever they are available. In the subsequent iterations, all parameters and latent trade
direction indicators except for the component being drawn are taken as given, and each
component is updated sequentially. For example, the second iteration starts with a draw of

c® conditional on (au(”,q(l), P‘”,Q(“). By repeating this procedure we generate a sequence
of draws of unknowns for j=1,...,n. The Gibbs principle demonstrates that the limiting
distribution of the n™ draw after burn-in samples (as n— ) is F(c,0,,q,P,Q|p), the

desired posterior, and the limiting draw for any parameter is distributed as the corresponding
marginal posterior. For example, the limiting density of c™ isf(c|p). The number of
simulation must be sufficiently large so that dependence on the initial conditions becomes

insignificantly small.

! We explain the details of the Gibbs sampling algorithms for these two methods and the differences between
them in Appendices Al and A2.
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In any MCMC estimation, it is crucial to ensure convergence of the chain in order to
undertake correct statistical inference. In this paper, as a diagnostic to check for the
convergence of our MCMC algorithm, we compute and report the effective sample size based
on the inefficiency factors and the p-value of Geweke’s (1992) convergence diagnostics test
for the model parameters.? Finally, based on the simulation outputs, we estimate population

parameters of the posterior using standard time series analysis techniques, noting that the

sample mean of c'” is a consistent estimate of E[c|p] and the sample variance is a
consistent estimate of Var[c| p]. We can also interpret trade direction indicators we estimate

as outputs from a model-consistent trade classification algorithm.

To estimate the most complex model which incorporates adverse selection (equation (6)), we
need to develop a new Bayesian Algorithm to simulate iteratively

F(c,4.,4,0,,P,Q,q|p) .This is for the following reasons. First, the innovation in
autocorrelated g, impacts the efficient price. Second, this model involves two extra
parameters capturing the price impact of trades (4, , 4, ), while the two transition probabilities
(P and Q) also appear in the regression specification. The implication is that we cannot use

the customary Gibbs sampling estimation algorithm to estimate these parameters. In response,

we develop a tailored random walk Metropolis Hastings algorithm to undertake this task.’

3.2 Classical MLE methods

Van der Wel, Menkveld, and Sarkar (2009) develop alternative MLE methods for
Hasbrouck’s (2004) Roll model formulation (equation (3)). In this paper, we extend their
approach in two ways. First we incorporate order flow imbalances and autocorrelated trade
direction indicators (equation (4)), and second, we include an adverse selection term
(equation (6)). We can interpret these models as state space models with regime switching, as

explained in the previous section. In ordinary state space models with normally distributed

2 We provide more details in Appendix B.

¥ We present the details in Appendix A3.
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shocks, a Kalman filtering technique is employed to construct the likelihood function
utilising prediction error decomposition. However, several models used in this paper
incorporate a discrete regime switching variable (q,). In such cases, Kim and Nelson (1999)
demonstrate we can estimate the model with a composite filter, which is a combination of a
Kalman and a Hamilton filter. Based on this nonlinear filter we obtain an approximate
likelihood function, and utilise MLE methods for estimation.* One critical issue with this
approach is that it is difficult to precisely quantify the bias caused by using this approximate
filter. Fortunately, we can avoid undertaking the approximation by expressing several models
in their reduced form. For example, as previously shown (equation (6”)), the extended GH

model with asymmetric information can be written as:

b, = CAqQ, + (i +/11\ﬁ) g -((P-Q)+(P+Q-1g,,))+u

On this basis, we can interpret this version of the extended GH model as a standard regime

switching model and use a Hamilton filter to construct likelihood function values.’

3.3  Discussion of the estimated trade direction indicator, g,
Our core proposal is that the autocorrelated trade direction indicators, q,, we estimate from

the previous models can be considered to be model consistent trade classification
algorithms. Specifically, we can directly recover the trade direction indicator, q,, from the
outputs of Bayesian estimation, while for classical MLE methods, we can employ filtering
and smoothing algorithms to compute the probability of g, for each trade. In other words,
once we estimate the empirical market microstructure models we present in this paper, we

can determine whether each trade is initiated by a buyer (g, =1) or a seller (g, =-1).

We note earlier that the advent of high frequency trading platforms calls into question the
accuracy of traditional trade classification systems such as the Lee and Ready (1991)

algorithm (LR In lieu, Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual

* Chapter 5 of Kim and Nelson (1999) provides more details.

> We provide precise details of how we implement MLE methods for estimation in Appendix C.
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framework for classifying trades. They adopt the perspective of Bayesian statisticians with

priors on the unobservable information (here q,), who are trying to extract trading intentions

from observable trading data. Ideally, we would like to specify the data generating processes
for both the underlying unobservable variables and subsequently for the observed data,
conditional on the realizations of the underlying unobservable data. Formulating such
specifications may prove a daunting task, and computing closed-form solutions for
conditional probabilities is likely to be complex, even when such solutions exist. They claim
that every trade classification algorithm can be regarded as an approximation to this Bayesian
approach, and that their bulk volume classification (BVC) methodology is conceptually
closer to this ideal than traditional approaches such as the Tick rule, since BVC assigns a

probability to a given trade being either a buy or sell.

We believe that the empirical market microstructure models we outline in this paper provide
another plausible approximation to the ideal Bayesian trade classification approach. For
example, in relation to equations (3) and (6), we can interpret the relevant transition equations

as the data generating process for the underlying unobservable variables, q,, and the

measurement equations as the plausible data generating process for the observed data relating

to g,. While the extent to which these empirical market microstructure models capture

market reality remains unclear, much research employs these models as the empirical basis

for their investigations in this area.’

Note, we do not claim that our trade classification system is generally superior to other
existing rules such as the Tick and BVC rules. As Easley, Lopez de Prado and O’Hara (2016)
maintain, each trade classification rule may have advantages which are only manifest in
differing trading environments: with less noisy data the Tick rule may prove to be generally
superior to the BVC, while with noisy data the BVC may prevail. We believe that our
approach is better suited to situations where a variant of state space models incorporating
regime switches better approximates the dynamics of the trading environment. In such
situations, our proposed methods provide model consistent trade classification algorithms

using both Bayesian and Classical methods which are easy to implement in practice.

® Hasbrouck (2007) provides a comparative summary of relevant literature.
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4. EMPIRICAL ANALYSIS

4.1 Data decription

We conduct the empirical implementation of our proposed trade classification methods using
data from gold futures trading on the Chicago Mercantile Exchange (CME) during May and
June 2016. We select this particular asset and time period for the following reasons. First,
gold futures (ticker symbol GC), are among the most widely traded of all futures contracts
worldwide, and gold is often considered a “safe haven asset at times of global economic
uncertainty, such as the period surrounding the UK’s Brexit referendum on June 23, 2016
which we deliberately include in our sample for precisely this reason. Second, as Easley,
Lopez de Prado, and O’Hara (2016) explain, the gold futures market is less fragmented than
its spot market. Each contract trades on a single market, and trading data is less noisy, since
all trades are mandated to occur at either the best bid or the best offer and trades between the
spread are not permitted. Further, while New York futures volume is less than a tenth of the
London spot volume, the futures contract plays the key role in the process of price discovery,
leading the spot market in incorporating new, gold price-relevant information into asset
values, (Hauptifleisch, Putnin, and Lucey (2016)).

Specifically, we select our sample data from the gold futures contract trading on CME’s
Globex electronic trading platform during the period from May 1, 2016 to June 30, 2016.
Electronic trading on CME Globex is available virtually 24 hours a day from Sunday 6:00
p.m. through to Friday 5:00 p.m. Eastern Standard Time (EST)’, with only a 60-minute break
each day beginning at 5:00 p.m. EST®. For the empirical analysis, with reference to trading
volume, we identify the most actively traded gold futures contract on any given day to
construct a continuous series. The most active gold futures contract from May 1 to May 26 is
the June contract deliverable on any business day in June 2016 (GCM6). On May 27 volume
shifts to another contract deliverable during August 2016 (GCQ6). The transaction price

series and trading volume data, time-stamped to the microsecond, are sourced from the

" Thus, the trading activity on any given date starts at 6:00 p.m. and finishes at 5:00 p.m. EST the following day.
For example, on May 1 trading starts at 6:00 p.m. on May 1 and finishes at 5:00 p.m. on May 2.

® There is one exception during our sample period: trading on Globex halted at 1:00 p.m. and reopened at 6:00
p.m. on Monday, May 30, 2016 because of the Memorial Day holiday trading schedule.
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Thomson Reuter Tick History (TRTH) database. When several orders are time-stamped to
the same microsecond they are aggregated to obtain volume-weighted prices and total
volumes. Finally, following Marshall, Nguyen, and Visaltanachoti (2012), we winsorize all
return variables at the 0.5% and 99.5% levels so data errors are not driving the results.’

Table 1 describes relevant features of the gold futures contracts. Each gold futures contract
represents 100 troy ounces and is quoted in US dollars per troy ounce. Minimum tick size on
the contract is 10 cents per troy ounce. As a proportion of the contract price, average tick size
is 0.008% and the standard deviation of the price change is approximately 7 ticks after
winsorization at the 0.5% and 99.5% levels. The contracts evidence a fast pace of trading
activity, with an average 1.6 seconds between trades. Figure 1 illustrates the daily series of

average prices and trading volumes during the sample period.

4.2 The Roll model

As our benchmark, we estimate the Roll model each day during our sample period, using
both Hasbrouck’s (2004) Bayesian, and Van der Wel, Menkveld and Sarkar’s (2009) MLE
models. To clarify notation and facilitate ensuing discussions, we re-state the Roll model as:

p,=m +Cq, m =m_ +U,Uu, ~ N(an_uz)
where g, is aregime switching variable with q, e{-1,+1} and

Pr[q, =1|q,, =1]=05,Pr[g, =-1|q,, =-1]=05 .

All model parameters are assumed to be constant during any given day, but can change across
days. To guarantee accurate statistical inference, we implement the Bayesian estimations with
a 100,000 iteration burn-in period and 250,000 total iterations, increasing these numbers by
10,000 until we simultaneously satisfy both the convergence criteria for the inefficiency

factors and Geweke’s (1992)’s diagnostic tests for all parameters™®.

® Marshall, Nguyen, and Visaltanachoti (2012) clean the data in two steps. They first compute the 5%-trimmed
sample mean and standard deviation for each high-frequency liquidity measure, meaning the top and bottom.5%
observations are excluded from the trimmed mean and standard deviation calculations. Then they remove
observations that are outside the trimmed mean by +/- three standard deviations.

10 Refer to Appendix B for more details on the inefficiency factors and the Geweke (1992) diagnostic tests.
Table A.1 (the column ‘Roll (Bayesian)) indicates that convergence criteria are achieved for the Roll model,
since the effective size exceeds 1,000 and Geweke’s (1992) p-values are greater than 0.05 for all parameters.
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[Table 2 in here]
Table 2 reveals that we obtain benchmark MLE estimates very close to the Bayesian
estimates, validating the use of MLE methods in estimating the model. Computing the daily
differentials between the estimates of cand o, we obtain from the two methods, the
average value is zeros and the maximum of the absolute differential values is minuscule (0.1
x 107!, confirming the methods provide almost identical estimates. The averages of the
percentage effective half spread, c, and the standard deviations, o,, are 0.26 X 10" and
0.43 x 10, respectively. Noteworthy is the fact that on the day of the UK’s Brexit
referendum(June 23), the estimate of ¢ is 0.33 x 10™ , one of the largest values in the

sample, while that for the standard deviation, o, is 0.96 x 10, an increase of close to 90%

when compared to its value the previous day.

4.3 The Roll model with autocorrelated g, : a simulation exercise

We now proceed to introduce autocorrelated trade direction indicators into the analysis, by

re-stating the extended Roll model as:

p,=m +cqg,, m=m_+u,u ~N(0,c%)
where q, is aregime switching variable with ¢, e{-1+1}, and to capture autocorrelation in
the trade direction indicators we specify:

Pr[qt :1| 04 :1] =P,Pr [qt = _1| Q.= _1] =Q

Simulations are undertaken both to validate the computational accuracy of our estimations
and to compare the results we obtain using alternative approaches to estimation. To establish
a sound basis for a plausible data generating process in the simulations, we generate the data
employing the averages of the parameter estimates we report in Table 4, on the assumption
that the trade direction indicator is autocorrelated and has persistent regimes. To minimize
simulation errors, for each model we generate the data 50 times, and estimate the parameters
and trade direction indicators for each data sample, enabling us to compute simulated sample
averages. We then compare the estimation results from the MLE approach with those from

our proposed Bayesian Gibbs sampling methods.

1 Table A.2 provides further details..
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[Table 3 in here]

Table 3 presents the results from these simulations. The estimates of the standard deviation of
changes in the (log) efficient price and the (log) half-spread are o, and c, respectively.
Finally, P and Q are the transition probabilities of the latent regime switching process for the
trade direction indicators. The results we label “Bayesian" derive from the Bayesian Gibbs
sampler in which trade direction indicators are conditionally simulated and autocorrelated.
The results are based on 12,000 sweeps of the sampler, with the first 2,000 discarded. We
obtain the alternative estimates MLE estimates applying classical MLE methods to the
regime switching models. Once again, we conclude that both methods provide estimates close

to the true parameter values we use in the simulations.

4.4 The Roll model with autocorrelated g;: gold futures contract estimation

We believe the outcome of the simulation exercises in section 4.3 enable us to confirm the
integrity of our chosen estimation methodology, so , using the CME gold futures contract
data we now proceed to generate daily estimates of the Roll model incorporating
autocorrelated trade direction indicators. As before, we assume constant parameters for this
model during any given day, although parameters can vary across days. The Bayesian
estimations follow an identical approach to simulation as described in section 4.2.2 We
compare results from the MLE method based on Regime Switching (RS) and our proposed
extended MCMC method.

[Table 4 in here]

Table 4 presents our estimation results, and once again reveals that the MLE and Bayesian
estimates are very similar. First, the average value of the differentials between the daily

estimates of the coefficient values of cand o, are close to zero, and the maximum of the

absolute differential values are minuscule (0.2 x 10”"). We also note very small differences in

the sets of transition probability estimates®®. Second, the values of both ¢ and o, remain

12 Refer to Appendix B for more details on the inefficiency factors and the Geweke (1992) diagnostic tests.
Table A.1 (the column ‘Roll (Bayesian)) indicates that convergence criteria are achieved for the Roll model,
since the effective size exceeds 1,000 and Geweke’s (1992) p-values are greater than 0.05 for all parameters.

3 Table A.2 provides more details.
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significant across days, and the sample averages of the percentage effective half spread c,
and of standard deviations o, are 0.43 x 10 and 0.35 x 10, respectively. The transition
probabilities for the trade direction indicators are autocorrelated with coefficient values close
to 0.7. These empirical results indicate the presence of moderately persistent trade direction
indicator regimes. It is interesting to note that on the Brexit referendum day (23 June 2016),
the estimate for ¢ is al.12 x 10, which represents the largest single value in the sample,
standard deviation estimate is 0.78 x 10, reflecting an increase of close to 90% in

comparison to the previous day. Finally, the persistence measure for the regime (P+Q-1)

is 0.55, which is much larger than the average estimate of 0.4.

Attention is drawn to another feature of the Brexit referendum day estimates. Both the MLE
and Bayesian methods generate substantially larger ¢ estimates using the formulation of the

Roll model incorporating autocorrelated g, in comparison to those we derive from our

benchmark Roll model (Table 2). One potential explanation helping to justify the relative size

of these c coefficient estimates (with and without autocorrelated q,) is apparent following

consideration of the nature of the GMM estimates we obtain following Roll (1984).
Specifically, consider the following moment condition we derive from the autoregressive

form of the regime switching process: ., =(P-Q)+(P+Q-1)qg +¢,,

The GMM estimates of ¢ in this model are given by:

= COV(Apt ' Apt—l) =E [CAqt U, ][CAqt—l +ut—1] =C’E [Athqt—l] =c’ ((P _Q)2 _(1_ P-Q +1)2)

implying:

c:\/ é
(1-P-Q+1) —(P-Q)’

As the Roll model assumes P=Q=0.5, the resulting GMM estimate of c is:

c= H = \/— CoV(Ap,, Ap, ,) -

The critical point to note is that once we account for autocorrelation in the trade direction

indicators, the transition probabilities for both buy and sell orders enter into the determination

of the value of c¢. From the formula, the fact we experience much more persistent regimes on
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the Brexit referendum day justifies the substantially larger (log) half-spread estimates we

obtain for c.

4.5 The extended Glosten and Harris model with autocorrelated ¢, : a simulation

exercise

We are now in a position to apply our proposed estimation procedures in an asymmetric
information setting which allows for informed trading activity to have a permanent impact on
the efficient price. Our model incorporates an adverse selection cost component of the

effective bid-ask spread which in the present specification is a function of the square root of
the signed trade volume qtﬁ 4 This reflects existing evidence that larger orders are more

likely to contain information which has a permanent effect on the efficient price. Moreover,
our estimates of the asymmetric information model assume latent and autocorrelated trade
direction indicators, so only innovations in g:impact the efficient price. This differs from the
Hasbrouck (2004) formulation which incorporates independent g;, implying the entire signed

order flow impacts the efficient price.

Once again, to facilitate explanations and to clarify notation, we re-state this model:
p,=m +cq, m = mt—1+(j’0 +ﬂ‘l\ﬁ)(qt - Et—lqt)+ut’ut - N(O’O-uz)
where ¢, is aregime switching variable with q, e{-1,+1} and

Pl’[qt =1| * =1] =P, Pr[qt =_1| Q.. = _1] =Q

We validate the computational integrity of our estimation algorithms, and undertake a
comparison of the results from our proposed estimation method using simulations. As before,
to establish a sound basis for a plausible data generating process in the simulations, we
generate the data using the sample period averages of the parameter estimates we report in
Table 6 assuming autocorrelation and regime persistence in the trade direction indicators.
And we use the trading volume data on June 29 in simulation. To minimize simulation errors,
we generate the data 50 times, and estimate the model parameters and trade direction

indicators for data sample we generate and compute the simulated sample averages. We then

Y we incorporate the square root of trading volume following Hasbrouck (2004). The estimated relation

between order size and price impact is then concave.

20



compare the estimation results obtained from MLE methods with the Bayesian MCMC

methods we propose.
[Table 5 in here]

Table 5 presents the results from this simulation Here o, is the estimate of the standard

deviation of changes in the (log) efficient price and c¢ is that of the order processing

component of the (log) half spread; 2, and 2 are the fixed and variable permanent price

impact costs, respectively. Finally, P and Q are the transition probabilities of the latent

regime switching process for trade direction indicators. The “Bayesian" results are those we
obtain from the Bayesian Tailored Random-walk Metropolis-Hastings Gibbs sampler in
which the trade direction indicators are both conditionally simulated and autocorrelated. We
generate results using 12,000 sweeps of the sampler, discarding the first 2,000. We obtain the
alternative “MLE” estimates using classical MLE method to estimate the regime switching
models. Once more we find that both methods provide accurate estimates of the true

parameter values we use in the simulations.

4.6 The extended Glosten and Harris model with autocorrelated q:: gold futures
contract estimation

Following confirmation of the integrity of the selected estimation methodology on the basis
of the simulations in section 4.5, we proceed to obtain daily estimates of the GH model with
autocorrelated trade direction indicators using the gold futures data. As before, the
assumption is that the parameters of this model are constant during the day may change
across days. The Bayesian estimations follow an identical approach to simulation as
described in section 4.2"°. We compare the following two methods: the MLE incorporating

regime switching (RS) and our extended MCMC approach.

Prior to a detailed discussion of the empirical results, we report the results of a model
comparison among three models: the Roll model, the extended Roll model, and the extended
GH model. Specifically, we compute:

B Table Al (the column ‘GH (Bayesian)) indicates that we achieve the convergence criteria for the GH model
since the effective size is greater than 1,000 and Geweke’s (1992) p-values exceed 0.05 for all parameters
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where L[, and L, are the likelihood values under the restricted and unrestricted model, so

in comparing the Roll model with the extended GH model, L, and LU are the likelihood

values under the Roll and the extended GH model, respectively. As we impose parameter

restrictions on P,Q,4,, and 4 in the extended GH model to obtain the Roll model, the test

) 0)
statistics follows a chi-square distribution with 4 degrees of freedom. We consistently reject
the Roll model and the extended Roll model in favour of the extended GH model for each

day in our sample®®.
[Table 6 in here]

In table 6 we present the estimation results from the extended GH model, which again reveal
that the MLE estimates and Bayesian estimates align closely in magnitude. The difference

between the daily estimates of ¢ and o, we obtain from both methods exhibits an average

value close to zero, and the maximum of the absolute differential value is also minuscule
(0.12 x 10™). Other parameter values also exhibit very small differences,!’ leading us to
conclude that both methods provide the very similar estimates. Moreover, the results reveal a
consistent pattern in relation to those we obtain from the Roll and extended Roll models. The
estimates of the effective trading cost parameter, c , with a value of 0.29 x 10 are significant
and comparable to the corresponding estimates from the Roll model, albeit somewhat lower
than those from the extended Roll model. The daily estimates of the standard deviation of
changes in the (log) efficient price, o, are also significant, with an average value of 0.33 x
10™. The transition probability estimates again closely approximate those from the extended

Roll model, again indicating the presence of moderately persistent regimes for the trade

direction indicator.

16 Table A.3 reports detailed results on the model comparison among these three models.

7 Table A.2 provides more details on this.
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Our attention is drawn to two particularly noteworthy features of the parameter estimates.
First, on Brexit referendum day 23 June, the relevant estimate for ¢ is 0.84 x 10, which is

the largest value in the sample, and that for o is 0.78 x 10™, an increase of more than 250%
in comparison to the previous day’s. Moreover, the regime persistence coefficient, (P+Q-1)

is 0.5, which is significantly in excess of the average estimate, 0.4. Second, although the daily

A

, estimates are statistically significant in only around 50% of the time, those for the slope
of the price impact function arising from the effect of asymmetric information, the Kyle’s

lambda (4,) parameter are positive and always statistically significant.'’® The empirical

results corroborate the implications that private, fundamental-relevant information is
conveyed through trading decisions and the adverse selection costs per transaction are
increasing in trade size. We further discuss the economic significance of these results in

terms of the decomposition of the effective spread in section 4.8.
[Table 7 in here]

Prior to further analysis of the trade classification indicator, we pause to undertake some
additional analysis, of the extended GH model. We motivate this on the basis of the extreme
values we observe for the transition probability estimates on two dates, namely 0.9789 and
0.9278 on 19" June and 23" June, respectively. In comparison to the remaining (sell-side)
transition probability estimates we obtain, these parameter values appear as potentially
implausible outliers. We conjecture that this may relate to our assumption that the model
parameters remain constant throughout the day. As the above dates lie in very close proximity
to the Brexit referendum, it may be implausible to impose such a restrictive assumption on
the parameters. To mitigate any concerns over model misspecification, we re-estimate the
extended GH model on the 19" and 23" June using MLE methods after dividing each of
these days into 10,000 trade intervals, with the resulting estimates given in Table 7. Overall,
we find that the parameter estimates exhibit significant intraday variation on these two dates,
with (sell-side) transition probabilities ranging from 0.6812 to 0.9756 on 19™ June and 0.668
to 0.9656 on 23" June, respectively. As such, we conclude that the initial estimates we

provide in Table 6 may indeed reflect model misspecification, arising from the assumption of

8 For an illustration see Figure 2.
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constant daily parameter values.

Specifically, panel A of Table 7 reports the empirical results for 19™ June. A significant
change in market sentiment occurs early in the trading session on 19" June 19, after the
publication of an influential survey favoring the outcome of the U.K. voting to remain in
the EU. A reduction in market anxiety over a Brexit initiates an initial sell-off in safe haven
assets, including gold in the early trades, and this trading behavior appears to be manifest in
the estimates of two parameters in particular. First, in a much higher value for the transaction
cost parameter (¢ = 6.469), and second in that capturing the persistence of the transition
probability of sell orders (Q = 0.995) relative to that of buy orders (P = 0.778) in the first

10,000 trades. After the first 10,000 trades, overall trading activity within subsequent 10,000

trade buckets appears relatively balanced, with similar P and Q parameter estimates and a

much smaller c, albeit the c estimate for trades in the 30,000 to 40,000 interval is also higher.
We conclude that the extreme differences in the transition probabilities reported in Table 6

seem to mainly reflect the impact of the first 10,000 trades.

Panel B of Table 7 reports the empirical results for 23" June, the day of the Brexit
referendum. The time varying nature of the transition probability estimates over each 10,000
trade interval throughout this day clearly reveals the uncertainty relating to the outcome of
the voting process. Initially, selling pressure in gold futures appears much higher with the
first half of the trading day generating a very high persistence in the transition probability of
sell orders. In contrast, gold futures buying pressure appears to be manifest during the second
half of the trading day with the transition probability of buy orders evidencing more
persistence. This structural break in the transition probability, combined with the fact that
gold prices increase in uncertain times, captures the dynamics of the information flow
relating to the Brexit vote result. We attribute the extreme differences in the two transition
probabilities we report in table 6 to this structural break in the trading process.

To mitigate the effect of the early trading distortions on parameter estimates evident in panel
A and the structural break in panel B of table 7, we decide to use the relatively moderate
average estimates in the analyses of trade classification and the economic decomposition of

the bid-ask spread we conduct in the next section..
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4.7 Classification of trades for buy-sell indicator: the extended GH model
Easley, Lopez de Prado, O’Hara (2016) propose a new conceptual framework for classifying
trades. They adopt the perspective of a Bayesian statistician who has priors regarding the

status of the unobservable information (e.g., g,), and is trying to extract investors underlying

trading intentions from observable trade data. Our claim is that the empirical market
microstructure models we use in this paper can provide plausible approximations to the
Bayesian trade classification approach which constitutes their ideal. In particular, we
maintain that we may interpret the Markov switching process in the Roll or GH models as the

underlying process governing the evolution of the unobservable variables g, and the

measurement equations as a plausible data generating process for the observed data relating

to g,. Thus, we can use estimates of the autocorrelated trade direction indicators, q,, as our

model-consistent trade classification algorithm.

In order to provide appropriate benchmarks with which to compare our results on the
classified trades, we proceed to classify trades using the standard Tick rule® and generate
daily correlation estimates of classified trades using the Tick rule and our model consistent
rules. Specifically, on the basis of the Roll and extended GH models, using Kim (1994)’s
smoothing methods and MLE parameter estimates, we calculate whether each trade is

initiated by buyer (g, =1) or seller (g, =—1).%

[Table 8 in here]

Table 8 presents the daily correlation estimates of trade classifications using the Tick rule, the
Roll model, and the extended GH model. Two features are noteworthy. First, the daily
correlation between the Tick rule and the Roll model (labelled Roll) estimates are almost
always above 0.99, indicating that the Roll model essentially classifies trades on the basis of
up- or down-ticks, as in the Tick rule. Second, while the daily correlation of the Tick rule

9 The tick rule classification uses movements in trade prices to classify a trade as either a buy or a sell.
Specifically, if the transaction is above (below) the previous price, then it is a buy (sell). If there is no price
change, but the previous tick change was up (down), then the trade is classified as a buy (sell).

% As both Bayesian and MLE methods produce almost identical results, we report only the latter. The Bayesian
results are available on request. Appendix D  discuses Kim’s (1994) smoothing algorithms.
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and extended GH model (labelled GH) estimates are also high on the majority of days, they
are significantly lower on both the 19™ June and 23™ June, namely 0.61 and 0.45,

respectively.

We conjecture a potential explanation for the second finding is as follows. Easley, Lopez de
Prado, O’Hara (2016) maintain that when the underlying data is less noisy, Tick rule
classifications can be superior to other rules. However, they also show that in situations
where underlying data noise is substantial or order flow is imbalanced, such as when private
information motivates trading, trade classifications using the Tick rule may be unreliable. In
particular, the Tick rule underestimates (overestimates) the probability of buys when the
direction of order flow imbalances signals positive (negative) information. As we explain in
the previous section, over the days surrounding the Brexit referendum incorporate a period of
great uncertainty as reflected in the results of opinion polls regarding its outcome. For
example the reduction in market anxiety relating to the possibility of a leave vote on 19™ June,
following the release of an influential survey, initiated a major unwinding of long positions in
the gold futures market in early trading, the selling pressure generating high illiquidity costs.
During the remainder of this day, trades are balanced overall. This trading pattern is reflected
in the daily volatility estimate, which is 0.52, much higher than its value on most other days.
The day of the Brexit referendum, 23™ June also generates an abnormally high volatility
estimate of 0.78. Moreover, the transition probability estimates we obtain from the extended
GH model also indicate a structural break in the trading process on this day. There is initial
selling pressure as the consensus in overnight opinion polls indicates a remain outcome, but
the buying pressure dominates in the latter part of trading after the Brexit vote result,
consistent with evidence documenting that gold prices rise during times of economic
uncertainty (Erb and Harvey (2013)). The value of Kyle’s lambda on June 23 is 0.324, its

highest value in our sample.

In summary, the model consistent trade direction classification algorithm based on the
extended GH formulation generates very similar results to the Tick rule during normal trading
periods, but in periods characterised by higher uncertainty and the existence of a potentially
larger price impact of trades (closely related to order imbalances), the classifications obtained
from the two methods diverge significantly. As these are precisely the circumstances under
which Easley, Lopez de Prado, and O’Hara (2016) argue that the Tick rule appears most
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problematic in classifying trades, this suggest our proposed extended GH methods may be

useful in such an environment.

li is important to state that we certainly do not intend to claim that our trade classification
system is in any sense superior to other rules such as the Tick and BVC rules. As Easley,
Lopez de Prado, and O’Hara (2016) note, perhaps each trade classification rule manifests
both strengths and weakness, depending upon market conditions and the nature of the
information environment. We believe that our approach to classifying trades is particularly
well- suited to situations in which researchers use a variant of state space models
incorporating regime switching to model trading environments. Moreover, our approach
provides easy-to-implement model-consistent trade classification algorithms using both
Bayesian and Classical methods. As such, we believe they provide a useful addition to the

empirical microstructure tool Kit.

4.8 Components of the effective spread: the relative contribution of order processing
and adverse selection costs

How important are adverse selection costs arising from information asymmetries as
constituents of the effective bid-ask spread? We address this issue by computing the
relative importance in spread composition of our estimated measure of non-informational
(order processing) costs and informational asymmetry components in spread composition. To
facilitate the ensuing explanation, consider the log bid-ask spread implied by our model,

namely:

P, =m +Cq,m =m,_, +(2“0 +ﬂ1\ﬁ)(qt - Et—lqt)+ut
= po=m, + (4 + AW o +ea +u (4 + 4 ) (e )

It follows that we can express the ask (a,) and bid (b, ) prices in our model as:

a = mt—l+(2’0 +/11\/V1)+c+ul _(ﬂo +ﬂ‘l\ﬁ)(lu+pqt—l)
bl = mt—l_(ﬂ’o +j‘1\ﬁ)_c+ut _(ﬂo +ﬂ‘l\ﬁ)(lu+pqt—l)
a b =2(c+2+4)
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[Table 9 in here]

Based on this representation of the ask and bid prices, Table 9 and Figure 3 provide the daily

estimates of transaction costs for a trade measured in ticks, S.. . We calculate this as

GH ,cs

Sen =SPan o xP Where sp, is the log spread estimate (a —b, in the above model) with the

GH ,cs

daily average volume (V,) (computed as SpGH'CS=2><(C+/10+21\ﬁ) ), and P is the daily

average price in ticks. We also present the log spread and the daily average price in ticks in
the table. For example, s, on 1 May is 1.1970 (i.e., 2x(0.4615x10™") x (1,296.9/0.1))

where 1,296.9 is the mean of the daily prices and 0.1 is the tick size on that day.

To summarise our findings, the daily estimates of transaction costs for a trade are in the
region of 1.2 ticks, reflecting the high liquidity of the gold futures markets. However, there
are two exceptions to these estimates on 19 and 23 June. On these two days, the daily
estimates of transactions costs for a trade are significantly higher, namely 6.265 (3.299) ticks
on June 19 (June 23), respectively. This reflects the illiquidity arising from the enhanced
uncertainty in the trading environment. Based on the parameter estimates from Table 6, in the
final two columns of table 9 present the contribution of information and non-information

related components to the spread (for an illustration see Figure 4). Specifically, the proportion
of the spread attributable to the order processing cost component is TC =c, / (Co +(/10 + An/Vt ))
and the proportion arising from adverse selection costs, the information asymmetry

component, is IC=(/10 +21\/7t)/(cD +(ﬂo+ﬂi\ﬁ)). These two components are calculated by

including the estimate of 2, only when it is statistically significant. In summary, the

proportion of effective trading costs arising from non-information related components are
higher than those from the information components on all days. In most cases, the former
lies in the range from 55% to 70%. The exception is on June 19 where the proportion
attributable to the non-information components increases to 90%. However, in general, the
proportion contributed by the information related components in the gold futures market is
sizeable and significant. The extended Glosten-Harris type models we estimate identify
permanent price impacts arising from asymmetric information as movements in the efficient

price, which is ultimately reflected in transaction prices. Viewed from this perspective, given
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the nature of the gold futures market, it is perhaps not too surprising that 35 to 50% of the

average bid-ask spreads reflects a compensation for bearing adverse selection risk.

5. CONCLUSION

Generating accurate measures of liquidity, and measuring trading costs and the price impact
of trades is difficult when an absence of quotes makes classifying investor’s trading
intentions problematic. Existing literature incorporates several proposed resolutions to this
problem but the dynamic evolution of trading mechanisms and the advent of electronic
platforms creates further difficulties for some of these approaches. For example, Easley,
Lopez de Prado and O’Hara (2016) maintain that in electronic limit order markets, often
manifesting order cancellation rates of 98% or more, trade classification algorithms based on

proximity to bid and ask quotes are severely compromised.

To overcome these data limitation, Hasbrouck (2004) proposes a new Bayesian approach by
assuming an i.i.d. normal distribution for price innovations and latent independent trade
indicators. Subsequently, Van der Wel, Menkveld, and Sarkar (2009) develop the equivalent
classical maximum likelihood estimation (MLE) methods by mapping the Roll model onto
Kim and Nelson’s (1999) regime switching state space model. The first contribution of this
paper is to develop easy-to-implement Bayesian and MLE estimators by extending both
Hasbrouck (2004) and Van der Wel, Menkveld, and Sarkar (2009) to simultaneously
accommodate several of the features which are omitted from these models, namely
unbalanced and autocorrelated order flow and informational asymmetries. These omissions
are evaluated in Chen, Linton, Schneeberger, and Yi (2016), but the present paper is the first
to undertake a comprehensive empirical implementation which addresses these drawbacks.
The second contribution of this paper is to provide robust trade direction classification
mechanisms without recourse to quotes. Our proposed classification systems utilise both
Bayesian MCMC methods and classical filtering and smoothing algorithms for latent trade

direction indicators.

Simulation results reveal that the methods we propose are reliable. For purposes of
illustration, we analyse the empirical behaviour of gold futures prices from the CME contract
during a period of market uncertainty surrounding the UK’s Brexit referendum in 2016. This
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analysis reveals several noteworthy features. First, trade direction indicators appear highly
autocorrelated, leading to measured bid-ask spreads being larger, in an economically
meaningful sense, than those obtained from alternative estimates employing independent
trade direction indicators. Second, they provide statistical support for asymmetric information
models of the type proposed by Glosten and Harris (1988) in the presence of latent and
autocorrelated trade direction indicators, thereby evidence that the trade impact coefficients
implied by the asymmetric information model, which reflect Kyle’s lambda, are important
elements of liquidity. Third, they reveal that the trade classifications we obtain from the Roll
model used in Hasbrouck (2004) and the Tick rule are essentially identical. Finally, our
model consistent trade classification algorithm provides very similar results to the Tick rule
during normal trading periods. However, in the presence of greater uncertainty when trading
potentially generates a greater price impact (resulting from order flow imbalances), our trade
classification indicator often diverges significantly from those using the Tick rule. Easley,
Lopez de Prado, and O’Hara (2016) maintain that Tick rule classifications appear particularly
problematic in periods of high volatility exhibiting imbalances in order flow. We believe the
approach to trade classification we propose shows some promise in this type of trading
environment. However, we certainly do not claim that our trade classification system is
superior to other rules. As Easley, Lopez de Prado and O’Hara (2016) note, each trade
classification rule may demonstrate both strengths and weakness, depending on the
underlying market characteristics. Instead, we maintain that our approach may be best suited
to classifying trades consistently in environments where a variant of state space models with
regime switching yields a realistic approximation to the trading conditions. Moreover, our
methods have the advantage of providing easy-to-implement model consistent trade
classification algorithms using both Bayesian and Classical estimation methods. As such, we

believe they may be a useful addition to the empirical microstructure tool Kit.
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Table 1. Contract Descriptions and Summary Sample Statistics

Contract

Gold futures

Expiration months

Trading sample months

Numbers of trading days

Avg. price

Price units

Tick

Avg. tick/price

Size of contract

Avg. dollar value

Std. Dev. Of price change (log price X 10,000)
Std. Dev. Of price change (ticks)
Avg. daily trades

Avg. time between trades (seconds)

June, 2016 (GCM®6) and August, 2016 (GCQ6)
May, 2016 - June, 2016
44
1269.0
U.S. dollars and cents per troy ounce
$0.10 per troy ounce
0.008%
100 troy ounce
$126,900.00

0.5579

7.0849

58,205

1.618808
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Table 2. The Roll Model: MLE and Bayesian Methods
p,=m +cq,m =m_ +u,u ~N (O,of),qI e{-11} wherePr[q =1|q_ =1]=Pr[q =-1]q_ =-1]-05

This table provides daily parameter estimates of the above model for the gold futures contract traded on the
CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. Electronic trading on CME
Globex is available virtually 24 hours a day from Sunday 6:00 p.m. through Friday 5:00 p.m. EST, with a 60-
minute break each day beginning at 5:00 p.m EST. Thus, we assume the trading activity on any given date

starts at 6:00 p.m. and finishes at 5:00 p.m. EST next day. For example, the May 1 trading starts at 6:00 p.m. on
May 1 and finishes at 5:00 p.m. on May 2. o, is the standard deviation of the log efficient price changes, and

C is the (log) half spread. Estimates labelled “Roll(Bayesian)” are Hasbrouck (2004)'s Gibbs sampler
estimates in which trade direction indicators are conditionally simulated. Estimates labelled “ Roll(MLE)” are
MLE estimates based on the Roll model. In this table, 10,000 fold of ¢ and o estimates are reported. And to
guarantee a correct statistical inference, we start all Bayesian estimations with 100,000 burn-in period and

250,000 total numbers of iterations and increase these numbers by 10,000 until the convergence criteria for the

inefficiency factors and the Geweke (1992)’s diagnostic tests are satisfied simultaneously for all parameters.

Roll (MLE) Roll (Bayesian)
Date Parameters c¢x10,000 o, x10,000 ¢ x10,000 o, x10,000

1-May Mean 0.2108 0.4510 0.2107 0.4510
Std [0.0023] [0.0026] [0.0026] [0.0023]

2-May Mean 0.2441 0.4346 0.2442 0.4346
Std [0.0024] [0.0027] [0.0025] [0.0024]

3-May Mean 0.2273 0.4511 0.2273 0.4511
Std [0.0023] [0.0025] [0.0025] [0.0023]

4-May Mean 0.2237 0.4433 0.2237 0.4434
Std [0.0025] [0.0028] [0.0027] [0.0025]

5-May Mean 0.2181 0.4674 0.2181 0.4675
Std [0.0021] [0.0023] [0.0023] [0.0021]

8-May Mean 0.2112 0.4271 0.2113 0.4270
Std [0.0024] [0.0026] [0.0025] [0.0023]

9-May Mean 0.2135 0.4363 0.2135 0.4363
Std [0.0026] [0.0028] [0.0028] [0.0025]

10-May Mean 0.2421 0.4113 0.2421 0.4114
Std [0.0029] [0.0032] [0.0031] [0.0030]

11-May Mean 0.2390 0.4274 0.2390 0.4273
Std [0.0026] [0.0029] [0.0027] [0.0026]

12-May Mean 0.2302 0.4392 0.2302 0.4392
Std [0.0026] [0.0029] [0.0028] [0.0026]

15-May Mean 0.3073 0.3688 0.3061 0.3702
Std [0.0033] [0.0043] [0.0062] [0.0063]

16-May Mean 0.2505 0.4147 0.2506 0.4147
Std [0.0027] [0.0031] [0.0029] [0.0028]

17-May Mean 0.2463 0.4616 0.2463 0.4616
Std [0.0024] [0.0026] [0.0025] [0.0024]

18-May Mean 0.2614 0.4127 0.2616 0.4125
Std [0.0029] [0.0032] [0.0032] [0.0031]

19-May Mean 0.2632 0.3982 0.2637 0.3977
Std [0.0039] [0.0044] [0.0048] [0.0047]

22-May Mean 0.2403 0.3942 0.2407 0.3939
Std [0.0038] [0.0041] [0.0041] [0.0038]

23-May Mean 0.3548 0.3062 0.3547 0.3062
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Std [0.0016] [0.0024] [0.0013] [0.0011]

24-May Mean 0.3463 0.3071 0.3463 0.3072
Std [0.0017] [0.0027] [0.0015] [0.0013]

25-May Mean 0.2304 0.4424 0.2304 0.4423
Std [0.0031] [0.0033] [0.0033] [0.0030]

26-May Mean 0.2503 0.4331 0.2503 0.4330
Std [0.0032] [0.0035] [0.0033] [0.0032]

29-May Mean 0.2765 0.4867 0.2766 0.4867
Std [0.0037] [0.0043] [0.0040] [0.0039]

30-May Mean 0.3359 0.3473 0.3356 0.3476
Std [0.0026] [0.0039] [0.0026] [0.0026]

31-May Mean 0.3553 0.3256 0.3553 0.3257
Std [0.0018] [0.0029] [0.0016] [0.0015]

1-Jun Mean 0.2734 0.4109 0.2739 0.4105
Std [0.0041] [0.0047] [0.0052] [0.0051]

2-Jun Mean 0.2425 0.5173 0.2425 0.5173
Std [0.0024] [0.0026] [0.0026] [0.0024]

5-Jun Mean 0.2398 0.4202 0.2398 0.4202
Std [0.0031] [0.0033] [0.0031] [0.0029]

6-Jun Mean 0.3456 0.3020 0.3455 0.3020
Std [0.0018] [0.0029] [0.0016] [0.0014]

7-Jun Mean 0.3400 0.2914 0.3400 0.2914
Std [0.0016] [0.0026] [0.0014] [0.0012]

8-Jun Mean 0.3304 0.3001 0.3304 0.3002
Std [0.0017] [0.0028] [0.0015] [0.0014]

9-Jun Mean 0.3227 0.3074 0.3226 0.3075
Std [0.0019] [0.0030] [0.0018] [0.0016]

12-Jun Mean 0.2350 0.4005 0.2352 0.4004
Std [0.0027] [0.0030] [0.0029] [0.0027]

13-Jun Mean 0.3273 0.2840 0.3273 0.2841
Std [0.0014] [0.0023] [0.0012] [0.0011]

14-Jun Mean 0.2248 0.4496 0.2248 0.4496
Std [0.0024] [0.0027] [0.0026] [0.0024]

15-Jun Mean 0.2463 0.4026 0.2464 0.4025
Std [0.0022] [0.0024] [0.0023] [0.0022]

16-Jun Mean 0.2374 0.3886 0.2375 0.3885
Std [0.0029] [0.0032] [0.0030] [0.0029]

19-Jun Mean 0.1846 0.5301 0.1845 0.5302
Std [0.0026] [0.0026] [0.0031] [0.0024]

20-Jun Mean 0.2169 0.4635 0.2169 0.4635
Std [0.0024] [0.0026] [0.0027] [0.0024]

21-Jun Mean 0.2151 0.4446 0.2151 0.4446
Std [0.0028] [0.0031] [0.0031] [0.0028]

22-Jun Mean 0.2087 0.5066 0.2087 0.5066
Std [0.0027] [0.0029] [0.0032] [0.0027]

23-Jun Mean 0.3313 0.9604 0.3312 0.9604
Std [0.0027] [0.0025] [0.0030] [0.0023]

26-Jun Mean 0.2081 0.5356 0.2081 0.5356
Std [0.0022] [0.0023] [0.0026] [0.0021]

27-Jun Mean 0.2396 0.4474 0.2396 0.4474
Std [0.0025] [0.0028] 0.0027 0.0026

28-Jun Mean 0.2280 0.4369 0.2280 0.4369
Std [0.0025] [0.0028] 0.0027 0.0025

29-Jun Mean 0.2231 0.4189 0.2230 0.4189
Std [0.0025] [0.0028] 0.0026 0.0024

Average Mean 0.2591 0.4252 0.2591 0.4251
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Table 3. The extended Roll Model (MS) : Simulation Study |

p,=m +cg,m =m_ +u,u ~ N(O,af),qt e {-11} wherePr[q =1|q_ =1]=P,Pr[q =-1|q_ =-1]=0Q

This table provides parameter estimates of the above model using simulated data. In order to establish a sound
basis for a plausible data generating process in the simulations, we generate the data using the averages of

parameter estimates (labelled as TRUE) reported in Table 4.

O, is the standard deviation of the (log) efficient price changes: ¢ is the (log) half spread. Pand Q are

transition probabilities. Estimates labeled “MS (Bayesian)” are our single-move Gibbs sampler estimates in
which trade direction indicators are conditionally simulated and autocorrelated. Estimates labelled “MS (MLE)”
are MLE estimates based on the extended Roll model. To minimize simulation errors, we simulate data 50

times, and estimate the parameters and trade direction indicators of these models for each generated data sample

and compute simulated sample averages of ¢,0,, P and Q. In this table, 10,000 fold of ¢ and O,

estimates are reported.

TRUE MS (MLE) MS (Bayesian)
Model Parameters Average estimate Estimate STD Estimate STD
cx10,000 0.43 0.4297 0.0021 0.4297 0.0019
MS o, x10,000 0.35 0.3498 0.0025 0.3499 0.0014
P 0.70 0.6990 0.0043 0.6991 0.0042
Q 0.72 0.7193 0.0041 0.7194 0.0039
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Table 4. The extended Roll Model (MS) : MLE and Bayesian Methods

p,=m +cg,m =m_ +U,u ~ N(O,af),q‘ e {-11} wherePr[q

1lq =1]=P,Pr[q =-1]q_ =-1]=Q

This table provides daily parameter estimates of the above model for the gold futures contract traded on the CME

Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further

details on the dating convention used in the paper) O, is the standard deviation of the (log) efficient price

changes: cis the (log) half spread. P and Q are transition probabilities. Estimates labeled “MS (Bayesian)”

are our single-move Gibbs sampler estimates in which trade direction indicators are conditionally simulated and

autocorrelated. Estimates labelled “MS (MLE)” are MLE estimates based on the extended Roll model. In this table

10,000 fold of ¢ and O estimates are reported. And to guarantee a correct statistical inference, we start all

Bayesian estimations with 100,000 burn-in period and 250,000 total numbers of iterations and increase these

numbers by 10,000 until the convergence criteria for the inefficiency factors and the Geweke(1992)’s diagnostic

tests are satisfied simultaneously for all parameters.

MS(MLE) MS(Bayeisan)
Date Parameters € x 10, 000 o, x10,000 p Q ¢ x10, 000 o x10,000 p Q
1-May Mean 0.3823 0.3565 0.7128 0.7241 0.3823 0.3566 0.7129 0.7240
std [0.0021]  [0.0027]  [0.0058] [0.0058]  [0.0021]  [0.0016]  [0.0058]  [0.0055]
2-May Mean 0.3874 0.3481 0.6848 0.7000 0.3875 0.3481 0.6848 0.7002
Std [0.0018] [0.0025] [0.0054] [0.0052] [0.0018] [0.0013] [0.0053]  [0.0050]
3-May Mean 0.3999 0.3492 0.7106 0.7153 0.3999 0.3493 0.7103 0.7158
std [0.0018]  [0.0025]  [0.0054] [0.0054]  [0.0018]  [0.0013]  [0.0053]  [0.0052]
4-May Mean 0.3900 0.3463 0.7127 0.7102 0.3900 0.3464 0.7129 0.7102
std [0.0020]  [0.0027]  [0.0053] [0.0054]  [0.0020]  [0.0014] [0.0052]  [0.0053]
5-May Mean 0.4024 0.3631 0.7139 0.7271 0.4024 0.3632 0.7136 0.7275
Std [0.0018] [0.0025] [0.0055] [0.0055] [0.0018] [0.0014] [0.0056]  [0.0052]
8-May Mean 0.3886 0.3241 0.7057 0.7441 0.3887 0.3241 0.7058 0.7440
std [0.0018]  [0.0025]  [0.0050] [0.0045]  [0.0018]  [0.0011] [0.0051]  [0.0043]
9-May Mean 0.3856 0.3390 0.7247 0.7183 0.3856 0.3390 0.7246 0.7185
Std [0.0021] [0.0028] [0.0055] [0.0056] [0.0021] [0.0014] [0.0054]  [0.0054]
10-May Mean 0.3850 0.3266 0.7052 0.7006 0.3850 0.3266 0.7053 0.7007
std [0.0019]  [0.0026]  [0.0052] [0.0053]  [0.0019]  [0.0012] [0.0052]  [0.0053]
11-May Mean 0.3883 0.3365 0.6897 0.7090 0.3883 0.3365 0.6901 0.7088
Std [0.0018] [0.0026] [0.0052] [0.0050] [0.0018] [0.0013] [0.0052]  [0.0049]
12-May Mean 0.3891 0.3449 0.6928 0.7181 0.3891 0.3450 0.6929 0.7180
std [0.0020]  [0.0027]  [0.0055] [0.0051]  [0.0020]  [0.0014]  [0.0055]  [0.0049]
15-May Mean 0.3909 0.3293 0.6695 0.6860 0.3910 0.3293 0.6696 0.6861
std [0.0017]  [0.0025]  [0.0052] [0.0051]  [0.0017]  [0.0012]  [0.0053]  [0.0050]
16-May Mean 0.3850 0.3332 0.6909 0.6936 0.3850 0.3332 0.6909 0.6937
std [0.0018]  [0.0025]  [0.0052] [0.0051]  [0.0018]  [0.0012] [0.0051]  [0.0051]
17-May Mean 0.4002 0.3686 0.6885 0.6976 0.4002 0.3686 0.6885 0.6977
Std [0.0019]  [0.0025]  [0.0056] [0.0055]  [0.0019]  [0.0015] [0.0056]  [0.0054]
18-May Mean 0.3996 0.3278 0.6846 0.7088 0.3997 0.3279 0.6847 0.7089
std [0.0016] [0.0022]  [0.0045] [0.0042]  [0.0016]  [0.0011] [0.0045]  [0.0041]
19-May Mean 0.3907 0.3238 0.6822 0.7107 0.3907 0.3239 0.6826 0.7106
Std [0.0021]  [0.0028]  [0.0057] [0.0053]  [0.0020]  [0.0013] [0.0057]  [0.0052]
22-May Mean 0.3897 0.3075 0.7042 0.7312 0.3897 0.3075 0.7045 0.7309
std [0.0019]  [0.0025]  [0.0054] [0.0050]  [0.0019]  [0.0011] [0.0054]  [0.0049]
23-May Mean 0.4098 0.3035 0.7051 0.7187 0.4098 0.3034 0.7054 0.7186
std [0.0015]  [0.0021]  [0.0048] [0.0046]  [0.0016]  [0.0010]  [0.0047]  [0.0045]
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24-May Mean 0.4025 0.3055 07208  0.7053 0.4025 03055 07207  0.7054
Std [0.0018]  [0.0023]  [0.0049]  [0.0052] [0.0018]  [0.0010]  [0.0049]  [0.0052]

25-May  Mean 0.4055 0.3369 07081  0.7255 0.4055 03369 07080  0.7257
Std [0.0021]  [0.0029]  [0.0056]  [0.0053] [0.0021]  [0.0014]  [0.0055]  [0.0052]

26-May Mean 0.4085 0.3356 07040  0.7075 0.4085 03357 07042  0.7074
Std [0.0020]  [0.0027]  [0.0052]  [0.0051] [0.0020]  [0.0013]  [0.0052]  [0.0051]

29-May  Mean 0.4116 0.4079 06459  0.6978 0.4117 04081 06464  0.6979
Std [0.0034]  [0.0041]  [0.0098]  [0.0087] [0.0034]  [0.0027]  [0.0096]  [0.0079]

30-May Mean 0.4023 0.3312 06935  0.6882 0.4023 03313 06937  0.6881
Std [0.0020]  [0.0027]  [0.0052]  [0.0053] [0.0019]  [0.0013]  [0.0052]  [0.0053]

31-May Mean 0.4080 0.3208 06865  0.6933 0.4080 03209 06866  0.6933
Std [0.0018]  [0.0025]  [0.0050]  [0.0049] [0.0018]  [0.0011]  [0.0049]  [0.0048]

1-Jun Mean 0.4039 0.3362 0.6967  0.6979 0.4040 03362 06969  0.6979
Std [0.0023]  [0.0030]  [0.0059]  [0.0058] [0.0022]  [0.0014]  [0.0058]  [0.0057]

2-Jun Mean 0.7386 0.5375 04476  0.9773 0.7406 05375 04550  0.9774
Std [0.0150]  [0.0028]  [0.0206]  [0.0013] [0.0110]  [0.0020]  [0.0175]  [0.0011]

5-Jun Mean 0.4045 0.3204 07063  0.7267 0.4045 03204  0.7063  0.7267
Std [0.0018]  [0.0025]  [0.0052]  [0.0049] [0.0018]  [0.0012]  [0.0052]  [0.0049]

6-Jun Mean 0.3913 0.3019 06896  0.6881 0.3913 03020 06897  0.6882
Std [0.0020]  [0.0027]  [0.0057]  [0.0057] [0.0020]  [0.0012]  [0.0056]  [0.0056]

7-Jun Mean 0.3908 0.2921 07036  0.7176 0.3908 02921 07039  0.7174
Std [0.0017]  [0.0023]  [0.0049]  [0.0047] [0.0017]  [0.0010]  [0.0049]  [0.0046]

8-Jun Mean 0.3802 0.2984 06956  0.6994 0.3803 02984 06957  0.6995
Std [0.0019]  [0.0025]  [0.0051]  [0.0051] [0.0018]  [0.0011]  [0.0050]  [0.0049]

9-Jun Mean 0.3795 0.3019 07091  0.6943 0.3795 03019 07092  0.6944
Std [0.0019]  [0.0025]  [0.0052]  [0.0054] [0.0018]  [0.0011]  [0.0051]  [0.0054]

12-Jun Mean 0.3822 0.3102 07173  0.6964 0.3822 03103 07174  0.6963
Std [0.0016]  [0.0023]  [0.0046]  [0.0049] [0.0016]  [0.0010]  [0.0045]  [0.0048]

13-Jun Mean 0.3766 0.2848 0.7065  0.7152 0.3766 02848 07068  0.7150
Std [0.0016]  [0.0021]  [0.0046]  [0.0045] [0.0016]  [0.0009]  [0.0045]  [0.0045]

14-Jun Mean 0.4022 0.3423 07234  0.7054 0.4022 03423 07232  0.7057
Std [0.0018]  [0.0026]  [0.0059]  [0.0061] [0.0018]  [0.0013]  [0.0059]  [0.0063]

15-Jun Mean 0.3808 0.3154 06889  0.6915 0.3809 03154 06890  0.6915
Std [0.0012]  [0.0019]  [0.0037]  [0.0037] [0.0012]  [0.0008]  [0.0036]  [0.0036]

16-Jun Mean 0.3767 0.3057 07022  0.7132 0.3767 03057 07026  0.7129
Std [0.0017]  [0.0023]  [0.0048]  [0.0046] [0.0016]  [0.0010]  [0.0048]  [0.0046]

19-Jun Mean 0.8509 0.5325 06238  0.9883 0.8516 05325 06244 09883
Std [0.0146]  [0.0024]  [0.0238]  [0.0007] [0.0133]  [0.0018]  [0.0189]  [0.0006]

20-Jun Mean 0.3881 0.3629 07117  0.7022 0.3881 03630 07121  0.7020
Std [0.0020]  [0.0027]  [0.0058]  [0.0060] [0.0021]  [0.0016]  [0.0056]  [0.0059]

21-Jun Mean 0.3830 0.3463 07262  0.6948 0.3830 03464 07265  0.6945
Std [0.0023]  [0.0031]  [0.0060]  [0.0065] [0.0023]  [0.0016]  [0.0056]  [0.0065]

22-Jun Mean 0.3988 0.4140 07303  0.7289 0.3987 04143 07315  0.7280
Std [0.0029]  [0.0033]  [0.0098]  [0.0097] [0.0030]  [0.0025]  [0.0096]  [0.0095]

23-Jun Mean 1.1238 0.7851 05974  0.9404 1.1237 07851 05981  0.9404
Std [0.0047]  [0.0022]  [0.0060]  [0.0009] [0.0043]  [0.0017]  [0.0057]  [0.0008]

26-Jun Mean 0.6137 0.5204 09633 05514 0.6144 05205 09634 05527
Std [0.0106]  [0.0028]  [0.0018]  [0.0174] [0.0077]  [0.0019]  [0.0015]  [0.0164]

27-Jun Mean 0.3827 0.3605 06557  0.7129 0.3827 03606 06559  0.7129
Std [0.0020]  [0.0029]  [0.0070]  [0.0063] [0.0021]  [0.0016]  [0.0069]  [0.0057]

28-Jun Mean 0.3777 0.3472 07101  0.6823 0.3777 03473 07103  0.6822
Std [0.0021]  [0.0028]  [0.0062]  [0.0066] [0.0021]  [0.0015]  [0.0059]  [0.0065]

29-Jun Mean 0.3803 0.3251 07091  0.7118 0.3803 03252 07094  0.7115
Std [0.0018]  [0.0026]  [0.0052]  [0.0053] [0.0018]  [0.0012]  [0.0052]  [0.0051]

Average  Mean 0.4320 0.3570 0.6966  0.7220 0.4392 03651 07011 0.7215
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Table 5. The extended GH Model (GH) : Simulation Study 11

pt :m[ +th’mt :mt—1+ﬂ'1(qt _E[qx |Qt—1])+ut’ut ~N (O’O-uz)’qt 6{—1,1}

where Priq =1|q =1]=P, Pr[qg =-1]q_ =-1]=Q and 4 =4, +ﬂl\ﬁ

This table provides parameter estimates of the above model using simulated data. In order to establish a sound
basis for a plausible data generating process in the simulations, we generate the data using the averages of

parameter estimates (labelled as TRUE) reported in Table 6.

o, is the standard deviation of the (log) efficient price changes: c¢ is the order processing component of the

(log) half spread. P and Q are transition probabilities. 4, and 4, are the fixed and variable permanent price

impact costs, respectively. Estimates labeled “GH (Bayesian)” are our tailored Random-walk MH sampler
estimates in which trade direction indicators are conditionally simulated and autocorrelated. Estimates labelled
“GH (MLE)” are MLE estimates based on the extended GH model. To minimize simulation errors, we simulate

data 50 times, and estimate the parameters and trade direction indicators of these models for each generated

data sample and compute simulated sample averages of o ,c,4 ,4,Pand Q. In this table, 10,000 fold of

c,4,, 4, and o, estimates are reported.

TRUE GH (MLE) GH (Bayesian)

Model Parameters Average estimate Estimate STD Estimate STD
cx10,000 0.30 0.3005 0.0032 0.3005 0.0033
o, %10, 000 0.33 0.3299 0.0024 0.3299 0.0013
/10 x10,000 0.02 0.0191 0.0047 0.0191 0.0052
en /11 % 10,000 0.10 0.1000 0.0023 0.1000 0.0021
P 0.70 0.6995 0.0035 0.6996 0.0034
Q 0.71 0.7098 0.0034 0.7099 0.0033

40



Table 6. The extended GH Model (GH) : Estimation using MLE and Bayesian Methods

This table provides daily parameter estimates of the above model for the gold futures contract traded on the CME Globex electronic trading platform from May 1, 2016 to

June 30, 2016. (See the caption of Table 2 for further details on the dating convention used in the paper.) o, is the standard deviation of the (log) efficient price changes:

¢ is the order processing component of the (log) half spread. P and Q are transition probabilities. 4 and 4, are the fixed and variable permanent price impact

costs, respectively, due to adverse selection. Estimates labeled “GH (Bayesian)” are our tailored random-walk MH sampler estimates in which trade direction indicators
are conditionally simulated and autocorrelated. Estimates labelled “GH (MLE)” are MLE estimates based on the extended GH model. In this table, 10,000 fold of C,

A1 A,» and o estimates are reported. And to guarantee a correct statistical inference, we start all Bayesian estimations with 100,000 burn-in period and 250,000 total

numbers of iterations and increase these numbers by 10,000 until the convergence criteria for the inefficiency factors and the Geweke (1992)’s diagnostic tests are satisfied

simultaneously for all parameters.

GH(MLE) GH(Bayeisan)
Date Parameters  C,44 000 0 410,000 ﬂ’Oxl0,000 ﬂlxl0,000 P Q C, 10,000 O 410,000 ﬂ’Oxlo,OOO A‘lxlO,OOO P Q
1-May Mean 0.2425 0.3265 0.0409 0.1052 0.7013 0.7082 0.2426 0.3266 0.0405 0.1052 0.7017 0.7078
std [0.0030] [0.0028]  [0.0049]  [0.0025] [0.0036] [0.0035] [0.0033] [0.0014] [0.0064] [0.0025] [0.0037] [0.0037]
2-May Mean 0.2677 0.3197 0.0102 0.1113 0.6764 0.6865 0.2677 0.3198 0.0102 0.1113 0.6765 0.6864
std [0.0026] [0.0026]  [0.0043] [0.0021] [0.0035] [0.0034] [0.0029] [0.0013]  [0.0057] [0.0022] [0.0036] [0.0034]
3-May Mean 0.2719 0.3235 0.0289 0.1010 0.7022 0.6970 0.2719 0.3235 0.0290 0.1009 0.7021 0.6973
Std [0.0027] [0.0026] [0.0043] [0.0022] [0.0034]  [0.0034] [0.0030] [0.0012]  [0.0056] [0.0022] [0.0035]  [0.0035]
4-May Mean 0.2597 0.3206 0.0437 0.0956 0.7013 0.7044 0.2598 0.3207 0.0435 0.0956 0.7013 0.7045
std [0.0030] [0.0028]  [0.0047]  [0.0022] [0.0036] [0.0036] [0.0033] [0.0013]  [0.0062] [0.0023] [0.0037] [0.0037]
5-May Mean 0.2708 0.3354 0.0207 0.1073 0.6915 0.7088 0.2708 0.3355 0.0204 0.1075 0.6920 0.7084
std [0.0027] [0.0025] [0.0043] [0.0022] [0.0034] [0.0037] [0.0029] [0.0013]  [0.0055]  [0.0022] [0.0034]  [0.0033]
8-May Mean 0.2611 0.3026 0.0425 0.0864 0.7125 0.7197 0.2611 0.3026 0.0426 0.0864 0.7124 0.7199
Std [0.0029] [0.0025] [0.0042] [0.0019] [0.0034]  [0.0032] [0.003]] [0.0011] [0.0057] [0.0019] [0.0036]  [0.0034]
9-May Mean 0.2444 0.3120 0.0537 0.0993 0.7150 0.7140 0.2443 0.3120 0.0538 0.0993 0.7151 0.7142
std [0.0032] [0.0028]  [0.0050] [0.0023] [0.0036] [0.0036] [0.0035] [0.0013]  [0.0066] [0.0024] [0.0037]  [0.0038]
10-May Mean 0.2649 0.3016 0.0215 0.1018 0.6928 0.6947 0.2649 0.3017 0.0216 0.1018 0.6929 0.6950
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Std [0.0028] [0.0026]  [0.0045]  [0.0022] [0.0036]  [0.0036] [0.0030]  [0.0012]  [0.0060]  [0.0022] [0.0037] [0.0037]
11-May Mean 02723 0.3120 00152 01029 06838  0.6937 02722 03120 00151 01031 06841  0.6937
Std [0.0027] [0.0026]  [0.0044]  [0.0022]  [0.0036]  [0.0034] [0.0029]  [0.0012]  [0.0059]  [0.0022]  [0.0037]  [0.0035]

12-May Mean 02584  0.3166 00388 01034  0.6916  0.7048 0.2584  0.3166 00387  0.1035  0.6917  0.7047
Std [0.0029] [0.0028]  [0.0047]  [0.0023]  [0.0036]  [0.0034] [0.0032] [0.0013]  [0.0061] [0.0023]  [0.0037]  [0.0035]

15-May Mean 02893  0.3077 00291 00847 06657  0.6884 02893  0.3077 00291 00847 06660  0.6882
Std [0.0026] [0.0027]  [0.0041] [0.0020] [0.0037]  [0.0035] [0.0028]  [0.0012]  [0.0053]  [0.0019] [0.0037]  [0.0036]

16-May Mean 02692  0.3086 00325 00949 06897  0.6893 02691  0.3086 00327 00948 06899  0.6894
Std [0.0027]  [0.0027]  [0.0044]  [0.0022]  [0.0035]  [0.0035] [0.0029]  [0.0012]  [0.0057]  [0.0022]  [0.0036]  [0.0036]

17-May Mean 02785  0.3375 00023 01194 06772  0.6788 02784  0.3375 00026 01193 06773  0.6790
Std [0.0026] [0.0026]  [0.0044] [0.0023] [0.0034]  [0.0033] [0.0028]  [0.0013]  [0.0057]  [0.0023]  [0.0034]  [0.0034]

18-May Mean 02839  0.3057 00457 00810  0.6970  0.7007 02859  0.3080 00634 00680  0.6904  0.7102
Std [0.0025]  [0.0023]  [0.0037]  [0.0016]  [0.0030]  [0.0030] [0.0052]  [0.0016]  [0.0157]  [0.0093]  [0.0049]  [0.0048]

19-May Mean 02779  0.3022 00391 00869  0.6878  0.7030 02780  0.3023 00389 00869 06877  0.7031
Std [0.0031] [0.0029]  [0.0048]  [0.0023] [0.0040]  [0.0038] [0.0034]  [0.0013]  [0.0065]  [0.0023]  [0.0042]  [0.0039]

22-May Mean 02783  0.2909 00308 00851  0.7086  0.7169 02783  0.2909 00309 00851  0.7087  0.7169
Std [0.0031] [0.0027]  [0.0047] [0.0023] [0.0039]  [0.0037] [0.0034] [0.0011]  [0.0065]  [0.0023] [0.0041]  [0.0039]

23-May Mean 03097  0.2871 00163 00783  0.7040  0.7026 0.3096  0.2871 00164 00784  0.7037  0.7029
Std [0.0025] [0.0022]  [0.0037]  [0.0016]  [0.0033]  [0.0034] [0.0027]  [0.0009]  [0.0049]  [0.0016]  [0.0034]  [0.0034]

24-May Mean 02995  0.2877 00003 00902  0.7073  0.6925 02995  0.2878 00000 00903  0.7073  0.6924
Std [0.0027] [0.0023]  [0.0043]  [0.0020] [0.0037]  [0.0039] [0.0030]  [0.0010]  [0.0059]  [0.0020]  [0.0039]  [0.0041]

25-May Mean 02783  0.3150 00267 01026 06991  0.7116 02783  0.3150 00268  0.1026 06992  0.7118
Std [0.0034] [0.0030] [0.0056] [0.0030] [0.0041]  [0.0038] [0.0037]  [0.0014]  [0.0074]  [0.0029]  [0.0043]  [0.0040]

26-May Mean 02840  0.3109 00161 01012  0.6936  0.6912 02840  0.3109 00162 01012  0.6936  0.6914
Std [0.0029]  [0.0027]  [0.0047]  [0.0022]  [0.0037]  [0.0038] [0.0032] [0.0012]  [0.0062]  [0.0022]  [0.0039]  [0.0039]

29-May Mean 02783  0.3706 00279 01219 06524  0.6839 02783  0.3708 00276 01220 06526  0.6839
Std [0.0043] [0.0042]  [0.0074] [0.0038]  [0.0058]  [0.0050] [0.0048]  [0.0025]  [0.0097]  [0.0039]  [0.0059]  [0.0051]

30-May Mean 02883  0.3094 00395 00871 06899  0.6906 02883  0.3094 00395 00871  0.6900  0.6907
Std [0.0030] [0.0028]  [0.0047]  [0.0022] [0.0038]  [0.0038] [0.0033] [0.0012]  [0.0063]  [0.0022] [0.0039]  [0.0040]

31-May Mean 03055  0.3030 00319 00801  0.6902  0.6880 0.3056  0.3030 00319 00800  0.6903  0.6881
Std [0.0029]  [0.0026]  [0.0043]  [0.0020]  [0.0037]  [0.0037] [0.0031]  [0.0012]  [0.0058]  [0.0020]  [0.0038]  [0.0039]

1-Jun Mean 02841  0.3155 00597 00830  0.7038  0.7000 02841  0.3156 00597 00829  0.7039  0.7001
Std [0.0036] [0.0033]  [0.0055] [0.0029] [0.0041] [0.0042] [0.0038]  [0.0014]  [0.0073]  [0.0028]  [0.0042]  [0.0044]

2-Jun Mean 03428 03876  -0.0602 01151  0.6933  0.6910 03156  0.3328 00269 00850  0.6825  0.6797
Std [0.0034] [0.0030] [0.0051] [0.0023]  [0.0049]  [0.0050] [0.0028]  [0.0012]  [0.0051] [0.0017]  [0.0033]  [0.0034]

5-Jun Mean 02854  0.3014 00411 00809  0.7075  0.7157 02852  0.3014 00415 00809 07080  0.7155
Std [0.0031] [0.0026]  [0.0044]  [0.0019]  [0.0037]  [0.0035] [0.0033]  [0.0011]  [0.0058]  [0.0019]  [0.0038]  [0.0036]

6-Jun Mean 02984  0.2866 00212 00770 06939  0.6861 02984  0.2867 00213 00770 06941  0.6862
Std [0.0031] [0.0028]  [0.0048]  [0.0023] [0.0042]  [0.0044] [0.0034] [0.0012]  [0.0068]  [0.0023] [0.0044]  [0.0047]
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7-Jun Mean 02918 02764 00335 00662  0.6963  0.7154 02917  0.2764 00336 00662  0.6963  0.7157
Std [0.0028]  [0.0024]  [0.0039]  [0.0015]  [0.0038]  [0.0036] [0.0030]  [0.0010]  [0.0055] [0.0015]  [0.0040]  [0.0038]

8-Jun Mean 02780  0.2809 00372 00744 06977  0.7013 02780  0.2809 00372  0.0744 06978  0.7014
Std [0.0028]  [0.0025]  [0.0042]  [0.0018]  [0.0038]  [0.0037] [0.0031] [0.0011]  [0.0057] [0.0018]  [0.0039]  [0.0039]

9-Jun Mean 02740  0.2848 00473 00710  0.7067  0.7022 02740  0.2848 00470 00711  0.7067  0.7022
Std [0.0029] [0.0027]  [0.0044]  [0.0020]  [0.0037]  [0.0039] [0.0032] [0.0011]  [0.0060] [0.0020]  [0.0040]  [0.0041]

12-Jun Mean 02704  0.2900 00280 00819 06982  0.7003 02703  0.2901 00282 00818 06985  0.7002
Std [0.0025]  [0.0024]  [0.0038]  [0.0016]  [0.0034]  [0.0034] [0.0027]  [0.0010]  [0.0051] [0.0016]  [0.0035]  [0.0037]

13-Jun Mean 02808  0.2692 00216 00722  0.6994  0.7052 02808  0.2692 00216 00722  0.6995  0.7052
Std [0.0024] [0.0022]  [0.0036]  [0.0016]  [0.0036]  [0.0035] [0.0026]  [0.0009]  [0.0050] [0.0016]  [0.0037]  [0.0037]

14-Jun Mean 02834  0.3213 00471 00792  0.7045  0.7086 02835  0.3215 00467 00792 07045  0.7086
Std [0.0030] [0.0028]  [0.0043]  [0.0020]  [0.0037]  [0.0037] [0.0032]  [0.0013]  [0.0055]  [0.0019]  [0.0037]  [0.0037]

15-Jun Mean 02804 02945  -0.0012  0.0942 06768  0.6736 02805 02945  -00013 00942 06770 06735
Std [0.0018] [0.0019]  [0.0030]  [0.0015] [0.0027]  [0.0028] [0.0020]  [0.0008]  [0.0039]  [0.0015]  [0.0028]  [0.0029]

16-Jun Mean 02665  0.2867 00361 00794 06972  0.7111 0.2664  0.2867 00362 00794  0.6976  0.7109
Std [0.0025] [0.0023]  [0.0038]  [0.0017]  [0.0034]  [0.0033] [0.0027]  [0.0010]  [0.0051] [0.0017]  [0.0035]  [0.0034]

19-Jun Mean 05552 05101 00163 00829 05173  0.9789 05523  0.5189 00170  0.0837 05243 09788
Std [0.0985] [0.0158]  [0.1181]  [0.0406]  [0.0398]  [0.0113] [0.0201]  [0.0024]  [0.0265]  [0.0073]  [0.0199]  [0.0017]

20-Jun Mean 02551  0.3324 00216 01089  0.6974  0.6866 02550  0.3325 00213 01092 06973  0.6867
Std [0.0029] [0.0027]  [0.0047]  [0.0023] [0.0036]  [0.0038] [0.0031] [0.0014]  [0.0061]  [0.0023]  [0.0037]  [0.0039]

21-Jun Mean 02455  0.3182 00431 01031 07172  0.6920 0.2454  0.3182 00431 01031 07171  0.6922
Std [0.0034] [0.0032] [0.0055] [0.0027]  [0.0039]  [0.0043] [0.0037]  [0.0015]  [0.0070]  [0.0027]  [0.0040]  [0.0044]

22-Jun Mean 02467 03794  -0.0091  0.1424  0.6907  0.6939 02465 03797  -00094  0.1424  0.6906  0.6941
Std [0.0037] [0.0032]  [0.0061]  [0.0032]  [0.0050]  [0.0048] [0.0042]  [0.0025]  [0.0084]  [0.0034]  [0.0051]  [0.0049]

23-Jun Mean 08224  0.7571  -0.0164 02003 05713  0.9278 0.8216  0.7572  -00166 02008 05712  0.9277
Std [0.0072]  [0.0022]  [0.0095]  [0.0037]  [0.0050]  [0.0010] [0.0068]  [0.0017]  [0.0095]  [0.0037]  [0.0048]  [0.0009]

26-Jun Mean 02759 04503  -0.1332 01794  0.7824  0.6354 02600 03801  -0.0108 01281 06979  0.6735
Std [0.0108] [0.0034]  [0.0055] [0.0047]  [0.0222]  [0.0110] [0.0032] [0.0019]  [0.0052] [0.0024] [0.0042]  [0.0045]

27-Jun Mean 02684  0.3322 00086 01072 06744  0.6796 0.2684  0.3323 00085  0.1073 06745  0.6796
Std [0.0029]  [0.0029]  [0.0046]  [0.0023]  [0.0040]  [0.0040] [0.0032]  [0.0015]  [0.0061]  [0.0023]  [0.0041]  [0.0040]

28-Jun Mean 02571 0.3190 00003 01126 06886  0.6757 02570  0.3101 00005 01126 06889  0.6759
Std [0.0028]  [0.0028]  [0.0047]  [0.0023]  [0.0038]  [0.0040] [0.0031]  [0.0014]  [0.0060]  [0.0023]  [0.0039]  [0.0041]

29-Jun Mean 02597  0.3010 00179 00979 07011  0.6973 02598  0.3011 00179 00978  0.7013  0.6974
Std [0.0028] [0.0027]  [0.0043]  [0.0021]  [0.0036]  [0.0036] [0.0030] [0.0012]  [0.0057] [0.0021]  [0.0036]  [0.0037]

Average Mean 0.2945  0.3298 0.0208 00986  0.6897  0.7079 02970  0.3350 00264 00982 06910  0.7086
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Table 7. The extended GH Model (GH) : MLE on 19 and 23 June 2016

p=m+cqg.m=m +4(q-E[lqg|Q D+u,u -~ N(O,o-;),ql e{-11}

where Pr[ql =1]q, =1]: P,Pr[q‘ =-1lq_, =—1]=Q and A =2 +/11\/\7

This table provides the MLE estimates of the above model for every 10,000 trade using the gold futures contract
traded on the CME Globex electronic trading platform on May 19, 2016 and June 23, 2016. (See the caption of

Table 2 for further details on the dating convention used in the paper.) o, is the standard deviation of the (log)

efficient price changes: c is the order processing component of the (log) half spread. P and Q are transition
probabilities. A4 and A, are the fixed and variable permanent price impact costs, respectively, due to adverse

selection. In this table, 10,000 fold of ¢, 4, ,and o estimates are reported.

Panel A. GH
Intervals 19.Jun cx10,000 & x10,000 A4 x10,000 A x10,000 P Q

1 to 10,000 6.4691 1.1455 0.4026 0.2973 0.7779 0.9952
[0.2488] [0.0092] [0.2663] [0.0296] [0.0285] [0.0007]

2 to 20,000 0.2369 0.3296 0.0224 0.1079 0.6998 0.6812
[0.0070] [0.0067] [0.0112] [0.0045] [0.0093] [0.0103]

3 to 30,000 0.2618 0.3253 -0.0045 0.1143 0.6932 0.6696
[0.0067] [0.0067] [0.0107] [0.0045] [0.0084] [0.0093]

4 to 40,000 3.8289 0.4982 0.1617 0.0132 0.9756 0.9978
[0.3346] [0.0047] [0.3525] [0.0140] [0.0055] [0.0005]

5 over 40,000 0.2338 0.3163 0.0279 0.1034 0.7129 0.7193
[0.0056] [0.0051] [0.0088] [0.0037] [0.0070] [0.0066]

Average 2.2061 0.5230 0.1220 0.1272 0.7719 0.8126

[0.0726] [0.0067] [0.0910] [0.0072] [0.0083] [0.0011]

Panel B. GH
Intervals 23.Jun €x10,000 & x10,000 A x10,000 A x10,000 P Q

1 to 10,000 0.5888 0.8663 0.0013 0.2801 0.6134 0.8806
[0.0379] [0.0154] [0.0413] [0.0159] [0.0293] [0.0113]

2 to 20,000 0.4937 0.7023 -0.1802 0.3249 0.6875 0.7321
[0.0178] [0.0096] [0.0266] [0.0132] [0.0224] [0.0199]

3 to 30,000 0.5979 0.6508 -0.0602 0.2135 0.7514 0.6862
[0.0160] [0.0085] [0.0237] [0.0118] [0.0121] [0.0158]

4 to 40,000 0.7480 0.8385 -0.2228 0.3381 0.8047 0.6680
[0.0229] [0.0118] [0.0331] [0.0152] [0.0117] [0.0198]

5 to 50,000 0.6967 0.7770 -0.1401 0.3168 0.5469 0.7715
[0.0161] [0.0099] [0.0247] [0.0107] [0.0126] [0.0072]

6 to 60,000 1.9791 1.4917 -0.3999 0.5310 0.4938 0.9656
[0.0767] [0.0144] [0.0944] [0.0365] [0.0215] [0.0026]

7 to 70,000 1.8634 1.6498 -0.6026 0.7196 0.5066 0.9635
[0.0993] [0.0175] [0.1156] [0.0381] [0.0268] [0.0035]

8 to 80,000 0.9524 0.9531 -0.2908 0.4380 0.5595 0.8842
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[0.0301] [0.0120] [0.0418] [0.0199] [0.0173] [0.0061]
9 t0 90,000 0.7291 0.8546 -0.3889 0.4027 0.3652 0.9482
[0.0530] [0.0115] [0.0559] [0.0250] [0.0323] [0.0077]

10 to 100,000 0.6063 0.8177 -0.2904 0.3642 0.9135 0.5138
[0.0479] [0.0141] [0.0448] [0.0216] [0.0122] [0.0281]

11 to 110,000 0.4745 0.6399 -0.0942 0.2284 0.6774 0.7772
[0.0192] [0.0100] [0.0242] [0.0110] [0.0261] [0.0203]

12 to 120,000 0.4426 0.6456 -0.1777 0.2620 0.8207 0.5577
[0.0207] [0.0108] [0.0264] [0.0133] [0.0133] [0.0259]

13 to 130,000 0.4085 0.5672 -0.2453 0.2824 0.9430 0.5707
[0.0757] [0.0111] [0.0387] [0.0199] [0.0172] [0.0281]

14 to 140,000 0.1929 0.4566 -0.1674 0.2202 0.6016 0.6904
[0.0117] [0.0071] [0.0150] [0.0070] [0.0173] [0.0168]

15 to 150,000 0.2419 0.3689 -0.0944 0.1850 0.6870 0.6956
[0.0082] [0.0069] [0.0131] [0.0066] [0.0126] [0.0114]

16 to 160,000 0.0879 0.4589 -0.2227 0.2584 0.4040 0.2585
[0.0107] [0.0055] [0.0214] [0.0085] [0.0489] [0.0313]

17 over 160,000 0.8761 0.5628 -0.0550 0.1364 0.9928 0.5789
[0.0719] [0.0052] [0.0754] [0.0192] [0.0013] [0.0604]

Average 0.7047 0.7825 -0.2136 0.3236 0.6688 0.7143

[0.0318] [0.0106] [0.0370] [0.0156] [0.0082] [0.0085]
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Table 8. Classified Trades: Correlations
This table provides daily correlation estimates of the classified trades using the Tick rule, the Roll model, and
the extended GH model for the gold futures contract traded on the CME Globex electronic trading platform
from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further details on the dating convention used
in the paper). The daily correlations of classified trades between the Tick rule and the Roll model (the extended

GH model) is labelled as Roll (GH) respectively.

Date Roll GH
1-May 0.9999 0.9984
2-May 1.0000 0.9991
3-May 0.9980 0.9988
4-May 0.9994 0.9995
5-May 1.0000 0.9975
8-May 0.9995 0.9998
9-May 1.0000 0.9996
10-May 1.0000 0.9998
11-May 0.9999 0.9995
12-May 1.0000 0.9994
15-May 1.0000 0.9996
16-May 1.0000 0.9999
17-May 0.9996 0.9991
18-May 1.0000 0.9999
19-May 1.0000 0.9999
22-May 0.9999 0.9998
23-May 1.0000 1.0000
24-May 1.0000 0.9990
25-May 0.9999 1.0000
26-May 0.9995 0.9997
29-May 0.9998 0.9949
30-May 1.0000 1.0000
31-May 1.0000 1.0000

1-Jun 1.0000 0.9999

2-Jun 0.9998 0.9939

5-Jun 1.0000 0.9998

6-Jun 1.0000 1.0000

7-Jun 1.0000 1.0000

8-Jun 1.0000 0.9999

9-Jun 1.0000 1.0000
12-Jun 0.9995 0.9997
13-Jun 1.0000 1.0000
14-Jun 0.9995 0.9996
15-Jun 1.0000 0.9997
16-Jun 1.0000 0.9998
19-Jun 0.9887 0.6063
20-Jun 0.9995 0.9977
21-Jun 0.9991 0.9960
22-Jun 0.9989 0.9839
23-Jun 0.9988 0.4455
26-Jun 0.9991 0.8260
27-Jun 0.9993 0.9976
28-Jun 1.0000 0.9979
29-Jun 0.9997 0.9996
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Table 9. The Bid-Ask Spread (ticks) and Relative Decomposition

pt :rnt +th’mt :mt—1+ﬂ't(qt _E[qt |Qx—1])+ut’ut - N(O,Uj),q‘ E{—l,l}

where Pr[q =1|q_ =1]=P,Pr[g =-1]q ,=-1]=Q and 4 =4, +il\ﬁ

This table gives daily bid-ask spread in ticks and estimates of liquidity components of the above model with
data from gold futures contracts traded on the CME Globex electronic trading platform from May 1, 2016 to

June 30, 2016. (See the caption of Table 2 for further details on the dating convention used in the paper) In this

model, o isthe standard deviation of the log efficient price changes: c is the order processing component of

the (log) half spread. Pand Q are transition probabilities. 4 and ; are the fixed and variable permanent
price impact costs, respectively. In particular, this table first reports s, _ which is the spread in ticks

computed as s =sp,,  xP Where sp isthe log spread estimates implied by the model with the daily
average volume per trade(\7,) (i.e., computed as sp,, = =2x(c+4, +ﬂlﬁ) ), and P is the average daily

tick price. For example, the s_ ~ on 1, May is 1.1970 (i.e., 2x(0.4615x10™") x (1,296.9/0.1) ) where 1,296.9 is

the mean of the daily prices and 0.1 is the tick size on 1, May. In the last two columns, the estimates of

informational and non-informational components of the bid-ask spread (s _ ) are computed using the results in

GH ,cs

Table 6 as follows.

Proportion of spread arising from order processing cost component : TC =c/ (¢ + (4, + /ll\ﬁ))

Proportion of spread arising from the information asymmetry component: IC=(4, + /11\ﬁ) I(c+ (4, + /ll\ﬁ))

Date AVG. daily price vV SPah s SeHcs TC IC
1-May 1296.9 2.87 0.9229 1.1970 0.5254 0.4746
2-May 1294.3 2.85 0.9312 1.2053 0.5749 0.4251
3-May 1283.4 2.90 0.9457 1.2138 0.5751 0.4249
4-May 1280.6 2.84 0.9288 1.1894 0.5593 0.4407
5-May 1289.1 2.88 0.9471 1.2209 0.5719 0.4281
8-May 1274.3 3.03 0.9081 1.1572 0.5751 0.4249
9-May 1265.0 2.80 0.9288 1.1750 0.5262 0.4738
10-May 1275.5 2.93 0.9217 1.1755 0.5749 0.4251
11-May 1273.2 2.93 0.9274 1.1808 0.5872 0.4128
12-May 1270.9 2.82 0.9419 1.1971 0.5486 0.4514
15-May 1281.0 3.06 0.9330 1.1952 0.6201 0.3799
16-May 1277.5 2.96 0.9294 1.1873 0.5792 0.4208
17-May 1271.3 2.93 0.9656 1.2275 0.5768 0.4232
18-May 1252.7 3.32 0.9545 1.1956 0.5948 0.4052
19-May 1255.3 2.95 0.9327 1.1708 0.5960 0.4040
22-May 1249.8 2.82 0.9038 1.1296 0.6159 0.3841
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1237.6
1223.2
1226.5
1216.6
1207.7
1215.3
1216.4
1215.7
1234.1
1246.2
1243.9
1258.8
1267.0
1273.8
1284.0
1286.5
1289.6
1305.1
1290.6
1287.6
1278.5
1269.4
1266.0
1315.0
1330.2
1317.7
1323.8
1320.8

3.34
3.16
2.71
3.18
2.82
2.96
2.99
2.70
3.30
3.05
3.02
3.39
3.09
3.13
3.19
3.14
3.01
3.17
3.07
3.18
3.03
2.84
2.69
2.88
2.83
2.96
3.01
3.03

0.9385
0.9197
0.9481
0.9614
1.0215
0.9551
0.9518
0.9601
0.9830
0.9357
0.9068
0.8941
0.8917
0.8936
0.8893
0.8607
0.9358
0.8965
0.8832
4.8659
0.9329
0.9245
0.9600
2.0815
0.8891
0.9061
0.9052
0.8958

1.1615
1.1250
1.1627
1.1320
1.2336
1.1608
1.1577
1.1672
1.2132
1.1660
1.1279
1.1254
1.1298
1.1383
1.1419
1.1073
1.2068
1.1699
1.1398
6.2654
1.1927
1.1735
1.2154
3.2990
1.1827
1.1940
1.1982
1.1359

0.6601
0.6512
0.5871
0.5909
0.5448
0.6037
0.6420
0.5919
0.6974
0.6101
0.6582
0.6527
0.6234
0.6131
0.6081
0.6525
0.6057
0.6256
0.6034
0.9068
0.5469
0.5312
0.5140
0.6771
0.6206
0.5925
0.5681
0.5799

0.3399
0.3488
0.4129
0.4091
0.4552
0.3963
0.3580
0.4081
0.3026
0.3899
0.3418
0.3473
0.3766
0.3869
0.3919
0.3475
0.3943
0.3744
0.3966
0.0932
0.4531
0.4688
0.4860
0.3229
0.3794
0.4075
0.4319
0.4201
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Figure 1: Daily series of average prices (Price) and trading volumes (Volume)
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This figure presents the daily series of average prices (Price) and trading volumes (Volume) of the gold futures
contract from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for further details on the dating

convention used in the paper)
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Figure 2: Daily estimates of the permanent price impact
p,=m+cq,m =m_ +/1t (qt - E[qt IQtfl])J’_ut'ut ~N (0’ O-uz)’qt < {_1’1}

where Pr[qg, =1|q_ =1]=P,Pr[q =-1|q_, =-1]=Q and 4 = 4, +ﬂlﬁ

This figure provides daily A, estimates from the above model using data on gold futures contracts trading on
the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of Table 2 for
further details on the dating convention used in the paper.) In this model, o, is the standard deviation of the
log efficient price changes: c is the order processing component of the (log) half spread. P and Q are

transition probabilities. 4 and A, are the fixed and variable permanent price impact costs, respectively.
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Figure 3: The Bid-Ask Spread in ticks

p, =M, +Cq,.,m :mtfl+ﬂ“t(qt_E[qt IQtfl])-{_ut'ut - N(0,0‘:),qt E{—l,l}

where Pr[g =1|q_, =1]=P,Pr[g =-1|q, =-1]=Q and 4 =4, +il\ﬁ

This figure presents daily bid-ask spread in ticks of the above model using data from gold futures contracts
trading on the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016. (See the caption of

Table 2 for further details on the dating convention used in the paper.) In this model, o, is the standard
deviation of the log efficient price changes: c¢ is the order processing component of the (log) half spread. P
and Q are transition probabilities. 7 and , are the fixed and variable permanent price impact costs,
respectively. In particular, this table first reports S_, ~ which is the spread in ticks computed as

S xP where s isthe log spread estimates implied by the model with the daily average volume

GH ,cs = spGH ,CS.

(\Z) (i.e,, computed as sp_, = =2x(c+4, +/11\/\f) ),and P is the average daily tick price. For example, the

S on 1, May is 1.1970 (i.e., 2x (0.4615x10 %) x (1,296.9/0.1) ) where 1,296.9 is the mean of the daily prices

GH ,cs

and 0.1 is the tick size on 1, May.
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Figure 4: Daily estimates of informational (IC) and non-informational (TC) components
pt = mt +th’mt = mt—l +/It (q[ - E[qt |Qt—1])+ut’ut ~N (o’auz)’qt B {_1’1}

where Pr[qg =1|q_ =1]=P,Pr[g =-1]|q_, =-1]=Q and A4 :/10+/11\#/\7t

This figure presents daily estimates of liquidity components of the above model using gold futures data from
contracts trading on the CME Globex electronic trading platform from May 1, 2016 to June 30, 2016 (See the

caption of Table 2 for further details on the dating convention used in the paper.) In this model, & is the

standard deviation of the log efficient price changes: ¢ is the order processing component of the (log) half

spread. Pand Q are transition probabilities. 2, and , are the fixed and variable permanent price impact

costs, respectively. In particular, the estimates of informational and non-informational components of the bid-

ask spread (s, ) are computed using the results in Table 6 as follows.

Proportion of spread arising from order processing cost component: TC =c/ (¢ + (4, + Zl\ﬁ))

Proportion of spread arising from the information asymmetry component: IC=(4 + Al\ﬁ )/ (c+(4,+ 4 \/\7 )
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Table Al. Convergence diagnostics for the Bayesian estimation

APPENDICES

This table provides two convergence diagnostics for the Bayesian estimation of the three models: Roll, the extended Roll, and the extended GH. In particular, we compute

and report the effective sample size based on the inefficiency factors and the p-value of Geweke(1992)'s convergence diagnostics test for the model parameters.

1

2)

Geweke(1992)’s convergence diagnostic: if Geweke’s p-value is less than 0.05, we interpret the burn-in period is too small and we can’t guarantee the
convergence of the chain. In general, as Geweke’s p-value is close to 1, we have more efficient samples.

Inefficiency factor and effective sample size: the effective sample size should be larger than 1000 for all parameters to guarantee sufficient number of the

MCMC draws.

Refer to Appendix B for more details on the inefficiency factors and the Geweke(1992)’s diagnostic tests.

Roll (Bayesian) MS(Bayeisan) GH(Bayeisan)
Date Parameters c o, c o, P Q c o, 2, A P Q
1-May Geweke P 0.9274 0.7340 0.7009 0.4356 0.5952 0.6594 0.5929 0.7866 0.5419 0.8123 0.6971 0.1978
Effective size 8413 8998 11709 9239 1761 1809 9405 6301 5210 9793 3988 3772
2-May Geweke P 0.7120 0.8444 0.7632 0.7944 0.9771 0.6380 0.9897 0.9338 0.9901 0.9178 0.3291 0.9217
Effective size 6693 6940 13726 13494 2203 2292 10202 8163 5358 11294 4305 4866
3-May Geweke P 0.9605 0.9132 0.8327 0.7237 0.9632 0.9860 0.6982 0.9823 0.8535 0.9734 0.7017 0.8055
Effective size 8322 8432 13122 11211 1586 1615 10009 7062 5094 7955 3083 3163
4-May Geweke P 0.7671 0.7688 0.9416 0.7742 0.8531 0.8939 0.5546 0.4763 0.7750 0.9529 0.7296 0.1347
Effective size 7091 7830 14005 13976 2098 2068 8863 7376 4871 10748 3995 3889
5-May Geweke P 0.9031 0.8974 0.5375 0.6463 0.1675 0.3989 0.5032 0.0945 0.3977 0.8397 0.7748 0.7234
Effective size 8556 9566 12791 8561 1410 1440 10337 6100 5620 10743 3702 3730
8-May Geweke P 0.7246 0.9435 0.9898 0.8651 0.7313 0.8059 0.3239 0.6552 0.6819 0.8941 0.8464 0.8006
Effective size 7552 8164 15635 16948 2039 2308 6978 9673 4153 8696 3292 4265
9-May Geweke P 0.9923 0.9756 0.6797 0.5197 0.6723 0.7198 0.9466 0.6883 0.7881 0.9219 0.8683 0.8723
Effective size 7312 8065 13524 16028 2228 2239 9148 9055 4902 10650 4548 4300
10-May Geweke P 0.8597 0.8468 0.9085 0.9910 0.8637 0.8849 0.9912 0.9483 0.8477 0.9829 0.5173 0.5464
Effective size 4355 4450 16384 22530 2478 2411 9797 10977 5277 11881 4414 4630
11-May Geweke P 0.7258 0.7233 0.9749 0.9444 0.7256 0.7679 0.9873 0.8992 0.6461 0.9855 0.8663 0.7997
Effective size 6011 6048 15662 16480 2442 2521 9102 9629 5154 9822 4496 4650
12-May Geweke P 0.4671 0.1306 0.8781 0.8194 0.5045 0.4020 0.8810 0.8251 0.4436 0.6628 0.7698 0.8778
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Effective size 5998 6269 15485 14156 2336 2521 10673 8176 5254 10002 4387 5525

15-May Geweke P 0.9804 0.9910 0.7367 0.9856 0.2007 0.8215 0.5584 0.6684 0.7590 0.8321 0.9885 0.9578
Effective size 1110 1104 19063 22743 2440 2581 9392 9749 5663 14534 4491 4378

16-May Geweke P 0.9861 0.9982 0.9812 0.8226 0.8437 0.9154 0.9140 0.6349 0.9917 0.8659 0.9325 0.9850
Effective size 4731 4964 16268 21081 2479 2479 10010 10550 5697 11989 4254 4262

17-May Geweke P 0.9408 0.9837 0.9529 0.9817 0.8258 0.7747 0.9903 0.7454 0.8285 0.6952 0.9203 0.9801
Effective size 6925 7316 13956 11694 1777 1823 9781 7233 5551 9936 3902 4169

18-May Geweke P 0.9808 0.9915 0.7779 0.8919 0.5869 0.5827 0.9980 0.9564 0.9744 0.9993 0.9060 0.7648
Effective size 2755 2765 18418 23314 2695 2865 22352 25950 47455 170478 10429 12956

19-May Geweke P 0.8704 0.8706 0.9976 0.7876 0.9471 0.9925 0.8460 0.9024 0.7672 0.7379 0.8028 0.6164
Effective size 1915 1920 17516 25642 2995 3043 9078 11419 5420 14514 4634 5869

22-May Geweke P 0.8781 0.8970 0.9675 0.9082 0.9316 0.9432 0.7572 0.9166 0.9321 0.2853 0.6214 0.5764
Effective size 2498 2554 16569 33538 2555 2635 6881 12558 4287 12419 3653 4609

23-May Geweke P 0.7080 0.8577 0.8650 0.8628 0.4451 0.0017 0.8091 0.9661 0.9791 0.9982 0.9101 0.9036
Effective size 10768 10680 18213 39618 1970 2016 7423 15025 4428 11320 3793 3681

24-May Geweke P 0.4406 0.6900 0.7203 0.8073 0.9700 0.8814 0.6428 0.7684 0.7129 0.7195 0.8326 0.4196
Effective size 9734 8897 17721 40108 2246 2086 8064 22279 4768 9563 4227 4033

25-May Geweke P 0.8894 0.8665 0.9421 0.8548 0.7626 0.7971 0.9654 0.9888 0.8617 0.6404 0.9288 0.9292
Effective size 6131 6708 18609 20088 2407 2504 8048 9792 4614 8849 3835 4483

26-May Geweke P 0.4039 0.8067 0.9523 0.9749 0.9754 0.9128 0.2232 0.6810 0.4580 0.6544 0.3993 0.4403
Effective size 5997 6121 17895 21393 2468 2548 10901 13522 5272 8721 4332 4447

29-May Geweke P 0.8549 0.8375 0.9162 0.9685 0.7571 0.1063 0.7973 0.5983 0.6381 0.8937 0.5263 0.0568
Effective size 7427 7657 11083 9611 2219 2498 10980 6422 6110 11504 3862 5104

30-May Geweke P 0.8045 0.8141 0.7647 0.9484 0.7140 0.6880 0.6616 0.9484 0.8442 0.9858 0.4684 0.9291
Effective size 3001 2921 19121 28204 3115 3053 8867 11798 5117 13621 4875 4487

31-May Geweke P 0.8063 0.7697 0.5694 0.9738 0.6201 0.7709 0.6797 0.7483 0.1615 0.4906 0.8193 0.8537
Effective size 11536 10198 22675 40217 3217 3210 8190 12667 5347 14808 4416 4129

1-Jun Geweke P 0.9828 0.9945 0.9642 0.6798 0.9261 0.9397 0.5620 0.6319 0.2861 0.7874 0.4802 0.9943
Effective size 1921 1920 16855 23509 3054 2898 8539 10738 5241 11107 4903 4214

2-Jun Geweke P 0.9627 0.8922 0.8057 0.6785 0.8385 0.7904 0.4829 0.6432 0.5624 0.1216 0.7074 0.9768
Effective size 9166 10011 2100 3996 1593 2303 8562 8948 5794 16780 3924 3970

5-Jun Geweke P 0.7646 0.7154 0.9174 0.8756 0.9172 0.8797 0.8476 0.7030 0.2764 0.6942 0.5404 0.8952
Effective size 4603 4810 17471 25441 2046 2098 7583 10716 4823 12453 3758 4054

6-Jun Geweke P 0.9076 0.8397 0.8185 0.9313 0.9465 0.8586 0.9260 0.5150 0.7924 0.7595 0.9570 0.9982
Effective size 14111 12035 20441 46255 3599 3606 7152 14816 4388 11504 4585 3779

7-Jun Geweke P 0.9111 0.9243 0.3407 0.9785 0.6226 0.7852 0.8492 0.7661 0.7781 0.6150 0.3032 0.6276
Effective size 12290 11849 20534 44770 2900 2987 6984 16289 4173 13000 4067 4286

8-Jun Geweke P 0.9028 0.7456 0.9511 0.9431 0.6865 0.6674 0.6449 0.6903 0.3703 0.7814 0.9207 0.9178
Effective size 9966 9624 20373 41532 3583 3449 8571 15989 5009 12590 4736 4527

9-Jun Geweke P 0.6104 0.4483 0.9445 0.9229 0.9531 0.9779 0.6278 0.8647 0.1998 0.8142 0.6720 0.1087
Effective size 6233 6095 17409 34046 3001 2882 8419 13675 4854 12705 4078 3924
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12-Jun Geweke P 0.8979 0.8997 0.8840 0.7422 0.5844 0.8830 0.8565 0.3687 0.5347 0.6629 0.8213 0.5067
Effective size 4340 4408 16462 24304 2508 2432 8792 12149 4823 11415 3772 3205
13-Jun Geweke P 0.2990 0.7920 0.9485 0.9339 0.9445 0.8870 0.9135 0.9903 0.9949 0.9700 0.7857 0.8169
Effective size 10497 9993 18318 44846 2824 2754 7583 19914 4421 11163 3725 3829
14-Jun Geweke P 0.9301 0.9365 0.7596 0.8193 0.7304 0.7161 0.8014 0.9051 0.8559 0.9507 0.9008 0.7635
Effective size 7551 7924 14613 11401 1299 1278 7698 7484 5386 11745 2985 2777
15-Jun Geweke P 0.9551 0.9655 0.9315 0.9434 0.8175 0.7730 0.9280 0.8710 0.9975 0.9427 0.6644 0.6701
Effective size 3767 3785 19552 24541 2649 2604 6351 12261 3669 6334 3840 3211
16-Jun Geweke P 0.9779 0.9994 0.9391 0.9648 0.5655 0.5579 0.7463 0.7460 0.7892 0.7972 0.5594 0.9741
Effective size 3350 3386 17458 28623 2255 2355 8194 12251 4583 11865 4021 4214
19-Jun Geweke P 0.9612 0.9813 0.3395 0.3643 0.1126 0.3096 0.3752 0.4261 0.4189 0.3922 0.3181 0.3925
Effective size 10292 12942 1795 5090 1443 2416 1761 1855 1800 1754 1336 1130
20-Jun Geweke P 0.9796 0.9958 0.9473 0.5442 0.9371 0.8569 0.8620 0.9588 0.9405 0.9189 0.9376 0.9126
Effective size 8563 9767 10851 9542 1813 1761 10706 7066 5464 8889 3483 3194
21-Jun Geweke P 0.6503 0.8400 0.9390 0.7055 0.7626 0.8244 0.8835 0.7967 0.8501 0.4754 0.7167 0.9325
Effective size 8429 9114 12092 11998 2339 2167 10139 8849 5454 10399 4308 3487
22-Jun Geweke P 0.7910 0.9317 0.8806 0.9841 0.8713 0.8793 0.9420 0.8065 0.8815 0.9087 0.7090 0.7914
Effective size 8430 9672 8324 5570 1102 1119 2765 2468 1689 2426 2231 2358
23-Jun Geweke P 0.9840 0.9498 0.9698 0.2067 0.0281 0.3924 0.5930 0.8584 0.8570 0.8807 0.3825 0.7881
Effective size 12473 16675 3445 3441 1404 3537 2175 3563 2160 2260 1533 2951
26-Jun Geweke P 0.9672 0.9994 0.9156 0.7016 0.9716 0.3641 0.8711 0.7982 0.9228 0.7864 0.4213 0.3246
Effective size 10103 12038 2206 3219 2184 1168 1272 2429 1068 1255 2002 1894
27-Jun Geweke P 0.7884 0.7695 0.9528 0.9358 0.9717 0.9076 0.7976 0.5119 0.5352 0.7927 0.5152 0.3013
Effective size 8078 8351 12859 8734 1761 1914 9493 6378 5683 11834 3190 3189
28-Jun Geweke P 0.7134 0.9336 0.9197 0.7476 0.3981 0.3297 0.7854 0.9133 0.9032 0.9169 0.8185 0.8430
Effective size 7551 7955 13293 11938 1875 1817 8604 6969 4565 8044 4115 3649
29-Jun Geweke P 0.7966 0.6836 0.9112 0.8719 0.8441 0.9496 0.8172 0.8332 0.8920 0.8856 0.7177 0.7762
Effective size 7797 8246 14997 15705 2072 2067 9272 9592 5147 9459 4436 4205
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Table A.2 The difference of estimates from Bayes and MLE

This table presents average and maximum absolute differences between parameter estimates based on MLE and
Bayesian estimates from the Roll, the extended Roll (MS), and the extended GH (GH) model.

Bayes - MLE parameters Roll MS GH
Average difference ¢ X 10,000 0.0000 0.0001 -0.0010
o, %X 10,000 0.0000 0.0000 -0.0027
4, X10,000 - - 0.0052
A, x10,000 - - -0.0021
P - 0.0003 -0.0021
Q - 0.0000 0.0009
Bayes - MLE Parameters Roll MS GH
Max abs(difference) ¢ X 10,000 0.0013 0.0019 0.0272
o x10,000 0.0013 0.0004 0.0702
/10 X% 10,000 - - 0.1223
A, 10,000 - - 0.0513
P - 0.0074 0.0845
Q - 0.0013 0.0381
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Table A3. Model comparison (Likelihood ratio test)

This table presents model comparison results from the Roll, and the extended Roll (MS), and the extended GH

(GH) models based on the likelihood ratio tests as follows.

L .
-21In (—Rj ~ X
L,

where L, and L, are the likelihood value under restricted model and unrestricted model, respectively. For

example, when we compare the Roll model with the extended GH model, L. and L, are the likelihood value
under the Roll model and under the extended GH model, respectively. Since we need to put restrictions on four
parameters (P,Q, A and 4, ) on the extended GH model to obtain the Roll model, the test statistics follows a

chi-square distribution with 4 degrees of freedom.

Crit(1%), 6.6349 (Roll-MS), 11.3449 (Roll-GH), 9.2103 (MS-GH)

Date Model Likelihood Likelihood ratio test
1-May Roll 506516.3411 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 507429.8096 Chi-stat 1826.9369 4544.4196 2717.4827
GH 508788.5509 P-value 0 0 0
2-May Roll 534907.565 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 536174.3543 Chi-stat 2533.5785 5993.3090 3459.7305
GH 537904.2195 P-value 0 0 0
3-May Roll 563875.5491 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 565407.3009 Chi-stat 3063.5037 6233.1780 3169.6743
GH 566992.1381 P-value 0 0 0
4-May Roll 480310.5331 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 481533.6496 Chi-stat 2446.2331 4987.4244 2541.1914
GH 482804.2453 P-value 0 0 0
5-May Roll 643872.5622 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 645299.3172 Chi-stat 2853.5099 6354.5856 3501.0757
GH 647049.855 P-value 0 0 0
8-May Roll 521049.5271 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 523056.4188 Chi-stat 4013.7834 6790.0208 2776.2374
GH 5244445375 P-value 0 0 0
9-May Roll 429310.7187 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 430505.897 Chi-stat 2390.3566 4884.1660 2493.8094
GH 431752.8017 P-value 0 0 0
10-May Roll 445413.9822 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 447043.2221 Chi-stat 3258.4798 6198.8750 2940.3953
GH 448513.4197 P-value 0 0 0
11-May Roll 498291.7839 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 499815.2659 Chi-stat 3046.9641 5984.7968 2937.8328
GH 501284.1823 P-value 0 0 0
12-May Roll 463180.7376 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 464474.9132 Chi-stat 2588.3511 5352.4716 2764.1205
GH 465856.9734 P-value 0 0 0
15-May Roll 479958.3703 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 481619.7409 Chi-stat 3322.7412 5761.2219 2438.4807
GH 482838.9813 P-value 0 0 0
16-May Roll 488362.0101 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
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MS 489909.8219 Chi-stat 3095.6235 5825.5533 2729.9298

GH 491274.7868 P-value 0 0 0
17-May Roll 582443.3422 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 583638.2658 Chi-stat 2389.8472 6063.9801 3674.1329

GH 585475.3323 P-value 0 0 0
18-May Roll 581842.2541 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 584348.0668 Chi-stat 5011.6255 8264.8027 3253.1771

GH 585974.6554 P-value 0 0 0
19-May Roll 362660.0529 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 364184.207 Chi-stat 3048.3083 4902.4966 1854.1883

GH 365111.3011 P-value 0 0 0
22-May Roll 391784.1099 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 394046.2345 Chi-stat 4524.2491 6184.3464 1660.0972

GH 394876.2831 P-value 0 0 0
23-May Roll 504834.4489 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 507961.0369 Chi-stat 6253.1761 9019.2506 2766.0745

GH 509344.0742 P-value 0 0 0
24-May Roll 426820.3463 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 429332.9695 Chi-stat 5025.2465 7617.5436 2592.2971

GH 430629.1181 P-value 0 0 0
25-May Roll 368283.5937 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 369811.1244 Chi-stat 3055.0614 4982.7536 1927.6922

GH 370774.9705 P-value 0 0 0
26-May Roll 409937.9610 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 411698.1906 Chi-stat 3520.4591 6524.8684 3004.4093

GH 413200.3952 P-value 0 0 0
29-May Roll 245069.8893 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 245384.3328 Chi-stat 628.8869 2015.8596 1386.9727

GH 246077.8191 P-value 0 0 0
30-May Roll 387333.0538 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 388964.1733 Chi-stat 3262.2390 5358.2592 2096.0202

GH 390012.1833 P-value 0 0 0
31-May Roll 410784.406 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 412664.8679 Chi-stat 3760.9238 5602.1671 1841.2433

GH 413585.4895 P-value 0 0 0
1-Jun Roll 322725.4681 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 324025.2884 Chi-stat 2599.6405 3893.7146 1294.0740

GH 324672.3254 P-value 0 0 0
2-Jun Roll 570025.7323 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 571681.6274 Chi-stat 3311.7902 4866.7338 1554.9435

GH 572459.0992 P-value 0 0 0
5-Jun Roll 432138.5773 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 434409.7598 Chi-stat 4542.3650 6720.9511 2178.5861

GH 435499.0528 P-value 0 0 0
6-Jun Roll 315554.1838 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 316977.6943 Chi-stat 2847.0210 4228.0255 1381.0045

GH 317668.1966 P-value 0 0 0
7-Jun Roll 408143.8464 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 410522.4484 Chi-stat 4757.2040 6898.4437 2141.2397

GH 411593.0683 P-value 0 0 0
8-Jun Roll 392998.4378 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 394881.2157 Chi-stat 3765.5559 5779.1010 2013.5452

GH 395887.9883 P-value 0 0 0
9-Jun Roll 389712.6362 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 391565.2274 Chi-stat 3705.1824 5361.7774 1656.5950

GH 392393.5249 P-value 0 0 0
12-Jun Roll 517206.8955 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
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MS 519606.3378 Chi-stat 4798.8845 8008.6417 3209.7572
GH 521211.2164 P-value 0 0 0
13-Jun Roll 489502.5198 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 492309.1285 Chi-stat 5613.2175 8273.0244 2659.8069
GH 493639.032 P-value 0 0 0
14-Jun Roll 511532.4208 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 513162.2615 Chi-stat 3259.6815 5427.8531 2168.1716
GH 514246.3473 P-value 0 0 0
15-Jun Roll 867118.8519 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 870552.3898 Chi-stat 6867.0758 12740.2098 5873.1340
GH 873488.9568 P-value 0 0 0
16-Jun Roll 530716.4036 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 533219.1178 Chi-stat 5005.4283 7886.3863 2880.9580
GH 534659.5968 P-value 0 0 0
19-Jun Roll 474641.9255 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 476240.678 Chi-stat 3197.5050 3469.1268 271.6218
GH 476376.4889 P-value 0 0 0
20-Jun Roll 519765.9536 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 520691.8947 Chi-stat 1851.8821 5246.3840 3394.5018
GH 522389.1456 P-value 0 0 0
21-Jun Roll 369354.6134 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 370201.8094 Chi-stat 1694.3920 3876.7641 2182.3721
GH 371292.9955 P-value 0 0 0
22-Jun Roll 444442 935 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 444883.4025 Chi-stat 880.9349 3413.8757 2532.9408
GH 446149.8729 P-value 0 0 0
23-Jun Roll 1374533.738 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 1386969.649 Chi-stat 24871.8216 29075.2245 4203.4029
GH 1389071.351 P-value 0 0 0
26-Jun Roll 683033.9206 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 684608.0586 Chi-stat 3148.2760 5604.7667 2456.4907
GH 685836.304 P-value 0 0 0
27-Jun Roll 480307.2243 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 481121.4758 Chi-stat 1628.5031 4280.9591 2652.4561
GH 482447.7039 P-value 0 0 0
28-Jun Roll 449722 .4166 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 450602.4876 Chi-stat 1760.1420 4875.4327 3115.2907
GH 452160.133 P-value 0 0 0
29-Jun Roll 480259.7110 Comparison LR:Roll-MS LR:Roll-GH LR:MS-GH
MS 481791.8537 Chi-stat 3064.2856 6243.7616 3179.4760
GH 483381.5918 P-value 0 0 0
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Appendix A

A. Bayesian Estimation of the empirical market microstructure models
We proceed first by discussing briefly Hasbrouck's Gibbs sampling algorithm for the Roll
model followed by the estimation algorithms we propose for the case of the extended Roll

and Glosten and Harris models with autocorrelated trade direction indicators.

A.1 Hasbrouck (2004)
To facilitate the explanations to follow, we reproduce the Roll model, equation (1) in
the text:

P, =M, +Cq;
m =m_ +u, u ~N(0,07)
where p, isthe log transaction price, m, is the efficient price, q, is the independent trade

direction indicator, and cis the (log) half bid-ask spread. To estimate this model, we use

Hasbrouck (2004)’s codes downloaded from his website.

Hasbrouck (2004) draws c,s, and q(s[ql,...,qT]) repeatedly from the posterior

conditional density as follows given data (p=[p,,... pr]):

. Draw q®from f(q,,...q |¢?,0, p)
. Draw ¢ from f(c|o\”,q®, p)
. Draw o from f(c,|c",q®, p)

The final output is {c(j),aﬁj),q(j)}forj = number of simulations.

A.1.1 Exact forms of conditional posterior densities

The Roll model can be expressed in regression form as Y = Xc+u, E(uu)=c’l,,.In

T-1°

the present setup,Y =[Ap,,..Ap; ], X =[Aq,,...,Aq;], and u=[u,,...,u;]. By using conjugate

prior distributions, the conditional posterior distributions for the standard regression

parameters are given as follows.

I. Log half spread (c):
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. Prior distribution : ¢ ~ N (™", Q")
. Posterior distribution: c|Y,X ~N ( ycpf’s‘e”"’,Qf"Ste”"r)

Where 'uposterior — Dd’Qfosterior — D

C

D= X' X +(QF™) " and d = X'QlY +(QF™)

-1 Prior

C

We impose a non-informative prior for ¢ by assuming a small value for ™" (107°)

and large number for Q™ (10°). As economic theory dictates the half-spread is positive,

Hasbrouck uses a truncated normal density to ensurea ¢ >0.

In this normal linear regression model, the conjugate prior distribution for the
variance parameter is the inverted gamma distribution.

ii. The variance parameter (o7):

e 1 )
. Prior distribution: —|c [ F(ﬁ,—oj
. 2 2
o 1
. Posterior distribution: —-|c,Y, X [ F(%%j

where=v,T — d&,=6,(® Xg( Y )
iii. The independent trade direction indicator
First, we express the joint distribution of q(=[q;,...,q;]) using Bayes’ theorem and
subsequently simplify as in this case Pr(q)=0.5, and f(p) does not depend on q. For

economy of notation, parameters that are given will be dropped from the explicit conditioning
set.
1
f(p)

Hasbrouck uses a single-move Gibbs sampling algorithm to draw ¢, sequentially as follows.

pr(al p) = f(plq)xpr(q)x o f(pla)

— Draw q: from Pr(q1| piqz’qsw"qT)
— Draw q; from Pr(q, | IO,OII,%,-MQT)

— Draw qjlj from Pr(qT | P, q:l q;’ ey q;—l)
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where ¢ is the newly drawn value of g, from those remaining after the previous draw. To
complete this algorithm, Hasbrouck derives the conditional distribution pr(q, | p,,m_,,m,.,)
using Bayes’ theorem, simplifying it as neither pr(q, |m,_,,m.) nor f(p,|m_,m,,)
depend on g.

f(p g, m,m.)xpr(g|m_,m.)
f (pt | rntfl' mt+1)

Hasbrouck demonstrates that f(p,|qg,m_,m,) follows a normal distribution

pr(g | p,m_,m,,)= oo f(p 10, m_y,m,,)

(( pt - th) - ,ux)2
207

J) and derives posterior densities for three

(¢(lux7axvpt_cqt)=\/%o_ exp{—

different scenarios. The non-normalized probabilities of a buy and a sell order are determined

after evaluating each case at g, =+1 and ¢, =—1, respectively. The normalized probability

of a buy for the three different possibilities is given as follows.

° For t=1,

_ ¢(O'Gu’mz — p1+C)
¢(010uam2_ p1+c)+¢(010_u'm2_ pl_C)’

pr(g, =1/ p.q,.0;.---. )

where m, = p, —cq,

) For t=2,.....T-1,

¢(;(m1-1 +mt+l)’\7u§’ Py _Cj

! mlfl+mt+1)’7u’ pt _Cj+¢(l(mt1+mt+1)’%'c+ ptj
2 2 {2

&Q

o For t=T,

¢(0’ Ou Py _C_mT—l)
¢(O’ 0, Py —C— m‘rfl) + ¢(01 0, Py tC— mTfl)

For each scenario, the Hasbrouck (2004) algorithm draws a random number from the

pr(a, =1/p,9,,9,,05,-.-, 0 ) =

uniform distribution (0,1). If the random number is lower than the normalized probability of a

buy it chooses @, =+1 (and otherwise, g, =-1).
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A.2 The extended Roll model with an autocorrelated trade direction indicator
To facilitate the explanations to follow, we first reproduce the extended Roll model

in the text:
Ap, =CAq, +U,,u, ~ N(0,07)
where g, € {1,-1},P = pr[q, =1|q_, =1] and Q= pr[q, =-1| g, =-1]

The above model extends the Roll model (Hasbrouck's algorithm) by incorporating a
single move Gibbs sampling algorithm to simulate the autocorrelated and latent trade
direction indicator along with its transition probabilities. In sum, the estimation algorithm

consists of the following five steps.

. Draw q® from f(ql,...,qTIC(O),P(O),Q(O),GSO),D)
. Draw ¢ from f(c|c'”,q®, p)
. Draw o from f(c,|c",q®, p)
. Draw P®from f(P|Q”,q®, p)
. Draw Q®from f(Q|PY,q®, p)

The final output is {c(j),aﬁj), P“),Q“),q“)}forj = number of simulations.
For the half spread (c) and the variance parameter (o), we still adopt Hasbrouck's

algorithms explained in A.1.

i. The autocorrelated trade direction indicator

First, after suppressing the conditioning on the parameters, the conditional distribution

of q, is derived via Bayes’ rule as follows:

(g 107 ) =+ lfQ()Yplr q(q) 0.,

where Y, = (Ap,,...,Ap,),Y =Y;, and q,, ={ql,...,qtflqul,...qT},

oc f(Y|q)pr(qla,)

The first term in the above equation is:
f(Yla)=f(Ap,|Ap,q)-f(Ap; [Yr4,0)
= (Ap, |6, 0) -+ f (AP, 10,0y ) - T (AP 17,0 y)
oc (AP G Gs) T (AP G )
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The second line of the above equation arises from the fact that the likelihood
function of Ap,(t=1...T) depends on the past state variables, g,,,q,, while the third

follows from the fact that all terms except for f(Ap,|q,,q._,) andf (Ap., |0, Q) are

constant, since we are concerned with the probability of g, conditional on Y and all the
other qg,'s.
The second term is given by:

Prc |9.)=pr(d [ 01 G- Gr )
P (G G 1 G G) PP (G [ G-+ Ga)
- Pr (G, -2 1 Ghoeor Gy )
o Pr( Gy O | Opreees G ) PG [ Gy Gy )
= Pr( sl G4 ) Pr Gz | Ghoees Gig ) oeees PP(CGr [Gheee Gr g ) PP (G [ G- Gy
= Pr (s |0) Pr ez [ Qs ) PY (0 16rs) Pr(a,l6.4)
oc pr(Q,,1a,) pr(a, [ a.)

Applying Bayes’ rule to the second line, and the Markov property of state variables to

the fifth line and combining, we obtain the final conditional distribution.

pr(a la..Y)ec f(Y1a)pr(a la.)="f(ap10.q.) f (AP, |00 a)Pr(d.la)pr (g la.,)

Let P =pr(q =-1/q,,Y) and B=pr(q =1|q,,Y). These are un-normalized
probabilities of a sell and a buy order, respectively. By using two values, we obtain the
following normalized probabilities:

R

Pr, =
PR+P

If the normalized probability of a sell (Pro) is higher (lower) than a value from the
uniform distribution (0,1), we set g, =—1 (+1). Specifically, the simulation algorithm can be

stated as follows.
e Fort=0,
We use the unconditional probability to determine the direction of ¢,
_1=Q
2-P-Q
If pr[d,=1] is higher than a draw from uniform distribution [0,1], then ¢, =1.

pr[qo :1] =
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For t=1,....T-1,
pr(a, 1Y) f(Ap, |6, 0) f (APyy |GG ) Pr (G 1) PF (G |Gy )

where pr(g, =-1|q,,,Y) exp{— 2(1;2 (AP~ (-2 ay))' + (8P ~C(Gs 1)) )}
: pr(qt+1 | Q, = _1)' pr(qt = _ll qt—l)
pr(g, =11q.,Y) exp{— 261;2 (((Ap —c@=y)) + (AP =¢(Gs-1))’ )}

: pr(qt+1 | 0, :1)' pr(qt :1| qt—l)

For t=T,
proy oY) o (AP 6,0 y) Proy [ory)

1
where pr(qT = _ll Ot Y ) oc EXp {_F((ApT _C(_l_qT—l))z} pr(qT = _1| qT—l)

u

1
pr(qT =1| Q.1 'Y)OC EXD{—ZT._Z((ADT _C(l_QT—l))Z} pr(qT =1| qT—l)

u

ii. Transition probabilities:
Finally, we are required to estimate the two transition probabilities P and Q.

Following the discussion contained in Chapter 9 of Kim and Nelson (1999), we use the

beta distribution as follows:

o Independent prior distribution :
P~ beta(ull, ulil) — pul (1_ P)Ul—l—l
Q = beta(u_l_l, ul—l) = QU,H—l (1_Q)U711*1

where U (i, j=-11) are known parameters of the priors.

° Posterior distribution :

PlgDbeta(u, +n ,u_#n_), ,
Qlglbeta(u__,+n_,u_ +p_)

where N; refers to the transitions from statei to j, which can be easily counted for

given Q.
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A3. The extended Glosten and Harris Model
To facilitate the explanations to follow, we reproduce the extended Glosten and Harris

model in the text:

po =cAq, + (4 + 4V ) (0 —((P=Q)+(P+Q-1q,,))+u,, u [IN(0,067)

In this model, we have two extra parameters (1, and ) and two transition

probabilities (P and Q) appearing in the main regression. Therefore, the conditional

posterior densities for the transition probabilities parameters do not follow any known
distributions. Therefore the Gibbs sampling estimation algorithm as employed in the previous
section is not feasible to estimate these parameters. To overcome this issue, we adopt a
variant of the tailored Random-Walk Metropolis-Hastings Algorithm developed by Chib and
Ramamurthy (2010).

Specifically, we draw c,4,,4,P,Q,0,,and q repeatedly as follows. First, the
parameters and latent trade direction indicators are set equal to some arbitrary values.

Denoting these initial values as {[c@),ﬂé‘)),z&(‘)),P<°>,Q<°)],a§°>,q<°>}, the first step is

represented as follows.

©  Draw [c“),ﬂé”,ﬂf”,P‘l’,Q@] from f(c,ﬂo,&,P,Qlaj‘”,q“’,Y)
° Draw &'V from f (o, |[C(l),ﬂél),ﬂl(l),p(l)’Q(l):I,q(l)’Y)

By repeating this procedure many times, we generate a sequence of draws of

unknowns for j=1,...,n. The Gibbs principle demonstrates that the limiting distribution of
the n™ draw after burn-in samples (as n —» o) is f([c ,ﬂo,ﬂl,P,Q],au,qW), the desired
posterior, and the limiting draw for any parameter is distributed as the corresponding

marginal posterior. The details for Bayesian algorithms are presented below.

i. The autocorrelated trade direction indicator

Once we suppress the conditioning on the parameters, the conditional distribution of ¢,

is derived via Bayes’ rule following the procedure outlined in A.2.
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pr(g, [a,.,Y)oc f(YIa)pr(ald, )< f(Ap 16, 0.)f (AP G0 ) Pr(cu. la)pr(ald.)

Define B, =pr(q =-1lq,,Y) and P =pr(q=1]q,,Y) as the non-

normalized probabilities of a sell and a buy trade. By using these two values, we obtain the

following normalized probabilities for g, =—

R

Pr, =
P+ R

If the normalized probability of a sell (Pro) is higher (lower) than a value from the

uniform distribution (0,1), we set g, =—1 (+1). Specifically, the simulation algorithm can be
stated as follows.

Specifically, the simulation algorithm can be stated as follows.
e Fort=0,

We use the unconditional probability to determine the g, .

1-Q
2-P-Q

pr[d, =1]=
If pr[q, =1] is higher than a draw from uniform distribution [0,1], then @, =1.

e For t=1,....T-1,

pr(g, [a,.,Y)oc f(Ap, 16, Gy) f (APuy |G G ) Pr(Gy 10 ) PF ([ )

where pr(qg, =-1]q,,,Y ) o expy—

((Apt _C(_l_qt -1 (2‘0 +21\IV) 1+ﬂ+pqt -1 )2
20"

2
! +(Apt+l (qt+l+1 (//1'0+//11\);t+1) qt+l /,l-i-p)
e pr(Q,, 19, =-1)xpr(q, =-1/q,,)

((Apt ~ol-0.,) (/10 * Al\ﬁ)x (-1+u+ pqt—l))z
pr(g, =1/0,,,Y) cexpi———

20+ (ap =00~ AT (@)

‘pr(qt+1 | G, :1)>< pr(qt =1 qt—l)
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where 4=P-Q and p=P+Q-1

e [or t=T,

pr(c |a,.,Y)oc pr(Ap; [ar, o) Pr(c |o,)

where pr(g, =-1|q,, Y)ocexp{ 26172 ((ApT—c(—l—qTl (ﬂ +/1w/\/_) (1+ i+ pg, ) )z}

= 1|qT—l

ApT (;(]_—qT_l)—l-(ﬂ.O +/11\M)><(—1+,U+,DQT_1))2}

P.=p(a% =1la, Y)oceXp{

qu

. The mean parameters (c, 4,4, P,Q)
We use the tailored random walk Metropolis Hastings algorithm to draw
0=(c, 4, 4,P,Q) given other model parameters and the latent variables (q) with the

positivity restriction on (C>0)

In order to compute an acceptance/rejection probability for the Metropolis Hastings

algorithm, we need to derive the joint conditional posterior density of 6 = (C,/lo,ﬂl, P,Q) .

e Prior distribution of 8=(c,4,4,P,Q):

We assume independent prior distributions for the following parameters.

a. Multivariate normal density prior for 8 =(c, 4, 4,)

1 (ﬂ $o) 2o (B-1o)

r f~N(B,.2,)=(27) 2 |z [2e2

b. Beta density prior for P and Q
. beta(P,Q)=P" " (1-P)** Q" (1-Q)""
Therefore, the joint prior density for 6 = (c, Aor g P,Q) is as follows.
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( 1 (B~Po) =0 (B~Fo)

piQu (L-Q) (L P (21) 2 e

e Conditional likelihood function given (

The conditional likelihood function L(c,4,,4,P,Q1q,Y)of the extended Glosten

and Harris (1988) model is formed by suppressing the conditioning on all the parameters

and data except for ¢ and Y as follows.

L(c. 4. A4,P.Qla.Y)=f(Y]a)pr(q)
Where f(Y[a)=f (Y1060 Yo) F (Y2100, %) - F (¥ [0 Gr s Vi)
f(a)=f(ald)f(dla) f(a o) and ¥y ={yi Yo Viuf
We can express the above likelihood function in the following compact form.
L(c, 4, A4, P,Q10,Y) = f, () x---x f,(T)xP®Q" (1-Q)"* (1-P)™

where i, j={1,-1} and N,

;j Is the total number of transitions from state g,_, =i to

q =], fort=1,2,.,T.And f,(t)=f(Ap, |0, =j.0,=0Y)

Lol el a4 TN )

270,

e Conditional Posterior density of 6=(c, 4, 4,P,Q) given ¢

By multiplying the joint prior density by the conditional likelihood function, we

obtain the following conditional posterior density ¢ (c, 4, 4.P, Q|a.Y)-

f(c.4,4,P, Q|G )cc fij(l)x---xf..(T)xP“n+"u'1Q e (1o Q) e (1 p)

L (ﬂ 5o) = H(B-Bo)

<(20) 2[5 ze

e Joint proposal density €= (C, Aor A P, Q)
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We follow the procedure underpinning the joint proposal density of the tailored
Random-Walk Metropolis-Hastings Algorithm developed by Chib and Ramamurthy (2010)
as follows.

a. We first maximize the log conditional posterior density using a simulated
annealing algorithm or another robust maximization algorithm (e.g. fminsearch in Matlab)
to obtain maximum posterior estimates 0*=(c*,/10*,21*,P*, Q*) and corresponding
variance estimate Var(e”). Denote the old (new) parameter value @° (H”EW) in the
MCMC iteration. %

b. We simulate a new candidate ¢™" using the following proposal density,
(denoted as q"(6™"|.)).
Multivariate t -density (q" (" |0, var (¢"),nu)).
o™ = MVT (9*,Var(<9*),nu)

where nuis the degree of freedom parameter, and will be set to obtain 20%-50% of

acceptance ratio for ™" defined below.

Note: if @™ satisfies the several restrictions on 6 (e.g. non-negativity

restrictions for c, P,Q) then we proceed to the next step. If that is not the case, we set

6 =6 and terminate the draw at this point.

c. We compute the following ratio to accept or reject the proposed value for ™".

f(6™1a,)xq (6 1.)
f(0"10,)xq (6™ 1.)

To implement the accept-reject step, we draw a uniform random variable,

UDU[01], andset 6=0""ifU<a, and 0=6"ifU>aq,.

" In the new Tailored MH algorithms, in each step of MCMC, we estimate the mode and variance of the

proposal densities by maximizing the log posterior densities of all parameters using simulated annealing or
Nelder-Mead simplex algorithm.
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iv. The variance parameter (o;):

We need to express first the Glosten and Harris (1988) model in the following

regression format.

C
Ap, :|:qt — Oy —H+ G _pqt—l’qt\/vt_lu\ﬁ_pqt—l\ﬁ} Ao [+,

A
In matrix notation,
Y, = X, f+U,U, [N (0,0‘uz)
0 — Qi ¢
where y, = Ap s X; = —H+0Q —p0 P =|

qt\ﬁ_ﬂ\ﬁ_pqt—l\ﬁ ﬂl

Based on this notation, we can express the conditional posterior distribution for

2
o, as follows.

1
. Prior distribution: — |80 F(ﬁ,ﬁj
: 2’2
o Posterior distribution: iz |6,Y, X[ F(%%)

wherg=v+T— YEY, [V, X5 X, X[ 838 +(YFXB)(Y-Xp)
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Appendix B

B. MCMC convergence diagnostics

In any MCMC estimation, it is crucial to determine the convergence of the chain to
conduct a correct statistical inference. In this paper, as a diagnostic to check the convergence
of our MCMC algorithm, we compute and report the effective sample size based on the
inefficiency factors and the p-value of Geweke's convergence diagnostics test for the model
parameters. Specifically, we start all estimations with 100,000 burn-in period and 250,000
total numbers of iterations and increase these numbers by 10,000 until the convergence

criteria for both (explained below) are satisfied simultaneously for all parameters.

B.1 Geweke’s convergence diagnostic (CD)

The idea of Geweke’s diagnostic is simple and mimics the two-sample test of means.

First we set the total number of iterations (n), the burn-in period (n,), and the rest of
iterations (n,) (i.e.,n=n,+n). Then divide n, into three periods (e.g.,n, =n, +n; +n;).
Specifically, we set the first 40% (n,), the second 20% (ng), and the last 40% (n.) as three

sub-periods. And if the mean of the first 40% is not significantly different from that of the
last 40%, then we conclude the target distribution converged somewhere in the first 40% of

the chain.

More formally, we compute Geweke’s CD as follows.

(5 5\ [ 6. 8
CD _(9nA—enc)/( e

Bk

where 8,8, ,0. (&,,6,,6.) are the sample means (standard deviation) of each

na? ng ng
sub-period. Based on the Geweke’s CD, we compute Geweke’s p-value at 0.05 significance

level to test if the means of the first and the last samples are same.
Geweke'p=2x[1-®(|CD|)]

where @(-) is the cumulative density function of the standard normal distribution. If

Geweke’s p-value is less than 0.05, we interpret the burn-in period is too small and we can’t
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guarantee the convergence of the chain. In general, as Geweke’s p-value is close to 1, we

have more efficient samples.
B.2. Inefficiency factor and effective sample size

The inefficiency factor, as proposed by Kim, Shephard, Chib (1998), is defined as
1+2)"" p(k) where p(k) is the k" order autocorrelation coefficient and measures how
well the MCMC sequence mixes. In this paper, we estimate it as

1+(2x200)/(zoo—1)2jiK(j/B),e(j) where 5(j) is the ™ order sample autocorrelation

coefficient of the MCMC draws and k(.) stands for the Parzen kernel. A value of 1
indicates that the MCMC draws are uncorrelated with a good mixing, while large values
indicate a slow mixing. The effective sample size is computed as the ratio of the number of
iterations after the burn-in period to the inefficiency factor and should be larger than 1000 for

all parameters to guarantee sufficient number of the MCMC draws.
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Appendix C

C. Maximum Likelihood Estimation (MLE) methods of the empirical market

microstructure models

The empirical market microstructure models employed in this paper imply that we
can interpret them as a regime switching model. Based on the Hamilton filter, we obtain a
likelihood function and subsequently use MLE methods for estimation (see chapter 4 of Kim
and Nelson (1999) for more details).

As an illustration, we demonstrate how to construct the likelihood function for the

Glosten and Harris model with autocorrelated ¢, . This model implies that:

p. =cAQ, + (4 + 4V ) (0, —((P—Q)+(P+Q—-1aq,,))+u,, u [IN(0,67)

where p, is the log transaction price, ¢,is the trade direction indicator with transition
probabilities P = pr(q, =1|q,,=1) and Q= pr(q, =-1|q_,=-1).

On this basis, we interpret this form of the Glosten and Harris model with
autocorrelated ¢, as a standard regime switching model. The likelihood function

L(c,ﬂo,ﬂl, P,Q|Ap,,...,Ap; )of the extended Glosten and Harris (1988) model is formed by

suppressing the conditioning on all the parameters.
L(c, 4,4, P,QlAp,,....Ap; )= f (Ap, | Ap,)--- T (Ap; | AP _,)

where Ap_, = {Ap,,---,Ap,,} and
f (AP [AP) =22 T (AP, 16,0y AP ) Pr (0, Gy | AP, )

G G

= (AP 10,0y, APy ) Pr (0,1 Gy ) Pr (g AP, ;)

G G

First the conditional likelihood function f(Apt|qt,qt71,Ar)tfl) Is expressed as

follows.
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f(Ap, 19,0, AP, ) =

\/;7exp{ - (Apt CAg, — (/1 +Al\ﬁ) ~((P-Q)+(P+Q- 1)qtl)))2}

Second, in order to complete this likelihood function, we need to compute

pr(q, |AF~3H)=Z pr(q,,q,, | AP, ;) based on the Hamilton filter. The Hamilton

Gt

filter for this model consists of the following:
pr(qt 1 Oa | Ar)t—l) = pr(qt | qt—l) pr(qt—l | Apt—l)

We are required to initialize P(q,|Ap,) using the steady-state probabilities. In

order to get P(q, | Ap,) for the next iteration, we need to compute the following equations

repeatedly for all time t:

f(Ap,, Q. 0y [AD)
f(Ap, [AP.)
_ f(ap19,.9.,A0,,)Pr(q,. 9., [ AP, )
f(Ap, | AP,)

pr(g,,d., | Ap,) =
and

pr(qt | Alﬁt) = Z pr(qt 1O | Apt)

Gi1

where f(Apt |qt,qt71,Ar)H) is already given in the above. In sum, an MLE for this model
can be developed by summing f(Apt|ArJt_l) using the probability terms

(pr(a,, g, AP, )) we computed in the Hamilton filter for each regime over the whole

sample.

L (6402 PQIAD,) =iln( (49,159,.))

-
(ZZ f (AP, | 0,0y, AD,) Pr (0, G | Apt_l)]
t=2 G Oa

75



As nested special cases of this model, we can construct the likelihood functions of

the Roll and the extended Roll model with autocorrelated g, as follows.

Case 1) the Roll model with 4, =4 =0 and P=Q=1/

Where f(Ap,|q,,0.,AP )=

1 1 2
— Ap, —CA d
s exp{ 2Uuz( p—c qt)} an

pr(qt ) | Apt—l) = % pr(qt—l | Abt—l)

Case 2) the extended Roll model with 4, =4, =0

1 1 2
where f (Apt | Qi1 Qq» Apt—l) =—T7—=6&Xp {_ 2 (Apt _CAqt) } and
ﬂ/27?0'2 20,

u

pr(qt 1 G | AI@H) = pr(qt | qt—l) pr(qt—l | Apt—l)
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Appendix D

D. Kim (1994)’s smoothing algorithm.

Given MLE estimates of the model, we can make inferences on the trade direction indicator
g, using all the information in the sample (called smoothing). This gives us the probability

of buy-initiated (sell-initiated) trade Pr[g =1|Ap;] ( Pr[g =-1|Ap;] ) for every
transaction.

When the models in this paper are estimated by MLE as shown in appendix C, we already
utilized Hamilton filter to construct the likelihood function. The Hamilton filter uses the
information available up to time t to compute the buy-initiated (sell-initiated) trade at time t,

Pr[qt zllApt] (Pr[qt :_1|Apt])-

Consider the following derivation of the joint probability that g, =j and q,, =k based
on full information:

Pr[qt = Js O =k|AI5T]
=Pr[d,,, =k|Ap; |xPr[g, = j| 0., =k, AP ]

Chapter 4 of Kim and Nelson (1999) explains that Pr[g, = j|0., =k, Ap;]
=P g =j|q, = kA}J because if g, were somehow known, then (Ap,,Ap,, ... Ap; )

would contain no information about ¢, beyond that contained in q,,, and Ap, .
= Pr[qt+l = k | Aro]xpr[qt = J | qt+l = klAr)t]

_ Prg., =k| AP [xPr[q, = j,q., =k|Ap]
Pr[qu =K| Alﬁt]

_ Pr[qt+1 :klAﬁT]XPr[qt = J |Apt]xpr[qt+1 :qut = J]
Pr[o,., =k|Ap,]

and

Pr[g, = j| AP |=Pr[q, = j,q,, =—1] AP, |+Pr[q, = j, 0., =1| Ap; | forj=-1and 1.
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Given Pr[q; |Ap;] at the last iteration of the Hamilton filter, the above can be iterated for

t=T-1T-2,...,2 to getthe smoothed probabilities, Pr[qt|Ar)T],t=T—1,T—2,...,2

Once we obtain Pr[g, =1|Ap;] and Pr[g, =—1|Ap; ], we can divide the sample into the

two regimes using the following rule:
If Pr[g, =1|Ap;]>0.5, weset g, =1
If Pr[g, =—1|Ap;]>0.5, weset g, =-1

The above rule is the one we propose to classify the trades. As an illustration purpose, we plot
the estimated trade direction indicator series of the extended GH model using the first 1000

observations on May 1.
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