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Abstract

Asset prices recorded at a high frequency can be more stale than implied

by the semimartingale hypothesis. The staleness emerges due to illiquid-

ity and materializes in a form of zero returns. We propose a new general

framework formalizing this phenomenon. A limit theory for Multi-Idle-Time

(an economic indicator for price staleness) and related quantities is provided.

This allows measuring the level and volatility of staleness of asset price ad-

justment and conducting non-parametric specification tests. We consider

two different hypotheses. First, whether the extent of staleness is constant

or time-varying. Second, whether its dynamics can be described by a Brow-

nian semimartingale. The empirical application on NYSE stocks provides

the evidence that the level of stock price staleness is typically time-varying

and can be described with adequate realism by an (0, 1)-valued Brownian

semimartingale.
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§Università degli Studi di Roma “Tor Vergata”, Dipartimento di Economia e Finanza, Via

Columbia 2, 00173, Roma and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123, Pisa,
Italy. E-mail: davide.pirino@gmail.com.

1



1 Introduction

Traditional modelling in continuous time entail that the price of an asset, traded

in a frictionless market, evolves as a semimartingale. Bandi et al. (2017) provide the

evidence that real asset prices do not update as frequently as expected under the

semimartingale assumptions. Indeed, while in the standard jump-diffusion setting

high-frequency returns should exceed an appropriately-defined shrinking threshold

with large probability, in real data often the converse is true. The main cause of

this large number of (extremely) small returns is the lack of price updates at a

high-frequency. In particular, Bandi et al. (2018) provide empirical evidence on the

fact that zero returns, henceforth zeros, are driven by volume, magnitude of execu-

tion cost, and only immaterially by institutional effects, such as price discreteness.

Thus, motivated by the fact that zeros seem to be a genuine economic phenomenon

twisted to, e.g., cost of trading, price formation mechanism, extent of asymmetric

information, in this paper we focus on the statistical inference of zeros.

In this work, we develop an inference theory on the occurrence of zero returns.

Since ubiquitous jump-diffusion models in continuous time does not implied an

occurrence of zeros compatible with that observed in real data, we frame our infer-

ential theory under a frictional dynamics for asset prices, one which captures the

lack of prices adjustment in high-frequency data. As a starting point, we assume

the existence of an efficient price process Y , which we define as the asset price that

would have been observed if the market was perfectly liquid. In presence of illiquid-

ity frictions (such as trading costs or asymmetric information) the trading activity

is inhibited, whence the random occurrence of periods in which the observed price

process stays constant1 a situation that in this paper we address, following the

nomenclature of Bandi et al. (2018), as “price staleness”. The higher the “magni-

tude” of these frictions, the more probable and the more persistent the staleness of

the observed price. We model this frictional price dynamics following the formalism

introduced by Bandi et al. (2017) and Bandi et al. (2018). Hence, on top of the

existence of the latent efficient price process Y , we assume that the logarithmic

price process, (Xt)t≥0, sampled in any partition 0 = t0,n < t1,n < . . . < tn,n = 1 of

the unit time interval [0, 1] (for example one trading day), is driven by the recursive

equation:

Xtj,n = Ytj,n (1− Bj,n) +Xtj−1,n
Bj,n, j = 1, . . . , n, (1)

1Here we are implicitly assuming a previous-tick interpolation scheme that attributes to each
instant of the sampling partition the last available observation, hence a period without trading
activity is straightforwardly translated into a stale price.

2



with the initial condition X0 = Y0, where Ytj,n is the efficient price sampled in the j-

th element of the partition and where (Bj,n)j=1,...,n is a triangular array of Bernoulli

random variates such that, for some (random) p∞ ∈ (0, 1),

1

n

n∑
j=1

Bj,n
p−→ p∞,

as n → ∞. The recursive equation (1) implies that, at each instant tj,n, the ob-

served price Xj∆n may either coincide with the latent efficient price (Bj,n = 0) or

not update and stay constant (Bj,n = 1), thus leading to a stale price. Developing

a statistical inference on price staleness translates in studying the statistical prop-

erties of the triangular array (Bj,n)j=1,...,n.

The inclusion of price staleness in the data generating process results to be

pivotal from both an economic and an econometric point of view. Bandi et al.

(2017) provide a model based on micro-structural theories of price formation (Kyle,

1985; Hasbrouck and Ho, 1987; Glosten and Milgrom, 1985) where insurgence of

zero returns is triggered by the joint effect of asymmetric information, transaction

costs and delays in the incorporation of the information flow into the assets’ prices.

Kolokolov and Renò (2017), instead, support the inclusion of price staleness in the

data generating process from an econometric perspective, showing that neglecting

price staleness leads to severe distortions on the widely used power- and multi-

power estimators (Woerner, 2006; Barndorff-Nielsen et al., 2006; Barndorff-Nielsen

and Shephard, 2004; Lee and Mykland, 2008; Caporin et al., 2014). Importantly,

it is shown that both detection of jumps and estimation of the jump activity index

are jeopardized even by a moderate levels of staleness.

The main contribution of our paper consists in developing an inferential theory

for the triangular array (Bj,n)j=1,...,n, governing the intra-day dynamics of price stal-

eness. As follows from the previous empirical literature on zero returns (Lesmond

et al., 1999; Bekaert et al., 2007; Naes et al., 2011; Bandi et al., 2018), the char-

acterization of the array (Bj,n)j=1,...,n is tantamount to the characterization of the

intra-day dynamics of illiquidity or, more precisely, to the dimension of illiquidity

captured by price staleness. We answer to the following questions: 1) Does illiquid-

ity varies stochastically during the day? 2) If yes, which kind of stochastic process

is more suitable to describe its dynamics and is it possible to define and measure

its volatility? To this purpose, we introduce a very general econometric framework

to model a triangular array of possibly dependent Bernoulli random variables. The

main idea is to represent the probability of observing a zero as a (latent) continuous-

time process (pt)t∈[0,1] taking values in (0, 1). We provide a set of novel results.

Our first result is to show that the intraday fraction of zeros, dubbed as idle
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time in Bandi et al. (2017), is a consistent estimator of the integrated probability of

price staleness. Then, under the assumption that the process (pt)t∈[0,1] evolves as a

Brownian semimartingale, we derive a (stable) Central Limit Theorem (henceforth

CLT) for idle time. In order to set-up a feasible confidence interval, we introduce

a new economic indicator, named (m)-multi-idle-time, and we derive its limiting

properties by using a standard infill asymptotic design. Next, we introduce the

notion of local idle-time, an estimator of the instantaneous stochastic probability

of price staleness. This quantity permits us to construct estimates of general in-

tegrated function of probability of staleness and to conduct a fine-tuning analysis

on the dynamical properties of zeros. Precisely, using the developed limit theory,

we construct 1) a non-parametric test to distinguish between a constant and a

time-varying pt, 2) a non-parametric test, which, having established that pt varies

stochastically, allows to assess whether a Brownian semimartingale type dynamics

is suitable to describe pt.

Using 250 NYSE-listed stocks, we show that the assumption of the constancy

of instantaneous probability of stale prices is fairly rejected. Simultaneously, for

the large majority of our sample, a Brownian semimartingale specification of the

instantaneous probability of zero returns can not be rejected in favour a more per-

sistent alternative. This result paves the way to a new research topic: the consistent

estimation of volatility of illiquidity. Under the assumption that pt is a Brownian

semimartingale, we provide an estimator of the integrated (over, say, one day of

trading) volatility of pt. Our estimation theory is the analogue for illiquidity of the

estimation of volatility of volatility of financial prices (see, e.g., Barndorff-Nielsen

and Shephard, 2002a,b; Vetter et al., 2015).

The plan of the paper is as follows. Section 2 introduces the setting. In particu-

lar, we give assumptions on both the triangular array of Bernoulli random variates

and on the probability of staleness. Section 3 contains the limit results. Section 5

shows the finite sample accuracy of our asymptotic theory through a Monte Carlo

exercise, whereas Section 6 presents the empirical plausibility of our assumptions.

Section 7 concludes. All technical proofs are confined to the Appendix.

2 The settings

We work on a filtered probability space
(
Ω, (Ft)t≥0 ,P

)
, one which supports all

stochastic elements defined below. The structure of the filtration (Ft)t≥0 is quite

technical and it is reported in the Appendix A.1. The value of a generic stochastic

process X at a point tj,n of any partition 0 = t0,n < t1,n < . . . < tn,n = 1 of the time

interval [0, 1] will be denoted with Xtj,n or, to avoid excessive subscripts, simply
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with Xj,n. In what follows, for simplicity, we will always assume that the partition

is equispaced, hence we put tj,n = j/n with j = 0, ..., n and the distance between

two consecutive points is given by ∆n = 1/n. We assume that the Bernoulli random

variables representing price staleness as described in Equation (1) have the following

structure.

Assumption 1. There exists a (latent) continuous-time stochastic process (pt)t∈[0,1]

taking values in (0, 1). Let (Bj,n)j=1,...,n be the triangular array of Ftj,n-measurable

Bernoulli random variables defined as

Bj,n
.
= I{Utj,n≤ptj,n}, j = 0, . . . , n, (2)

where I{·} is the indicator function, (Ut)t∈[0,1] is a collection of Uniform random

variables independent of pt and satisfying Ut ⊥ Ut′, ∀t 6= t′.

In other words, we assume that the process (pt)t∈[0,1] is responsible, at any

sampling frequency, for the occurrence of the event {Bj,n = 1} , in the sense that

P [Bj,n = 1] = E
[
ptj,n

]
.

Note that Assumption 1 preserves the compatibility relationship (cfr. Aı̈t-Sahalia

and Jacod, 2014, Pag. 211) over different sampling frequencies. Formally, this prop-

erty guarantees that if tj,n = j/n and tj′,n = j′/n are two equally spaced partitions of

[0, 1], with j = 1, . . . , n and j′ = 1, . . . , n′, then Bj,n = Bj′,n′ whenever j/n = j′/n′.

Assumption 1 allows for different specifications of (Bj,n)j=1,...,n. For instance, if

pt = pF for all t ∈ [0, 1], then the Bernoulli variates are i.i.d with probability of stal-

eness given by pF . Nonetheless, this case is very restrictive. A more sophisticated

one is obtained when (pt)t∈[0,1] is described by a Brownian semimartingale, as in the

Example 1 below. In this case, indeed, the Bernoulli variates can be autocorrelated.

Example 1. Let F : R→ (0, 1) be a smooth function and (Zt)t∈[0,1] be a Brownian

semimartingale described by the following SDE:

Zt = Z0 +

∫ t

0

au du+

∫ t

0

σ(p)
u dWu,

where Wt is a F-Brownian motion and the processes at and σ
(p)
t are cádlág and F-

adapted. Then, set pt = F (Zt) for each t ∈ [0, 1]. The latter is a well-defined process

taking values in (0, 1). By Itô lemma, (pt)t∈[0,1] is itself a Brownian semimartingale

of the form:

pt = p0 +

∫ t

0

(
au
∂F

∂Z
+
(
σ(p)
u

)2 1

2

∂2F

∂Z2

)
dt+

∫ t

0

(
σ(p)
u

∂F

∂Z

)
dWu.
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To gain intuition, in Figure 1 we report simulated stale stock prices. In the

top panel, we generate stale prices under the more general situation of (pt)t∈[0,1]

semimartingale, whereas in the bottom one stale prices are generated under the i.i.d.

assumption for the Bernoulli variates. Although the number of zeros (signaled by a

red cross) is the same, the two graphs look rather different. In the semimartingale

case we see that there is some clustering of lack of price adjustments. On the other

hand, in the i.i.d. situation stale prices are uniformly distributed over the trading

day. However, in the former case, zeros are nearly independent within each cluster.

This because Assumption 2 implies that the covariance between two consecutive

Bernoulli random variates is of the same probability order of the Brownian motion

(i.e. Cov [Bj,n,Bj+1,n] = Op(∆
1/2
n ). See Remark 4 in the Appendix). Thus, for

sufficiently large n, consecutive zero returns are approximately uncorrelated.
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Figure 1: We report example of stale stock price where zero returns are signaled by a
red circle. The probability of observing a zero return either follows a semimartingale
dynamics (upper panel) or it is equal to a constant (lower panel). In both cases,
the number of zeros is the same.

In what follows, we will not assume any particular parametric specification for

the process pt, but instead, we want to make some kind of (non-parametric) inference
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about the regularity of its trajectories. Thus, we generalize Example 1 and we make

the following general assumption.

Assumption 2. The process (pt)t∈[0,1] is described by the following SDE:

pt =

∫ t

0

µs ds+

∫ t

0

νs dWs, (3)

where Wt is a standard Brownian motion, and µt and νt are cádlág processes, such

that ∀t, pt ∈ (0, 1) almost surely.

Under Assumption 2, the average probability of price staleness is proxied by∫ 1

0
pt dt, whereas its intraday variability is captured by the integral

∫ 1

0
ν2
t dt.

In this paper, we use the scaling property of the autocorrelation function of

zeros for testing the adequacy of the Brownian semimartingale assumption (As-

sumption 2). As an alternative, we consider a specification of the process pt, which

permits a slower (w.r.t. the semimartingale case) vanishing correlation between

two consecutive Bernoulli random variates even for large n. One possibility consists

in describing the process pt through a rough dynamic, e.g. pt is generated by a

fractional process with Hurst parameter H < 1/2. However, we will turn later on

this specification (Section 4.2).

3 Asymptotic results

We begin with the derivation of limiting results for the sum of intraday zeros,

which coincides with the notion of idle time introduced in Bandi et al. (2017). First,

we prove that idle time converges in probability to the integrated probability of price

staleness. Then, under Assumption 2, we derive a (stable) CLT for this quantity

(Theorem 3.1). Next, we investigate the problem of estimation of integrated quan-

tities of the form
∫ 1

0
f(ps) ds (for a suitable test function f(·)), which are useful for

setting-up a feasible confidence interval for idle time and for the specification analy-

sis of the dynamics of the process pt based on zeros2. For this purpose, we introduce

the notions of m-multi-idle time, k-staggered multi-idle time local idle time and we

establish the corresponding limit theory (Theorem 3.2 and Theorem 3.3). Finally,

we construct an estimator of the quadratic variation of the process (pt)t∈[0,1] under

Assumption 2.

2Hereafter, for sake of brevity, we will write only “specification analysis” when referring to this
last statement.
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3.1 Idle, multi-idle and staggered-idle time

Following Bandi et al. (2018)3 we (formally) define, for any frequency of obser-

vation n, idle time as the average number of zeros within a trading day:

ITn =
1

n

n∑
j=1

Bj,n.

Despite of its simplicity, ITn encompasses an important economic information since

it constitutes an illiquidity proxy retrieved from the high-frequency data. How-

ever, we decide do not expand further and we refer to the original work(s) for an

exhaustive description of the economic meaning of ITn. Instead, we focus on the

mathematical meaning of ITn. The limiting properties of ITn are summarized by

the following theorem.

Theorem 3.1. Assume that Assumption 1 holds. Then, as n→∞,

ITn
u.c.p−→

∫ 1

0

ps ds.

If both Assumptions 1 and 2 hold, as n→∞,

√
n

(
ITn −

∫ 1

0

ps ds

)
stably
=⇒ MN

(
0,

∫ 1

0

ps (1− ps) ds
)
, (4)

whereMN (0, V 2) denotes the mixed-normal distribution with a stochastic variance

V 2.

Proof. See Appendix A.2.

Theorem 3.1 implies that ITn is a consistent estimator of the integrated proba-

bility of price staleness over a trading day under very general assumptions on the

dynamics of the process pt. If pt is a Brownian semimartingale (Assumption 2),

ITn admits a stable CLT. In case of constant probability of price staleness, e.g.

pt = p0, ∀t ∈ [0, 1], the asymptotic variance is simply equal to p0(1 − p0), which

coincide with the variance of a Bernoulli random variable with mean p0.

Under Assumption 2 (hereafter, both Assumptions 1 and 2 are tacitly assumed

if not explicitly stated), a feasible confidence interval for ITn can be readily con-

structed provided a consistent estimator of
∫ 1

0
p2
s ds. We consider a slightly more

general problem of estimating
∫ 1

0
(ps)

m ds, for some integer m ≥ 2. For this pur-

3The concept of idle time appeared for the first time in Bandi et al. (2017) as the average
number of price adjustments below a suitably defined threshold ξn.
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pose, we define the (m−)multi-idle time as:

MIT(m)
n

def
=

1

n−m

n−m∑
j=1

m∏
q=0

Bj+q,n.

Intuitively, multi-idle time counts the number of runs of zeros of length m. For

example, fix m ≥ 2 and j ∈ {1, . . . , n−m}. Then, if all of the m consecutive price

adjustment are zero, the product
∏m

q=0 Bj+q,n is equal to one and contribute to the

summation. If at least one of these m price adjustment is different from zero, the

product
∏m

q=0 Bj+q,n is equal to zero, and does not contribute to MIT(m)
n . Hence, in

i.i.d. case MIT(m)
n naturally estimates the joint probability of m consecutive zeros.

In general case, we have the following theorem.

Theorem 3.2. Assume Assumptions 1 and 2 hold. Then, as n→∞,

MIT(m)
n

u.c.p−→
∫ 1

0

(ps)
m ds.

Moreover, as n→∞

√
n

[
ITn −

∫ 1

0
ps ds

MIT(m)
n −

∫ 1

0
(ps)

m ds

]
stably
=⇒ MN (0,ΣMIT)

where MN (0,ΣMIT) denotes the mixed-normal distribution with covariance matrix

Σ:

ΣMIT =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
mpms (1− ps) ds∫ 1

0
mpms (1− ps) ds

∫ 1

0
pms

pms (2m+1)−pm+1
s (2m−1)−(1+ps)
1−ps ds

]
.

Proof. See Appendix A.2.

A consistent estimator of the matrix ΣMIT can be obtained through a suitable

combination of MIT(m)
n . Note that MIT(2)

n corresponds to the first order auto-

covariance of zeros. Under Assumption 2, the difference between the first and

higher order auto-covariances of zeros becomes negligible as n increases, because

of the scaling properties mentioned above (Cov [Bj,n,Bj+1,n] = Op(∆
1/2
n )). Hence,

integrated squared probability of staleness,
∫ 1

0
(ps)

2 ds, can be estimated not only

by MIT(2)
n , but also by the empirical auto-covariance of some (finite) order k ≥ 2.

In order to generalize the empirical auto-covariance to the k-th order, we introduce

the notion of (k−)staggered multi-idle time, defined as:

SIT(k)
n

def
=

1

n− k

n−k∑
j=1

Bj,nBj+k,n.
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The limiting properties of staggered multi-idle time are summarized by the following

theorem.

Theorem 3.3. Assume that Assumptions 1 and 2 hold. Then, For any finite k ≥ 1,

as n→∞,

SIT(k)
n

u.c.p−→
∫ 1

0

(ps)
2 ds.

Moreover, as n→∞,

√
n

[
SIT(1)

n −
∫ 1

0
(ps)

2 ds

SIT(k)
n −

∫ 1

0
(ps)

2 ds

]
stably
=⇒ MN (0,ΣSIT) ,

where MN (0,ΣSIT) denotes the mixed-normal distribution with covariance matrix

ΣSIT:

ΣSIT =

[∫ 1

0
(p2
s + 2p3

s − 3p4
s) ds

∫ 1

0
4p3

s (1− ps) ds∫ 1

0
4p3

s (1− ps) ds
∫ 1

0
(p2
s + 2p3

s − 3p4
s) ds

]
.

Proof. See Appendix A.2.

Theorem 3.3 shows that, under Assumption 2, the limiting value of SIT(k)
n is

independent of k. This allows to test the reliability of Assumption 2 on real data

by comparing the statistics SIT(k)
n for different values of k. We will return to this

point in Section 4, dedicated to the specification analysis.

3.2 Local estimation of probability of staleness

In this section we consider the problem of estimating functionals of the probability

of staleness of the form

U (f) =

∫ 1

0

f (ps) ds,

for a (relatively) general test function f(·). To this purpose, we introduce the

notion of local idle time and develop corresponding limit theory under Assumption

2. Precisely, let kn be a sequence of integer numbers satisfying kn →∞, kn∆n → 0.

Local idle time is defined as:

p̂i (kn) =
1

kn

kn−1∑
j=0

Bi+j,n, i ∈ {1, . . . , n− kn} . (5)
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For any given i ∈ {1, . . . , n− kn}, p̂i (kn) is a consistent estimator of pi,n (as follows

from the proof of the Theorem 3.4 below). Consequently, U (f) can be estimated

by the Riemann sum of local idle times as:

U (∆n, f)n = ∆n

n−kn+1∑
i=1

f (p̂i (kn)) .

Theorem 3.4. Let f ( · ) be a locally bounded function and assume that Assumptions

1 and 2 hold. Then, as n→∞,

U (∆n, f)n
u.c.p.−→

∫ 1

0

f (ps) ds.

Proof. See Appendix A.3

The idea of estimating the functionals U(f) using U (∆n, f)n mimics the idea of

estimating volatility functionals developed by Jacod and Rosenbaum (2013, 2015).

As for the case of estimation of volatility functional, U (∆n, f)n admits a stable

CLT with F -conditionally Gaussian limit, which is, however, not centered. If

kn ∼ θ/
√

∆n, for some constant θ, the F -conditional mean of the limit consists

of several bias terms depending on end-effects, the second derivative of f and the

quadratic variation of pt. If kn diverges slower than 1/
√

∆n, the F -conditional mean

of the limit depends only on the second derivative of f , while the other bias terms

are immaterial.

In order to obtain a CLT with a conditionally centered Gaussian limit, U (∆n, f)n

ought to be bias-corrected. The biases depending on end-effects and on the second

derivative of f can be easily estimated. On the other hand, the bias term depend-

ing on the quadratic variation of pt is more complicated to estimate (in particular,

the convergence rate of the estimator is slower, (see Jacod and Rosenbaum, 2015)).

Hence, in order to eliminate the latter we focus on the case with kn converging to

infinity slower than 1/
√

∆n. In such a case, the bias-corrected version of U (∆n, f)n

takes the following form:

U ′ (∆n, f)n = ∆n

n−kn+1∑
i=1

(
f (p̂i (kn))− 1

2 kn
f ′′ (p̂i (kn)) p̂i (kn) (1− p̂i (kn))

)
.

Then, we have the following CLT

Theorem 3.5. As n → ∞, let kn a sequence of integers such that k2
n∆n → 0 and

k3
n∆n →∞. Besides, let f a test function satisfying the following conditions

∣∣f (j) (p)
∣∣ ≤ K

(
1 + |p|m−j

)
, j = 0, 1.
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for suitable positive constants K and m and assume that Assumptions 1 and 2 hold.

Then, as n→∞,

1√
∆n

(
U ′ (∆n, f)n −

∫ 1

0

f (ps) ds

)
stably
=⇒ MN (0,Σ),

where MN (0,Σ) denotes the mixed-normal distribution with covariance matrix

Σ =

∫ 1

0

f ′ (ps)
2 ps(1− ps) ds.

Proof. See Appendix A.3

In order to improve the performance of U ′ (∆n, f)n in any finite sample, we

adjust U ′ (∆n, f)n by an asymptotically negligible correction for the end-effect as

follows:

U ′′ (∆n, f)n =
(n− kn + 1)−1

∆n

U ′ (∆n, f)n .

The adjusted version, U ′′ (∆n, f)n, is used for the estimation of U(f) in the rest

of the paper. In the simulation study, we compare the performance of U ′′ (∆n, f)n

and MIT(m)
n for estimating integrated powers of pt.

3.3 On the estimation of the volatility of staleness

In this section, under the assumption that pt evolves as a Brownian semimartin-

gale (Assumption 2), we investigate the possibility of non-parametrically estimating

the quadratic variation of pt, i.e.
∫ 1

0
ν2
s ds, which represents the integrated (intraday)

volatility of staleness. As explained in the introduction, price staleness constitutes

an illiquidity measure. Thus,
∫ 1

0
ν2
s ds is readily interpreted as the integrated as the

volatility of liquidity. Measuring the volatility of liquidity is of relevant economic

importance. For instance, as pointed out by Persaud (2003) “there is also broad

belief among users of financial liquidity – traders, investors and central bankers –

that the principal challenge is not the average level of financial liquidity... but its

variability and uncertainty...”. On the other hand, the problem is volumetric and

deserve special attention, which is worth for a separate paper. In this section we

provide a first step by deriving a consistent estimator of the quadratic variation of

pt.

If pt were observed, its quadratic variation would be consistently estimated by

the realized variance
∑n

i=1 (pi,n − pi−1,n)2. However, the increments of pt are not

12



observable, hence a proxy of them, constructed using local idle time4, is used instead.

Replacing the increments of pt with their estimates induces a bias in measuring the

quadratic variation. Theorem 3.6 below shows that the (properly rescaled) squared

increments of local idle time converges in probability to the sum between of the

volatility of staleness and the asymptotic variance of the idle time. The latter bias

term can be estimated and corrected by straightforward application of Theorem

3.4.

Theorem 3.6. Let kn = θ b
√
nc be a sequence of integers, for some constant θ > 0.

Besides, assume that Assumptions 1 and 2 hold. Then, as n→∞,

k−1
n

n−2kn+1∑
i=1

(p̂i+kn(kn)− p̂i(kn))2 p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds,

where p̂i(kn) is the local idle time as in Eq. (5).

Proof. See Appendix A.4.

Then, by combining Theorem 3.6 with Theorem 3.4, a consistent estimator of∫ 1

0
ν2
s ds, i.e. of the integrated volatility of the process pt can be defined as

VILn =
3

2

(
k−1
n

n−2kn+1∑
i=1

(p̂i+kn(kn)− p̂i(kn))2 − 2

θ2
U ′′(∆n, f)n

)
, (6)

where f(x) = x(1 − x). Since ITn can be used as a measure of illiquidity, the

acronym VILn stands for “volatility of illiquidity” at frequency n.

Unfortunately, VILn is not non-negative by construction. It can take a negative

value if the integrated volatility of staleness is small relative to the variance of
2
θ2U

′′(∆n, f)n. This situation is especially likely when the volatility of staleness is

close to zero. Hence, in order to avoid negative estimates in practice, we use the

following modified estimator:

VIL′n = max {VILn, 0} . (7)

At the costs of additional assumptions regarding the dynamics of νt, it is possible

to derive a CLT for VILn, similarly to what is done for the volatility of volatility

(Vetter et al., 2015). However, deriving a CLT and further investigation of the

volatility of liquidity is left for further research.

4Note that, in contrast to assumptions in Theorem 3.5, in order to estimate the volatility of
staleness we have to take kn ∼ θ/

√
∆n
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4 Statistical tests

We now turn to the construction of statistical tests for investigating the dynamical

properties of pt. First, we consider testing for the constancy of a path of pt over a

given time interval. Second, in order to examine if the semimartingale Assumption

2 reflects the properties of the financial data, the we test for the smoothness of a

path of pt.

4.1 Testing for constant probability of staleness

For some m ≥ 2, define the following two complementary subsets of Ω:

Ω0 =

(
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt =

(∫ 1

0

pt(ω) dt

)m)
,

Ω1 =

(
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt 6=
(∫ 1

0

pt(ω) dt

)m)
.

Then, testing for constancy of pt amounts to distinguish the two complementary

subsets of Ω based on the observed sample of Bernoulli random variables. In other

words, testing for constant probability of staleness is equivalent to testing the fol-

lowing two hypothesis:

H−1 : (Bi,n(ω))i=1,...,n ∈ Ω0 v.s. H−1 : (Bi,n(ω))i=1,...,n ∈ Ω1.

Indeed, if the trajectory pt (ω) is constant over [0, 1], the observed sample (Bi,n(ω))i=1,...,n

belongs to Ω0. On the contrary, the equality characterizing the set Ω0 does not hold

provided that pt(ω) is time-varying.

By Theorems 3.1 and 3.2 (which, in particular, provide the stable convergence

of ITn and MIT(m)
n on Ω0) and delta method, the test statistics is naturally defined

as:

Ψn,m
def
=

√
n
(

MIT(m)
n − (ITn)m

)
√

(ITn)2m+1(m2+2m−1)−(ITn)2m(2m2+2m+1)+(ITn)m+1+(ITn)m

ITn−1

. (8)

The asymptotic behaviour of the Ψn,m statistics is described the following corollary.

Corollary 1. Assume Assumptions of Theorem 3.2 hold. As n→∞Ψn,m
stably
=⇒ N(0, 1) on Ω0,

Ψn,m
p−→ +∞ on Ω1.

Proof. See Appendix A.2.
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On Ω0, Ψn,m converges (stably) to a zero-mean normal distribution with unit vari-

ance. On Ω1, i.e. when pt is not constant on the whole interval [0, 1], it diverges as

the number of observations n increases.

4.2 Testing for smoothness of the probability of staleness

In this section we propose a test for the Brownian semimartingale specification of pt

(Assumption 2). It implies that Cov [Bj,n,Bj+1,n] = Op

(
∆

1/2
n

)
, which guarantees

that the difference between the first and higher order auto-covariances of zeros

becomes negligible as n increases. Hence, Assumption 2 can be tested by comparing

the first and higher order auto-covariances of zeros, captured by staggered multi-idle

times, SIT(k)
n , with different k’s.

An alternative to Assumption 2 should postulate a different scaling property for

the auto-covariance of zeros. This can be achieved if, for example, pt follow a process

with rough sample paths. Instead of specifying a particular process describing the

dynamics of pt for formulating an alternative hypothesis, we consider the following

high-level alternative to the Assumption 2:

Assumption 3. The process pt has Riemann integrable paths and |Et [|pt+∆n − pt|]| =
K∆q

n + op(∆
q+ε
n ) pointwise on Ω, for some 0 < q < 1

2
, K, ε > 0.

Then, the testing problem can be formulated as:

H0 : Assumption 2 holds v.s. H1 : Assumption 3 holds.

The test is defined as:

Φn,k
def
=

√
n
(

SIT(1)
n − SIT(k)

n

)
√

2 ·∆n

∑n−kn
j=1

(
(p̂j(kn))2 − 2 (p̂j(kn))3 + (p̂j(kn))4) . (9)

The asymptotic behaviour of Φn,k is described in the following corollary.

Corollary 2. Assume Assumptions of Theorem 3.3 hold. As n→∞Φn,k
stably
=⇒ N(0, 1) under H0,

|Φn,k|
p−→ +∞ under H1.

Proof. See Appendix A.2.

If pt is a Brownian semimartingale, Φn,k converges (stably) to a zero-mean nor-

mal distribution with unit variance. Instead, if pt is a rough process, the test

statistic diverges as the number of observations increases.
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5 Monte Carlo

5.1 Simulation settings

In absence of finite-sample distortions, the implementation of the asymptotic theory

developed in Section 3 and Section 4 would require the adoption of the highest

frequency available for the data: the larger the frequency the closer the random

quantities to their limits (either in probability or stably in law). Nevertheless,

price discreteness may affect these limits, producing unwanted spurious effects.

More precisely, in presence of rounding, there could be some extra zero returns

not generated by “genuine” flatness. In this section we explore the finite sample

contaminations of the asymptotic theory by means of Monte Carlo simulations. In

particular we want to asses the sizes and the powers of the two tests Ψn,m and Φn,k

defined, respectively, in (8) and (9). For this purpose we generate a large artificial

dataset of efficient price paths contaminated by flatness and rounded at one cent

(as imposed by the actual settings of electronic financial markets). We simulate, for

each replication, a trading day of 6.5 hours on a time-gird of one second, for a total

of 6.5×60×60 steps. First of all, we create the path of an efficient log-price process

Yt = log (Pt) driven by a one-factor stochastic volatility model, whose dynamics is

described by the SDE:

d log σ2
t =

(
α− β log σ2

t

)
dt+ η dWσ,t,

dYt = µ dt+ cσ σt dWY,t, (10)

where Wσ,t and WY,t are two Brownian motions with corr (dWσ,t, dWY,t) = ρ dt.

We adopt the values for the parameters α, β, η, µ and ρ estimated by Andersen

et al. (2002) on S&P500. The volatility factor cσ can be tuned to generate different

scenarios. We impose cσ = 2 that corresponds to, roughly, a daily volatility of 1%.

Numerical integration of the SDE in (10) is performed on a one-second time grid

via a standard Euler scheme and with the initial conditions Y0 = log (P0), with

P0 = 100, and log σ2
0 = α/β. Once simulated, the efficient prices are sampled every

thirty seconds. This sub-sampling produces, for each replication, the efficient log-

prices Yj,n with j = 1, ..., n and n = 780. Then, on the time grid of thirty seconds,

we construct the flatness-contaminated price process Xj,n following the recursive

equation: X0,n = Y0,n = log (P0)

Xj,n = (1− Bj,n) Yj,n + Bj,nXj−1,n,
(11)
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where Bj,n are Bernoulli random variables specified in one of the three ways de-

scribed below. Finally, the flat-prices exp (Xj,n) are rounded at one cent. The

rounding is the only very reason that prevents to take the highest frequency avail-

able.

For each path of the efficient price process Y we consider three different speci-

fications of triangular arrays Bj,n.

Constant probability of staleness. In this specification the Bj,n’s are i.i.d.

Bernoulli random variables with constant expected value, E [Bj,n] = pF for all j.

We put5 pF = 0.5.

Semimartingale-type probability of staleness. This specification corresponds

to Assumption 2. First, at each replication, we generate a path of a latent stochastic

process u with the following (discrete-time) integration scheme:u0,n = F−1 (pF )

uj,n = uj−1,n + (F−1 (pF )− uj−1,n) ∆n + σu εj,n
√

∆n,
(12)

with j = 1, ..., n, ∆n = 1/n, n = 780, pF = 0.5 and where F−1 (x) is the inverse

of the cumulative distribution function of a standard Gaussian variable. The εj,n’s

are i.i.d. standard Gaussian shocks while σu is a tuning-parameter that we set to

σu = 1.5. Then, a path of the stochastic probability pt, defined in equation (2) of

Assumption 1, is generated as:

pj,n =

∫ uj,n

−∞

1√
2π

e−z
2/2 dz = F (uj,n) .

Note that since, by construction, u is a mean-reverting around F−1 (pF ), then pt is

mean-reverting around pF . Hence, on average, the probability of zeros is similar to

the value used in the constant probability case.

Rough probability of staleness. This specification corresponds to the alterna-

tive for the semimartingale-type behaviour of the probability of staleness. Instead

of simulating rough probability paths explicitly, we adopt the following scheme,

approximating the dependence of Bernoulli random variables for a fixed frequency.

First, we generate two sequences of i.i.d. Bernoulli random variables, BFj,n and BRj,n,

with j = 1, ..., n and n = 780 as for the other cases considered. These two sequences

are characterized by two different expected values, i.e. we put pF
.
= E

[
BFj,n

]
= 0.5%

5With this numerical choice we are assuming that, at the frequency of 30 seconds, fifty percent
of the log-returns are zeros. This corresponds to a moderately high level of illiquidity for the asset.
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and pR
.
= E

[
BRj,n

]
= 0.2%. Then, they are assembled together via the recursive

equation: B1,n = BF1,n
Bj+1,n = BFj+1,n

(
1− BRj+1,n

)
+ BRj+1,nBj,n, j ≥ 1.

Hence, the Bernoulli random variables Bj,n’s mimic the persistency, which could be

implied by a rough probability process.

Figure 2 shows an example of a path of pt and the corresponding path of the

stale price process generated by the model (12). It illustrates the flexibility of our

semimartingale model in controlling the occurrence of zeros via the realization of

the process pt. For instance, in the example, the probability of flat trading becomes

very small after the middle of the trading day. The number of observed zeros

declines accordingly. In particular, the price is stale only in the first part of the

day.
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Figure 2: Stale stock price and the probability of observing zero returns generated
by models 10 and (12) respectively. Zeros are indicated with red circles.
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5.2 Estimation of pt functionals

Here we illustrate estimation of integrated functionals of the instantaneous proba-

bility of zeros, under the Assumption 2. We focus on estimating the most relevant

functional, i.e.
1∫
0

ps(1−ps) ds, which represents the asymptotic variance of idle time.

It can be estimated either as a difference of idle and multi-idle times, ITn−MIT(2)
n ,

or by integrated local idle time, U ′′ (∆n, f)n, with f(x) = x− x2.

Figure 3 shows the two estimates of
1∫
0

ps(1 − ps) ds for different levels of the

true value. It indicates that both estimators are remarkably precise. However, the

variance of U ′′ (∆n, f)n (computed using block size kn = 13) is considerably smaller

than the variance of ITn −MIT(2)
n . The later result is expected, since U ′′ (∆n, f)n

constitutes a localized maximum likelihood estimator.
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Figure 3: Scatter plot of the asymptotic variance of idle time,
1∫
0

ps(1 − ps) ds and

its estimated values based on multi-idle time (left panel) and local idle time based
on blocks of size kn = 13 (right panel). The green line represents the true value.

The superiority of U ′′ (∆n, f)n over the difference estimator ITn − MIT(2)
n is

robust across reasonable choices of kn. Figure 4 shows the bias, standard deviation

and the root mean squared error (RMSE) of U ′′ (∆n, f)n as a function of kn, and

compares them with the corresponding characteristics of the difference estimator.

It turns out that the bias of U ′′ (∆n, f)n (left panel of Figure 4) increases with kn

and it is larger than the bias of ITn−MIT(2)
n . The variance of U ′′ (∆n, f)n (central

panel of Figure 4) is U-shaped with the minimum at around kn = 15, which roughly

corresponds to kn = n2/5. Even if kn takes a large value, e.g. kn = 40, which roughly

corresponds to kn = 3/2
√
n, the variance of U ′′ (∆n, f)n is smaller than the variance

of ITn−MIT(2)
n . For both estimators, the bias is an order of magnitude smaller than
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the variance, hence, RMSE of U ′′ (∆n, f)n (right panel of Figure 4) is dominated

by the variance and it is smaller than RMSE of the difference estimator for all

reasonable choices of kn. Of course, the optimal choice of kn, in general, depends

on the properties of pt, e.g. on its quadratic variation. However, the Monte Carlo

illustration suggest that U ′′ (∆n, f)n remains reasonably precise even for suboptimal

values of kn <
√
n.
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Figure 4: The bias, standard deviation (STD) and the root mean squared er-

ror (RMSE) of the estimators of
1∫
0

ps(1 − ps) ds. The blue rombus correspond

to U ′′ (∆n, f)n for different choices of kn. The red stars represents the difference
ITn −MIT(2)

n , which does not depend on kn.

5.3 Sizes and powers of Ψn,m and Φn,k tests

The test statistics Ψn,m and Φn,k are both characterized by a choice variable, more

precisely Ψn,m depends on the number m of factors in the multi-idle time MIT(m)
n

defined in (5) while Φn,k depends on the number of lags k in the staggered multi-idle

time SIT(k)
n defined in (5). Asymptotically, the distribution of both Ψn,m and Φn,k

are unaffected by the value of m and k, as well as their divergence toward +∞ under

the respective alternative hypotheses. Nevertheless, in finite sample, both m and k

can be chosen to trade-off size and power of the two tests. Following the procedures

described in Section 5 we generate 104 replications of (rounded) price paths under

Ω0, H0 (which, clearly, is included in Ω1) and H1. Since Ω0 and H0 are, respectively,

the null and the alternative for Ψn,m while H0 and H1 are, respectively, the null

and the alternative for Φn,k, we can evaluate, for different choices of m and k, the

size and power of both tests by computing their rejection rates under the proper set

of artificial data. Figure 5 summarizes the results of this numerical experiment, in

20



particular we report 5% rejections rates of both tests under their respective null and

alternative. In the case of Ψn,m, a reasonable trade-off between size and power is

attained taking m around 5, a choice that maximizes power and gives a conservative

(less than the theoretical 5%) size. The case of Φn,k is quite different: the larger

the value of the lag k the more distorted its size, while the power is quite high even

for k = 2. Hence, in finite sample, a small value of k is advisable. Of course, the

specific power and size of the tests depend on how the alternative is formulated.

For example, an higher value for the parameter σu in (12) would deliver a more

powerful Ψn,m.
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Figure 5: The top (resp. bottom) panel reports, as black thick line, the size and, as
a red dotted line, the power of the test Ψn,m (resp. Φn,k) as a function of m (resp.
k).
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6 Empirical illustration

In this section we consider intraday price paths, sampled at 30-second intervals,

for stocks traded on the New York Stock Exchange (NYSE). Our sample includes

248 most traded stocks. The observation period consists of 2246 trading days and

ranges from 3 Jan 2006 to 31 Dec 2014. Each trading day includes 780 intraday

observations recorded from 09 : 30 to 15 : 30. The days in which the trading session

was interrupted prior to 15 : 30 are excluded from the consideration. For each day

and stock we record zero returns defined as the absence of price adjustment during

30-second sampling intervals.

We start with specification tests. For each day and stock in our sample we

compute Ψ and Φ tests for constancy and smoothness of the paths of pt. Figure 6

shows kernel smooth density estimates of the test statistics of the two tests for the

pooled data. The distribution of Ψ is clearly different from a standard normal, in

particular, it is shifted to the right. This indicates that for the majority of days

and stocks in our sample the constancy of pt is rejected. The distribution of Φ test

statistics is close to standard normal, but does not perfectly coincide with it. Hence,

smoothness of the paths of pt can not be rejected for the majority of days and stocks

in our sample with rare exceptions, one of which is considered below. Overall, the

specifications tests indicate that the probability of occurrence of zero returns is

time-varying and most often its dynamics can be sufficiently well approximated by

a smooth semimartingale model.

The most prominent example of a stock (in our sample) for which the smoothness

of the probability of observing zeros is violated is Citigroup Inc. (C). Figure 7

shows the time series of daily Φ test statistics for this stock. It can be seen that the

smoothness of pt is systematically rejected during a particular sub-sample: from

the beginning of 2009 until the middle of 2011. During this period Citigroup was

reorganized into different operating units. This reorganisation might affect the

liquidity of Citigroup stocks, which materializes in the change of the dynamics of

zeros.

The intraday variation of zeros in our semimartingale model has two sources.

The first is the deterministic dynamics captured by the drift component of pt, while

the second is due to the volatility of pt. Figure 8 illustrates the deterministic com-

ponent. For a selection of stocks, it shows averaged over the whole sample intraday

local idle time estimates. For each stock local idle time exhibits emphatic intraday

pattern. On average, the occurrence of zeros is almost twice less probable in the

morning with respect to the noonday. For example, for Exxon Mobil Corporation

(XOM) average local idle time is equal to 0.12 at 09 : 30, while it increases up to

0.24 at 12 : 30.
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Figure 6: Kernel smooth density estimates of the daily test statistics of Ψ and Φ
tests for constancy and smoothness of the paths of pt respectively, computed for
the pooled data.

Figure 9 illustrates the variation of zeros due to the stochastic volatility of pt.

Each panel of the figure compares estimated (using local idle time) paths of pt for

days with large and small volatility of pt. For example, middle left panel shows

the local idle times for PepsiCo Incorporation (PEP). In the morning the level of

stalness is around 20% for both days with low and high volatility of pt. For the first

day, the level of staleness mildly fluctuates around the intraday pattern. For the

day with high volatility of staleness, local idle time rises up to 90% by the noon. By

13 : 00 it declines back to the original level and continues fluctuating intensively by

the end of the day. Together, Figures 8 and 9 indicate that both deterministic and

stochastic components significantly contribute to the intraday variation of staleness.

Figure 10 presents a scatter plot of daily idle time and volatility of staleness

for all considered stocks combined together. It shows the hump-shaped form of the

dependence of the volatility of staleness on the level of staleness. The volatility of

pt is typically small if a stock is very actively traded (hence, idle time is close to

zero) or if a stock price is very stale (idle time is close to 90%). The largest values

of the volatility pt are achieved for the days with medium level of staleness.
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Figure 7: Daily test statistics of Φ test for smoothness of the paths of pt for Citigroup
Inc.

7 Conclusions

We introduce a general econometric framework, which incorporates the possibility

of observing zero returns in the data generating process of stock prices. It extends

widespread stochastic volatility models by allowing for staleness in price adjust-

ments producing zero returns. The statistical properties of the staleness are con-

trolled by the instantaneous probability of arrivals of stale prices, which is assumed

to follow a continuous-time dynamics. Since price staleness is naturally linked to

the absence of liquidity, our framework allows to conduct statistical analysis of

liquidity in a way analogous to the analysis of integrated volatility. In particu-

lar, we develop asymptotic theory for several statistics, named (m-)multi-idle time,

staggered multi-idle time and local idle time, instructive about the dynamic prop-

erties of the instantaneous probability of staleness. This allows to set up feasible

confidence intervals for idle time, a liquidity measure introduced in Bandi et al.

(2017), and to conduct nonparametric specification tests. We test whether the

probability of observing zero returns is constant or time varying during the day and

whether its dynamics can be described by a Brownian semimartingale. Application

on NYSE stock prices shows that the probability of the occurrence of stale prices

is time-varying and can be described with adequate realism by an (0, 1)-valued Itô
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Figure 8: Averaged over the whole sample intraday local idle time estimates for a
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semimartingale.
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Figure 9: Local idle time estimates for days corresponding to the lowest (denoted
by red rhombus) and the highest (denoted by blue circles) volatility of pt for a
selection of stocks.
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Figure 10: Scatter plot of daily idle time (horizontal axis) and volatility of pt
(vertical axis) for stocks combined together
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A Appendix: Proofs

The appendix is divided into four parts. Section A.1 introduces the notation and collects auxiliary results on the

convergence of triangular arrays. Section A.2 is dedicated to the proofs of limiting results from Sections 3.1, 4.1 and 4.2.

Section A.3 presents the proofs of Theorems 3.4 and 3.5. Finally, the proof of Theorem 3.6 is presented in Section A.4.

A.1 Notations and Auxiliary results

In what follows, we indicate with tj,n = j/n, j ∈ {0, . . . , n} the deterministic equispaced partition of the interval [0, 1]

and with Nn (s) = max {j | tj,n ≤ s}. Trivially Nn (1) = n. We use the symbol
p−→ for the convergence in probability,

u.c.p−→ for the uniform convergence in probability and
stably
=⇒ for the stable convergence.

Now, we specify the structure of the σ-field F . We have the following flows of information on F : i) (F (p)
t )t∈[0,1] is

the natural filtration associated to the process pt, ii) Utj,n is the σ-algebra generated by random variables U0,n, . . . , Uj,n,

iii) Ftj,n = F (p)
tj,n ∨ Uj,n is a discrete time filtration associated to partitioning the interval [0, 1] with a descretization

step ∆n = 1/n. Let F (p)
∞ = ∨t∈[0,1]F

(p)
t be the smallest σ-algebra, which contains ∪t∈[0,1]F

(p)
t , U∞ = ∨∞n=2 Un,n, and

Ftn,n
= F (p)

∞ ∨ Un,n. Then, we have: F = F (p)
∞ ∨ U∞.

For sake of readability, we denote, for a generic index j ∈ {1, . . . , n}, by Pj [ · ], Ej [ · ], Vj [ · ] the conditional probability,

the conditional expectation, and the conditional variance with respect to the filtration Ftj,n .

In what follows, our proofs and formalism will be inspired by those of Jacod (2012), Jacod and Protter (2012) and

Aı̈t-Sahalia and Jacod (2014). We say that a triangular array of random variables ξnj , j ∈ {0, . . . , n}, is asymptotically

negligible (sometimes shortened, henceforth, in AN) if

n∑
j=1

ξnj
u.c.p−→ 0,

that is,

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ p−→ 0. (13)

The following two remarks state simple properties that will be invoked repeatedly during the proofs

Remark 1. Suppose that
∑n
j=1

∣∣ξnj ∣∣ converges to zero in L1, i.e.

E

 n∑
j=1

∣∣ξnj ∣∣
→ 0. (14)

By standard argument, this implies that
∑n
j=1

∣∣ξnj ∣∣ p−→ 0 and so it is sufficient to note that

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ ≤ sup
s∈[0,1]

Nn(s)∑
j=1

∣∣ξnj ∣∣ =

n∑
j=1

∣∣ξnj ∣∣ p−→ 0

to conclude that condition (14) is enough to guarantee that ξnj is AN.

Remark 2. Throughout the paper, we will use implicitly this simple fact. If g (s) is a Riemann-integrable function on

[0, 1] therefore

sup
t∈[0,1]

∫ t

0

|g (s)| ds =

∫ 1

0

|g (s)| ds,

whence for any sequence of function gn (s), uniform convergence on [0, 1] of the integral of |gn (s)| is equivalent to the

convergence of
∫ 1

0
|gn (s)| ds.
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Finally, we remind the following two lemmas which give us a simple criterion to conclude that a triangular array is AN

and are used repeatidly in the rest of the appendix. The first one is Lemma 4.1 of Jacod (2012) whereas the second is

Lemma B.8 in of Aı̈t-Sahalia and Jacod (2014).

Lemma 1. Let ξnj be a triangular array of Ftj,n-measurable random variables. If the following condition is satisfied

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] p−→ 0,

then
∑n
j=1 ξ

n
j

u.c.p−→ 0, i.e. ξnj is AN. Moreover, the same conclusion holds under the following two conditions

n∑
j=1

Ej−1

[
ξnj
] u.c.p−→ 0, (15)

n∑
j=1

Ej−1

[(
ξnj
)2] p−→ 0. (16)

As a consequence if Ej−1

[
ξnj
]

= 0 then condition (16) is sufficient to guarantee that
∑n
j=1 ξ

n
j

u.c.p−→ 0.

Lemma 2. If mn, `n ≥ 1 are arbitrary integers, and if for all n ≥ 1 and 1 ≤ i ≤ mn the variable ξnj is Ftj+`,n
-measurable,

and if
mn∑
j=1

∣∣Ej−1

[
ξnj
]∣∣ p−→ 0, `n

mn∑
j=1

E
[∣∣ξnj ∣∣2]→ 0,

then

sup
i≤mn

∣∣∣∣∣∣
i∑

j=1

ξnj

∣∣∣∣∣∣ p−→ 0,

i.e.
∑n
j=1 ξ

n
j

u.c.p−→ 0.

We now turn to characterising the stable convergence of triangular arrays (cfr. Podolskij and Vetter, 2010, Definition

1). For a sequence of random variables Yn (representing the sequence of partial sums of a triangular array), the stable

convergence is defined as follows:

Definition 1. A sequence of random variables Yn defined on (Ω,F ,P) is said to converge stably with limit Y defined on

an extension of the original probability space (Ω′,F ′,P ′) if and only if for any bounded continuous function g and any

bounded F-measurable random variable Z it holds that

E [g(Yn)Z]→ E [g(Y )Z] .

The classical stable Central Limit Theorem of Hall and Heyde (1980) is not valid for the triangular arrays considered

in our paper. Indeed, by construction, we have that Ftj,m * Ftj,n whenever n > m. As a consequence, the nesting

assumption on the filtrations as in Theorem 3.2 of Hall and Heyde (1980) fails. However, a similar stable Central Limit

Theorem hold.

Theorem A.1. For any given integer ` consider the triangular array random variables

γ
(`)
j,n = ϕ (Bj−`,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+`,n])

where ϕ : R2 `+1 → R is a locally bounded function of a finite number of variables. Define the centred triangular array

X
(`)
j,n as

X
(`)
j,n =

1√
n

(
γ

(`)
j,n − Ej−1

[
γ

(`)
j,n

])
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and assume that
n∑
j=1

(
X

(`)
j,n

)2 p−→ σ2, (17)

for an a.s. finite random variable σ. Then, as n→∞,

n∑
j=1

X
(`)
j,n

stably
=⇒ Z, (18)

where Z is a random variable with characteristic function E
[
e−

1
2σ

2 t2
]
, defined on an extension of the original probability

space.

Proof. The technicalities of the proof largely follow results in Hall and Heyde (1980), Lemma 3.1 and Theorem 3.2.

Because of the locally boundedness of ϕ and the distributional assumptions on random variables Bj−`,n, . . . ,Bj+`,n, it

is easy to check that max1≤j≤n

∣∣∣X(`)
j,n

∣∣∣ p−→ 0. Moreover, by hypothesis
∑n
j=1

(
X

(`)
j,n

)2 p−→ σ2 for an a.s. finite random

variable σ. As a consequence (cfr. Lemma 3.1 in Hall and Heyde, 1980), to prove the statement above it is sufficient to

prove that for all real t the random variable Tn (t) defined as (ı =
√
−1)

Tn(t)
.
=

n∏
j=1

(
1 + ı tX

(`)
j,n

)

converges to 1 as n→∞ weakly in L1. By definition, this is equivalent to prove that for all E ∈ F , E [Tn (t) I (E)]→ P [E],

where I (E) is the indicator function of the event E. For a fixed 2 ≤ m ≤ n, let Em ∈ Ftm,m
. We compute

E [Tn (t) I (Em)] = E
[
E
[
Tn (t) I (Em) |Ftm,m

]]
= E

E
 n∏
j=1

(
1 + ı tX

(`)
j,n

)
I (Em)

∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

E
 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣F (p)
∞

 ∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

∏
j∈I2

(
1 + ı tX

(`)
j,n

) ∣∣∣Ftm,m

E
∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 , (19)

where I1, I2, I3 are three sets of indexes such that X
(`)
j,n ∈ Ftm,m

for j ∈ I1, X
(`)
j,n ∈ Ftm+`,m+`

for j ∈ I2, and X
(`)
j,n ∈(

Ftn,n
�Ftm+l,m+l

)
for j ∈ I3. In particular,

(
Ftn,n

�Ftm+l,m+l

)
denotes the smallest σ-algebra containing all the events

of Ftn,tn that are not included in Ftm+`,tm+`
. First, we note that I1 and I2 includes at most a finite number of terms and

that

E

∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 =
∏
j∈I3

E
[(

1 + ı tX
(`)
j,n

) ∣∣∣F (p)
∞

]
= 1,

because of the independence of the factors conditionally on F (p)
∞ and the fact that, for each j ∈ {1, . . . , n}, X(l)

j,n has

expected value equal to one. Eq.(19) then becomes

E [Tn (t) I (Em)] = E

I (Em)
∏

j∈I1∪I2

(
1 + ı tX

(`)
j,n

) = P [Em] +Rn
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where the remainder term Rn consists of at most 22|I1∪I2| − 1 terms of the form E
[
I (Em) (it)

r
X

(`)
j1,n

. . . X
(`)
jr,n

]
, with

1 ≤ r ≤ |I1 ∪ I2| and j1, . . . jr ∈ I1 ∪ I2. Note that Rn converges to zero as n→∞. Consequently,

E [Tn (t) I (Em)]
p−→ P [Em] .

Finally, let 4 denotes the symmetric difference. For any E ∈ F and any ε > 0 there exists an an m and an Em ∈ Ftm,m
,

such that P [E 4 Em] ≤ ε. Since Tn is uniformly integrable by assumption,

|E [Tn (t) I (Em)]− E [Tn (t) I (E)]| ≤ E [|Tn (t)| I (E 4 Em)] ,

and supn |E [Tn (t) I (Em)]− E [Tn (t) I (E)]| can be made arbitrarily small by choosing sufficiently small ε. Whence the

thesis.

We conclude this section with the following corollary, which will be used in the subsequent sections.

Corollary 3. Let X
(`)
j,n a q-dimensional random vector with each component defined as X

(`)
j,n in Theorem A.1, such that

n∑
j=1

X
(`)
j,n

(
X

(`)
j,n

)′ p−→ Σ, (20)

for an a.s. finite positive definite random matrix Σ = {σi,j}. Then,

n∑
j=1

X
(`)
j,n

stably
=⇒ MN (0,Σ) ,

where MN (0,Σ) is a q-dimensional mixed-normal random variable.

Proof. The condition (20) implies that

n∑
j=1

(
c′X

(`)
j,n

)2 p−→ c′Σc.

for an arbitrary real valued vector c = (c1, ..., cq)
′
. Consequently, by Theorem A.1, we have:

n∑
j=1

c′X
(`)
j,n

stably
=⇒ MN (0, c′Σc) ,

where MN (0, c′Σc) denotes a mixed-normal random variable. Since c is arbitrary, the later convergence implies the

statement of the Corollary.

Remark 3. The statement of Theorem A.1 remains true if the condition (17) is replaced by the analogous condition for

conditional variances
n∑
j=1

E
[(
X

(`)
j,n

)2
∣∣∣∣ Ftj,n] p−→ σ2.

A.2 Proofs of limit theorems from Sections 3.1, 4.1 and 4.2

The proofs of the limiting results from Sections 3.1, 4.1 and 4.2 follows directly from severals auxillary Lemmas on the

limiting behaviour of triangular arrays of Bernoulli random variables presented below. In particular, Theorem 3.1 is a

combination of Lemmas 8 and 6; Theorem 3.2 is a combination of Lemmas 4 and 6; Theorem 3.3 is a combination of

Lemmas 3 and 7; Corollary 1 follows directly from Lemma 6; Corollary 2 follows directly from Lemmas 7 and 9.

We start with a remark about Assumption 2, which is repeatedly used in the subsequent proofs.
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Remark 4. Under Assumption 2,

Ej−1 [Bj,n] = pj−1,n +Op

(
∆1/2
n

)
. (21)

Indeed,

Ej−1 [Bj,n] = E
[
E
[
Bj,n

∣∣∣ Ftj−1,n
∨ F (p)

tj,n

]]
= Ej−1 [pj,n] = pj−1,n + Ej−1 [pj,n − pj−1,n] , (22)

where

|Ej−1 [pj,n − pj−1,n]| ≤ Ej−1 [|pj,n − pj−1,n|] ≤ C (∆n)1/2,

where the last inequality follows from standard estimates for semimartingales (Jacod, 2008). Moreover, by Proposition 1

of Barndorff-Nielsen et al. (2006),

|pj,n − pj−1,n| = Op

(
(∆n |log ∆n|)1/2

)
,

which implies that, for every finite integer k,

pj+k = pj−1 +Op

(
k (∆n |log ∆n|)1/2

)
. (23)

Lemma 3. Under Assumption 2, as n→∞,

1

n− k

n−k∑
j=1

Bj,nBj+k,n
u.c.p−→

∫ 1

0

(ps)
2
ds.

Proof. To prove the result above, we apply Lemma 1. The key assumption of this lemma is that the random variables

defining the triangular array ξnj must be Ftj,n-measurable. Thus, we make the following steps.

1

n− k

n−k∑
j=1

Bj,nBj+k,n =
1

n− k

n−k∑
j=1

Bj,n (Bj+k,n − Ej [Bj+k,n]) +

n−k∑
j=1

Bj,nEj [Bj+k,n]

=
1

n− k

n∑
j=1+k

Bj−k,n (Bj,n − Ej−k [Bj,n]) +
1

n− k

n−k∑
j=1

Bj,nEj [Bj+k,n]

=
1

n− k

n−1∑
j=1

Bj−k,n (Bj,n − Ej−k [Bj,n]) +
1

n− k

n−k∑
j=1

Bj,nEj [Bj+k,n]

+
1

n− k
Bn−k,n (Bn,n − En−k [Bn,n])− 1

n− k

k∑
j=1

Bj−k,n (Bj,n − Ej−k [Bj,n]) .

Because of the boundedness of the Bernoulli variates, for any k fixed, the last two terms are both op (1). Thus, by setting

ξnj
.
= Bj−k,n (Bj,n − Ej−k [Bj,n]) + Bj,nEj [Bj+k,n], we write

1

n− k

n−k∑
j=1

Bj,n Bj+k,n =
1

n− k

n−k∑
j=1

ξnj + op (1) .

Note that each ξnj is now Ftj,n-measurable. Set now ζnj
.
= (n− k)

−1 (
ξnj − Ej−1

[
ξnj
])

. We show that

n−k∑
j=1

ζnj
u.c.p−→ 0.
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Since ζnj is a martingale difference, it is enough to prove that (cfr. condition (16))

E

n−k∑
j=1

|ζnj |2
→ 0.

The previous result follows immediately from the boundedness of the Bernoulli variates. Indeed,

E

n−k∑
j=1

|ζj,n|2
 = E

n−k∑
j=1

∣∣∣∣ 1

n− k
(
ξnj − Ej−1

[
ξnj
])∣∣∣∣2

 =
1

(n− k)
2

n−k∑
j=1

E
[∣∣ξnj − Ej−1

[
ξnj
]∣∣2] ≤ C

(n− k)
→ 0.

We have proved that

1

n− k

n−k∑
j=1

ξnj
u.c.p−→ 1

n− k

n−k∑
j=1

Ej−1

[
ξnj
]
,

thus, to conclude it is sufficient to prove that

n−k∑
j=1

1

n− k

(
Ej−1

[
ξnj
]
− (pj−1,n)

2
)

u.c.p−→ 0.

With abuse of notation, let ζnj−1
.
= (n− k)

−1
(Ej−1

[
ξnj
]
−(pj−1,n)

2
) and we show that condition (14) hold for ζnj−1. Write

6

Ej−1

[
ξnj
]

= Ej−1 [Bj,nBj+k,n] = Ej−1 [Bj,n Ej+k−1 [Bj+k,n]]

(Using equation (21) ) = Ej−1 [Bj,n pj+k−1,n] +Op

(
∆1/2
n

)
(Using equation (23) ) = Ej−1 [Bj,n pj−1,n] +Op

(
∆1/2
n

)
= pj−1,n Ej−1 [Bj,n] +Op

(
∆1/2
n

)
= p2

j−1,n +Op

(
∆1/2
n

)
(24)

Thus7
n∑
j=1

E
[∣∣ζnj−1

∣∣] =

n∑
j=1

1

n− k
E
[∣∣∣Ej−1

[
ξnj
]
− (pj−1,n)

2
∣∣∣] −→ 0.

In particular

1

n− k

n−k∑
j=1

Ej−1

[
ξnj
]
− 1

n− k

n−k∑
j=1

(pj−1,n)
2 u.c.p−→ 0

6Note that the infinitesimal (in probability) term Op

(
∆

1/2
n

)
that appears in equation (21) of Remark ?? is exactly

Ej−1 [pj − pj−1], so that the Op

(
∆

1/2
n

)
that appears in the second of the equations (24) is Ej+k−1 [pj+k − pj+k−1].

Nevertheless, again using the tower rule and the Markov inequality we can prove that

Ej−1 [pj+k − pj+k−1] = Op

(
∆1/2
n

)
,

whence the second and the third of the equations in (24).
7We note here that the absolute value of the difference

∣∣∣Ej−1

[
ξnj
]
−
(
pFj−1,n

)2∣∣∣ is a term of the type

|Ej−1 [pj+k − pj+k−1]| for some k. Hence the summation in equation (24) is bounded by a constant times ∆
1/2
n , which

converges to zero.
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Finally, by Riemann integrability we have, path-wise on Ω,

1

n− k

n−k∑
j=1

(pj−1,n)
2 →

∫ 1

0

(ps)
2
ds,

whence the thesis.

Lemma 4. Under Assumption 2, as n→∞,

1

n

n∑
j=1

m−1∏
i=0

Bi+j,n
u.c.p−→

∫ 1

0

(ps)
m
ds

Proof. Consider the following quantity

An =
1

n

n∑
j=1

m−1∏
i=0

Bi+j,n −
1

n

n∑
j=1

(pj−1,n)
m

=
1

n

n∑
j=1

[
Bj,nBj+1,n · · ·Bj+(m−1),n − (pj−1,n)

m]
We show that An

u.c.p−→ 0. To do so, we rewrite the quantity An as a sum of a Ftj,n-measurable quantity and a negligible

term. We introduce the following quantity

ς
(m)
j,` = Bj,nBj+1,n · · ·Bj+`−1,n (Bj+`,n − pj−1,n) (pj−1,n)

m−`−1

and we show that An can be rewritten in the following way

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` +

Rn
n

(25)

where Rn/n is asymptotically negligible. Let us consider the following expressions

ψj,1 = Bj,n − pj−1,n
.
= ς

(1)
j,0

ψj,2 = Bj,nBj+1,n − p2
j−1,n = Bj,n (Bj+1,n − pj−1,n) + (Bj,n − pj−1,n) pj−1,n

.
= ς

(2)
j,1 + ς

(2)
j,0

ψj,3 = Bj,nBj+1,n (Bj+2,n − pj−1,n) + Bj,n (Bj+1,n − pj−1,n) pj−1,n + (Bj,n − pj−1,n) p2
j−1,n

.
= ς

(3)
j,2 + ς

(3)
j,1 + ς

(3)
j,0 ,

and similarly for each fixed m. Then An = n−1
∑n
j=1 ψj,m becomes

An =
1

n

n∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j,` +

1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,`+

1

n

n∑
j=m

m−1∑
`=0

(
ς
(m)
j,` − ς

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,`︸ ︷︷ ︸

R2

.

We show now that both R1/n and R2/n are op (1). Since m is fixed, by the boundedness of the Bernoulli variables we

have R2/n = op (1). Now, considering that all the terms with ` = 0 in R1,n are identically zero, we get

R1 =

m−1∑
`=1

n∑
j=m

(
ς
(m)
j,` − ς

(m)
j−`,`

)
=

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n∑
j=m

ς
(m)
j−`,`

 =

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n−∑̀
j=m−`

ς
(m)
j,`



=

m−1∑
`=1


n∑

j=n−`+1

ς
(m)
j,`︸ ︷︷ ︸

` addends

−
m−1∑
j=m−`

ς
(m)
j,`︸ ︷︷ ︸

`addends

 ,
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hence, as for R2, for given m the number of addends in R1 is independent of n (and bounded) so that R1/n = op (1).

Thus, by setting Rn
.
= R1 +R2 the decomposition in (25) hold, i.e.

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` + op (1)

To conclude, we have to show that An is AN. Before proceeding, for sake of clarity, we briefly describe how we achieve

this result. Let us set ζnj = 1
n ς

(m)
j−`,`, for fixed ` and m. We note that to prove the asymptotically negligibility of An it is

sufficient to prove that ζnj is AN. By Lemma 1 this amounts to show that the following two conditions are satisfied

n∑
j=1

Ej−1

[
ζnj
]

=

n∑
j=1

1

n
Ej−1

[
ς
(m)
j−`,`

]
u.c.p−→ 0 (26)

and

n∑
j=1

Ej−1

[(
ζnj
)2] p−→ 0. (27)

In particular, to prove Eq.(26) we set ξnj = n−1Ej−1

[
ς
(m)
j−`,`

]
and, by using again Lemma 1, we show that

n∑
j=1

Ej−1

[
|ξnj |
] p−→ 0. (28)

Thus, we start from assertion in (28) and we prove

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] =

n∑
j=1

Ej−1

[∣∣∣∣ 1nEj−1

[
ς
(m)
j−`,`

]∣∣∣∣] =

n∑
j=1

1

n

∣∣∣Ej−1

[
ς
(m)
j−`,`

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Ej−1

[
Bj−`,n · ... · Bj−1,n (pj−`−1,n)

m−`−1
(Bj,n − pj−`−1,n)

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−`−1,n)
m−`−1 Ej−1 [(Bj,n − pj−`−1,n)]

∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−1,n)
m−`−1 Ej−1 [(pj,n − pj−l−1,n)]

∣∣∣
≤

n∑
j=1

1

n
Ej−1 [|pj,n − pj−`−1,n|] ≤

n∑
j=1

1

n
C∆1/2

n ≤ C∆1/2
n ,

At this point, it is enough to prove the convergence in Eq.(27). This is an easy check because of the boundedness of the

Bernoulli variates, i.e.
n∑
i=1

Ej−1

[(
ζnj
)2]

=
1

n2
Ej−1

[(
ς
(m)
j−`,`

)2
]
≤ K∆n −→ 0,

which implies the asymptotic negligibility of An. Finally, by Riemann integrability,

1

n

n∑
j=1

(pj−1,n)
m −→

∫ 1

0

(ps)
m
ds,

which completes the proof.
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Before proceeding, we state and prove another useful lemma.

Lemma 5. Under Assumption 2, for any finite numbers `, d ≥ 0 and powers q1, . . . , qd ≥ 0, as n→∞,

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd p−→
∫ 1

0

p`+vs ds,

where v = q1 + . . .+ qd.

Proof. First, by Remark (??),

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd =
1

n

n∑
j=1

Bj−`,n · · ·Bj,n pvj−1,n +Op

(
∆1/2

)
,

Next, by conditioning on F (p)
∞ and using the law of iterated expectations,

E
[
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n . . . pj,n pvj−1,n

]
= 0.

Hence, by Theorem 2.13 in Hall and Heyde (1980)8 applied to the martingale difference X
(`)
j,n = Bj−`,n · · · Bj,npvj−1,n −

pj−`,n · · · pj,npvj−1,n

1

n

n∑
j=1

(
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n · · · pj,n pvj−1,n

) p−→ 0.

Using Remark (??) again,

1

n

n∑
j=1

pj−`,n . . . pj,n p
v
j−1,n =

1

n

n∑
j=1

p`+vj−1,n +Op

(
∆1/2

)
.

Finally, by Riemann integrability we have, path-wise on Ω,

1

n

n∑
j=1

p`+vj−1,n −→
∫ 1

0

p`+vs ds,

which completes the proof.

Lemma 6. Let m ≥ 2 be a given integer number. Under Assumption 2, as n→∞,

√
n

[
ITn −

∫ 1

0
ps ds

MIT(m)
n −

∫ 1

0
(ps)

m
ds

]
stably
=⇒ MN (0,Σ) (29)

where

ITn =
1

n

n∑
j=1

Bj,n MIT(m)
n =

1

n

n∑
j=1

m−1∏
i=0

Bj+i,n

and MN (0,Σ) denotes the mixed-normal distribution with covariance matrix Σ

Σ =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
mpms (1− ps) ds∫ 1

0
mpms (1− ps) ds

∫ 1

0
pms

pms (2m+1)−pm+1
s (2m−1)−(1+ps)
1−ps ds

]
.

8The hypothesis of the Theorem are readily satisfied because of the boundedness of the Bernoulli random variables
with Bn = n.
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Proof. We consider the following decomposition

√
n

[
ITn −

∫ 1

0
ps ds

MIT(m)
n −

∫ 1

0
(ps)

m
ds

]
= A1 +A2,

where

A1 =
1√
n

n∑
j=1

 Bj,n − Ej−1 [Bj,n]
m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]

 , A2 =
1√
n

n∑
i=1

 Ej−1 [Bj,n]−
∫ 1

0
ps ds

m−1∏
i=0

Ej+i−1 [Bj+i,n]−
∫ 1

0
(ps)

m
ds

 .
A2 is asymptotically negligible (which can be proven as in Lemma ?? above). Thus, it is enough to prove that A1

stably
=⇒

MN (0,Σ). To do so, we rewrite the quantity A1 as a sum of a Ftj,n-measurable quantity and a negligible term. We

introduce the following quantity

ζ
(m)
j,` = Bj,n Bj+1,n · · ·Bj+`−1,n (Bj+`,n − Ej+`−1 [Bj+`,n]) Ej+` [Bj+`+1,n] · · ·Ej+m−2 [Bj+m−1,n]

and we consider the following expression

ϕj,m =

m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]

for a generic m. Note that ϕj,m =
∑m−1
`=0 ζ

(m)
j,` . Indeed

ϕj,1 = Bj,n − Ej−1 [Bj,n] ≡ ζ(1)
j,0

ϕj,2 = Bj,n Bj+1,n − Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n Bj+1,n − Bj,n Ej [Bj+1,n] + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n]) + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ei [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n])︸ ︷︷ ︸
ζ

(2)
j,1

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n]︸ ︷︷ ︸
ζ

(2)
j,0

ϕj,3 = Bj,n Bj+1,n Bj+2,n − Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n Bj+2,n − Bj,n Bj+1,n Ej+1 [Bj+2,n] + Bj,n Bj+1,n Ej+1 [Bj+2,n]

− Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n]) +

+Bj,n Bj+1,n Ej+1 [Bj+2,n]− Bj,n Ei [Bj+1,n] Ej+1 [Bj+2,n] +

+Bj,n Ej [Bj+1,n] Ej+1 [Bj+2,n]− Ej−1 [Bj,n] Ei [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n])︸ ︷︷ ︸
ζ

(3)
i,2

+Bj,n (Bj+1,n − Ej [Bj+1,n]) Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,1

+

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n] Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,0

,

and so on and so forth for every m. So the second component of A1, A1 (2) = n−1/2
∑n

j=1 ϕj,m, can be rewritten
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as

A1 (2) =
1√
n

n∑
j=1

m−1∑
`=0

ζ
(m)
j,` =

1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j,` +

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`

=
1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j−`,` +

1√
n

n∑
j=m

m−1∑
`=0

(
ζ

(m)
j,` − ζ

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1√
n

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`︸ ︷︷ ︸

R2

Reasoning as in Lemma ?? one can prove that both R1/
√
n and R2/

√
n are op (1). To render A1 (2) Ftj,n-

measurable a further step is necessary. We define

ζ̃
(m)
j−`,` = Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n] ,

and consider

R3 =
n∑

j=m

m−1∑
`=0

(
ζ

(m)
j−`,` − ζ̃

(m)
j−`,`

)

=

n∑
j=m

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])×

× (Ej [Bj+1,n] · · ·Ej−`+m−2 [Bj−`+m−1,n]− Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])

Notice, that, using Remark ??, for all i > 0,

|Ej+i−1 [Bj+i,n]− Ej−1 [Bj+i,n]| =
∣∣∣pj+i−1,n − pj−1,n +Op

(
∆1/2
n

)∣∣∣
=

∣∣∣pj+i−1,n − pj+i−2,n + pj+i−2,n − pj+i−3,n + · · ·+ pj,n − pj−1,n +Op

(
∆1/2
n

)∣∣∣
≤ Op

(
(i+ 1) ∆1/2

n

)
(30)

Now note that, using the triangular inequality and a recursive decomposition, for any set of bounded random

variables x1, . . . , xm−`−1, y1, . . . , ym−`−1 we obtain (to reduce notation we put M = m− `− 1)

|x1 · · ·xM − y1 · · · yM | = |x1 · · ·xM−1 (xM − yM ) + (x1 · · ·xM−1 − y1 . . . yM−1) yM |

≤ |x1 · · ·xM−1 (xM − yM )|+ |(x1 · · ·xM−1 − y1 · · · yM−1) yM |

≤ K |(xM − yM )|+K |(x1 · · ·xM−1 − y1 · · · yM−1)|

≤ . . .

≤ K
M∑
k=1

|xk − yk| ,

where the constant K changes from line to line. Applying this inequality to the difference
∣∣∣ζ(m)
j−`,` − ζ̃

(m)
j−`,`

∣∣∣, we
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obtain: ∣∣∣ζ(m)
j−`,` − ζ̃

(m)
j−`,`

∣∣∣ ≤ K m−`−1∑
i=1

|Ej−1 [Bj+i, n]− Ej+i−1 [Bj+i, n]| .

Consequently, since m is finite, the inequality (30) implies that R3/
√
n = op (1). In particular, A1 can be

represented as

A1 =
1√
n

n∑
j=m

ηj +
1√
n
Rn =

1√
n

n∑
j=m

[
ηj(1)

ηj(2)

]
+

1√
n

[
Rn(1)

Rn(2)

]
,

with

ηj(1)
.
= Bj,n − Ej−1 [Bj,n] , ηj(2)

.
=

m−1∑
`=0

ζ̃
(m)
j−`,`,

and where the reminders are given by

Rn(1) =
m−1∑
j=1

(Bj∆,n − Ej−1 [Bj∆,n]) , Rn(2) = R1 +R2 +R3.

Note that since also the first component of Rn consists of a finite number of bounded terms, Rn/
√
n is

asymptotically negligible: It is enough to establish the following convergence convergence

1√
n

n∑
j=m

ηj
stably
=⇒ MN (0,Σ) .

To establish the previous convergence, we use Corollary 3. We have to find two functions ϕ(1) and ϕ(2) such

that

ηj (1) = ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])− Ej−1

[
ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
and similarly for ηj (2). The case of ηj (1) is trivial since it is enough to define ϕ(1) (x1)

.
= x1 to have the

identity ηj (1) = ϕ(1) (Bj)− Ej−1

[
ϕ(1) (Bj)

]
. For what concerns ηj (2) note that

ηj (2) =
m−1∑
`=0

ζ̃
(m)
j−`,` =

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]

= (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] +

+Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])

= Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] + Bj−1,n Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Bj,n − (Ej−1 [Bj,n] Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n]) + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Ej−1 [Bj,n]

= ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

− Ej−1

[
ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
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where ϕ(2) : R2 (m−1)+1 → R takes the following form

ϕ(2)
(
x1, · · · , xm, · · · , x2(m−1)+1

) .
= xm xm+1 · · ·x2(m−1)+1 + xm−1 xm · · ·x2(m−1) + . . .+ x1 x2 · · ·xm.

We now proceed by noticing that, for all j, the vector ηj is Ftj,n-measurable and bounded, whence

n∑
j=m

Ej−1

[∥∥∥∥ 1√
n
ηj

∥∥∥∥4
]

p−→ 0,

and Ej−1 [ηj (1)] = 0. To see that also Ej−1 [ηj (2)] = 0 it is better to write down Ej−1 [ηj (2)] explicitly

Ej−1 [ηj (2)] =

m−1∑
`=0

Ej−1

[
ζ̃

(m)
j−`,`

]
=

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n Ej−1 [(Bj,n − Ej−1 [Bj,n])]︸ ︷︷ ︸
=0

Ej−1 [Bj+1,n] Ej−1 [Bj+2,n] · · ·Ej−1 [Bj−`+m−1,n] .

Consequently, it is enough to show that n−1
n∑

i=m
Ej−1

[
ηjη
′
j

]
p−→ Σ. Consider each component of the matrix

ηjη
′
j separately.

ηj(1)ηj(1) = Bj,n − 2Bj,nEj−1 [Bj,n] + (Ej−1 [Bj,n])2 .

By Lemma 5,

1

n

n∑
i=m

Ei−1 [ηi(1)ηi(1)]
p−→
∫ 1

0

(
ps − p2

s

)
ds.

Now consider the product

ηj(2) ηj(2) =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−1∑
`′=`+1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`′,`′ =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−`−1∑
k=1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

We note that(
ζ̃

(m)
j−`,`

)2
= Bj−`,n · · ·Bj−1,n︸ ︷︷ ︸

` factors

(Bj,n − Ej−1 [Bj,n])2 (Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])2︸ ︷︷ ︸
m− `− 1 factors

.

and

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

= Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]×

×Bj−`−k,n Bj−`−k+1,n · · ·Bj−`,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n]

= Bj−`−k,n...Bj−1,n︸ ︷︷ ︸
`+ k factors

(Bj,n − Ej−1 [Bj,n])2 ×

(Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n])2︸ ︷︷ ︸
m− (`+ k)− 1 factors

Ej−1 [Bj+m−`−k,n] · · ·Ej−1 [Bj+m−`−1,n]︸ ︷︷ ︸
k factors

,
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Consequently, using Lemma 5,

1

n

n∑
j=m

Ej−1 [ηj(2)ηj(2)]
p−→ Σ22

.
=

∫ 1

0

(
m−1∑
`=0

p2m−`−1
s (1− ps) + 2

m−1∑
`=0

(m− `− 1) p2m−`−1
s (1− ps)

)
ds,

which, after some standard algebra becomes,

Σ22 =

∫ 1

0
p2m−1
s (1− ps)

(
m−1∑
`=0

p−`s + 2
m−1∑
`=0

(m− `− 1) p−`s

)
ds

=

∫ 1

0

pms (1 + ps − (2m(1− ps) + 1 + ps)p
m
s )

1− ps
ds

=

∫ 1

0
pms

pms (2m+ 1)− pm+1
s (2m− 1)− (1 + ps)

1− ps
ds (31)

Finally,

ηj(1)ηj(2) = (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−1,n]

+ Bj−1,n (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−2,n]

+ . . .

+ Bj−m−1,n...Bj−1,n (Bj,n − Ej−1 [Bj,n])2 .

Applying Lemma 5 again,

1

n

n∑
j=m

Ej−1 [ηj(1)ηj(2)]
p−→
∫ 1

0
mpms (1− ps) ds,

which completes the proof.

Lemma 7. Under Assumption 2, as n→∞ and k > 1

√
n

[
SIT(1)

n −
∫ 1

0
(ps)

2
ds

SIT(k)
n −

∫ 1

0
(ps)

2
ds

]
stably
=⇒ MN (0,Σ)

where

SIT(1)
n =

1

n

n∑
j=1

Bj,nBj+1,n SIT(k)
n =

1

n

n∑
j=1

Bj,nBj+k,n

and MN (0,Σ) denotes the mixed-normal with covariance matrix Σ whose elements are

Σ =

[∫ 1

0
p2
s + 2p3

s − 3p4
s

∫ 1

0
4p3
s (1− ps) ds∫ 1

0
4p3
s (1− ps) ds

∫ 1

0
p2
s + 2p3

s − 3p4
s

]

Proof. We consider the following decomposition

√
n

[
SIT(1)

n −
∫ 1

0
(ps)

2
ds

SIT(k)
n −

∫ 1

0
(ps)

2
ds

]
= A1 +A2,
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where

A1 =
1√
n

n∑
j=1

[
Bj,nBj+1,n − Ej−1 [Bj,n]Ej [Bj+1,n]

Bj,nBj+k,n − Ej−1 [Bj,n]Ej+k−1 [Bj+k,n]

]
A2 =

1√
n

n∑
j=1

[
Ej−1 [Bj,n]Ej [Bj+1,n]−

∫ 1

0
p2
s ds

Ej−1 [Bj,n]Ej+k−1 [Bj+k,n]−
∫ 1

0
p2
s ds

]

A2 is asymptotically negligible (which can be proven as in Lemma ?? above): It is so sufficient to show that A1
stably
=⇒

MN (0,Σ). Before proceeding, we note the following things. The first component of A1, A1 (1), coincides with the

quantity ϕj,m as in the previous Lemma by setting m = 2. The second component, instead, coincides with ϕj,m if we set

k = m− 1 and Bj+i = 1 for all i ∈ {1, . . . ,m− 1}. Mimicking the steps done in the previous lemma, it is not difficult to

see that A1 can be explicitly written as

A1 =
1√
n

n∑
j=m

ηj +
1√
n
Rn =

1√
n

n∑
j=m

[
ηj (1)

ηj (2)

]
+

1√
n

[
Rn (1)

Rn (2)

]

with

ηj (1) = (Bj,n − Ej−1 [Bj,n])Ej−1 [Bj+1,n] + Bj−1,n (Bj,n − Ej−1 [Bj,n])

ηj (2) = (Bj,n − Ej−1 [Bj,n])Ej−1 [Bj+m−1,n] + Bj−(m−1),n (Bj,n − Ej−1 [Bj,n])

and the reminder Rn/
√
n is asymptotically negligible. Thus, we need to determine the following convergence

1√
n

n∑
j=m

ηj
stably
=⇒ MN (0,Σ) .

To do so, we want to use the Corollary 3. In particular we have to determine the functions ϕ(1) and ϕ(2). It is convenient

to rewrite ηj (1) and ηj (2) as follows.

ηj (1) = Bj−1,nBj,n + Bj,nEj−1 [Bj+1,n]− Ej−1 [Bj−1,nBj,n + Bj,nEj−1 [Bj+1,n]]

ηj (2) = Bj−(m−1),nBj,n + Bj,nEj−1

[
Bj+(m−1),n

]
− Ej−1

[
Bj−(m−1),nBj,n + Bj,nEj−1

[
Bj+(m−1),n

]]
It follows that ηj (1) can be rewritten in terms of a function ϕ(1) : R3 → R in the following way

ηj (1) = ϕ(1) (Bj−1,n,Bj,n,Ej−1 [Bj+1,n])− Ej−1

[
ϕ(1) (Bj−1,n,Bj,n,Ej−1 [Bj+1,n])

]
with ϕ(1) (x1, x2, x3) = x1x2+x2x3. On the other hand ηj (2) can be rewritten in terms of a function ϕ(2) : R2(m−1)+1 → R

in the following way

ηj (2) = ϕ(2)
(
Bj−(m+1),n, · · · ,Bj,n,Ej−1 [Bj+1,n] , · · · ,Ej−1

[
Bj+(m−1)

])
− Ej−1

[
ϕ(2)

(
Bj−(m+1),n, · · · ,Bj,n,Ej−1 [Bj+1,n] , · · · ,Ej−1

[
Bj+(m−1)

])]
with ϕ(1)

(
x1, · · · , x2(m−1)+1

)
= x1xm+2 + xm+2x2(m−1)+1. Now, we proceed by noticing that for all j the vector ηj is

Ftj,n measurable and bounded. In particular

n∑
j=m

Ej−1

[∥∥∥∥ 1√
n
ηj

∥∥∥∥4
]

p−→ 0.

Besides, we have that Ej−1 [ηj (1)] = Ej−1 [ηj (2)] = 0. We proceed now to show that n−1
∑n
j=m Ej−1

[
ηjη

′

j

]
p−→ Σ. For
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the first component we inherit the result of the previous Lemma and we conclude that

1

n

n∑
j=m

Ej−1 [ηj (1) ηj (1)]
p−→ Σ11

.
=

∫ 1

0

p2
s + 2 p3

s − 3 p4
s ds

We consider now ηj (2) ηj (2). Using standard algebra, we obtain

ηj (2) ηj (2) =
(
Ej−1

[
Bj+(m−1), n

])2 Bj,n − 2Bj,nEj−1 [Bj,n]
(
Ej−1

[
Bj+(m−1),n

])2
+
(
Ej−1

[
Bj+(m−1),n

])2
(Ej−1 [Bj,n])

2

+ Bj+(m−1),nBj,n − 2Bj+(m−1),nBj,nEj−1 [Bj,n] + Bj+(m−1),n (Ej−1 [Bj,n])
2

+ 2Bj+(m−1),nBj,nEj−1

[
Bj+(m−1), n

]
− 4Bj+(m−1),nBj,nEj−1

[
Bj+(m−1), n

]
Ej−1 [Bj,n] + 2Bj+(m−1),nEj−1

[
Bj+(m−1), n

]
(Ej−1 [Bj,n])

2
.

Applying Lemma 3 we obtain

1

n

n∑
j=m

Ej−1 [ηj (2) ηj (2)]
p−→ Σ22

.
=

∫ 1

0

p2
s + 2 p3

s − 3 p4
s ds

Finally, we have the following

ηj (1) ηj (2)

= (Bj,n − Ej−1 [Bj,n])
2 ·

·
(
Bj−1,nBj−(m−1),n + Bj−1,nEj−1

[
Bj+(m−1),n

]
+ Bj−(m−1)Ej−1 [Bj+1,n] + Ej−1 [Bj+1,n]Ej−1

[
Bj+(m−1),n

])
Using again Lemma 3 we have

1

n

n∑
j=m

Ej−1 [ηj (1) ηj (2)]
p−→ Σ12

.
=

∫ 1

0

4 p3
s (1− ps) ds,

which completes the proof.

Lemma 8. Assume that pt has Riemann integrable paths. Then, as n→∞,

1

n

n∑
j=1

Bj,n
u.c.p−→

∫ 1

0

ps ds.

Proof. Consider the decomposition:

1

n

n∑
j=1

Bj,n =
1

n

n∑
j=1

(Bj,n − pj,n) +
1

n

n∑
j=1

pj,n.

By Riemann integrability,

1

n

n∑
j=1

pj,n −→
∫ 1

0

ps ds,

hence, to conclude, it is enough to show that the array n−1
∑n
j=1 (Bj,n − pj,n) is AN. We use Lemma 1 and we define

ξnj
.
= n−1 (Bj,n − pj,n). Since

Ej−1

[
ξnj
]

= Ej−1

[
1

n
(Bj,n − pj,n)

]
=

1

n
E
[
E
[
Bj,n − pj,n

∣∣∣ Ftj−1,n
∨ F (p)

tj,n

]]
= 0,
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it is enough to prove that
∑n
j=1 Ej−1

[(
ξnj
)2] p−→ 0. By boundedness of Bernoulli random variables and the probability

process, for some constant C > 0, we have:

n∑
j=1

Ej−1

[(
ξnj
)2]

=

n∑
j=1

E

[∣∣∣∣ 1n (Bj,n − pj,n)

∣∣∣∣2
]
≤ C

n
−→ 0,

which completes the proof.

Lemma 9. Assume that pt has Riemann integrable paths and |Et [|pt+∆n
− pt|]| = K∆q

n + op(∆
q+ε
n ) pointwise on Ω, for

some 0 < q < 1
2 , K, ε > 0. Then, as n→∞,

√
n

∣∣∣∣∣∣ 1n
n−k∑
j=1

Bj,nBj+1,n −
1

n

n−k∑
j=1

Bj,nBj+k,n

∣∣∣∣∣∣ p−→∞.

Proof. First, consider D(n) = ∆1−q
n

n−k∑
j=1

Bj,n (Bj+1,n − Bj+k,n), which can be decomposed as the sum of the two terms:

D(n) = D
(n)
1 +D

(n)
2 ,

where

D
(n)
1 = ∆1−q

n

n−k∑
j=1

Bj,nEj+1 [Bj+1,n − Bj+k,n] ,

D
(n)
2 = ∆1−q

n

n−k∑
j=1

Bj,n (Bj+1,n − Bj+k,n − Ej+1 [Bj+1,n − Bj+k,n]) .

By assumption, for the first term we have:

∣∣∣D(n)
1

∣∣∣ ≤ K n−k∑
j=1

Bj,n∆n + op(∆
ε
n)

p−→
1∫

0

K ps ds,

where the convergence follows from Lemma 8. The second term can be expressed as D
(n)
2 =

n−k∑
j=1

dj,n, where

Ej−1 [dj,n] = 0,

and

E
[
(dj,n)

2
]
≤ C∆1−2q

n → 0.

Hence, by Lemma 2, D
(n)
2 is asymptotically negligible. Consequently, D(n) p−→

1∫
0

K ps ds = const, which implies that:

√
n

∣∣∣∣∣∣ 1n
n−k∑
j=1

Bj,nBj+1,n −
1

n

n−k∑
j=1

Bj,nBj+k,n

∣∣∣∣∣∣ = ∆q−1/2
n

∣∣∣D(n)
∣∣∣ p−→∞.
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A.3 Proofs of Theorems 3.4 and 3.5 from Section 3.2

For an arbitrary sequence of integers kn such that kn →∞ and kn∆n = kn
n → 0, let

αnj
.
=

1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) , βnj
.
=

1

kn

kn−1∑
i=0

(pj+i,n − pj−1,n) ,

and set hn = n− kn. Note that

p̂j (kn)− pj−1,n = αnj + βnj , j ∈ {1, . . . , hn + 1} .

The auxiliary results for the proofs of Theorems 3.4 and 3.5 are summarised by the following Lemma. delete at the

end the numbers

Lemma 10. Under Assumptions 1, 2 and 3, for C > 0 and for all q ≥ 2, we have

(A1) Ej−1

[
sup

s∈[0,∆n]

|pj−1,n+s − pj−1,n|q
]
≤ C ·∆1∧(q/2)

n (32)

(A2) |Ej−1 [pj,n − pj−1,n]| ≤ C ·∆n (33)

(A3)
∣∣Ej−1

[
βnj
]∣∣ ≤ C · kn∆n (34)

(A4) Ej−1

[∣∣βnj ∣∣q] ≤ C · (kn∆n)
q/2

(35)

(A5)
∣∣Ej−1

[
αnj
]∣∣ = 0 (36)

(A6) Ej−1

[∣∣αnj ∣∣q] ≤ Ck−q/2n (37)

(A7)

∣∣∣∣Ej−1

[
(αni )

2 − 1

kn
pi−1,n (1− pj−1,n)

]∣∣∣∣ ≤ C ·∆n (38)

(A8)
∣∣Ej−1

[
αnj β

n
j

]∣∣ = 0 (39)

Proof. The proof of (A1)-(A4) follows the same arguments as in the proof of results of Appendix A and Lemma B-4 of

Aı̈t-Sahalia and Jacod (2012). In order to complete the proof of the Lemma, we need to prove (A5)-(A8). Equality (A5)

easily follows by conditioning on the path of the process pt.

∣∣Ej−1

[
αnj
]∣∣ =

∣∣∣∣∣∣ 1

kn

kn−1∑
j=0

Ej−1 [Bj+i,n − pj+i,n]

∣∣∣∣∣∣ = 0.

To prove the other relations, we first observe that conditioning on the path (pt)t∈[0,1] we have

Ei−1

[(
αnj
)2]

=
1

k2
n

Ej−1

[
kn−1∑
i=0

(Bj+i,n − pj+i,n)
2

]
+

2

kn
Ej−1

[
kn−2∑
i=0

kn−1−i∑
m=1

(Bj+i,n − pj+i,n) (Bj+i+m,n − pj+i+m,n)

]

=
1

k2
n

kn−1∑
i=0

Ej−1

[
(Bj+i,n − pj+i,n)

2
]

=
1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n (1− pj+i,n)] ≤ C

kn
,

(40)

where the last inequality is due to the fact that pt ∈ (0, 1). Moreover, we have

Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]
=

1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n − pj−1,n]− 1

k2
n

kn−1∑
i=0

Ej−1

[
p2
j+i,n − p2

j−1,n

]
.
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By applying triangular inequality, we obtain

∣∣∣∣Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]∣∣∣∣ ≤ 1

k2
n

kn−1∑
i=0

|Ej−1 [pj+i,n − pj−1,n]|+ 1

k2
n

kn−1∑
i=0

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣ .
Hence, (38) follows from (33), whereas (37) from Hölder’s inequality and (40). Finally, (39) is obtained by conditioning

on the path (pt)t∈[0,1] and by using Eq.(36).

Proof of Theorem 3.4. For any t > 0, define a function of t, p̂(kn, t), as

p̂(kn, t)
.
= p̂j(kn), t ∈ ((j − 2)∆n, (j − 1)∆n].

First, we prove that p̂(kn, t) converges in probability to pt for every t ∈ [0, 1]. For any t ∈ [0, 1] and jt such that

t ∈ ((jt − 2)∆n, (jt − 1)∆n], we have:

(j + 1)∆n ≤ (jt + j)∆n − t ≤ (j + 2)∆n.

Second, we have

E
[
(p̂(kn, t)− pt)2

]
= E

( 1

kn

kn−1∑
i=0

(Bjt+i,n − pt)

)2
 = E

 1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

+
1

k2
n

∑
i6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)


= E

[
1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

]
+ E

 1

k2
n

∑
i 6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)

 .
The first of the two terms converges to zero by boundedness of Bjt+i,n and pt. Concerning the second, we have that, by

conditioning on (pt)t∈[0,1] and (33)

|E [(Bjt+i,n − pt) (Bjt+i′,n − pt)]| =
∣∣E [p(jt+i)∆n

− pt
]
E
[
p(jt+i′)∆n

− pt
]∣∣ ≤ C(kn∆n)2,

hence, ∣∣∣∣∣∣E
 1

k2
n

∑
j 6=j′

(Bit+j,n − pt) (Bit+j′,n − pt)

∣∣∣∣∣∣ ≤ C(kn∆n)2 −→ 0.

Thus, p̂(kn, t)
p−→ pt for each t ∈ [0, 1]. Now, we write U (∆n, f)

n
as

U (∆n, f)
n

= ∆nf(p̂1(kn)) +

hn∆n∫
0

f(p̂(kn, t)) ds.
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and we compute

E
[∣∣∣∣U (∆n, f)

n −
∫ 1

0

f(ps) ds

∣∣∣∣] = ∆n E
[∣∣∣∣f(p̂1(kn))−

∫ 1

0

f(ps) ds

∣∣∣∣]+

hn∆n∫
0

as ds

= ∆n E
[∣∣∣∣∫ 1

0

(f(p̂1(kn))− f(ps)) ds

∣∣∣∣]+

hn∆n∫
0

as ds

≤ ∆n E
[∫ 1

0

|(f (p̂1 (kn))− f(ps))| ds
]

+

hn∆n∫
0

as ds

≤ C ∆n +

hn∆n∫
0

an(s) ds.

where an(s)
.
= E [|f(p̂(kn, s))− f(ps)|], C is a suitable constant and we used the locally boundedness of f(·) and the

boundedness of ps and p̂(kn, s). By continuous mapping theorem, condition p̂(kn, t)
p−→ pt implies that, for a given

s ∈ [0, 1]

f(p̂(kn, s))
p−→ f(ps), (41)

Nonetheless, since the sequence of random variables f(p̂(kn, s)) is uniformly integrable (using, again, the locally bound-

edness of f(·) and the boundedness of p̂(kn, s)) then the convergence in Eq. (41) is also in L1 norm and so an(s) −→ 0

for each s. Besides, since an(s) is uniformly bounded in (n, s), U (∆n, f)
n u.c.p.−→

∫ 1

0
f (ps) ds by dominated convergence

theorem (cfr. Jacod and Protter, 2012, Theorem 9.4.1).

Proof of Theorem 3.5. First, consider the following decomposition:

1√
∆n

(U ′ (∆n, f)
n
1 − U (f)1) =

√
∆n

hn+1∑
j=1

(
f (p̂j (kn))− 1

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

)
− 1√

∆n

∫ 1

0

f (ps) ds

=

4∑
r=1

U (r)
n
1 ,

with

U (1)
n
1 =

1√
∆n

hn+1∑
j=1

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds−
1√
∆n

∫ 1

(hn+1) ∆n

f (ps) ds

U (2)
n
1 =

√
∆n

hn+1∑
j=1

f ′ (pj−1,n)βnj

U (3)
n
1 =

√
∆n

hn+1∑
j=1

(
f (p̂j (kn))− f (pj−1,n)− f ′ (pj−1,n)

(
αnj + βnj

)
− 1

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

)

U (4)
n
1 =

√
∆n

hn+1∑
j=1

f ′ (pj−1,n)αnj .

At this point, the rest of the proof is divided into four parts. In the firsts three we prove that U (k)
n
, k = 1, 2, 3, is AN,

whereas in the last part we show that U(4)n
stably
=⇒ MN (0,Σ).

Part 1: Proof of the AN of U (1)
n
1

Remember that hn = n− kn and that n = 1/∆n, whence 1− (hn + 1) ∆n = 1− (n− kn + 1) ∆n = kn ∆n −∆n. Since
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f(ps) is bounded, for the second term of U(1)n1 we have∣∣∣∣∣∣∣
1√
∆n

1∫
(hn+1) ∆n

f (ps) ds

∣∣∣∣∣∣∣ ≤ Ckn
√

∆n −→ 0.

The first term of U(1)n1 can be expressed as
hn+1∑
j=1

ξnj , where

ξnj =
1√
∆n

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds.

Since the process f(pt) is bounded semimartingale by using inequality (33) we get

∣∣E [ξnj ]∣∣ =
1√
∆n

∣∣∣∣∣E
[∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

]∣∣∣∣∣ =
1√
∆n

∣∣∣∣∣
∫ j∆n

(j−1)∆n

E [Ej−1 [(f (pj−1,n)− f (ps))] ds]

∣∣∣∣∣
≤ 1√

∆n

∫ j∆n

(j−1)∆n

|E [Ej−1 [(f (pj−1,n)− f (ps))]]| ds ≤
1√
∆n

∫ j∆n

(j−1)∆n

E [|Ej−1 [(f (pj−1,n)− f (ps))]|] ds

≤ C√
∆n

∆2
n = C (∆n)

3/2 −→ 0,

while, using inequality (32) and Holder’s inequality, we obtain:

E
[∣∣ξnj ∣∣2] =

1

∆n
E

(∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

)2


=
1

∆n
E

 j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps)) ds dq


=

1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

E [(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps))] ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

√
E
[
|f(pj−1,n)− f(pq)|2

]
E
[
|f(pj−1,n)− f(ps)|2

]
ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

C ∆n ds dq ≤ C ∆2
n −→ 0.

Consequently, by Lemma 2, U(1)n1 is AN.

Part 2: Proof of the AN of U (2)
n
1

Using Lemma 10 and boundedness of f ′ (pj−1,n), we obtain

hn+1∑
j=1

∣∣∣Ej−1

[√
∆nf

′ (pj−1,n)βnj

]∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣Ej−1

[
βnj
]∣∣ ≤ C hn+1∑

j=1

kn (∆n)
3/2 −→ 0,

and

hn+1∑
j=1

Ej−1

[∣∣∣√∆nf
′ (pj−1,n)βnj

∣∣∣2] ≤ C hn+1∑
j=1

Ej−1

[
∆n

∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

kn (∆n)
2

= C (n− kn) kn ∆2
n ≤ C kn ∆n −→ 0,
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and so

kn

hn+1∑
j=1

E
[∣∣∣√∆nf

′ (pj−1,n)βnj

∣∣∣2] ≤ C k2
n ∆n −→ 0.

Consequently, by applying Lemma 2 we get that U(2)n1 is AN.

Part 3: Proof of the AN of U (3)
n
1

As a first step, we rewrite U (3)
n
1 as U(3)n1 =

hn+1∑
j=1

4∑
k=1

vnj (k) with vjn (k), k = 1, . . . , 4, suitably defined triangular arrays.

To do so, we remind that

αnj + βnj =
1

kn

kn−1∑
i=0

(Bj+i,n − pj−1,n) = p̂j (kn)− pj−1,n.

Using Taylor expansion of f (p) around p0 = pj−1,n and computing the expansion in p = p̂j (kn), we obtain

f (p̂j (kn))− f (pj−1,n)− f ′ (pj−1,n)
(
αnj + βnj

)
=

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
+

1

6
f ′′′
(
p?j
) (
αnj + βnj

)3
,

where p?j is a point between pj−1,n and pj−1,n + αnj + βnj . Then, we have

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
=

1

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
+

1

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n) +

1

2
f ′′ (pj−1,n)

(
βnj
)2
.

Consequently, U(3)n1 can be represented as U(3)n1 =
hn+1∑
j=1

4∑
k=1

vnj (k), where

vnj (1) =

√
∆n

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
,

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n)−

√
∆n

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn)) ,

vnj (3) =

√
∆n

2
f ′′ (pj−1,n)

(
βnj
)2
,

vnj (4) =

√
∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3
.

We have to prove that all the triangular arrays vnj (k) are AN for k = 1, 2, 3, 4. First, consider vni (1). Inequalities (38)

and (39) imply that
∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆
3/2
n , and so

hn+1∑
j=1

∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆1/2
n

p−→ 0. (42)

Besides

vnj (1)2 =
∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
(
αnj
)3
βnj − 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
≤ ∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
∣∣∣(αnj )3 βnj ∣∣∣+ 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
.
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Now, in computing E
[
vnj (1)2

]
we consider that

• Inequality (37) implies that

Ej−1

[
(αnj )4

]
≤ C k−2

n ,

and that

Ej−1

[
(αnj )2

kn
pj−1,n(1− pj−1,n)

]
≤ C k−2

n .

• Cauchy-Schwartz inequality plus (37) and (35) imply that

Ej−1

[(
αnj β

n
j

)2] ≤ (Ej−1

[(
αnj
)4])1/2 (

Ej−1

[(
βnj
)4])1/2

≤ C ∆n

and that ∣∣∣Ej−1

[(
αnj
)3
βnj

]∣∣∣ ≤ (Ej−1

[(
αnj
)6])1/2 (

Ej−1

[(
βnj
)2])1/2

≤ C k−1
n ∆1/2

n .

• Equation (39) implies Ej−1

[
αnj β

n
j knpj−1,n(1− pj−1,n)

]
= 0

Summing up

Ej−1

[
vnj (1)2

]
≤ C ∆n

(
1

k2
n

+ ∆n +

√
∆n

kn

)
whence

kn

hn∑
j=1

E
[
vnj (1)2

]
−→ 0. (43)

Summing up, the limits in (42) and (43) imply, through Lemma 2, that vnj (1) is AN. Now, consider vnj (4). Since both pt

and p̂i(kn) are in [0, 1], |f ′′′(p?i )| ≤ C, for some constant C > 0, hence, we have:

hn+1∑
j=1

∣∣∣∣√∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3∣∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣∣(αnj + βnj
)3∣∣∣ = C

hn+1∑
j=1

√
∆n

(∣∣αnj ∣∣3 + 3
∣∣αnj ∣∣ ∣∣βnj ∣∣2 + 3

∣∣αnj ∣∣2 ∣∣βnj ∣∣+
∣∣βnj ∣∣3) .

Using estimates from the preliminary results and Cauchy-Schwartz inequality, we have the following implications.

• inequality (37) implies
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣3] ≤ C · k−3/2
n (∆n)−1/2 p−→ 0,

• inequalities (37) and (35), plus Cauchy-Schwartz, imply

hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣2 ∣∣βnj ∣∣] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣4]Ej−1

[∣∣βnj ∣∣2] ≤ C k−1/2
n

p−→ 0,

and
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣ ∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣2]Ej−1

[∣∣βnj ∣∣4] ≤ C · (kn ∆n)
1/2 p−→ 0,

• inequality (35) implies
hn+1∑
j=1

√
∆nEj−1

[∣∣βnj ∣∣3] ≤ C · k3/2
n ∆n

p−→ 0.

Whence
hn+1∑
j=1

∣∣Ej−1

[
vnj (4)

]∣∣ p−→ 0. (44)
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Now consider

hn+1∑
j=1

vnj (4)
2 ≤ C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 9
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 9

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +

+ 6
∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 2

∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 18
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 + 6
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 ).

= C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 15
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 15

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 20
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 ).
inequalities (37) and (35), respectively, imply

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣6] ≤ C k−2

n −→ 0,

kn

hn+1∑
j=1

∆nE
[∣∣βnj ∣∣6] ≤ C (k4/3

n ∆n

)3

−→ 0,

and, using also Cauchy-Schwartz, they imply

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣2 ∣∣βnj ∣∣4] ≤ C (kn ∆n)

2 −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣4 ∣∣βnj ∣∣2] ≤ C k−2

n ∆n −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣5 ∣∣βnj ∣∣] ≤ C k−1

n ∆1/2
n −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣ ∣∣βnj ∣∣5] ≤ C (k6/5

n ∆n

)5/2

−→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣3 ∣∣βnj ∣∣3] ≤ C (k2/3

n ∆n

)3/2

−→ 0

Consequently,

kn

hn+1∑
j=1

E
[
vnj (4)

2
]
−→ 0. (45)

As before, the limits in (44) and (45) imply, through Lemma 2, that vnj (4) is AN. Similarly, for vnj (3) we have

hn+1∑
j=1

Ej−1

[∣∣∣∣√∆n

2
f ′′ (p′)

(
βnj
)2∣∣∣∣] ≤ C · kn√∆n

p−→ 0, (46)

besides

kn

hn+1∑
j=1

E
[∣∣∣∣∆n

4
(f ′′ (pj−1,n))

2 (
βnj
)4∣∣∣∣] ≤ C · (k3/2

n ∆n

)2

−→ 0, (47)

hence, the limits in (46) and (47) imply, through Lemma 2, that vnj (3) is AN. Finally, consider vnj (2). Using Taylor’s

expansion, we have (remember that p̂j(kn)− pj−1,n = αnj + βnj )

f ′′ (p̂j(kn)) = f ′′ (pj−1,n) + f ′′′
(
p?j
) (
αnj + βnj

)
.
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Consequently vnj (2) takes the form

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn

(
f ′′ (pj−1,n) + f ′′′

(
p?j
) (
αnj + βnj

))
p̂j (kn) (1− p̂j (kn))

=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p2

(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p̂j (kn) +

√
∆n

2 kn
f ′′ (pj−1,n) p̂j (kn)

2 −
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))

= −
√

∆n

2 kn
f ′′ (pj−1,n) (p̂j(kn)− pj−1,n) +

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))

= −
√

∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

)
︸ ︷︷ ︸

Aj,n

+

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
︸ ︷︷ ︸

Bj,n

−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))︸ ︷︷ ︸

Cj,n

.

Using Lemma 10, we have

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
αnj

]∣∣∣∣ = 0,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣αnj ∣∣2] ≤ C k−2
n ,

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
βnj

]∣∣∣∣ ≤ C ∆1/2
n ,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣βnj ∣∣2] ≤ C ∆n,

which imply, through Lemma 2, that Aj,n is AN. Now since

Bj,n =

√
∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

)
(p̂j(kn) + pj−1,n) = Aj,n (p̂j(kn) + pj−1,n)

and being (p̂j(kn) + pj−1,n) bounded, we can apply to Bj,n the same reasoning used for Aj,n, whence Bj,n is AN. An

identical reasoning applies to Cj,n, which is then AN as well.

Part 4: Proof of the convergence Un1 (4)
stably
=⇒ MN (0,Σ)

Recall that U(4)n1 is defined as

U (4)
n
1 =

√
∆n

kn

hn+1∑
j=1

f ′ (pj−1,n)

kn−1∑
i=0

Bj+i,n.

For the sake of readability define, temporarily, the variables

aj−1 = f ′ (pj−1,n) ,Bj+i = Bj+i,n − pj+i,n
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so that

U (4)
n
1 =

√
∆n

kn

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i.

The convolution of summation in U (4)
n
1 can be re-written as

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i = a0 (B1 + B2 + · · ·+ Bkn) + a1 (B2 + B3 + · · ·+ Bkn+1) + · · ·

· · · +akn−1 (Bkn + Bkn+1 + · · ·+ B2 kn−1) + akn (Bkn+1 + Bkn+2 + · · ·+ B2 kn) + · · ·

· · · +an−kn−1 (Bn−kn + Bn−kn+1 + · · ·+ Bn−1) + an−kn (Bn−kn+1 + Bn−kn+1 + · · ·+ Bn)

= B1 a0 + B2 (a0 + a1) + B3 (a0 + a1 + a2) + · · ·+ Bkn (a0 + a1 + a2 + . . .+ akn−1)

+ Bkn+1 (a1 + a2 + a3 + . . .+ akn) + Bkn+2 (a2 + a3 + a4 + . . .+ akn+1) + · · ·

+ Bn−kn+1 (an−2 kn+1 + an−2 kn+1 + . . .+ an−kn)

+ Bn−kn+2 (an−2 kn+2 + an−2 kn+3 + . . .+ an−kn) + · · ·+ Bn−1 (an−kn−1 + an−kn) + Bn an−kn

=

kn∑
j=1

Bj
j−1∑
i=0

ai +

n−kn+1∑
j=kn+1

Bj
j−1∑
i=j−k

ai +

n∑
j=n−kn+1

Bj
n−kn∑
i=j−kn

ai

(i→ j − i− 1) =

kn∑
j=1

Bj
i−1∑
j=0

aj−i−1 +

n−kn+1∑
j=kn+1

Bj
kn−1∑
i=0

aj−i−1 +

n∑
j=n−kn+1

Bj
kn−1∑

i=j−n+kn−1

aj−i−1

=

n∑
j=1

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

aj−i−1Bj .

Hence,

U (4)
n

=
√

∆n

n∑
j=1

1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n) (Bj,n − pj∆n)

=
√

∆n

n∑
j=1

 1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)

− f ′ (pj−1,n) + f ′ (pj−1,n)

 (Bj,n − pj∆n
)

=
√

∆n

n∑
j=1

f ′ (pj−1,n) (Bj,n − pj∆n
) +

√
∆n

n∑
j=1

wnj (Bj,n − pj∆n
) ,

where

wnj =
1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)− f ′ (pj−1,n) .

By conditioning on (pt)t∈[0,1], E
[
wnj (Bj,n − pj∆n

)
]

= 0. Next, by (??),

∣∣wnj ∣∣ ≤ C sup
s∈[(j−1)∆n,(j+kn−1)∆n]

|ps − pj−1,n| .

Hence, inequality (32) implies that E
[∣∣wnj ∣∣2] ≤ C

√
∆n when kn ≤ j ≤ b1/∆nc − kn and

∣∣wnj ∣∣ ≤ C always. Therefore,

since both Bj,n and pt are bounded,

Ej−1

[∣∣∣√∆nw
n
j (Bj,n − pj∆n

)
∣∣∣2] ≤

C∆
3/2
n kn ≤ j ≤ hn,

C∆n otherwise.
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Consequently,
∑b1/∆nc
j=1 Ej−1

[∣∣√∆nw
n
j (Bj,n − pj∆n

)
∣∣2] −→ 0, which, by Lemma 2, implies that

√
∆n

∑b1/∆nc
j=1 wnj (Bj,n − pj∆n

)

is AN. Now, set ξnj =
√

∆nf
′ (pj−1,n) (Bj,n − pj∆n). Clearly, E

[
ξnj
]

= 0 and we have:

Ej−1

[(
ξnj
)2]

= ∆n (f ′ (pj−1,n))
2 Ej−1

[
pj∆n

− (pj∆n
)2
]
.

Since, (f ′ (pj−1,n))
2

is bounded, using (33) we have:∣∣∣Ej−1

[(
ξnj
)2]−∆n (f ′ (pj−1,n))

2 (
pj−1,n − (pj−1,n)2

)∣∣∣ ≤ C(∆n)2.

Hence,
b1/∆nc∑
j=1

Ej−1

[(
ξnj
)2] P−→

∫ 1

0

f ′ (ps)
2
ps(1− ps) ds.

Consequently,
b1/∆nc∑
j=1

ξnj
stably
=⇒ MN (0,Σ),

which completes the proof.

A.4 Proof of Theorem 3.6 from Section 3.3

For any process X, denote the increments by ∆n
jX = X(j+1) ∆n

−Xj∆n . Set kn = θ b
√
nc and define

IVn =

n−2kn+1∑
i=1

(p̂i+kn (kn)− p̂i (kn))
2
.

Then, we have to prove that, as n→∞,

k−1
n IVn

p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds.

We have

p̂j (kn) =
1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

pj+i,n.

Consequently, the difference between p̂j+kn (kn) and p̂j (kn) can be expressed as

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
i=0

ε(1)i (Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) , (48)

where, for m ∈ {0, . . . , 2kn − 1},

ε(1)m =

−1, 0 ≤ m < kn,

+1, kn ≤ m < 2kn.

Then, using telescopic sums, notice that

(pj+i+kn,n − pj+i,n) =

kn−1∑
`=0

∆j+i+`,np.
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Now note that the sum Sj,n =
∑kn−1
i=0 (pj+i+kn,n − pj+i,n), collecting identical terms, becomes

Sj,n = ∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+∆n
j+knp

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp+ ∆n

j+kn+1p

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+

...∆n
j+kn−1p

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp+ ∆n

j+kn+1p+ . . .+ ∆n
j+2 kn−2p

= ∆n
j p+ 2 ∆n

j+1p+ 3 ∆n
j+2p+ . . .+ kn ∆n

j+kn−1p︸ ︷︷ ︸
kn terms

+ (kn − 1) ∆n
j+knp+ . . .+ ∆n

j+2 kn−2p︸ ︷︷ ︸
kn−1 terms

,

which can be re-written as

1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) =
1

kn

2kn−1∑
i=0

ε(2)i (pj+i+1,n − pj+i,n) ,

where, for i ∈ {0, . . . , 2kn − 1},
ε(2)i = (i+ 1) ∧ (2kn − i− 1),

and, in particular, ε(2)2kn−1 = 0. Now expression (48) becomes

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
j=0

(ε(2)i (Bi+j,n − pj+i,n) + ε(2)i (pj+i+1,n − pj+i,n)) ,

whence

(p̂j+kn (kn)− p̂j (kn))
2

=
1

k2
n

2kn−1∑
i=0

(
ε(2)2

i (Bj+i,n − pj+i,n)
2

+ ε(2)2
i (pj+i+1,n − pj+i,n)

2

+ 2 ε(2)i ε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n)

)

+ 2

2 kn−2∑
j=0

2 kn−1∑
`′=j+1

(
ε(2)iε(1)` (Bj+i,n − pj+i,n) (Bj+`,n − pj+`,n)

+ ε(2)i ε(2)` (Bj+i,n − pj+i,n) (pj+`+1,n − pj+`,n)

+ ε(1)` ε(2)i (Bj+`,n − pj+`,n) (pj+i+1,n − pj+i,n)

+ ε(2)i ε(2)` (pj+i+1,n − pj+i,n) (pj+`+1,n − pj+`,n)

)
(49)

So, setting

ζ(1)j = Bj,n − pj,n, ζ(2)j = pj+1,n − pj,n.

we have the following more compact expression

(p̂j+kn (kn)− p̂j (kn))
2

=
1

k2
n

2∑
u,v=1

(
2kn−1∑
i=0

ε(u)iε(v)iζ(u)j+iζ(v)j+i + 2

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(u)iε(v)lζ(u)j+iζ(v)i+l

)
.

Consequently, IVn can be expressed as

IVn =

7∑
s=1

n−2kn+1∑
i=1

vni (s),
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where

vni (1) =
1

k2
n

2kn−1∑
i=0

(Bj+i,n − pj+i,n)
2
, vni (2) =

1

k2
n

2kn−1∑
i=0

ε(2)2
i (pj+i+1,n − pj+i,n)

2
,

vni (3) =
2

k2
n

2kn−1∑
i=0

ε(1)iε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n) ,

vni (4) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=i+1

ε(1)iε(1)l (Bj+i,n − pj+i,n) (Bj+l,n − pj+l,n) ,

vni (5) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(2)iε(2)l (pj+i+1,n − pj+i,n) (pj+l+1,n − pj+l,n) ,

vni (6) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(1)iε(2)l (Bj+i,n − pj+i,n) (pj+l+1,n − pj+l,n) ,

vni (7) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(2)iε(1)l (pj+i+1,n − pj+i,n) (Bj+l+1,n − pj+l,n) .

Consequently, in order to study the convergence of IVn in probability, we need study the convergence of the sums
n−2kn+1∑
j=1

vnj (s) for s = 1, . . . 7. In what follows we use the abbreviation gn = n−2kn+1. For sake or readability, we divide

the rest of the proof in seven parts.

Part 1: Proof of the convergence in probability of vni (1)

The quantity 1
kn

gn∑
j=1

vnj (1) can be decomposed as

1

kn

gn∑
j=1

vnj (1) =

gn∑
j=1

d
(n)
j,1 +

gn∑
j=1

d
(n)
j,2 ,

where

d
(n)
j,1 =

1

k3
n

2kn−1∑
j=0

(
(Bj+i,n − pj+i,n)

2 − pi−1,n (1− pi−1,n)
)
, d

(n)
j,2 =

1

k3
n

2kn−1∑
j=0

pi−1,n (1− pi−1,n) .

First, we show that
gn∑
j=1

d
(n)
j,1 is AN. We have

gn∑
j=1

∣∣∣Ej−1

[
d

(n)
j,1

]∣∣∣ =

gn∑
j=1

1

k3
n

2kn−1∑
j=0

∣∣Ej−1

[
pj+i,n − pj−1,n + p2

j−1,n − p2
j+i,n

]∣∣
≤

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(
|Ej−1 [pj+i,n − pj−1,n]|+

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣)
=

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(|Ej−1 [pj+i,n − pj−1,n]|+ |Ej−1 [(pj+i,n + pj−1,n) (pj+i,n − pj−1,n)]|)

≤ C

gn∑
j=1

1

k3
n

2kn−1∑
i=0

kn∆n = C
kn∆n(2kn − 1)gn

k3
n

∼ 1

kn
−→ 0,
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where we use conditioning on (pt)t∈[0,1], triangular inequality and Lemma 10. Next, using the boundedness of pt, we

obtain

kn

gn∑
j=1

Ej−1

[∣∣∣d(n)
j,1

∣∣∣2] ≤ kn gn∑
j=1

1

k6
n

(
2kn−1∑
i=0

C

)2

= C
(2kn − 1)2 gn

k5
n

∼ 1

k3
n ∆n

−→ 0.

Consequently, by Lemma 2,
gn∑
j=1

d
(n)
j,1 is AN. Now, consider

gn∑
j=1

d
(n)
j,2 . We have

gn∑
j=1

d
(n)
j,2 =

2

k2
n

gn∑
j=1

1

2kn

2kn−1∑
j=0

pj−1,n(1− pj−1,n) =
2

θ2

gn∑
j=1

pj−1,n(1− pj−1,n)
1

b
√
nc2
−→ 2

θ2

1∫
0

ps(1− ps) ds,

where the convergence is point-wise, by Riemann integrability. Combining the two results, we obtain:

1

kn

gn∑
j=1

vnj (1)
u.c.p.−→ 2

θ2

1∫
0

ps(1− ps) ds. (50)

Part 1: Proof of the convergence in probability of vni (2)

First note that vnj (2) can be written as

vnj (2) =
1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j+ip

)2
=

1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j p
)2

+
1

k2
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,

so that the sum over the index i of all the vnj (2) becomes

1

kn

gn∑
j=0

vnj (2) =
1

k3
n

2kn−1∑
i=0

ε(2)2
i

gn∑
j=0

(
∆n
j p
)2

︸ ︷︷ ︸
An

+
1

k3
n

gn∑
j=0

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Bn

.

Now we want to prove that An converges in probability to a finite quantity, while Bn is AN. Using the definition of the

integers coefficients ε(2)i it is easy to show that

1

k3
n

2 kn−1∑
j=0

ε(2)2
i =

1

3 k3
n

(
2k3
n + kn

)
−→ 2

3
.

Hence, the standard theory of realized volatility for the semimartingale

pt = p0 +

∫ t

0

µs ds+

∫ t

0

νs dWs

now implies that

An
p−→ 2

3

∫ 1

0

ν2
s ds.

Concerning Bn, we write it as

Bn =

gn∑
j=0

ϑj+1,n with ϑj+1,n =
1

k3
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,
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and, by Markov inequality, the Itô isometry and the boundedness of9 ν∫ ∆

0

νs dWs = ν0 (W∆ −W0) +Op(∆
1/2), (51)

whence, considering also that
∫ t

0
µs ds is Op (∆n) for bounded µ , we have

pj+1,n − pj,n =

∫ (j+1) ∆n

j∆n

µs ds+

∫ (j+1) ∆n

j∆n

νs dWs =
(
νj,n +Op

(√
∆n

))
(Wj+1,n −Wj,n) +Op(∆n)

= νj,n (Wj+1,n −Wj,n) +Op

(
∆1/2
n

)
(Wj+1,n −Wj,n) +Op (∆n) .

The square of the increment ∆n
j p = (pj+1,n − pj,n) then becomes

(
∆n
j p
)2

= ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op(∆n) +Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) +

(
∆n
jW

)
Op

(
∆3/2
n

)
= ν2

j,n

(
∆n
jW

)2
+Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) ,

which, by preserving only the leading terms, can be further simplified into

(
∆n
j p
)2

= ν2
j∆n

(
∆n
jW

)2
+Op

(
∆1/2
n

) (
∆n
jW

)2
+ νj,n

(
∆n
jW

)
Op (∆n) , (52)

so that

Ej
[(

∆n
j p
)2]

= ν2
j,n ∆n +Op(∆

3/2
n ).

Now consider the same increment shifted by i units

(
∆n
j+ip

)2
= ν2

i+j,n

(
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

=
(
ν2
j∆n

+Op (j∆n) +Op

(√
j∆n

)) (
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

= ν2
j∆n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
j∆n

)
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n) ,

which, by preserving only the leading terms, can be further simplified into

(
∆n
j+ip

)2
= ν2

j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

)
(53)

and so

Ej
[(

∆n
j+ip

)2]
= ν2

j,n ∆n +Op

(
i1/2 ∆3/2

n

)
.

Therefore the Fti,n -conditional expected value of the difference between
(
∆n
j+ip

)2
and

(
∆n
j p
)2

has the following order in

probability

Ej
[(

∆n
j+ip

)2 − (∆n
j p
)2]

= Op

(
i1/2 ∆3/2

n

)
,

implying that
gn∑
j=0

Ej [ϑj+1,n] =
1

k3
n

gn∑
j=0

2kn−1∑
i=0

ε(2)2
iOp

(
i1/2 ∆3/2

n

)
= Op

(
(kn ∆n)

1/2
)

p−→ 0,

9Here we follow the standard approach

P
(∣∣∣∣ 1
√

∆

[ ∫ ∆

0
νs dWs − ν0(W∆ −W0)

]∣∣∣∣ > M

)
≤

1

M2∆
E

(∣∣∣∣∫ ∆

0
(νs − ν0) dWs

∣∣∣∣2
)

=
1

M2∆
E
(∫ ∆

0
(νs − ν0)2 ds

)
,

and then the identity (51) follows from the boundedness of ν.
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which is the first of the two conditions in Lemma 2 that guarantee AN. To prove that also the second condition is satisfied

consider

kn ϑ
2
j+1,n =

1

k5
n

2kn−1∑
i=0

ε(2)4
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]2

︸ ︷︷ ︸
Ci,n

+
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(2)2
i ε(2)2

`

[(
∆n
j+ip

)2 − (∆n
j p
)2] [(

∆n
j+`p

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Di,n

.

From (52) we get

(
∆n
j p
)4

= ν4
j,n

(
∆n
jW

)4
+Op(∆n)

(
∆n
jW

)4
+ ν2

j,n

(
∆n
jW

)2
Op
(
∆2
n

)
+ 2 ν2

j,n

(
∆n
jW

)4
Op

(
∆1/2
n

)
+ 2 ν3

j,n

(
∆n
jW

)3
Op (∆n) + 2 νj,n

(
∆n
jW

)3
Op

(
∆3/2
n

)
and hence

Ej
[(

∆n
j p
)4]

= 3 ν4
j,n ∆2

n +Op(∆
3
n) +Op(∆

3
n) +Op(∆

5/2
n ) = 3 ν4

j,n ∆2
n +Op(∆

5/2
n ).

Similarly from (53) we get

(
∆n
j+ip

)4
= ν4

j,n

(
∆n
j+iW

)4
+
(
∆n
j+iW

)4
Op (j∆n) + 2 ν2

j,n

(
∆n
j+iW

)4
Op

(√
i∆n

)
and hence

Ej
[(

∆n
j+ip

)4]
= 3 ν4

j,n ∆2
n +Op

(
i∆3

n

)
+Op

(
i1/2 ∆5/2

n

)
= 3 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Summing up the two fourth powers so obtained

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4]
= 6 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Finally consider that

(
∆n
j+ip

)2 (
∆n
j p
)2

=
(
ν2
j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

))
×(

ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+ νj,n

(
∆n
jW

)
Op (∆n)

)
= ν4

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
+ ν2

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
∆1/2
n

)
+ ν3

j,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op (∆n)

+ ν2
j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(√
i∆n

)
+
(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
i1/2 ∆n

)
+ νj,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op

(
i1/2 ∆3/2

n

)
,

whence

Ej
[(

∆n
j+ip

)2 (
∆n
j p
)2]

= ν4
j,n ∆2

n +Op

(
∆5/2
n

)
+Op

(
i1/2 ∆5/2

n

)
+Op

(
i1/2 ∆3

n

)
= ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

and so

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4 − 2
(
∆n
j+ip

)2 (
∆n
j p
)2]

= 6 ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)
,

which implies

gn∑
i=0

E [Cj,n] =
1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]
=

1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[
ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)]
= O (∆n) −→ 0.
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Concerning Cj,n, first call ε2
i,` = ε(2)2

i ε(2)2
` and then note that

E [|Dj,n|] =
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
i,` E

[∣∣∣(∆n
j+ip

)2 − (∆n
j p
)2∣∣∣ ∣∣∣(∆n

j+`p
)2 − (∆n

j p
)2∣∣∣]

≤ 2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]) 1
2
(
E
[((

∆n
j+`p

)2 − (∆n
j p
)2)2

]) 1
2

=
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[
6 ν4

j,n ∆2
n +Op

(
j

1
2 ∆

5
2
n

)]) 1
2
(
E
[
6 ν4

j,n ∆2
n +Op

(
`

1
2 ∆

5
2
n

)]) 1
2

.

Since ε(2)2
i ε(2)2

` ≤ C k4
n we get

E [|Dj,n|] ≤ C kn ∆2
n

so that
gn∑
j=0

E [|Dj,n|] ≤ C kn ∆n → 0,

and hence, in conclusion, Bn is AN.

Part 1: Proof of the convergence in probability of vni (3)

In what follows we call

ζ (1)j
.
= Bj,n − pj,n and ζ (2)j

.
= pj+1,n − pj,n.

The quantity vnj (3) can be rewritten as

vnj (3) =
2

k2
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

So the quantity 1
kn

∑gn
i=0 v

n
i (3) becomes

1

kn

gn∑
i=0

vnj (3) =

gn∑
i=0

2

k3
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

First, we observe that, conditionally on (pt), we have that E
[
ζ (1)j

]
= 0 and so Ej−1

[
vnj (3)

]
= 0. Then, we note that

term kn

(
vnj (3)

kn

)2

can be decomposed as

kn

(
vnj (3)

kn

)2

=
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2
(
ζ (1)j+i

)2 (
ζ (2)j+i

)2

+
8

k5
n

2kn−2∑
j=0

2kn−1∑
i=0

ε(1)jε(2)jζ(1)i+jζ(2)i+jε(1)lε(2)lζ(1)i+lζ(2)i+l

.
= A1,n +A2,n

Now, by conditioning on (pt), we readily obtain that E [A2,n] = 0. Concerning A1,n, we have

E [|A1,n|] ≤ E

[
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2

(
ζ (1)

2
j+i

(
ζ (2)j+i

)2
)]
≤ C

k5
n

∆n

2kn−1∑
i=0

(ε (2)i)
2
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By boundedness of Bernoulli random variables and (pt) we have that
(
ζ (1)j+i

)2

≤ C for some positive constant C.

Hence

E [|A1,n|] ≤
C

k5
n

∆n

2kn−1∑
j=0

(ε (2)i)
2

=
C

k5
n

∆n
2k3
n + kn

3
∼ ∆n

k2
n

Hence
gn∑
j=1

E [|A1,n|] ≤
C

kn
→ 0.

Consequently, by Lemma 2, 1
kn
vnj (3) is asymptotically negligible.

Part 1: Proof of the convergence in probability of vni (4)

First, by conditioning on (pt) we readily obtain Ej−1

[
vnj (4)

]
= 0. Next, consider the decomposition:

(
vnj (4)

kn

)2

= A1,n +A2,n,

where

A1,n =
C

k6
n

2kn−2∑
j=0

(
2kn−1∑
l=i+1

ε(1)iε(1)lζ(1)j+iζ(1)j+l

)2

,

and

A2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

(
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l=i+1

ε(1)iε(1)lζ(1)j+iζ(1)j+l
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)
,

=
C

k6
n
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2kn−2∑
m=i+1

2kn−1∑
l=i+1

2kn−1∑
u=i+2

ε(1)iε(1)lε(1)mε(1)uζ(1)j+iζ(1)j+lζ(1)j+uζ(1)j+m.

By conditioning on (pt) again, we have E [ζ(1)j+iζ(1)j+lζ(1)j+uζ(1)j+m] = 0 if at least two of the indexes i, l, u,m are

different. Since in the sums that appear in A2,n one among m, l or u is different from i, we have E [A2,n] = 0. Analogously,

the expected value of the cross-product terms in A1,n is zero. Next, since |ζ(1)j+l| ≤ C, for some constant C > 0,

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

E
[
(ζ(1)j+iζ(1)j+l)

2
]
≤ C(2kn − 2)(2kn − 1)

k6
n

∼ 1

k4
n

.

Hence,

kn

gn∑
i=1

E

[(
vnj (4)

kn

)2
]
≤ C

k3
n∆n

→ 0.

Consequently, by Lemma 2, 1
kn
vnj (4) is asymptotically negligible. Part 1: Proof of the convergence in probability of

vni (5)

By successive conditioning and using Lemma 10, we obtain

∣∣Ej−1

[
vnj (5)

]∣∣ ≤ C

k2
n

2kn−2∑
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2kn−1∑
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ε(2)iε(2)l∆
2
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∆2
n

k2
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i=0
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ε(2)iε(2)l ∼ C ∆2
nk

2
n,

where we use the fact that
∑2kn−2
i=0

∑2kn−1
l=i+1 ε(2)iε(2)l ∼ k4

n. Hence, we have

gn∑
j=1

1

kn
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[
vnj (5)
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Next, we have (
vnj (5)

kn

)2

= A1,n +A2,n,

where
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n
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Furthermore, we have
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where
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2
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Using the estimate (32) of Lemma 10, and the fact that
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∑2kn−1
l=i+1 (ε(2)iε(2)l)

2 ∼ k6
n, we obtain:
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n

k6
n

2kn−2∑
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2kn−1∑
l=i+1

(ε(2)iε(2)l)
2 ∼ ∆2

n,

which implies that kn
gn∑
i=1

E [A1,1,n] ≤ kn ∆n → 0. Next, using the estimates (32) and (33) of Lemma 10, we have

E
[
(ζ(2)j+i)

2
ζ(2)j+lζ(2)j+m

]
≤ C

∆2
n, l = m,

∆3
n, i 6= l 6= m.

Hence, we have

E [A1,2,n] ≤ C∆2
n

k6
n

S1 + C
∆3
n

k6
n

S2 ∼ ∆2
n ∨∆3

nkn,

where
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2
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2

(ε(2)l)
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2
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2
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Consequently,

kn

gn∑
j=1

E [A1,2,n] ≤ C ∆nkn → 0.
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So, summing up kn
∑gn
j=1 E [A1,n]→ 0. With a procedure similar to that used for A1,2,n, we obtain

kn

gn∑
j=1

E [A2,n] ≤ C ∆nkn → 0.

Thus, 1
kn
vnj (5) is asymptotically negligible by Lemma 2.

Proof of the convergence in probability of vni (6) and vni (7) First, by conditioning on (pt) we readily obtain Ej−1

[
vnj (6)

]
=

0. Next, consider the decomposition (
vnj (6)
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= A1,n +A2,n,
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n
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(
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,

and

A2,n =
C
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n
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2kn−2∑
m=i+1

(
2kn−1∑
l=i+1

ε(1)iε(2)lζ(1)j+iζ(2)j+l

)(
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u=m+1
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)
,

=
C
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l=i+1
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u=i+2
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By conditioning on (pt), E [A2,n] = 0, because E [ζ(1)j+iζ(1)j+u] = 0 for u > i. Analogously, the expected value of the

cross-product terms in A1,n is zero. Hence, we have

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

E
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k6
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n

.

Thus,

kn

gn∑
j=1

E [A1,n] ≤ C

kn
→ 0.

Consequently, 1
kn
vnj (6) is asymptotically negligible by Lemma 2. Analogously, 1

kn
vnj (7) is asymptotically negligible as

well.
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