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Abstract

Asset prices recorded at a high frequency can be more stale than implied
by the semimartingale hypothesis. The staleness emerges due to illiquid-
ity and materializes in a form of zero returns. We propose a new general
framework formalizing this phenomenon. A limit theory for Multi-Idle-Time
(an economic indicator for price staleness) and related quantities is provided.
This allows measuring the level and wvolatility of staleness of asset price ad-
justment and conducting non-parametric specification tests. We consider
two different hypotheses. First, whether the extent of staleness is constant
or time-varying. Second, whether its dynamics can be described by a Brow-
nian semimartingale. The empirical application on NYSE stocks provides
the evidence that the level of stock price staleness is typically time-varying
and can be described with adequate realism by an (0, 1)-valued Brownian

semimartingale.
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1 Introduction

Traditional modelling in continuous time entail that the price of an asset, traded
in a frictionless market, evolves as a semimartingale. Bandi et al. (2017) provide the
evidence that real asset prices do not update as frequently as expected under the
semimartingale assumptions. Indeed, while in the standard jump-diffusion setting
high-frequency returns should exceed an appropriately-defined shrinking threshold
with large probability, in real data often the converse is true. The main cause of
this large number of (extremely) small returns is the lack of price updates at a
high-frequency. In particular, Bandi et al. (2018) provide empirical evidence on the
fact that zero returns, henceforth zeros, are driven by volume, magnitude of execu-
tion cost, and only immaterially by institutional effects, such as price discreteness.
Thus, motivated by the fact that zeros seem to be a genuine economic phenomenon
twisted to, e.g., cost of trading, price formation mechanism, extent of asymmetric
information, in this paper we focus on the statistical inference of zeros.

In this work, we develop an inference theory on the occurrence of zero returns.
Since ubiquitous jump-diffusion models in continuous time does not implied an
occurrence of zeros compatible with that observed in real data, we frame our infer-
ential theory under a frictional dynamics for asset prices, one which captures the
lack of prices adjustment in high-frequency data. As a starting point, we assume
the existence of an efficient price process Y, which we define as the asset price that
would have been observed if the market was perfectly liquid. In presence of illiquid-
ity frictions (such as trading costs or asymmetric information) the trading activity
is inhibited, whence the random occurrence of periods in which the observed price
process stays constant! a situation that in this paper we address, following the
nomenclature of Bandi et al. (2018), as “price staleness”. The higher the “magni-
tude” of these frictions, the more probable and the more persistent the staleness of
the observed price. We model this frictional price dynamics following the formalism
introduced by Bandi et al. (2017) and Bandi et al. (2018). Hence, on top of the
existence of the latent efficient price process Y, we assume that the logarithmic
price process, (Xi),sq, sampled in any partition 0 = to, < t1, < ... <t,, =1 of
the unit time interval [0, 1] (for example one trading day), is driven by the recursive

equation:

Xt — }/;«j,n (1 — B],n) + Xt.

j—1,n

Bjﬂ“ j = 1,...,77,, (1)

Jrn

'Here we are implicitly assuming a previous-tick interpolation scheme that attributes to each
instant of the sampling partition the last available observation, hence a period without trading
activity is straightforwardly translated into a stale price.



with the initial condition Xy = Yy, where Vi, is the efficient price sampled in the j-

th element of the partition and where (B;,),_, . is a triangular array of Bernoulli

=1,..,
random variates such that, for some (random) p., € (0,1),

1 n
E ZBj,n i> Poos

j=1

as n — oo. The recursive equation (1) implies that, at each instant ¢;,, the ob-
served price X;a, may either coincide with the latent efficient price (B;,, = 0) or
not update and stay constant (B,,, = 1), thus leading to a stale price. Developing
a statistical inference on price staleness translates in studying the statistical prop-
erties of the triangular array (B;.),_, .

The inclusion of price staleness in the data generating process results to be
pivotal from both an economic and an econometric point of view. Bandi et al.
(2017) provide a model based on micro-structural theories of price formation (Kyle,
1985; Hasbrouck and Ho, 1987; Glosten and Milgrom, 1985) where insurgence of
zero returns is triggered by the joint effect of asymmetric information, transaction
costs and delays in the incorporation of the information flow into the assets’ prices.
Kolokolov and Reno (2017), instead, support the inclusion of price staleness in the
data generating process from an econometric perspective, showing that neglecting
price staleness leads to severe distortions on the widely used power- and multi-
power estimators (Woerner, 2006; Barndorff-Nielsen et al., 2006; Barndorff-Nielsen
and Shephard, 2004; Lee and Mykland, 2008; Caporin et al., 2014). Importantly,
it is shown that both detection of jumps and estimation of the jump activity index
are jeopardized even by a moderate levels of staleness.

The main contribution of our paper consists in developing an inferential theory
for the triangular array <ijn)j:1,...,n’ governing the intra-day dynamics of price stal-
eness. As follows from the previous empirical literature on zero returns (Lesmond
et al., 1999; Bekaert et al., 2007; Naes et al., 2011; Bandi et al., 2018), the char-

acterization of the array (B,,) is tantamount to the characterization of the

i=1,...,n
intra-day dynamics of illiquidit]y or, more precisely, to the dimension of illiquidity
captured by price staleness. We answer to the following questions: 1) Does illiquid-
ity varies stochastically during the day? 2) If yes, which kind of stochastic process
is more suitable to describe its dynamics and is it possible to define and measure
its volatility? To this purpose, we introduce a very general econometric framework
to model a triangular array of possibly dependent Bernoulli random variables. The
main idea is to represent the probability of observing a zero as a (latent) continuous-
time process (pt)c(o taking values in (0,1). We provide a set of novel results.

Our first result is to show that the intraday fraction of zeros, dubbed as idle



time in Bandi et al. (2017), is a consistent estimator of the integrated probability of
price staleness. Then, under the assumption that the process (pt>te[0,1] evolves as a
Brownian semimartingale, we derive a (stable) Central Limit Theorem (henceforth
CLT) for idle time. In order to set-up a feasible confidence interval, we introduce
a new economic indicator, named (m)-multi-idle-time, and we derive its limiting
properties by using a standard infill asymptotic design. Next, we introduce the
notion of local idle-time, an estimator of the instantaneous stochastic probability
of price staleness. This quantity permits us to construct estimates of general in-
tegrated function of probability of staleness and to conduct a fine-tuning analysis
on the dynamical properties of zeros. Precisely, using the developed limit theory,
we construct 1) a non-parametric test to distinguish between a constant and a
time-varying p;, 2) a non-parametric test, which, having established that p, varies
stochastically, allows to assess whether a Brownian semimartingale type dynamics
is suitable to describe p;.

Using 250 NYSE-listed stocks, we show that the assumption of the constancy
of instantaneous probability of stale prices is fairly rejected. Simultaneously, for
the large majority of our sample, a Brownian semimartingale specification of the
instantaneous probability of zero returns can not be rejected in favour a more per-
sistent alternative. This result paves the way to a new research topic: the consistent
estimation of volatility of illiquidity. Under the assumption that p; is a Brownian
semimartingale, we provide an estimator of the integrated (over, say, one day of
trading) volatility of p;. Our estimation theory is the analogue for illiquidity of the
estimation of volatility of volatility of financial prices (see, e.g., Barndorff-Nielsen
and Shephard, 2002a,b; Vetter et al., 2015).

The plan of the paper is as follows. Section 2 introduces the setting. In particu-
lar, we give assumptions on both the triangular array of Bernoulli random variates
and on the probability of staleness. Section 3 contains the limit results. Section 5
shows the finite sample accuracy of our asymptotic theory through a Monte Carlo
exercise, whereas Section 6 presents the empirical plausibility of our assumptions.

Section 7 concludes. All technical proofs are confined to the Appendix.

2 The settings

We work on a filtered probability space (Q, (Ft)i>0 ,73), one which supports all
stochastic elements defined below. The structure of the filtration (Ft);>0 1s quite
technical and it is reported in the Appendix A.1. The value of a genericistochastic
process X at a point ¢, of any partition 0 = ¢y, < t1, < ... <t,, = 1 of the time

interval [0, 1] will be denoted with X, , or, to avoid excessive subscripts, simply



with Xj,,. In what follows, for simplicity, we will always assume that the partition
is equispaced, hence we put ¢;,, = j/n with 7 = 0,...,n and the distance between
two consecutive points is given by A,, = 1/n. We assume that the Bernoulli random
variables representing price staleness as described in Equation (1) have the following

structure.

Assumption 1. There exists a (latent) continuous-time stochastic process (pt) (o
taking values in (0,1). Let (B;,)

Bernoulli random variables defined as

i=lm be the triangular array of Fi,,, -measurable

]B%j,n = H{Utj,ngptj,n}’ ] = O, e,y (2)

where Iy s the indicator function, (Ut)te[o,u 1s a collection of Uniform random
variables independent of p; and satisfying Uy 1. Uy, V't #£t'.

In other words, we assume that the process (p;) is responsible, at any

te(0,1]
sampling frequency, for the occurrence of the event {B,, = 1} , in the sense that

P [Bj,n =1]=E [ptj,n}'

Note that Assumption 1 preserves the compatibility relationship (cfr. Ait-Sahalia
and Jacod, 2014, Pag. 211) over different sampling frequencies. Formally, this prop-
erty guarantees that if t;,, = j/n and t;,, = j'/n are two equally spaced partitions of
0,1], with j =1,...,nand j/=1,...,n, then B;,, = B, ,» whenever j/n = j'/n.

Assumption 1 allows for different specifications of (B;,),_, . For instance, if
p; = p¥ for all t € [0, 1], then the Bernoulli variates are i.i.d with probability of stal-
eness given by p’". Nonetheless, this case is very restrictive. A more sophisticated
one is obtained when (p;):cjo,1] is described by a Brownian semimartingale, as in the

Example 1 below. In this case, indeed, the Bernoulli variates can be autocorrelated.

Example 1. Let I': R — (0,1) be a smooth function and (Zt)eo ) be a Brownian
semimartingale described by the following SDE:

t t
Zt:ZoJr/ audu+/ a® aw,,
0 0

where W, is a F-Brownian motion and the processes a; and at(p) are cddlag and F-

adapted. Then, set p, = F(Z;) for eacht € [0,1]. The latter is a well-defined process
taking values in (0,1). By Ité lemma, (pt)te[o,l} is itself a Brownian semimartingale
of the form:

b/ OF 2 10°F t OF
_ e N2 7 (p) 2~
i p0+/0 (auaZ—i-(Uu ) 2822) dt+/0 (o—u az) dw,.



To gain intuition, in Figure 1 we report simulated stale stock prices. In the
top panel, we generate stale prices under the more general situation of (pt)te[o,u
semimartingale, whereas in the bottom one stale prices are generated under the i.i.d.
assumption for the Bernoulli variates. Although the number of zeros (signaled by a
red cross) is the same, the two graphs look rather different. In the semimartingale
case we see that there is some clustering of lack of price adjustments. On the other
hand, in the i.i.d. situation stale prices are uniformly distributed over the trading
day. However, in the former case, zeros are nearly independent within each cluster.
This because Assumption 2 implies that the covariance between two consecutive
Bernoulli random variates is of the same probability order of the Brownian motion
(i.e. Cov[Bjn,Bjt1n] = Op(A,ll/Q). See Remark 4 in the Appendix). Thus, for

sufficiently large n, consecutive zero returns are approximately uncorrelated.
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Figure 1: We report example of stale stock price where zero returns are signaled by a
red circle. The probability of observing a zero return either follows a semimartingale
dynamics (upper panel) or it is equal to a constant (lower panel). In both cases,
the number of zeros is the same.

In what follows, we will not assume any particular parametric specification for

the process p;, but instead, we want to make some kind of (non-parametric) inference



about the regularity of its trajectories. Thus, we generalize Example 1 and we make

the following general assumption.

Assumption 2. The process (pt>t6[0,1] is described by the following SDE:

t t
Pt = / s ds + / Vg dWS7 (3)
0 0

where Wy is a standard Brownian motion, and p; and v are cdadldag processes, such
that ¥t, p, € (0,1) almost surely.

Under Assumption 2, the average probability of price staleness is proxied by
fol pe dt, whereas its intraday variability is captured by the integral fol V2 dt.

In this paper, we use the scaling property of the autocorrelation function of
zeros for testing the adequacy of the Brownian semimartingale assumption (As-
sumption 2). As an alternative, we consider a specification of the process p;, which
permits a slower (w.r.t. the semimartingale case) vanishing correlation between
two consecutive Bernoulli random variates even for large n. One possibility consists
in describing the process p; through a rough dynamic, e.g. p; is generated by a
fractional process with Hurst parameter H < 1/2. However, we will turn later on

this specification (Section 4.2).

3 Asymptotic results

We begin with the derivation of limiting results for the sum of intraday zeros,
which coincides with the notion of idle time introduced in Bandi et al. (2017). First,
we prove that idle time converges in probability to the integrated probability of price
staleness. Then, under Assumption 2, we derive a (stable) CLT for this quantity
(Theorem 3.1). Next, we investigate the problem of estimation of integrated quan-
tities of the form fol f(ps) ds (for a suitable test function f(-)), which are useful for
setting-up a feasible confidence interval for idle time and for the specification analy-
sis of the dynamics of the process p; based on zeros?. For this purpose, we introduce
the notions of m-multi-idle time, k-staggered multi-idle time local idle time and we
establish the corresponding limit theory (Theorem 3.2 and Theorem 3.3). Finally,
we construct an estimator of the quadratic variation of the process (pt)te[o,l] under

Assumption 2.

2Hereafter, for sake of brevity, we will write only “specification analysis” when referring to this
last statement.



3.1 Idle, multi-idle and staggered-idle time

Following Bandi et al. (2018)® we (formally) define, for any frequency of obser-

vation n, idle time as the average number of zeros within a trading day:

Jj=1

Despite of its simplicity, IT,, encompasses an important economic information since
it constitutes an illiquidity proxy retrieved from the high-frequency data. How-
ever, we decide do not expand further and we refer to the original work(s) for an
exhaustive description of the economic meaning of IT,. Instead, we focus on the
mathematical meaning of IT,,. The limiting properties of IT,, are summarized by

the following theorem.

Theorem 3.1. Assume that Assumption 1 holds. Then, as n — oo,

1
ITnﬂ/ s ds.
0

If both Assumptions 1 and 2 hold, as n — oo,

ﬁ(ITn—/Olpsds> LYY MN (0,/01]95 (1—p,) ds), (4)

where MN(0,V?) denotes the mized-normal distribution with a stochastic variance

V2,
Proof. See Appendix A.2. n

Theorem 3.1 implies that I'T,, is a consistent estimator of the integrated proba-
bility of price staleness over a trading day under very general assumptions on the
dynamics of the process p;. If p; is a Brownian semimartingale (Assumption 2),
IT, admits a stable CLT. In case of constant probability of price staleness, e.g.
P = po, Vt € [0,1], the asymptotic variance is simply equal to po(1 — pg), which
coincide with the variance of a Bernoulli random variable with mean py.

Under Assumption 2 (hereafter, both Assumptions 1 and 2 are tacitly assumed
if not explicitly stated), a feasible confidence interval for 1T, can be readily con-
structed provided a consistent estimator of fol p?ds. We consider a slightly more

general problem of estimating fol (ps)™ ds, for some integer m > 2. For this pur-

3The concept of idle time appeared for the first time in Bandi et al. (2017) as the average
number of price adjustments below a suitably defined threshold &,.



pose, we define the (m—)multi-idle time as:

- d n—m m
Mt LS T,.,,.
7=1 q=0

Intuitively, multi-idle time counts the number of runs of zeros of length m. For
example, fix m > 2 and j € {1,...,n —m}. Then, if all of the m consecutive price
adjustment are zero, the product H;n:o Bjiqn is equal to one and contribute to the
summation. If at least one of these m price adjustment is different from zero, the
product H;nzo B4 is equal to zero, and does not contribute to MITglm). Hence, in
i.i.d. case MITglm) naturally estimates the joint probability of m consecutive zeros.

In general case, we have the following theorem.

Theorem 3.2. Assume Assumptions 1 and 2 hold. Then, as n — oo,
1
MIT(™ 2% / (ps)™ ds.
0

Moreover, as n — oo

fo ps ds

Vi MIT(™ — [ (p

] LY MN (0, Snirr)

where MN (0, Xyur) denotes the mized-normal distribution with covariance matriz
3

1 m
fo mp; (1 ps ds fo m Pg 2m+1)*p317p(82m—1)—(1+ps) ds
Proof. See Appendix A.2. -

A consistent estimator of the matrix >\yr can be obtained through a suitable
combination of MIT(™. Note that MIT® corresponds to the first order auto-
covariance of zeros. Under Assumption 2, the difference between the first and
higher order auto-covariances of zeros becomes negligible as n increases, because
of the scaling properties mentioned above (Cov [B,,,, Bji1,] = Op(Ayll/ ?)). Hence,
integrated squared probability of staleness, fol (p5)2 ds, can be estimated not only
by MIT® but also by the empirical auto-covariance of some (finite) order k > 2.
In order to generalize the empirical auto-covariance to the k-th order, we introduce

the notion of (k—)staggered multi-idle time, defined as:

n —

n—k
o 1
SITH) &f kZBmBj+k,n.
j=1



The limiting properties of staggered multi-idle time are summarized by the following

theorem.
Theorem 3.3. Assume that Assumptions 1 and 2 hold. Then, For any finite k > 1,
as n — oo,

1
SIT k) ﬂ/ (ps)” ds.
0

Moreover, as n — oo,

SITY — [y (ps)° ds
SITH) — fl (ps)? ds

n 0

vn

] LY MN (0, Sgrr)

where MN (0, Xsit) denotes the mized-normal distribution with covariance matriz

Yisir:
1 1
S (zl?i + 29 = 3p;) ds 1f0 ap}(1=py)ds |
Jo 402 (1 —ps) ds [, (p2 +2p} — 3p?) ds
Proof. See Appendix A.2. n

Theorem 3.3 shows that, under Assumption 2, the limiting value of SITff) is
independent of k. This allows to test the reliability of Assumption 2 on real data
by comparing the statistics SITS“) for different values of k. We will return to this

point in Section 4, dedicated to the specification analysis.

3.2 Local estimation of probability of staleness

In this section we consider the problem of estimating functionals of the probability

of staleness of the form

Wﬂzéfmwa

for a (relatively) general test function f(-). To this purpose, we introduce the
notion of local idle time and develop corresponding limit theory under Assumption
2. Precisely, let k,, be a sequence of integer numbers satisfying k, — oo, k,A, — 0.

Local idle time is defined as:

kn—1

N 1 .
b (kn) = - > Bijm i€{l,...n—k}. (5)
n =0

10



For any giveni € {1,...,n — k,}, p; (k,) is a consistent estimator of p;,, (as follows
from the proof of the Theorem 3.4 below). Consequently, U (f) can be estimated

by the Riemann sum of local idle times as:

n—kn+1

U (A, )" = A, }: f (i (kn))-

Theorem 3.4. Let f (-) be a locally bounded function and assume that Assumptions
1 and 2 hold. Then, as n — oo,

U (D, )" % / £ (ps) ds.

Proof. See Appendix A.3 O

The idea of estimating the functionals U(f) using U (A, f)" mimics the idea of
estimating volatility functionals developed by Jacod and Rosenbaum (2013, 2015).
As for the case of estimation of volatility functional, U (A, f)" admits a stable
CLT with F-conditionally Gaussian limit, which is, however, not centered. If
k, ~ 0/\/A,, for some constant 6, the F-conditional mean of the limit consists
of several bias terms depending on end-effects, the second derivative of f and the
quadratic variation of p;. If k,, diverges slower than 1/1/A,,, the F-conditional mean
of the limit depends only on the second derivative of f, while the other bias terms
are immaterial.

In order to obtain a CLT with a conditionally centered Gaussian limit, U (A,,, f)"
ought to be bias-corrected. The biases depending on end-effects and on the second
derivative of f can be easily estimated. On the other hand, the bias term depend-
ing on the quadratic variation of p; is more complicated to estimate (in particular,
the convergence rate of the estimator is slower, (see Jacod and Rosenbaum, 2015)).
Hence, in order to eliminate the latter we focus on the case with k,, converging to
infinity slower than 1/4/A,. In such a case, the bias-corrected version of U (A, f)"

takes the following form:
n—kn+1

U’ (Amf)n = A, Z (f (ﬁz (kn)) - %

n

P s ) B (k) (1= 70 <kn>>) |

Then, we have the following CLT

Theorem 3.5. Asn — oo, let k, a sequence of integers such that k2A,, — 0 and
k2N, — oo. Besides, let [ a test function satisfying the following conditions

POl <K (1+1"), =01

11



for suitable positive constants K and m and assume that Assumptions 1 and 2 hold.

Then, as n — 00,

;%j(U%Amﬂ"—[ff@JdQfﬂ@wmmazm

where MN(0,X) denotes the mized-normal distribution with covariance matriz
! 2
= [ 1 e)rn-p)ds
0

Proof. See Appendix A.3 O

In order to improve the performance of U’ (A, f)" in any finite sample, we
adjust U’ (A,,, f)" by an asymptotically negligible correction for the end-effect as

follows:

0 (n—k;nJrl)fl

U” (A, f) X

U (A, ).
The adjusted version, U” (A, f)", is used for the estimation of U(f) in the rest
of the paper. In the simulation study, we compare the performance of U” (A, f)"

and MITSZ”) for estimating integrated powers of p;.

3.3 On the estimation of the volatility of staleness

In this section, under the assumption that p; evolves as a Brownian semimartin-
gale (Assumption 2), we investigate the possibility of non-parametrically estimating
the quadratic variation of py, i.e. fol v2 ds, which represents the integrated (intraday)
volatility of staleness. As explained in the introduction, price staleness constitutes
an illiquidity measure. Thus, fol v2ds is readily interpreted as the integrated as the
volatility of liquidity. Measuring the volatility of liquidity is of relevant economic
importance. For instance, as pointed out by Persaud (2003) “there is also broad
belief among users of financial liquidity — traders, investors and central bankers —
that the principal challenge is not the average level of financial liquidity... but its
variability and uncertainty...”. On the other hand, the problem is volumetric and
deserve special attention, which is worth for a separate paper. In this section we
provide a first step by deriving a consistent estimator of the quadratic variation of
Dt-

If p, were observed, its quadratic variation would be consistently estimated by

the realized variance > | (pin — pi—1) . However, the increments of p; are not

12



observable, hence a proxy of them, constructed using local idle time?, is used instead.
Replacing the increments of p; with their estimates induces a bias in measuring the
quadratic variation. Theorem 3.6 below shows that the (properly rescaled) squared
increments of local idle time converges in probability to the sum between of the
volatility of staleness and the asymptotic variance of the idle time. The latter bias

term can be estimated and corrected by straightforward application of Theorem
3.4.

Theorem 3.6. Let k, = 0 |\/n] be a sequence of integers, for some constant 6 > 0.

Besides, assume that Assumptions 1 and 2 hold. Then, as n — oo,

n—2kn,+1

1
Y B () — Pilkn))? 2 2 /uds+— pe (1 - py) ds,
0

i=1
where D;(ky) is the local idle time as in Eq. (5).
Proof. See Appendix A.4. O

Then, by combining Theorem 3.6 with Theorem 3.4, a consistent estimator of

fol v2ds, i.e. of the integrated volatility of the process p; can be defined as

n—2kn+1

VIL, = 5 (k > (Bion ) = Blhn) = 30" (B ) ) )
where f(z) = x(1 — x). Since IT,, can be used as a measure of illiquidity, the
acronym VIL,, stands for “volatility of illiquidity” at frequency n.

Unfortunately, VIL,, is not non-negative by construction. It can take a negative
value if the integrated volatility of staleness is small relative to the variance of
H%U "(A,, f)™. This situation is especially likely when the volatility of staleness is
close to zero. Hence, in order to avoid negative estimates in practice, we use the

following modified estimator:
VIL!, = max {VIL,,0}. (7)

At the costs of additional assumptions regarding the dynamics of v, it is possible
to derive a CLT for VIL,, similarly to what is done for the volatility of volatility
(Vetter et al., 2015). However, deriving a CLT and further investigation of the
volatility of liquidity is left for further research.

4Note that, in contrast to assumptions in Theorem 3.5, in order to estimate the volatility of
staleness we have to take k,, ~ /A,

13



4 Statistical tests

We now turn to the construction of statistical tests for investigating the dynamical
properties of p;. First, we consider testing for the constancy of a path of p; over a
given time interval. Second, in order to examine if the semimartingale Assumption
2 reflects the properties of the financial data, the we test for the smoothness of a

path of p;.

4.1 Testing for constant probability of staleness

For some m > 2, define the following two complementary subsets of €2

0= (veo| [(mera= ([ nea)).
o = (vea| [(weyrar ([ nwa) ),

Then, testing for constancy of p; amounts to distinguish the two complementary
subsets of €2 based on the observed sample of Bernoulli random variables. In other
words, testing for constant probability of staleness is equivalent to testing the fol-

lowing two hypothesis:
Hor: Binw))ey, € Q vs. H_y: Bin(w))izy..m € Ol

Indeed, if the trajectory p; (w) is constant over [0, 1], the observed sample (B; »(w)),_;
belongs to {5. On the contrary, the equality characterizing the set €2y does not hold
provided that p;(w) is time-varying.

By Theorems 3.1 and 3.2 (which, in particular, provide the stable convergence
of IT,, and MIT™ on Q°) and delta method, the test statistics is naturally defined

as:

o NG (MITf{”) - (ITn)m>
W, = . 8
’ \/(ITn)2m+1(m2+2mf1)f(ITn)zm(2m2+2m+1)+(ITn)m+1+(ITn)m (®)
IT,—1

The asymptotic behaviour of the ¥,, ,,, statistics is described the following corollary.

Corollary 1. Assume Assumptions of Theorem 3.2 hold. As n — oo

U,m dably N(0,1) on Q°,

U,m 2y 4o on QL.
Proof. See Appendix A.2. O

14



On QY U, ,, converges (stably) to a zero-mean normal distribution with unit vari-
ance. On Q' i.e. when p; is not constant on the whole interval [0, 1], it diverges as

the number of observations n increases.

4.2 Testing for smoothness of the probability of staleness

In this section we propose a test for the Brownian semimartingale specification of p,
(Assumption 2). It implies that Cov [B,,,B;+1,] = O, <A}L/ 2), which guarantees
that the difference between the first and higher order auto-covariances of zeros
becomes negligible as n increases. Hence, Assumption 2 can be tested by comparing
the first and higher order auto-covariances of zeros, captured by staggered multi-idle
times, SITSLI‘C), with different k’s.

An alternative to Assumption 2 should postulate a different scaling property for
the auto-covariance of zeros. This can be achieved if, for example, p; follow a process
with rough sample paths. Instead of specifying a particular process describing the
dynamics of p; for formulating an alternative hypothesis, we consider the following

high-level alternative to the Assumption 2:

Assumption 3. The process p; has Riemann integrable paths and |E; [|pisna, — pil]| =
KAL + 0,(AZ) pointwise on Q, for some 0 < g < %, K,e>0.

Then, the testing problem can be formulated as:
Ho : Assumption 2 holds v.s. H;: Assumption 3 holds.

The test is defined as:

et Vi (SIT) —sIT()

q)nk = ’
\/2 A I () = 205 (ka))* + (B (Rn))")

)

The asymptotic behaviour of @, is described in the following corollary.
Corollary 2. Assume Assumptions of Theorem 3.3 hold. As n — oo

stably

O, = N(0,1) wunder H,,
|D,, k| 5 400 under H.
Proof. See Appendix A.2. n

If p; is a Brownian semimartingale, ®,,, converges (stably) to a zero-mean nor-
mal distribution with unit variance. Instead, if p; is a rough process, the test

statistic diverges as the number of observations increases.
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5 Monte Carlo

5.1 Simulation settings

In absence of finite-sample distortions, the implementation of the asymptotic theory
developed in Section 3 and Section 4 would require the adoption of the highest
frequency available for the data: the larger the frequency the closer the random
quantities to their limits (either in probability or stably in law). Nevertheless,
price discreteness may affect these limits, producing unwanted spurious effects.
More precisely, in presence of rounding, there could be some extra zero returns
not generated by “genuine” flatness. In this section we explore the finite sample
contaminations of the asymptotic theory by means of Monte Carlo simulations. In
particular we want to asses the sizes and the powers of the two tests ¥,, ,,, and ®,,
defined, respectively, in (8) and (9). For this purpose we generate a large artificial
dataset of efficient price paths contaminated by flatness and rounded at one cent
(as imposed by the actual settings of electronic financial markets). We simulate, for
each replication, a trading day of 6.5 hours on a time-gird of one second, for a total
of 6.5 x 60 x 60 steps. First of all, we create the path of an efficient log-price process
Y; = log (P,) driven by a one-factor stochastic volatility model, whose dynamics is
described by the SDE:

dlogo? = (a — B log af) dt +ndWsy,
dYy = pdt+c, 00 dWyy, (10)

where W, ; and Wy, are two Brownian motions with corr (dW, ., dWy;) = pdt.
We adopt the values for the parameters o, 5, 1, p and p estimated by Andersen
et al. (2002) on S&P500. The volatility factor ¢, can be tuned to generate different
scenarios. We impose ¢, = 2 that corresponds to, roughly, a daily volatility of 1%.
Numerical integration of the SDE in (10) is performed on a one-second time grid
via a standard Euler scheme and with the initial conditions Y, = log (F), with
Py =100, and log 62 = /. Once simulated, the efficient prices are sampled every
thirty seconds. This sub-sampling produces, for each replication, the efficient log-
prices Y, with j = 1,...,n and n = 780. Then, on the time grid of thirty seconds,
we construct the flatness-contaminated price process Xj,, following the recursive
equation:

Xon = Yon = log (Fo)

Xj,n - (1 - Bjm) }/j,n + Bj,n Xj—l,m

(11)
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where B;,, are Bernoulli random variables specified in one of the three ways de-
scribed below. Finally, the flat-prices exp (X,,) are rounded at one cent. The
rounding is the only very reason that prevents to take the highest frequency avail-
able.

For each path of the efficient price process Y we consider three different speci-

fications of triangular arrays B ,.

Constant probability of staleness. In this specification the B;,’s are i.i.d.
Bernoulli random variables with constant expected value, E [B;,| = pr for all j.
We put® pr = 0.5.

Semimartingale-type probability of staleness. This specification corresponds
to Assumption 2. First, at each replication, we generate a path of a latent stochastic

process u with the following (discrete-time) integration scheme:

Uo,n = F_l (pF)

(12)
Uj = Uj_ 10+ (FH(pr) — wj_10) Dn + 0u€jn VAL,

with j = 1,...,n, A, = 1/n, n = 780, pr = 0.5 and where F'~! (z) is the inverse
of the cumulative distribution function of a standard Gaussian variable. The ¢;,’s
are i.i.d. standard Gaussian shocks while o, is a tuning-parameter that we set to
o, = 1.5. Then, a path of the stochastic probability p;, defined in equation (2) of

Assumption 1, is generated as:
u]’,n 1

Pjn = . ,_2’/'(

Note that since, by construction, u is a mean-reverting around F~! (pr), then p; is

e 2 dz = F (ug,).

mean-reverting around pg. Hence, on average, the probability of zeros is similar to

the value used in the constant probability case.

Rough probability of staleness. This specification corresponds to the alterna-
tive for the semimartingale-type behaviour of the probability of staleness. Instead
of simulating rough probability paths explicitly, we adopt the following scheme,
approximating the dependence of Bernoulli random variables for a fixed frequency.
First, we generate two sequences of i.i.d. Bernoulli random variables, Bf ,, and Bfn,
with 7 = 1,...,n and n = 780 as for the other cases considered. These two sequences

are characterized by two different expected values, i.e. we put pp = E [Ef n} =0.5%

SWith this numerical choice we are assuming that, at the frequency of 30 seconds, fifty percent
of the log-returns are zeros. This corresponds to a moderately high level of illiquidity for the asset.
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and pr = E [Bfn] = 0.2%. Then, they are assembled together via the recursive
equation:

]Bl,n - Bfn

Bj+17n = ]B]F—‘rl,n (]‘ - B?—‘,—l,n) + Bf—&—l,nBj,n) j Z 1.

Hence, the Bernoulli random variables B;,,’s mimic the persistency, which could be
implied by a rough probability process.

Figure 2 shows an example of a path of p; and the corresponding path of the
stale price process generated by the model (12). It illustrates the flexibility of our
semimartingale model in controlling the occurrence of zeros via the realization of
the process p;. For instance, in the example, the probability of flat trading becomes
very small after the middle of the trading day. The number of observed zeros
declines accordingly. In particular, the price is stale only in the first part of the

day.

4.65r

% 7eros
—stock price

4.6F

Price

4.55F

| | | | | | | |
0 100 200 300 400 500 600 700 800
Time

[——probability of zeros|

| | | |
0 100 200 300 400 500 600 700 800
Time

Figure 2: Stale stock price and the probability of observing zero returns generated
by models 10 and (12) respectively. Zeros are indicated with red circles.
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5.2 Estimation of p; functionals

Here we illustrate estimation of integrated functionals of the instantaneous proba-

bility of zeros, under the Assumption 2. We focus on estimating the most relevant
1

functional, i.e. [ ps(1—ps)ds, which represents the asymptotic variance of idle time.
0
It can be estimated either as a difference of idle and multi-idle times, I'T,, — MITg),
or by integrated local idle time, U” (A, f)", with f(z) = z — 22
1

Figure 3 shows the two estimates of [ ps(1 — ps)ds for different levels of the
0
true value. It indicates that both estimators are remarkably precise. However, the

variance of U” (A, )" (computed using block size k,, = 13) is considerably smaller
than the variance of IT,, — MIT®. The later result is expected, since U” (A,, f)"

constitutes a localized maximum likelihood estimator.

Estimation based on local idle time
T T

0.25 0.25
0.2 0.2+
[0'9] [0'9]
L oast L oast
ae] ae]
= =
w o1 % o1
0.05 0.05
-
L 4
¢
O 1 1 o 1 1
(0] 0.1 0.2 0.3 (6] 0.1 0.2 0.3
Asymptotic variance of idle time Asymptotic variance of idle time

1
Figure 3: Scatter plot of the asymptotic variance of idle time, [ ps(1 — p,)ds and
0

its estimated values based on multi-idle time (left panel) and local idle time based
on blocks of size k, = 13 (right panel). The green line represents the true value.

The superiority of U” (A,, f)" over the difference estimator IT,, — MIT® is
robust across reasonable choices of k,. Figure 4 shows the bias, standard deviation
and the root mean squared error (RMSE) of U” (A, f)" as a function of k,, and
compares them with the corresponding characteristics of the difference estimator.
It turns out that the bias of U” (A,, f)" (left panel of Figure 4) increases with k,
and it is larger than the bias of IT, — MIT?). The variance of U” (A, f)" (central
panel of Figure 4) is U-shaped with the minimum at around k,, = 15, which roughly
corresponds to k, = n%°. Even if k, takes a large value, e.g. k, = 40, which roughly
corresponds to k,, = 3/2y/n, the variance of U” (A,,, f)" is smaller than the variance

of IT, —MIT®. For both estimators, the bias is an order of magnitude smaller than
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the variance, hence, RMSE of U” (A, f)" (right panel of Figure 4) is dominated
by the variance and it is smaller than RMSE of the difference estimator for all
reasonable choices of k,,. Of course, the optimal choice of k,, in general, depends
on the properties of p;, e.g. on its quadratic variation. However, the Monte Carlo

illustration suggest that U” (A,,, f)" remains reasonably precise even for suboptimal
values of k,, < y/n.

# 104 Bias # 10-3 STD # 10 3RMSE

12~ o =]
o b . ¢ i
10+ £
8.5+ 8.5
8 |
6 8+ 8t
a4l
>l 7.5 7.5
O+ éé?
7 |-
<
2L <&
_4 *\ L L I 6_5 L L L I} 6_5 L L L Il
5 15 25 40 5 15 25 40 5 15 25 40
Block size, k, Block size, k,, Block size, k,

Figure 4: The bias, standard deviation (STD) and the root mean squared er-
1

ror (RMSE) of the estimators of [ ps(1 — ps)ds. The blue rombus correspond
0

to U" (A, f)" for different choices of k,. The red stars represents the difference
IT, — MIT?, which does not depend on k,,.

5.3 Sizes and powers of ¥, ,, and @, ;. tests

The test statistics ¥,, ,,, and ®,, ;, are both characterized by a choice variable, more
precisely W, ,,, depends on the number m of factors in the multi-idle time MIT%’”)
defined in (5) while ®,, ;, depends on the number of lags £ in the staggered multi-idle
time SIT%’“) defined in (5). Asymptotically, the distribution of both ¥, ,, and ®,, x
are unaffected by the value of m and k, as well as their divergence toward +oo under
the respective alternative hypotheses. Nevertheless, in finite sample, both m and &
can be chosen to trade-off size and power of the two tests. Following the procedures
described in Section 5 we generate 10* replications of (rounded) price paths under
Qo, Ho (which, clearly, is included in §21) and H;. Since Qy and H, are, respectively,
the null and the alternative for ¥, ,, while H, and H; are, respectively, the null
and the alternative for ®,, 5, we can evaluate, for different choices of m and k, the
size and power of both tests by computing their rejection rates under the proper set

of artificial data. Figure 5 summarizes the results of this numerical experiment, in
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particular we report 5% rejections rates of both tests under their respective null and
alternative. In the case of VU, ,,, a reasonable trade-off between size and power is
attained taking m around 5, a choice that maximizes power and gives a conservative
(less than the theoretical 5%) size. The case of @, is quite different: the larger
the value of the lag k£ the more distorted its size, while the power is quite high even
for k = 2. Hence, in finite sample, a small value of k is advisable. Of course, the
specific power and size of the tests depend on how the alternative is formulated.
For example, an higher value for the parameter o, in (12) would deliver a more

powerful ¥, ,,,.

=
o

ol -V, » under 2o
o®d,, ;, under €2,
o =5% level

2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Choice variable (k or m)
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Figure 5: The top (resp. bottom) panel reports, as black thick line, the size and, as

a red dotted line, the power of the test U,, ,,, (resp. @, ;) as a function of m (resp.
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6 Empirical illustration

In this section we consider intraday price paths, sampled at 30-second intervals,
for stocks traded on the New York Stock Exchange (NYSE). Our sample includes
248 most traded stocks. The observation period consists of 2246 trading days and
ranges from 3 Jan 2006 to 31 Dec 2014. Each trading day includes 780 intraday
observations recorded from 09 : 30 to 15 : 30. The days in which the trading session
was interrupted prior to 15 : 30 are excluded from the consideration. For each day
and stock we record zero returns defined as the absence of price adjustment during
30-second sampling intervals.

We start with specification tests. For each day and stock in our sample we
compute ¥ and & tests for constancy and smoothness of the paths of p;. Figure 6
shows kernel smooth density estimates of the test statistics of the two tests for the
pooled data. The distribution of W is clearly different from a standard normal, in
particular, it is shifted to the right. This indicates that for the majority of days
and stocks in our sample the constancy of p; is rejected. The distribution of ® test
statistics is close to standard normal, but does not perfectly coincide with it. Hence,
smoothness of the paths of p, can not be rejected for the majority of days and stocks
in our sample with rare exceptions, one of which is considered below. Overall, the
specifications tests indicate that the probability of occurrence of zero returns is
time-varying and most often its dynamics can be sufficiently well approximated by
a smooth semimartingale model.

The most prominent example of a stock (in our sample) for which the smoothness
of the probability of observing zeros is violated is Citigroup Inc. (C). Figure 7
shows the time series of daily ® test statistics for this stock. It can be seen that the
smoothness of p; is systematically rejected during a particular sub-sample: from
the beginning of 2009 until the middle of 2011. During this period Citigroup was
reorganized into different operating units. This reorganisation might affect the
liquidity of Citigroup stocks, which materializes in the change of the dynamics of
ZEros.

The intraday variation of zeros in our semimartingale model has two sources.
The first is the deterministic dynamics captured by the drift component of p;, while
the second is due to the volatility of p;. Figure 8 illustrates the deterministic com-
ponent. For a selection of stocks, it shows averaged over the whole sample intraday
local idle time estimates. For each stock local idle time exhibits emphatic intraday
pattern. On average, the occurrence of zeros is almost twice less probable in the
morning with respect to the noonday. For example, for Exxon Mobil Corporation
(XOM) average local idle time is equal to 0.12 at 09 : 30, while it increases up to
0.24 at 12 : 30.
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Figure 6: Kernel smooth density estimates of the daily test statistics of W and ¢
tests for constancy and smoothness of the paths of p; respectively, computed for
the pooled data.

Figure 9 illustrates the variation of zeros due to the stochastic volatility of p;.
Each panel of the figure compares estimated (using local idle time) paths of p; for
days with large and small volatility of p,. For example, middle left panel shows
the local idle times for PepsiCo Incorporation (PEP). In the morning the level of
stalness is around 20% for both days with low and high volatility of p;. For the first
day, the level of staleness mildly fluctuates around the intraday pattern. For the
day with high volatility of staleness, local idle time rises up to 90% by the noon. By
13 : 00 it declines back to the original level and continues fluctuating intensively by
the end of the day. Together, Figures 8 and 9 indicate that both deterministic and
stochastic components significantly contribute to the intraday variation of staleness.

Figure 10 presents a scatter plot of daily idle time and volatility of staleness
for all considered stocks combined together. It shows the hump-shaped form of the
dependence of the volatility of staleness on the level of staleness. The volatility of
pe is typically small if a stock is very actively traded (hence, idle time is close to
zero) or if a stock price is very stale (idle time is close to 90%). The largest values

of the volatility p, are achieved for the days with medium level of staleness.
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Figure 7: Daily test statistics of ® test for smoothness of the paths of p; for Citigroup
Inc.

7 Conclusions

We introduce a general econometric framework, which incorporates the possibility
of observing zero returns in the data generating process of stock prices. It extends
widespread stochastic volatility models by allowing for staleness in price adjust-
ments producing zero returns. The statistical properties of the staleness are con-
trolled by the instantaneous probability of arrivals of stale prices, which is assumed
to follow a continuous-time dynamics. Since price staleness is naturally linked to
the absence of liquidity, our framework allows to conduct statistical analysis of
liquidity in a way analogous to the analysis of integrated volatility. In particu-
lar, we develop asymptotic theory for several statistics, named (m-)multi-idle time,
staggered multi-idle time and local idle time, instructive about the dynamic prop-
erties of the instantaneous probability of staleness. This allows to set up feasible
confidence intervals for idle time, a liquidity measure introduced in Bandi et al.
(2017), and to conduct nonparametric specification tests. We test whether the
probability of observing zero returns is constant or time varying during the day and
whether its dynamics can be described by a Brownian semimartingale. Application
on NYSE stock prices shows that the probability of the occurrence of stale prices

is time-varying and can be described with adequate realism by an (0, 1)-valued It6
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Figure 8: Averaged over the whole sample intraday local idle time estimates for a
selection of stocks.

semimartingale.
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Figure 9: Local idle time estimates for days corresponding to the lowest (denoted
by red rhombus) and the highest (denoted by blue circles) volatility of p; for a
selection of stocks.
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A Appendix: Proofs

The appendix is divided into four parts. Section A.l introduces the notation and collects auxiliary results on the
convergence of triangular arrays. Section A.2 is dedicated to the proofs of limiting results from Sections 3.1, 4.1 and 4.2.

Section A.3 presents the proofs of Theorems 3.4 and 3.5. Finally, the proof of Theorem 3.6 is presented in Section A.4.

A.1 Notations and Auxiliary results

In what follows, we indicate with ¢, = j/n, j € {0,...,n} the deterministic equispaced partition of the interval [0, 1]
and with N, (s) = max {j | tj, < s}. Trivially N, (1) = n. We use the symbol -2 for the convergence in probability,
220 for the uniform convergence in probability and LYY for the stable convergence.

Now, we specify the structure of the o-field F. We have the following flows of information on F: i) (}‘t(p ))te[o,l] is

the natural filtration associated to the process py, ii) Uy, , is the o-algebra generated by random variables Uy, ..., Ujn,

iii) Fy,, = ft(f 21 V Ujp is a discrete time filtration assoc1ated to partitioning the interval [0,1] with a descretization
step A,, = 1/n Let fég) = \/te[O,l]]:t(p) be the smallest o-algebra, which contains Ute[(),l]]:t(p)a Uso = ViZoUy pn, and
Fton = éé’) V Up,n. Then, we have: F = ]-"ég) V Uso

For sake of readability, we denote, for a genericindex j € {1,...,n}, by P; [-], E; [-], V; [ -] the conditional probability,
the conditional expectation, and the conditional variance with respect to the filtration 7, .

In what follows, our proofs and formalism will be inspired by those of Jacod (2012), Jacod and Protter (2012) and
Ait-Sahalia and Jacod (2014). We say that a triangular array of random variables ¥, j € {0,...,n}, is asymptotically

negligible (sometimes shortened, henceforth, in AN) if

2§ o

j=1

that is,
Nn(s)
sup | Y & (13)

s€[0,1] J=1

The following two remarks state simple properties that will be invoked repeatedly during the proofs

Remark 1. Suppose that Z;-lzl ‘Sﬂ converges to zero in L', i.e

Z &8 | — 0. (14)

j=1

By standard argument, this implies that 2?21 |§J"‘ 250 and so it is sufficient to note that

N, (s)
T EIEE TS TR
s€[0,1] J=1 s€[0,1

to conclude that condition (14) is enough to guarantee that & 1s AN.

Remark 2. Throughout the paper, we will use implicitly this simple fact. If g (s) is a Riemann-integrable function on

[0,1] therefore
Sup/lg Ids—/ g (s)| ds,
t€[0,1]

whence for any sequence of function g, (s), uniform convergence on [0,1] of the integral of |gn (s)| is equivalent to the

convergence of fol lgn (s)| ds.
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Finally, we remind the following two lemmas which give us a simple criterion to conclude that a triangular array is AN
and are used repeatidly in the rest of the appendix. The first one is Lemma 4.1 of Jacod (2012) whereas the second is
Lemma B.8 in of Alt-Sahalia and Jacod (2014).

Lemma 1. Let &} be a triangular array of Fy; , -measurable random variables. If the following condition is satisfied
n
D Eia[lg] o,
j=1
then Z;lzl & “200, de. & 1s AN. Moreover, the same conclusion holds under the following two conditions

> B [g] =, (15)

j=1

iEf’—l (&) o (16)

As a consequence if E;_q [€7] = 0 then condition (16) is sufficient to quarantee that 37, &" == 0.
J j Jj=15%]

Lemma 2. If my, ¢, > 1 are arbitrary integers, and if for alln > 1 and 1 < i < my, the variable £}’ is Fy

> 40, ~measurable,
and if

S B[] 0. 6 B[] »o,
Jj=1 Jj=1

then

ie. Y0 & ==

We now turn to characterising the stable convergence of triangular arrays (cfr. Podolskij and Vetter, 2010, Definition
1). For a sequence of random variables Y,, (representing the sequence of partial sums of a triangular array), the stable

convergence is defined as follows:

Definition 1. A sequence of random variables Y, defined on (Q, F,P) is said to converge stably with limit Y defined on
an extension of the original probability space (', F',P") if and only if for any bounded continuous function g and any

bounded F-measurable random variable Z it holds that
Eg(Yn)Z] = E[g(Y)Z].

The classical stable Central Limit Theorem of Hall and Heyde (1980) is not valid for the triangular arrays considered
in our paper. Indeed, by construction, we have that F, ¢ Ft,,, whenever n > m. As a consequence, the nesting
assumption on the filtrations as in Theorem 3.2 of Hall and Heyde (1980) fails. However, a similar stable Central Limit
Theorem hold.

Theorem A.1. For any given integer £ consider the triangular array random variables

4
Vo =0 Bi—emy - By it Biraml, - it [Bjien])

where ¢ : R2“H1 — R is a locally bounded function of a finite number of variables. Define the centred triangular array
X9 gs
Jim

¢ 1 ¢ ¢
Xj('r)t = % (7](2 —Ej HiD
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and assume that

for an a.s. finite random variable o. Then, as n — oo,

ZX(Z ) stably Z7 (18)

where Z is a random variable with characteristic function E [e’%gz t2] , defined on an extension of the original probability

space.

Proof. The technicalities of the proof largely follow results in Hall and Heyde (1980), Lemma 3.1 and Theorem 3.2.

Because of the locally boundedness of ¢ and the distributional assumptions on random variables B;_g p,...,Bjisp, it

is easy to check that maxi<j<n in "
<j< ,

X(Z)‘ -5 0. Moreover, by hypothesis Z ( (é)) 25 62 for an a.s. finite random
variable 0. As a consequence (cfr. Lemma 3.1 in Hall and Heyde, 1980), to prove the statement above it is sufficient to
prove that for all real ¢ the random variable T;, (t) defined as (2 = v/—1)

ﬁ(1+ti )

converges to 1 as n — 0o weakly in L'. By definition, this is equivalent to prove that for all E € F, E[T,, (¢t)[(E)] — P[E],
where I (E) is the indicator function of the event E. For a fixed 2 <m < n, let E,, € F;,, . We compute

E[T, () I(Ew)] = E[E[T,())1(En)|F,...]]=E |E ﬁ(1+mx“>) L(Ew) |Fin
j=1
- E|]] (1+ti§fn)11(Em)1E (1+ti§2) Fon
_jeIl JG 2UIs
- B[] (1+ztx;fn)11(Em)1E [I (1+0x0) |72 |7,
_jGIl jelLUls
= B[] (1+:tx0)1(EE H (1+2x()) ‘}}mm BT (140 x) \fg@ , (19)
ESE |J€EL2 jels

where Iy, Is, I3 are three sets of indexes such that XJ(Q € Fi,,.,, for j €1y, XJ(.Q (S for j € Iy, and XJ(Q €
(Ftn,n\}}m%mﬂ) for j € I3. In particular, (-Ftn,n\ftm+z,m+z) denotes the smallest o-algebra containing all the events
of F, +, that are not included in F;
that

m—4£,m—+4£

maestmeee First, we note that Iy and Iy includes at most a finite number of terms and

E ] (1+mX§2) 'f,gg) -I]E [(1+nx§2) ‘]-"ég)] —1

JEI3 j€ls

—~

<
3 =

because of the independence of the factors conditionally on fég) and the fact that, for each j € {1,...,n}, X l has

expected value equal to one. Eq.(19) then becomes

E[T, ()1(En)] =E [L(E.) [] (1+ti§f,1) = P[En] + Ra

jel Ul
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where the remainder term R,, consists of at most 22112l — 1 terms of the form E []I (Ep) (it)" x X](-f?n}, with

Ji,mn’

1<r<|IyUly| and j1,...j, € I; UI;. Note that R,, converges to zero as n — co. Consequently,
E [T, (t) 1(Em)] = P[En].

Finally, let A denotes the symmetric difference. For any £ € F and any € > 0 there exists an an m and an E,, € Fy,, .,
such that P[E A E,,] <e. Since T, is uniformly integrable by assumption,

[E [T () L(Em)] = E [T, () L(E)| <E[|T, ()] T(E A Em)],

and sup,, |E [T, (t)I(E,,)] —E [T, (t)I(E)]| can be made arbitrarily small by choosing sufficiently small e. Whence the
thesis. O

We conclude this section with the following corollary, which will be used in the subsequent sections.

Corollary 3. Let X( 7)1 a q-dimensional random vector with each component defined as X( ) in Theorem A. 1, such that

(¢ oY »
> X5 (Xjn> — I (20)
for an a.s. finite positive definite random matrizc ¥ = {0, ;}. Then,

SO Y MN(0,5),

where MN (0,X) is a g-dimensional mized-normal random variable.
Proof. The condition (20) implies that

n 2
Z (C/Xf)l) 25 /Se.

=1

for an arbitrary real valued vector ¢ = (¢y, ..., cq)’. Consequently, by Theorem A.1, we have:
Zc X)L MN(0,¢'Se),

where MN (0,¢’Yc) denotes a mixed-normal random variable. Since c is arbitrary, the later convergence implies the

statement of the Corollary. O

Remark 3. The statement of Theorem A.1 remains true if the condition (17) is replaced by the analogous condition for

Zn:JE {(X(Z ‘ Fi, ] 25 02
j=1

conditional variances

A.2 Proofs of limit theorems from Sections 3.1, 4.1 and 4.2

The proofs of the limiting results from Sections 3.1, 4.1 and 4.2 follows directly from severals auxillary Lemmas on the
limiting behaviour of triangular arrays of Bernoulli random variables presented below. In particular, Theorem 3.1 is a
combination of Lemmas 8 and 6; Theorem 3.2 is a combination of Lemmas 4 and 6; Theorem 3.3 is a combination of
Lemmas 3 and 7; Corollary 1 follows directly from Lemma 6; Corollary 2 follows directly from Lemmas 7 and 9.

We start with a remark about Assumption 2, which is repeatedly used in the subsequent proofs.
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Remark 4. Under Assumption 2,
Ej1[Bjn] =pj-1n+Op (M/Q) : (21)

Indeed,
E;-1[Bjn] = E [E [B;,,

Fiyrn VIO = Byt pin] = pi—tin + Byt [Djn = Pi1] (22)

where
IEj—1 [Pjn — Pj—1m]| < Ejm1 [[Pjn — Dj—1.n]] < C (AR)Y2,

where the last inequality follows from standard estimates for semimartingales (Jacod, 2008). Moreover, by Proposition 1
of Barndor{f-Nielsen et al. (2006),

Pin = Pi-tal = Op (A log Au])' /7).

which implies that, for every finite integer k,

Pj+k = Dj—1 + Op (k (An |10g An|)1/2) . (23)

Lemma 3. Under Assumption 2, as n — oo,

n—k 1

1 u.c.

n—k ZBj,nBj+k,n ‘5/0 (ps)2 ds.
j=1

Proof. To prove the result above, we apply Lemma 1. The key assumption of this lemma is that the random variables

defining the triangular array 7' must be F;  -measurable. Thus, we make the following steps.

n—k n—=k n—k
1 1
— > BjnBjikn = p— Y Bjn Bjrkn —E; Birknl) + > BjnE; Bkl

j=1 j=1 =1

n n—=k
1 1
T -k > Bjkn Bin —Ej [Bjn]) + " > " BjnE; [Bjisknl
i=1

j=1+k
1 n—1 1 n—k
= 7 D By kn Bjn —Ejk [Bjn]) + — > BjinE; [Bjik,n]
j=1 j=1
1

k
1
n_ an—k,n (Bn,n - En—k [Bn,n]) - m ;Bj—k,7b (Bj,n - ]Ej—k [Bj,n]) .

Because of the boundedness of the Bernoulli variates, for any k fixed, the last two terms are both o, (1). Thus, by setting
5]" = ijk,n (Bj,n — E]‘,k [B],n]) + BJ,’I’LE] [Bj+k,n]7 we write

n—k n—k
1 1 n
p— ; BjnBjrhn = ——F ;& +op(1).

Note that each £} is now 73,  -measurable. Set now (7' = (n — k‘)_l (ﬁy -E;1 [Ej”]) We show that
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Since (' is a martingale difference, it is enough to prove that (cfr. condition (16))

n—k
E|> I —o.
j=1

The previous result follows immediately from the boundedness of the Bernoulli variates. Indeed,

n—k

n—=k
B |Y Il | 5| T
j=1

=1

1= oS s - m )] < o
= (n _ k)z = J 7—1 1S5 > (n — k‘) .

1
n—k (5? - IEjfl [f;l])

We have proved that

n—k n—k
1 n U.C. 1 n
G YR ]
j=1 j=1

thus, to conclude it is sufficient to prove that

n—k
Z - i . (qu [f;l:l - (pj—l,n)2> =28 .
j=1

With abuse of notation, let (}' ; = (n — k)~ (Ej—1 [5}1} - (pj,lyn)Z) and we show that condition (14) hold for (7' ;. Write
6

Ej-1[¢7] Ej_1[BjnBjtk,n] =Ej—1 [Bjn Ejrr—1[Bjts,nll
(Using equation (21) ) = E;_1 [Bjnpjtk—1.n) + Op (A}ﬂ)
Ej_1 Bjnpj—1,n] +Op (N/Q)

= pi—1nEj—1[Bj.]+Op (Ai‘/z)

(Using equation (23) )

= 1.+ 0, (A12) (24)
Thus”
n n 1

Z]E chn—lu = Z n—k E H]Ej—l [f?] - (pj—l,n)zu — 0.

Jj=1 j=1
In particular

1 n—k 1 n—k ) e
T B[] - = D (i) =0
Jj=1 j=1

®Note that the infinitesimal (in probability) term O, (A,l/ 2) that appears in equation (21) of Remark ?? is exactly
E;_1[pj — pj—1], so that the O, <Ai/2) that appears in the second of the equations (24) is Ejix—1 [pjtr — Pjtk—1)-
Nevertheless, again using the tower rule and the Markov inequality we can prove that

Ej—1[pj+k — Pj+k—1] = Op (A}/Q) ;

whence the second and the third of the equations in (24).

"We note here that the absolute value of the difference |E;_q [5]”] — (pf_lvn)g‘ is a term of the type

|E;—1 [pj+k — Pj+k—1]| for some k. Hence the summation in equation (24) is bounded by a constant times Ar/?, which
converges to zero.
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Finally, by Riemann integrability we have, path-wise on (2,

o [t

whence the thesis. O

Lemma 4. Under Assumption 2, as n — oo,

n m-—1
LS B 2 [ s
j=1 =0
Proof. Consider the following quantity
n m-—1 n 1 n
*Z H Ez+]n_ *Z(pjfln ;Z B] nBj+1n" ]B]+(m 1),n (pj 1n) }
j=1 =0 j=1 i—=1

We show that A, == 0. To do so, we rewrite the quantity A, as a sum of a Fi; ,-measurable quantity and a negligible
term. We introduce the following quantity

c(m)

_i—
=B B Bire1n Biren — pio1n) 0jo1m)"

and we show that A,, can be rewritten in the following way

1 — (m) Rn
n Z Sj—te T (25)

where R,,/n is asymptotically negligible. Let us consider the following expressions

.
%‘,1 = IBj,n —Pj—1n = gj("o)
. 2
Viz = BjnBitin =110 =Bin Birin —Dj—1.n) + Bjn — Pjmin) Di—1n = ( ) + <( )
. 3 3 3
Yiz = BinBjtin Bijromn —Pi—1n) +Bin Bisin —Pj—1n) Pj—1.n + Bjn _pjfl,n)pjfl,n = J(Q) ( ) + C( )
and similarly for each fixed m. Then A, = n~! Z _1 %j,m becomes
1nm1 n m-—1 mlml() nml( 1nm1() ) 1m71m71()
;Z 31 Z P = Z > " ety ) (%',z - M) T Sint
j=1 ¢=0 j m £=0 j=1 ¢=0 ] m =0 j=m £=0 j=1 £=0
Rl R2

We show now that both R1/n and Ra/n are o, (1). Since m is fixed, by the boundedness of the Bernoulli variables we

have Ra/n = o, (1). Now, considering that all the terms with ¢ = 0 in R4, are identically zero, we get

m—1 n m—1 m—1 n n—~¢
_ (m) _ (m) \ _ (m) (m) _ (m) _ (m)
Rio= YN (g ) =X > Z =2 | 2w = 2
=1 j=m /=1 j=m =1 j=m j=m—~
m—1 n m—1
-Elr w-E )|
(=1 j:n72+1 j=m—~
¢ addends faddends
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hence, as for Ro, for given m the number of addends in R; is independent of n (and bounded) so that Ri/n = o, (1).
Thus, by setting R,, = R1 + R2 the decomposition in (25) hold, i.e.

n m—1
m)

An = %(' et op(1)

1
n - -
j=m £=0

To conclude, we have to show that A,, is AN. Before proceeding, for sake of clarity, we briefly describe how we achieve

this result. Let us set (7 = % ](7_”2 ;> for fixed £ and m. We note that to prove the asymptotically negligibility of A,, it is

sufficient to prove that ;' is AN. By Lemma 1 this amounts to show that the following two conditions are satisfied
S n e 1 m) ] e
DB [G]=D] i H_L{e} =0 (26)
j=1 j=1
and

ZE ()] o (27)

In particular, to prove Eq.(26) we set & = nilEjfl [%(T_ng e] and, by using again Lemma 1, we show that

ST [lEr] o (28)

j=1

Thus, we start from assertion in (28) and we prove

iﬂfj—l [&r]] = _zn:]Ej—l{

| m—t

= Z el LV [Bj—z,n e By (D)™ T (Byim _pj—é—l,n)} ‘
j=1

o - 1 m—~£—1

= > | Bimtn e Bio1n (Pjt-1n) Ej1[Bjn —pj—t—1,n)]
j=1

o - 1 m—~{—1

= Y | Bi—tn e Bio1n (Pj-1n) Ej—1[(pjn — Pjmi-1.n)]
j=1

"1
Ej1(lpjn —pj—e-1nll < ECM/Q < C0AY?,

Jj=1 Jj=1

INA
S|

At this point, it is enough to prove the convergence in Eq.(27). This is an easy check because of the boundedness of the

Bernoulli variates, i.e.

S n\2 1 (m) 2
ZEj—l [(Cj) } = ﬁEj—l (gj—é,l) < KA, —0,
i=1

which implies the asymptotic negligibility of A,. Finally, by Riemann integrability,

1 ¢ !
P ) [ s
n < 0

Jj=1

which completes the proof. O
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Before proceeding, we state and prove another useful lemma.

Lemma 5. Under Assumption 2, for any finite numbers £,d > 0 and powers qi,...,qq > 0, as n — oo,
- ZBJ e Bin (Bt By al)® - (Bt Byran))™ 2 / phrds,

where v=q1 + ...+ qq.

Proof. First, by Remark (?7),
1 n
- Zijf,n By (Ejo1 Bigan])™ - (Bj—1 Bjran])? ZB] e Binpi_1,+Op (Al/z) ,

Next, by conditioning on Fs5 ®) and using the law of iterated expectations,

E [ijgﬁn LR Bj,n p;']—l,n —DPj—tmn---Pjn p;-)_lm] =0.
Hence, by Theorem 2.13 in Hall and Heyde (1980)® applied to the martingale difference X J(ZT)L =Bt Bjnpj_1, —
Pj—tn " PjnPj—1n

n

v P
§ ] —4mn " jnp] 1,n pj—e,n"'pj,npj—lm) > 0.
Jj=1

SRS

Using Remark (??) again,
1< '
ﬁz;pj—fﬂwnpj,np;—lm = Zp +U (A1/2)
j:

Finally, by Riemann integrability we have, path-wise on €2,

1 ¢ / ! ¢
HE pﬁ{,n—>/ ptids,
j=1 0
which completes the proof. O

Lemma 6. Let m > 2 be a given integer number. Under Assumption 2, as n — oo,

pb ds stably
MIT( )* fo ( 3) ds
where 1
1 & n m—
= > Bjn MIT(™ = Z T B
i=1 ] 1 =0
and MN(0,%) denotes the mized-normal distribution with covariance matriz ¥
1 m
Y= fo ps ds fO mps (1 _ps) ds
m+1
Jympm (1 —pa)ds [ pp ELEmEDop p(Smel)f(lers) ds

8The hypothesis of the Theorem are readily satisfied because of the boundedness of the Bernoulli random variables
with B,, =
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Proof. We consider the following decomposition

fopsds
— Ay + Ao,
v MIT(m) I )™ ds L

where

1 Z": Bjn —Ej—1(B)n] Z Ej-1 [Bjn] = fo ps ds
Al _ m—1 m—1 , 2
n i1 1:[0 BjJri,n - 1:[0 Ej«H’fl [BjJri,n] f i—=1 H ]Ej+z 1 ]Jrz n fO ps ds

J
As is asymptotically negligible (which can be proven as in Lemma ?7? above). Thus, it is enough to prove that A; = stably
MN (0,%). To do so, we rewrite the quantity A; as a sum of a F,

introduce the following quantity

-measurable quantity and a negligible term. We

J,n

¢ = BB Bire1n Biren — Ejreot Bisenl) Erve Biresrnl - Ejpm—2 Bjrm—1.0]

and we consider the following expression

m—1 m—1
©im = 11 Bivim = [T Eiric1 Bjrinl
i=0 i=0
for a generic m. Note that ¢; ,, = 2”;01 CJ(-?). Indeed

01 = Bin—E;1[Bjn] =0
@iz = BinBjtin —Ej1[Bjn] Ej [Bjt1,n]
= BinBjt1n — Bin Ej Bjtin] + Bjn Ej Bjt1,n] — Ejo1 [Bjn] Ej [Bjyin]
= Bjn Bjs1n —Ej [Bjr1n]) +BjnEj [Bjr1n] —Ejo1 [Bja] Ei [Bji1n]
= Bjn Bjtin — Ej [Bjr1,n]) + Bjn — Ej1 [Bjn]) Ej [Bjt1,n]
3 3

©i3 = BinBjit1nBjion — Ejo1 [Bjn] Ej Bit1n] Ejrr [Bjton]
= BjnBjt1nBjton — BjnBjrin Ejrr Bjron] + By Bjr1n Ejr1 [Bjyon]
= Ej—1 [Bjn] Ej Bjt1n] Ejrr [Bjton]
= BjnBjtin Bjton — Eji1 [Bjton]) +

+Bjn Bjt1n Ejr1 [Bjvon] — Bjn Ei Bjt1n] Ejrr Bjton] +

TBjn Ej Bjr1n] Ejr1 Byjron] — Ejm1 [Bjn] Ei Bjr1n] Bjv1 [Bjtron]
= BjnBjtin Biron —Ejr1 Bjranl) +Bjn Bji1n — Ej Bji1n]) Ejir [Bjron] +

4(3) <(3)
+ Bjn —Ej1 Bjn]) Ej [Bji1,n] Bjpr [Byion],
G
and so on and so forth for every m. So the second component of A, Ay (2) = n~ /23" j=1%jm, can be rewritten
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as

n m—1 n m-—1 m—1m—1
1 (m) 1 (m) (m)
- LYS e - Ly S
j=1 ¢=0 j=m (=0 j=1 ¢=0
n m—1 n m—1 m—1m-—1
1 (m 1 (m) _ +(m) 1 m
= 7” ijz?,z‘f‘in (CM)—C( ) 72 Cj(g)
j=m (=0 j=m £=0 Jj=1 =0

Reasoning as in Lemma ?? one can prove that both R;/v/n and Ra/\/n are o, (1). To render A; (2) F;

measurable a further step is necessary. We define

J,n

G =Bt Bitirn Bioin Bin — Bjo1 Binl) Ejo1 Byinl + Ejoy [Bypm—r-1n],

and consider

n m—1 )
m
Ry = 3> (¢, -¢m)
j=m £=0
n m—1
= BijtnBj—ri1n - Bi—in Bjn — Ejo1 [Bjn]) X
j=m ¢=0
X (Ej Bjt+in] - Ejrim—2 Bj—rrm—1,n] — Ejm1 [Bjt1n] - Ejm1 [Bjrm—r—1,n])

Notice, that, using Remark ?7?, for all ¢ > 0,

|Ejtri1[Bjrin] — Ejm1 [Bjtinll = ‘Pj+i—1,n —Pj-1n+ Op (A}z/z))
= ‘pj—i-i—l,n — Pjti—2,n + Dj+i—2,n — Pjti—3n + -+ Pjin —Pj—1.n + Op (A%/Q) ‘
< 0,(i+1) A2 (30)

Now note that, using the triangular inequality and a recursive decomposition, for any set of bounded random

variables x1,..., Zm—¢—1, Y1,-- -, Ym—r—1 We obtain (to reduce notation we put M =m — ¢ — 1)

x1oxyp —y1eoyMm| =z em—1 (@ —ym) F (@1 Tm—1 — Y1 YM—1) Y
<l|zr-zym-1 (@ —ym)| +1(x1- - 2pm—1 — Y1 Ym—1) Ym|

<K |(zm —ym)| + K (1 2pm—1 — Y1+ Ym—1)]

IN

M
<KD ok — il
k=1

where the constant K changes from line to line. Applying this inequality to the difference CJ(.Z? ¢ Z](Tg |, we
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obtain:
m—_{—1

’Cj j 22‘ < K Z ‘Ej—l [BJ-‘r’wn] - Ej+i—1 [B]-‘rz’n” .
i=1

Consequently, since m is finite, the inequality (30) implies that R3/y/n = o, (1). In particular, A; can be

represented as

1 (1) 1 | Rn(1)
1 n + 7Rn / - = )
with
m—1 _
n;(1) =Bjn —Ej_1 [Bjn], n;(2) = C](-_Z@
£=0
and where the reminders are given by
m—1
Z JANn T [BjA,n]) ’ Rn(2) = Rl + R2 + R3-
J=1

Note that since also the first component of R,, consists of a finite number of bounded terms, R,/\/n is

asymptotically negligible: It is enough to establish the following convergence convergence
izn: L MN(0,5)
i 2= )

To establish the previous convergence, we use Corollary 3. We have to find two functions ¢(!) and ¢ such
that

7 (1) = oW Bj—msins - Bin, Ej1 Bisanl - Bjct Bjtm—1,0]) — Ej—1 [0 Bj—mrtn, - - Bjns Eje1 Bjiginl, - - - Ejmt Bjsm—1.])]

and similarly for n; (2). The case of n; (1) is trivial since it is enough to define ™) (21) = z; to have the
identity n; (1) = ¢ (B;) — E;_4 [cp(l) (B;)]. For what concerns n; (2) note that

m— m—
n; (2) = Z "= Z j—tn Bj—tr1n - Bicin Bjn — Ej1 [Bjn]) Ej1 [Bjsin] - Ejm1 [Bjsm—r—1,n]
/=0

1=
= Bjn—Ejx [Bj nl) Bj1 Bjyinl - Ejm1 Bjam—1,] +
+Bj-10 Bjn —Ejo1 [Bjn]) Ejo1 Bjt1,n] - Ejo1 Bjrm—2,n] + ..
FBj—mt1n Bj—maon - Bjoin (Bjn — Ej_1[Bjn])
= Bjn Ejm1 Bjtinl - Ejm1 Bjgm—1n] +Bj1nBjn Ejo1 Bjtain] - Ejo1 [Bjpm—on] + ...
FBj—mt1n Bj—mazn - Biin Bin — (Ej—1 [Bja] Ejm1 Bjtin] - Ejm1 Bjrm—14a]) + ...
+Bjmt1,nBj-mizn Bij—1n Ejo1 [Bj]
= 0P Bjmiim - Bims Bi1 Biinl s Ejo1 Bipmo10])
— B [0 Bjomiinn By Byt Biyaals o Byt Biemo1])]
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where ¢ : R2(m=1)+1 4 R takes the following form

2 .
o (T1, T Tame1)41) = T Tl Lo(m—1)41 + Tl T~ To(m—1) + -+ + L1 T2~ Ty

We now proceed by noticing that, for all j, the vector 7; is F%,  -measurable and bounded, whence

- 1
> Ejia l%'
j=m vn

4
] 50,
and E;_1 [n; (1)] = 0. To see that also E;_q [n; (2)] = 0 it is better to write down E;_; [1; (2)] explicitly

m—1
Ej_1[n; (2 ZEjl[]M]
=0

m—

,_.

B tnBjtrim Bi1n Ejo1 [(Bjn — Ejo1 [Bin])] Bjo1 Birin] Ejo1 Biron] - Bjo1 Byjrim—1a]-
=0

=0

n
Consequently, it is enough to show that n=! Y E;i—1 [7]]-773] 25 %. Consider each component of the matrix
i=m

n;1; separately.
0 (Dn(1) = Bjn — 2B nEj1 [Bjn] + (Bj1 [Bjul)®

By Lemma 5,

1 — o [t
2 2B 2 [ (o

Now consider the product

[y

m—1 m—1 m—1 m—1m—~—1

~ ~ 2
ni(2)n;(2) = (jine,z) +2 Z Z C] 006 E’Z/ = Z (C](T—ng,f> +22 Z <m,£C](me k0+k

0 =0 {'=(+1 =0 (=0 k=1

3

~
Il

We note that

~ 2
(CJ('Z?,@) = BjtmBjim Bin —Ein Bin))® (o1 Bjram) - Byt Bipm—e-10))”

¢ factors m — £ — 1 factors

and

Cj 0.0 C k,f—Hf
= Bj_in Bj—ﬁ—&-l,n Bt Byjn —Ejo1 [Bja]) Bjiot Bjpim] - Ejmt Bjgm—i—1,4] X
XBj—t—km Bj—t—ktin - BjgnBi—in Bjn —Ejo1 [Bjn]) Bjict Bjinl - Bjct Bjrm—r—k—1,n]
= B ¢ pn-Bj1nBin —Ej_1[Bja])? x
¢+ k factors
(Bj—1 Bjsrnl it Bipm—rk-1n))” Ejo1 Bism—r—kn] - Ejo1 Bjym—e-1n),
— (£ + k) — 1 factors k factors
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Consequently, using Lemma 5,

LS B I @n2)] L T = / (Zp”” ) +2 Y m— 0= 1) N —ps>) s,
j=m

which, after some standard algebra becomes,

Yoo = /Olpzml(l—ps) (Z +22 —(—-1) >ds

/1 P (14 ps — (2m(1—ps)+1+ps)ps)
0 1_ps
/1pmp’? 2m+1)—p™* (2m —1) — (14 p;)
0 s 1_ps

ds

ds

Finally,

(i (2) = Bjn—Ejm1 Bia))’ Ejct Bjsin] - Ej1 Bjsm—1n]
Bj—1n Bjn — Ej1 [Bjn])* Ejm1 Bjt1n] - Ejo1 [Bjtm—2.n]

+ 4+ +

Bi—m—t1n--Bj—in Bjn—Ej [Ej,n])g .

Applying Lemma 5 again,

fZEJ [ (s (2)] —>/ mp™ (1 — pa) ds,

j =m

which completes the proof.

Lemma 7. Under Assumption 2, asn — oo and k > 1

SITY — [ (ps)? dS] stably
(

where
1 n
k
ST ZB] nBjtin  SITHM = - z_:lBjynBM,n
and MN (0,%) denotes the mized-normal with covariance matriz ¥ whose elements are

E: 1 E 1
Jo 4p3 (1 —ps) ds [, p? +2p2 — 3pi

1 1
Jo P24 2p% = 3p% [, 4p3 (1 —ps) dS]

Proof. We consider the following decomposition

SIT(I fo Ps)

— Ay + A,
"lsiT® — flp P
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where

1
il Bj Bjt1n] — [y P2 ds
1
[BJ n} IEj+k—1 Bj+k,n] — fo pg ds

Ay = 1y Bjt1,n — Ejo1 [Bjn] Ej [Bjt1,n]
ne B, n]B%Hk n—Ej1 [Bin]Ejrr—1 [Bjik,n]

1 n
=i |g,

J:1

As is asymptotically negligible (which can be proven as in Lemma ?7? above): It is so sufficient to show that 4; = sLably

MN (0,%). Before proceeding, we note the following things. The first component of A;, A (1), coincides with the
quantity ¢, as in the previous Lemma by setting m = 2. The second component, instead, coincides with ¢; ., if we set
k=m—1and B;y; =1forall i € {1,...,m — 1}. Mimicking the steps done in the previous lemma, it is not difficult to

see that Ay can be explicitly written as

2 1 & (1) 1 [R,(1)
4= R +
fJZ i+ n]_m[ (@] " Vn R, (2)
with
;1) = Bjn—Ejm1[Bin]) Ejm1 [Bjsin] + Bjm1n (Bjn — Ej—1 [Bjn])
752 = Bjn—Ejo1[Bin]) Bjo1 Bjvm—1,n] +Bj—m-1),n Bjn — Ej_1 [B;n])

and the reminder R, /\/n is asymptotically negligible. Thus, we need to determine the following convergence
= zn: 1t (0, )
\/’77, ' 77] 9 .
j=m

To do so, we want to use the Corollary 3. In particular we have to determine the functions ¢ and ¢, It is convenient

to rewrite n; (1) and 7; (2) as follows.

N; (1) =Bj—1,nBjn + BjnEj—1 Bjtin] —Ej1 [Bj—1,.Bjn + B nEj—1 [Bjt1,n]]
75 (2) =Bj_(m-1),nBjn + BjnEi—1 [Bjtim—1)n) — Ei—1 [Bj—(m-1),nBjn + BjnEji—1 [Bjs(m-1),n]]

It follows that n; (1) can be rewritten in terms of a function oM :R3 - R in the following way
15 (1) = ¢ (Bj—1,0, By, Bj—1 Bys1,n]) — Ej1 [@(1) (Bj—1,n, Bjn, Ej 1 [Bjﬂ,n])]

with o (21, 29, ¥3) = 21224+ x223. On the other hand n;j (2) can be rewritten in terms of a function ©@ R2m=D+1 4 R

in the following way

7 (2) = ¢ Bi_gnrnm Bim Eit Bipnl s Ejot [Biymon)])
- Ejq [90(2) (Bj—(mt1ymr > Bims Bjo1 [Bjpam] - Ejoa [Bﬂ(mfl)])}

with <p(1) (xl, e ,.’Eg(m_l)_;,_l) = T1Tm42 + Tmy2T2(m—1)+1- NOW, we proceed by noticing that for all j the vector n; is

Fi;.,, measurable and bounded. In particular

ZE] 1 [H N ] 0.
j=m \/>
Besides, we have that E;_; [n; (1)] = E;_1 [n; (2)] = 0. We proceed now to show that n~* dimm Ej-1 [77]77]} £, %. For
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the first component we inherit the result of the previous Lemma and we conclude that
Ly p . ! 2 3 4
=~ Bl () (D] =5 S = | pl+2p] - 3pids
j= 0
j=m

We consider now n; (2) n; (2). Using standard algebra, we obtain

2 2 2
20 (2) = (Bjm1 [Bjrmo1):n])” Bjn — 2BjnEi—1 Bjnl (Bim1 [Bisimo1ym]) + (Ejot Bisrononyn]) (i1 [Bjn])’
2
+ Bjtm-1)nBjn — 2Bjrim—1)nBinEi—1 Bja] + Bt (m-1),n (Ej—1 [Bjn])
+ 2Bt (m-1)nBjnEi-1 [Bjt(m-1), 7]

- 4Bj+(m—1),nBj,n]Ej—l [Bj+(m—1),n] ]Ej—l [Bj,n} + 2Bj+(m—1),nEg‘—1 [Bj+(m—1); n} (Ej—l [Bj,n])Z-

Applying Lemma 3 we obtain
BN P Ly 3 4
~ > B (2 (2)] 5 T = / ps +2p; = 3p,ds
j=m 0

Finally, we have the following

n; (1) n; (2)
= Bjn—E;i1[B;])"
(ijl,nBj—(m—l),n + qu,nqu [Bj+(m—1),n] + Bj—(m—l)]Ejfl [Bj+1,n] + qu [Bjﬂ,n] ]Ejfl [Bj—s-(m—l),n])

Using again Lemma 3 we have

1 n . 1
e By (@) ST = [ 4pt (- p) ds,
j=m 0

which completes the proof. O

Lemma 8. Assume that p; has Riemann integrable paths. Then, as n — oo,

1 ¢ wep [
— E B;n —f/ s ds.
n & 0
Jj=1
Proof. Consider the decomposition:
= Bin=—> Bjn—pin)+— D Pin
j=1 j=1 j=1

By Riemann integrability,
1 !
- ij,n ” Ds dS,
n = 0

hence, to conclude, it is enough to show that the array n=! Z?Zl (Bj,n — pj,n) is AN. We use Lemma 1 and we define

& =n"" (Bj, — pjn). Since

1
Ej-1 6] =Ej1 {n Fi

i—1,n

Bjn — Pj,n)] = %]E [E [Bj,n — Pjn

vFEP ] =0,
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it is enough to prove that Z?zl E;_1 {(gj”)ﬂ 0. By boundedness of Bernoulli random variables and the probability

process, for some constant C' > 0, we have:

n n 2
7)2 C
ZEj—l [(fj) } = Z]E ’ Bjn = pjn)| | < —0,
j=1 Jj=1
which completes the proof. O
Lemma 9. Assume that p; has Riemann integrable paths and |E; [[piya, — pil]| = KAL + 0,(ALT) pointwise on L, for

someO<q<%, K,e > 0. Then, as n — oo,

1 n—k 1 n—k
p
v n Z BjnBjt1n — n Zl BjnBjtkn » 00.
j=

j=1
n—k
Proof. First, consider D) = Al=¢ %~ B;n (Bjt1,n —Bjtkn), which can be decomposed as the sum of the two terms:
j=1

D™ =D + D{,

where
n—k

DI = AL7TY BB 1 Bi1n — Bjyknl,
j=1

n—k
DS = AL By Bistin — Bk — i1 Bisin — Bjyknl).
Jj=1

By assumption, for the first term we have:

o

n—k 1
<KDY BjnAn +0p(A5) /Kps ds,
j=1 0

n
where the convergence follows from Lemma 8. The second term can be expressed as Dén) = > djn, where
1

Ej,1 [dj,n] = 0,

and
E [(dj,n)Q] < CAL-2 5,

1
Hence, by Lemma 2, Dén) is asymptotically negligible. Consequently, D) AN f K psds = const, which implies that:
0

-+ o0,

n—k n—k
1 1 ) )
Vvn - 231 BjnBjtin — n E:l B nBjirn| = AL 1/2 ’D( )

j= =
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A.3 Proofs of Theorems 3.4 and 3.5 from Section 3.2
For an arbitrary sequence of integers k,, such that k, — oo and k, A, = % — 0, let
= o =
= Y Bivin = Pjtin)s B =1 2 Pitin = DPj-1n),
i=0 =0

and set h,, = n — k,,. Note that

pi (kn) =pj—1n=0aj + 07, je{l,....hn+1}.

The auxiliary results for the proofs of Theorems 3.4 and 3.5 are summarised by the following Lemma. delete at the

end the numbers

Lemma 10. Under Assumptions 1, 2 and 3, for C > 0 and for all ¢ > 2, we have

(A1) Ejy | sup |pj_ints —Dj—1,al?| < C- ALY
s€[0,A,]

(A2) [Ej_1[pjn —pj—1nll S C- A,
(A3) [B;1 [87)] <O kA,

(Ad) E;j_y [|87]"] < C - (katr,)Y?
(A5)  [Bj—1 [af]| =0

(A6) E;_i[|a}]] < Ck, /2

1
E;_4 {(04?)2 — 5 Pi-1n (1 _pjl,n):| ’ <C-A,

A8) [Eys [} =0

(32)

(33)
(34)
(35)
(36)
(37)

(38)

(39)

Proof. The proof of (A1)-(A4) follows the same arguments as in the proof of results of Appendix A and Lemma B-4 of
Aft-Sahalia and Jacod (2012). In order to complete the proof of the Lemma, we need to prove (A5)-(A8). Equality (A5)

easily follows by conditioning on the path of the process p;.

kn—1

Z E] 1 ]+7,n ijr'Ln] =0.
(C—

By 0] = |

To prove the other relations, we first observe that conditioning on the path (pt)te[o 1] we have

Kk, —1 —2k,—1—1
1 n n
Ei1 {(OZ?)Q} = kizEjfl Z (Bj+i,n _ijri,n) + ]Eg 1 Z Z ]Jri,n _pj+i,n) (Bj+i+m,n
n i=0
kp—1

1% 2 1
T2 Z Ej [(Bj-&-im — Dj+in) } kg Z Ej1[pjtin (1 = pjrin)] <
noi=0

Sl

where the last inequality is due to the fact that p; € (0,1). Moreover, we have

kn—1 kn—1

1 1 1

- Pj+z’+m,n)

E; 1 [(a?)z_knpjl,n(l_pjl,n)} kg Z Ej1 pj+zn Pj— 1,n] — k‘2 Z Ej4 pj+1n pg 1n] .

=0 =0
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By applying triangular inequality, we obtain

kp—1
2 1 1 ¢
Ej [(a?) - Epj—l,n(l —pj—l,n)” < 72 E |Ej—1[Pjtin — Pj—1,n] 72 E E;1 p]+m pi_l,n”~
ni=0 ki =0

Hence, (38) follows from (33), whereas (37) from Holder’s inequality and (40). Finally, (39) is obtained by conditioning
on the path (p¢);c(o 1) and by using Eq.(36). O

Proof of Theorem 3.4. For any ¢ > 0, define a function of ¢, p(k,, t), as

Plkn,t) = pj(kn), € (4 —2)An, (7 = 1)A].

First, we prove that p(k,,t) converges in probability to p; for every ¢t € [0,1]. For any ¢ € [0,1] and j; such that
t € ((jr — 2)An, (Jt — 1)A,], we have:

G+ DAL < (e +5)An =t < (G +2)An.

Second, we have

[ Fp—1 2 Fpn—1
N 1% 1<
E | (p(kn, ) —Ptﬂ = E (k > Bjitin —pt)> =Els > Bjrin — i)’ kz Z jetign — Pt) Bjoirn — pt)
|\ =0 o i=0 i
1! 1
= Bl > Bjyim—p)’| +E kﬁZ(Bg‘tH,n = pt) (Bji+irn — pt)
L™ izo n oy

The first of the two terms converges to zero by boundedness of B, 1; , and p;. Concerning the second, we have that, by

conditioning on (pt);epo,1] and (33)

E[(Bj,+in — Pt) Bj,4irm — 2l = [E [PGitiya, — Pe) B [PG+ina, —pe]| < ClknlAn)?,
hence,

1
E k72 Z (Bit-‘rj,n - pt) (Bit-‘rj’,n - pt) S C(knAn)z — 0.
" s

Thus, p(ky,,t) —= p; for each t € [0,1]. Now, we write U (A, f)" as

hn A,

U (A, )" = A f (B (kn) + / @l 1))
0
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and we compute

H (A f)" /fpé ] _ AnE’ N n>>—/01f<ps ]+h:/Anasds
NS /Ol(f(ﬁl(kn)) ]+h;]A"asds

hn Ay
Sy bl ds] + 0/ 0y ds

A
Q
P>
3
+
S
3

©
QU
[Va)

where a,,(s) = E[|f(@(kn,s)) — f(ps)|], C is a suitable constant and we used the locally boundedness of f(-) and the
boundedness of ps and p(ky,,s). By continuous mapping theorem, condition p(k,t) 5 p, implies that, for a given
s € [0,1]

F(@(kn, 5)) == f(ps), (41)
Nonetheless, since the sequence of random variables f(p(ky, s)) is uniformly integrable (using, again, the locally bound-
edness of f(-) and the boundedness of p(ky, s)) then the convergence in Eq. (41) is also in L! norm and so a,(s) — 0

for each s. Besides, since a,(s) is uniformly bounded in (n,s), U (A, f)" <<% fo (ps) ds by dominated convergence
theorem (cfr. Jacod and Protter, 2012, Theorem 9.4.1). O

Proof of Theorem 3.5. First, consider the following decomposition:

G UD) = VS (£ ) )7 G (7 )~ [ £
\/Tn ny 1 1 = nj:1 Dj \Fn 2kn Dj\Fn))Pj(Kn Pj \Fn \/Tn 0 Ds S
= Y U7,
with
_— 1 hn+1 i, ‘ 1 1
Ot = X Lo Ut as- o= [ e e
hn+1
UR)) = VA D> f (pi-1n) B8]
j=1
hn+1 1
O = VB3 (£ = F0rm1) = (ogo) (@ 4 57) = 5 87 By (65 () (1= 5 () )
-
U@y = @Zf’(pj—l,n)a?-

At this point, the rest of the proof is divided into four parts. In the firsts three we prove that U (k)", k = 1,2,3, is AN,
whereas in the last part we show that U(4)" SLably MN(0,%).

Part 1: Proof of the AN of U (1)
Remember that h, = n — k, and that n = 1/A,,, whence 1 — (h,, + 1) A, =1—(n—k, +1) A, = kn, A, — A, Since

20



f(ps) is bounded, for the second term of U(1)} we have

i f(ps) ds| < Ckp/ A, — 0.
(han +1)A
hpt1
The first term of U(1)7 can be expressed as ) &}, where
j=1
1 JAn

= — i—1n) — s)) ds.
fj VA, (=D (f (Pj—1,0) — f (ps)) ds

Since the process f(p;) is bounded semimartingale by using inequality (33) we get

1 1

Ap

]E —

[E [€71]]

A
/( (f j—1,n) = f(Ps)) ds]

i=1)An

JAR
/( E[E;_1 [(f (pj—1.n) — f (ps))] ds]

i=1An

1 JAn 1 iAn
< g [ BB el S e [ BRG]
< \/%AELZC(A B2 o,

while, using inequality (32) and Holder’s inequality, we obtain:

. 2
e[l = 3-E ( /(ji"m (f (Bj-1a) = (2)) d)]

B ALE / / fPj-1,n) = f(pg)) (f(pj—1,n) — f(ps)) dsdq
[(G—=1)An (j—1)Ax
JAn JA,

E[(f(pj—1m) = F(pg)) (f(Pi—1.n) — f(ps))] dsdg
(G-DAn (j-1)An
7N 7

-

A / / ﬁ[mpj_l,n)f(pq>|2}E[|f<pj_1,n>f<ps)|2}dsdq

! (j_l)An (j_l)An

JAn JAn

IN

1
n(jfl)An (.jfl)An

IN

Consequently, by Lemma 2, U(1)} is AN.
Part 2: Proof of the AN of U (2)

Using Lemma 10 and boundedness of f’ (pj_1,,), we obtain
hn+1 hn+1 hn+1

Z’]E] 1[\/7J'j Pj—1n) H<Cz\/7|E315n’<CZk 3/2 o,

and

hn+1

ZE“UFJ" pjlnﬁ(]s 1 A8y <C i C (n—kn) b A2 < Clin Ay — 0,
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and so
hp41

kn > E [WATJ' (pjl,nm;ﬂ < CE2A, — 0.
j=1

Consequently, by applying Lemma 2 we get that U(2)7 is AN.
Part 3: Proof of the AN of U (3)

hn,+1 4 .
As a first step, we rewrite U (3)7 as U(3)7 = > > v} (k) with v}, (k), k = 1,...,4, suitably defined triangular arrays.
J=1 k=1
To do so, we remind that
kp—1
af + B = — (Bj+in = Pj-1.n) = Dj (kn) = Pj—1,n-
™ i=0

Using Taylor expansion of f (p) around py = p;_1,, and computing the expansion in p = p; (k,), we obtain

@5 (kn)) = f (pj—1n) = f (Dj—1m) (0 +B7) = %f” (Dj—1.n) (@ + B + éf’" (%) (a2 + 587,

where pj is a point between p;_1, and pj_1, + o + 8. Then, we have

31" pimin) (aF +57)° = 51" (Pi-1) <(O‘j)2 +205 5] — - pi-1a(l pj—lm))
1 1 ]- 1 n 2
+ ﬁf (Pj-1,n) Pi—1,n(1 —Dj—1,n) + of (pj—1.n) (B7)"
hotl 4
Consequently, U(3)7 can be represented as U(3)} = '21 kZ1 v} (k), where
J: =

An n nan 1
U?(l) = Ff” (Pj—1,n) ((%—)2 + 2a; 5]- - kfqu,n(l —le,n)> )

2
An 1 An 1" (= fol fol
GO = By )byl = pyoin) = SR () B () (L= 5 (k).

g® = Y ()

VA,

W) = () (o +57)°

We have to prove that all the triangular arrays v (k) are AN for k = 1,2,3,4. First, consider v;(1). Inequalities (38)

and (39) imply that ’Ej,l [v;‘(l)H < CA?/2, and so

hn+1
> B ()] < CAY? 0. (42)
j=1
Besides
n An n n an\2 1
v (1)? = Tfﬂ (Pi—1.n)” ((Otj )t +4 (afB})” + kjp?_m(l —pjo1n) +
3 on o (aF)? 4oy By
+4 (o) B} — 2 kj Pj—1n(l =pj_1n) — ]; Lpj—1m(l fqu,n))
An n n pn\2 1
< Tf// (Pj—l,n)2 ((O‘j )4 +4 (aj ﬁj) + kjpiq,n(l —pj71,n)2 +
n
a3 o (af)? 4oy B}
+4 ’(%) 7| +2 =Pl = pj-1n) = ——Pj-1(1 _pj—lm))-
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Now, in computing E [v;’(l)z} we consider that
e Inequality (37) implies that
Ej—l [(06_7)4] < Ck'72

>~ n o

and that

(a™)? _
E;_1 [ k] pi—1n(l—pj_1n)| < Ck,2.

e Cauchy-Schwartz inequality plus (37) and (35) imply that

B [(8)7] < (B [@)']) " (5 [(89)]) " < 0

and that " .
< (Ej—l [(a;}f]) (Ej—l [(551)2}) <Ck? A}/Q.

e Equation (39) implies E; ;1 [a ' knpj—1.n(1 —Pj—1n)] =0

B ()" 57

Summing up

1 VA,
Ej1 [vj(1)?] <CA, (kz + AL+ )

n

whence
hn

kn Y _E[v}(1)?] — 0. (43)
j=1

Summing up, the limits in (42) and (43) imply, through Lemma 2, that v7 (1) is AN. Now, consider v}(4). Since both p;
and p; (k) are in [0,1], |f"(pF)| < C, for some constant C' > 0, hence, we have:

hnp+1 hnp,+1

hn+1 An n n 3 n 3 n 7 2 n 2 n n 3
X:LF— SCE:vAn@fWH‘:CE:V&%aﬂ+3MH@}+M% Wﬂ+%’)
= =

Jj=1

£ 95 (05 + 55)°

Using estimates from the preliminary results and Cauchy-Schwartz inequality, we have the following implications.

o inequality (37) implies
hp+1

> VBB [Jaf] <0 kA B0,
=1

e inequalities (37) and (35), plus Cauchy-Schwartz, imply

hn+1 hpn+1

S VA [l 1g] <o S VAL [l E ] < ok 2o,
i=1 ~

and

hpn+1 hyn+1

> VAE; [laﬂ fﬁ;‘ﬂ <Cc > m\/Ejl [!a;?ﬂ E, [Iﬂ?ﬂ <Ok A2 250,
=1 =

e inequality (35) implies
hnt1

> VAE |8 <0 k2A, 20,
j=1

Whence
hn+1

Z |E;j—1 [0} (4)]] 25 0. (44)
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Now consider

Pl Pl 6 2 4 4 2 6 4 2
2 n n n n n n n n
dou ) < CZAH(|%| +9a7 "8} " + 9o [ |87+ 87" + 6 |a7 [ [B7] +
j=1 i=1
+ 6 |z |8r]+ 2 [ag ] By + 18]y 1871 + 6 [ag] 8717 + 6 g 87" )

hnp,+1
0> Au(fop [+ 15 g 87"+ 15 03 | 871 + 187° + 6 |og |7 |87 ] +20 o} [* 871" + 6 Jag] 87" ).

inequalities (37) and (35), respectively, imply

hn+1
Ba > AE [[of]’] < CR2 0,

hn+1

Fon ZAE[W ° < (k‘*“A) —0,

and, using also Cauchy-Schwartz, they imply

hp+1 _
ko S AGE[|ar) !B}?Iﬂ <O (knAp)? — 0
j=1 )
hn+1 i
Ba >0 AE [[of[* 1877 < Ok 2 An — 0
j=1 )
hnt1 i
ka3 AuE [Jay ] 7] < k7t AY? —0
j=1 )
hntl 6/5 A 5/2
ko >0 AGE [af] 7] < (kK°a0) —0
j=1
hnt1 3/2
kn ALE ||af ﬁn k2/3 —0
5 are o 7] < (2°)
Consequently,
hn,+1
ko Y E [vy (4)2} 0. (45)
j=1

As before, the limits in (44) and (45) imply, through Lemma 2, that v} (4) is AN. Similarly, for v7(3) we have

hn,+1

>m |5

7" (p) (@?)ZH < C /By 230, (46)

besides
hn+1

38 H P () (D)

hence, the limits in (46) and (47) imply, through Lemma 2, that v7(3) is AN. Finally, consider v7(2). Using Taylor’s

expansion, we have (remember that p;(kn) — pj—1,» = o} + B})

] (k:3/2 An)Q 0, (47)

" ®(kn) = f" (pi=1.n) + £ (05) (oF + B7) -
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Consequently v} (2) takes the form

GO = L Grrn) a1 pgoa,) — e @ () By (k) (1= ()
VB, VB

= 5 imin) pg-na. (L= pg-na,) = 57 (f" (pj—1m) + " (05) (F 4+ B7)) Dj (kn) (1 = D (kn))
VA,

= f// (pj—l,n)p(j—l)An -

i (pj—l,n)p%j—l)An

2k, 2k,
VA, . VA, N VA, W fom L any & N
- 2k, f// (pj—l,n) Dj (kn) + 2k, f// (pjfl,n) 2 (kn)2 - 2k, fm (pj) (aj + 53) Pj (kn) (1 —Pj (kn))
VA, . VA, ~
= - an f/l (pjflm) (pj(kn) - pjflm) + 2kn f// (pjflfﬂ) (pj(kn)2 _pifl,n)
\ An * n\ -~ ~
- me (pj) (04 + 5 ) pj (kn) (1 = pj (kn))
\4 An n n \4 A" ~
= T f"(pj—1m) (af +B7) + 2k, F"(pj-1m) @5(kn)? =1 )
.Aj,n Bj,n
\4 An * n\ -~ ~
me (pj) (Oé + 5 ) pj (kn) (1 = pj (kn)) -
Cin
Using Lemma 10, we have
B, VAL
i1 {knf" (PG-1a,) 0‘?} ’ =0,
=1 "
- A 2| n|2 -2
b Y E |25 (" (pg-nan))” o] < Ck2,
j=1 tom
h
n A
> Ea‘l[ 1" (pG-na,) B} ”<CA1/2
j=1 "
hn
o SB[ 22 (7 (-va))* 9] <0
j=1

which imply, through Lemma 2, that A4;, is AN. Now since

Bjn = s F" (pj—1n) (@] +B7) (05(kn) + Pj—1n) = Ajin (05(kn) + Pj-1n)

and being (p;(kn) + pj—1,n) bounded, we can apply to B;, the same reasoning used for A;,, whence B;, is AN. An
identical reasoning applies to C;,,, which is then AN as well.
Part 4: Proof of the convergence UJ* (4) LY MN (0,%)

Recall that U(4)} is defined as
VA, Mt kp—1

Z ]BJ-H n

U Tl

For the sake of readability define, temporarily, the variables

aj—1=f" (Pi—1n),Bjri = Bjyin — Pjrin
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so that . i
—knp+1 ,—1
VA, <
i aj—1 E Bj+i.

vy =Y

j=1 i=0

The convolution of summation in U (4)] can be re-written as

n—Fkn+ kn—1
> a1 > Biyi = ao(Bi+Bot+--+By)+ar B+ Byt + By ) +
=1 i=
+ag,—1 (Br, +Br,+1+ -+ Bag,—1) + ak, Br,+1+Bi, 42+ +Bay,) +---
tan—k,-1 Bnok, +Bnp,41+- +Bu1) +anr, Buot,+1 +Bnp,41 -+ +By)
= Blao-f—Bg (a0+a1)+B3 (a0+a1+a2)+~~~—|—IB%kn (a0+a1 +a2+...+akn,1)
+ Bg,41 (a1 +az+as+...+ag,)+Bi, 42 (a2 +as+as+...+ag,+1)+ -
+ Bukot1 (@n—2k,+1+ Cn—2kp1+ -+ Cnk,)
+ Ba—k,+2 (@n—2k,42 + Gn-2k, +3+ At an—, )+"'+Bn 1 (@n—tp—1+ Gn—k,) + Bpnan_s,
j—1 n—knp+1
SR DOWES LS SETD ST Y
=0 j=kn+1 i=j—k j=n—kp+1 i=j—kn
kn -1 n—kn+l  knp—1 kn—1
(RYRENEEED > D yUNEEES S Th SPRETED SR DR
j=1 7=0 Jj=kn+1 =0 j=n—kp+1 i=j—n+k,—1

n  (G=1A(kn—1)

= Z Z aj,ilej.

j=1i=j—n+k,—1V0

Hence,
" (G=DA(kn—1)
U@ = VA”Z;? Z I (Pj—im1n) Bjm — pja,.)
§=1 " i=j—ntkn,—1v0
n 1 (F=DA(kn—1)
= VA | X i) | P iman) + F 0im1n) | By —pja)
j=1 " i=j—n—+k,—1V0
- VAan/(pj ln)(Bjn biA, +\/ Zw _ijn)7
j=1
where
1 (jil)/\(knfl)
wj =~ Yoo i) = (Pj-1a)-

" i=j—n4kn—1V0
By conditioning on (p¢)¢efo,1], E [w;l (B — ijn)] = 0. Next, by (?7?),

lwi| < C sup [ps = Pj-1,nl-
se[(j_l)Anv(le'kn_l)An]

Hence, inequality (32) implies that E [|w"| } < CV/A,, when k, < j < |1/A,| — ky and ’w;" < C always. Therefore,

since both B;,, and p; are bounded,

2] CAY? ky <j < hn,
oA, otherwise.

-1 U V Anw‘;‘l (Bj,n - ijn)
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Consequently, ZU/A n E;_ [|\/Anw§b (Bjn —pja.,) ﬂ — 0, which, by Lemma 2, implies that VA, ZJU:/IA"J w} (Bjn
is AN. Now, set &' = /Ay f' (pj—1,n) Bjn — pja, ). Clearly, E [¢}'] = 0 and we have:
n)2 2
E;j1 [(ﬁj) } = Ay (f' (pj-1.0) Ej1 [pia, — (pia,)?]
Since, (f’ (pj,l,n))2 is bounded, using (33) we have:
n\2 2
’Ej—l [(fj) } — An (f (Pj-1n))” (Pjo1m — (Pjm1m)2) | < C(AL)2
Hence,
[1/An]
Z E] 1{€n / f ps ps(]-*ps)d
Consequently,
U
> g = MN(,R),
j=1
which completes the proof. O
A.4 Proof of Theorem 3.6 from Section 3.3
For any process X, denote the increments by A?X = X(j11)a, — Xja,. Set k, = 0 [\/n] and define
n—2k,+1
i=1
Then, we have to prove that, as n — oo,
1
k 1TV, —> uds—l——/ps(l—ps)ds.
We have
= Fn—1
ﬁj (kn) = . Z (Bj+i,n — Dj+i, n Z Pj+in-
LN— n
Consequently, the difference between pj i, (k) and p; (k,) can be expressed as
1 2zl 1 Pl
Pjtn (kn) = Dj (kn) = > €(1)i Bjyin —Pitin) + . > (Djvithen = Pivin), (48)
" i=0 ™ =0
where, for m € {0,...,2k, — 1},
-1, 0<m<ky,
€(L)m =

+1, k, <m < 2k,.
Then, using telescopic sums, notice that

kn—1
(Pitithnn = Pitim) = D Djrirenp.

o7

—Dpja,)



Now note that the sum S;,, = Zf;al (Pj+ithn,n — Pj+in), collecting identical terms, becomes

Sim = Afp+AJLp+Afop+ .+ A p
+ AV p+ AV op+ . AT P+ AT D
+ A+ A p+H A P+ AT D

+ A, P+ A P A P+ Ao 0P
= A? p+2A]+1p+3A?+2p—|— otk A?—&-kn—lp“r(k ) A]-‘rk} p+. +A?+2kn—2pa

k, terms ky,—1 terms

which can be re-written as

kn -1 2k3n -

=
n

1
(Pjtitknn = Pj+in) = T Z € (Pj+it1n = Pijtin)
i=0

i=0 n

where, for ¢ € {0,...,2k, — 1},
€2); =G+ 1) A (2kn—i—1),

and, in particular, €(2)ax, —1 = 0. Now expression (48) becomes

2k, —1

~ ,\ 1
Pjtn (kn) = Dj (kn) = D (e(2)i Bitsm — pivim) +€(2)i (Djritin = Pivim))
whence
| 2knsl
~ ~ 2 2 2
(Dj+kn (kn) —Dj (kn))™ = w2 > <€(2)? (Bjtim — Pitin) +€2)7 (Pjrit1n — Pitin)
no =0
+ 2€(2)i€(2)i Bjrin — Pjrin) Pjritin — pj+i,n))
2kn,—22k,—1
+ 2 ) > (6(2)i6(1)é Bjtin — Pitin) Bjten — Djven)
J=0 e=j+1
+  €(2)i€(2)e Bjtin — Pjtin) (Pjtet1,n — Pjten)
+  €(1)ee(2)i Bjte,n — Pjten) (Pj+it1,n — Pjtin)
+  €(2)i€(2)e (Pjtit1n = Pjtin) (Pitet1n —pj+e,n)> (49)
So, setting

C(1); =Bjn —pjn, ((2)j =Pjr1,n — Pjin-

we have the following more compact expression

12 2k, —1 2kp—2 2k —1
(Pjten (kn) = Dj (kn))” = 15 > < > ew)ie)iC(w)4iC(v)ri +2 > > el )J+1C(v)z‘+z>~
nu,v: =0 =0 Il=j+1
Consequently, IV,, can be expressed as
7 n—2k,+1
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where

_ 2k, —
1 ) ] e )
vi'(1) = iz Z Bjtin —DPjtin) = iz ZO ? (Pititin — Pitim)
1= =
o 2=
v =12 6(1)i€(2)i Bj+in — Pj+in) (Pj+i+1n — Ditin) ;
n i=0
9 2kn—22k,—1
vid) =13 > e(0)ie(1)i (Bjrin = pivin) Bjtin —Pjtin),
=0 =i+l
2kn—22k,—1
" 2
vi' (5) = = Z €(2)i€(2)1 (Pj+i+1,n — Pj+in) (Piti+1,n — Pj+in) ;
ni—0 1=j+1
2kn—22k,—1
" 2
v (6) = 73 > e(1)ie(2)i Bjtim = Djtin) Djtis1n — Pitin)
kn = l=j+1
9 2kn—22k,—1
v (7) = %2 Z €(2)ie(1)1 (Pjrit1.n — Pitin) Bjrir1,n — Pjtin) -
=0 I=j+1

Consequently, in order to study the convergence of IV,, in probability, we need study the convergence of the sums
n—2k,+1
v7(s) for s = 1,...7. In what follows we use the abbreviation g,, = n —2k,, +1. For sake or readability, we divide

j=1
the rest of the proof in seven parts.

Part 1: Proof of the convergence in probability of vl (1)

gn
The quantity - > v}(1) can be decomposed as
"=

9n

1 & n
knz; Zd()+zd12’
i=

where

2k, —1 2k, —1

1 1
=3 Z ( j4im — Pitim) — Pi-1n (1 _pi—l,n)) ) d;"; =73 Pi—in (L= pi—1,n) -
ke = L e

gn
First, we show that > dgﬁ) is AN. We have
j=1

In 1 2k, —1

In
Z‘Ej_l |: 57)” = st Z |Ej 1[p]+zn Pj— 1n+pj 1,n p]+zn]|
j=1

j=1"" j=0

gn 2k, —1
1
< 73 Z |]EJ 1[Pj+in — Pj—1nll + ’Ej—l [p?-s-z',n *p?—l,n] D
j: n =0
gn 1 2kn
= > = (|]E]—1 Pj+in = Pi—1m]l + [Ej—1 [(Dj+in + Pj—1n) Pjtin — Pi-10)]])
j=1"" =0
9n 2kn—1
1 knBp(2ky — 1)g, 1
B SEN S LU S IV B
j=1"" =0 n "
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where we use conditioning on (pt)te[o 1 triangular inequality and Lemma 10. Next, using the boundedness of p;, we

obtain

n)
j,1

kZEﬂ[

9n 2kn 2
an —1)%gn 1
]<k2k6<20> = Nk%AnHO.

9n
Consequently, by Lemma 2, Z d( is AN. Now, consider > dgf;). We have

j=1 j=1
( gn 2k, —1 gn ) 1
n
zdﬂ=,€22% zpj L= 2y 1) 92219] D)tz = g [l pds
j=1 0

where the convergence is point-wise, by Riemann integrability. Combining the two results, we obtain:

1
1 & wep. 2
k—ZU?(l) R ﬁ/ps(lfps) ds. (50)
0

Part 1: Proof of the convergence in probability of vl (2)
First note that v7 (2) can be written as

2k, —1 2k, —1 2k, —1

GO = > @ (AL) =y DD @ (A1) 4oy D €@ [(A%) - (A1)
=0 =0 =1

so that the sum over the index i of all the v} (2) becomes

1 9n 1 2k, —1 gn 1 gn 2k,—1 ) )
S @ = Y @Y (A5 g Y €@ (A7) - (a79)7]
n =0 (- §=0 noj=0 i=1

An By,

Now we want to prove that A, converges in probability to a finite quantity, while B,, is AN. Using the definition of the

integers coefficients €(2); it is easy to show that

1 2Lt 1 2
2 3
Hence, the standard theory of realized volatility for the semimartingale
t t
b =P0+/ .Usd3+/ vs dW
0 0
now implies that
9 1
A, 25 2 / v2ds.
3 Jo
Concerning B,,, we write it as
gn 1 2kp,—1 ) )
B, = Zﬁj-i-l,n with 9410 = e Z €(2); |:(A§L+ip) — (A%p) } )
j=0 nooi=1
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and, by Markov inequality, the It6 isometry and the boundedness of” v
A
[ ved = (W~ Wo) + 0,(8172) (51)
0

whence, considering also that fot ps ds is O, (A,,) for bounded p , we have

(G+1) A, G+1) A,
Pj+1n — Djn = / s ds +/ vs AW, = (ijn + Oy (v An)) (Wit1,n — Wjn) + Op(An)
jAVZ jAn

= Vin Wjst1n = Wjn) +Op (A’}L/Q) (Wit1,n = Wjn) + Op (An).
The square of the increment A?p = (pj+1,n — Pjn) then becomes

(A1p)" = V2, (ATW)"+ (A7W)7 0,(A0) + 0, (A2) + (A7W)* 0, (AY2) + (AJW) O, (An) + (A3W) O, (A32)
+0, (A2) + (A7) 0, (AY2) + (A7) 0, (A),

which, by preserving only the leading terms, can be further simplified into

(A7p)° =v2a, (ATW)* 40, (AL2) (AJW)* 4 (AW) Oy (A). (52)

J

so that
E; [(A79)°] = v}, Bn + O,(A%/2).

Now consider the same increment shifted by 7 units

(Aj+zp) = H—J n (A?HW)Z + OP (Az) (A?HW)Q O:D (A;/Q) (A;LM ) (An)
= (2, 40,20 +0, (ViAW) (a7,W)* +0, (A2) (A7 W) 0, (A1/2) + (A7, W) 0y ()
= V?A (A;LH ) (A;LH ) OP (V J An) + OP (Ai) j+z Op A /2) A;Lﬂ ) OP (An)a

which, by preserving only the leading terms, can be further simplified into

(A]_Hp) = (A?-H ) (A?-‘rz )2 OP( iAN> (53)

and so
[(Ajﬂp) ] V2, A+ O, (2-1/2 Aip) _

Therefore the F;,  -conditional expected value of the difference between (A’ +Zp) and (A;‘p)2 has the following order in
probability

E; |(a%.0)" — (&79)°] = 0, ("7 83°).

implying that
gn 2kn,—1

Z]E jt1n] = k13 €(2)?0, (i1/2 Ai/2) =0, <(k'n An)l/z) N
noj=0 i=0

9Here we follow the standard approach

(g ) < g

and then the identity (51) follows from the boundedness of v.

A
/ (vs — vp) dWs
0

2) = M12AIE (/OA(VS — 1) ds) ,
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which is the first of the two conditions in Lemma 2 that guarantee AN. To prove that also the second condition is satisfied

consider
1 2k, —1 2kn—22k,—1 ) 9 9
b = e 2 @ (A5 = (A1) i X D e [(an)’ - (ag0)7] [(A5)” - (ag0)7].
n =0 i=0 (=j+1
Cin Din

From (52) we get
(A50)" = v (AFW)" 4 0,(A0) (AFW)* 402, (AFW)” 0, (87) +2072, (A7W)* 0, (A7)
b2 (W) 0,80+ 200 (3W)' 0, (237)

and hence
n,\4 5 5
E; [(A1p)"] = 30k, A2 1 0,(A3) + 0,(83) + 0, (AF?) = 30k, A2 + 0,(A?).

Similarly from (53) we get
(AJHp) = (A?+v ) (A?-H )4 O;D (] An) + 2VJ2', (A?-H )4 OP ( iAn)

and hence

E; [(A7.0)"] =301, 82+ 0, (1A3) + 0, (*2A72) = 3u1, A2+ 0, (2 83/2).
Summing up the two fourth powers so obtained
By [(A1m)" + (A7) | =60, A2+ 0, (12 27/2) .
Finally consider that

(A?MW) (A;+ZW)2 OP (m>) X

(y, (A7W)" + (A5)* 0, (AY2) + w3 (AFW) Oy (A)

n 2 n N2
(Aj+ip) (Aﬂ’) =

/—\
SN—

= ( j+i ) (AT'LW>2+VJ2,H (A;LH ) (A}LW) OP A}L/2)+Vj3n (A;LH ) (A?W) OP (An)
+ vk, (A1) (AW 0, (Vid,) + (A )T (A1) 0, (2 A,)

AT
+ v (A7) (A1) O, (M2 A%/2)
whence
By [(a70)" (A79)°] = v, A2+ 0, (83/2) +0, (12 A%2) + 0, (12 2%) = v, A2 + 0, (M2 A%2).

and so
n 4 n 4 n n .
Ej |:(AJ+1p) + (Aj-i-?p) -2 (Aj—i-ip)z (Ajp) i| = _7 n AQ =+ O ( 1/2 Ai/z) )

which implies

- _ 1 & ! n, \2 2 _ 1 & e 4 2 1/2 A5/2) | _
Y ECinl =D Y «E [((AJHp) (a7p)*) ] ==Y Y IE v, AL+ 0, (2AY2)| = 0(a,) — 0.
i=0 n i=0 =0 n =0 i=0
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Concerning Cj », first call ef)z = €(2)? €(2)? and then note that

9 2kyp —2 2kp—1 ) ) ) )
EDjall = 75 > 3 LE[[(a%an)’ — (879)°] [(&7.0)" — (&70)°)]

n =0 (=i
2k, —2 QkW,tll 9 1 1
>3 e (=] (@ - @) ])
i=0 (=i+1
2kn,—22k,—1 5
> > e (Blovinal 0, (5 A1)])

=0 f=i+1

IN
;S;‘ o

¥
N
=
| ——
/~
—
>
<.
+
~
S
SN—"
N}
|
—
B>
-3
S
SN—
~——
N
—_
N———
[N]

3?3“ o
N|=
S
=
—
D
Qt_,;
3
>
3N
+
Q
3
/N
~
M
b
Swolon
N—
[E—
N——
N|=

Since €(2)? €(2)7 < C'k} we get

E[|Djnl] < Chn A7

so that
9n

> E[Djull < Chn Ay — 0,
j=0
and hence, in conclusion, B,, is AN.
Part 1: Proof of the convergence in probability of vl (3)
In what follows we call
C(1); =Bjn —pjn and ((2); =pj+1,n — Pjn-

The quantity v} (3) can be rewritten as

So the quantity - >-7" v} (3) becomes
1 9n gn 9 2kn—1
i Z”;L (3) = = 5(1)16(2)14(1)]'“((2)]'%
" i=0 i=0 "™ =0

First, we observe that, conditionally on (p;), we have that E [Cj (1)j} = 0 and so E;_ [0} (3)] = 0. Then, we note that

» 2
term k,, (vjk(?))) can be decomposed as

v (3) 2 g 2nl , 5 2 g 222kl
kn( k ) T B Z (€(2):) (4(1)1“) (C(2)j+i) +]?5 Z Z €(1);€(2);€C(1)i+5C(2)i+5€(1)1€(2)1€(1)i4+1€(2) i1
" =0 noj=0 =0

Al,n + -AZ,n

Now, by conditioning on (p;), we readily obtain that E [As ,] = 0. Concerning A; ,,, we have

2k, —1 2k, —1
Bl <E |3 3 €@ (c0h (c,0) )| < 5o X @)
ni=0 " i=0
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2
By boundedness of Bernoulli random variables and (p;) we have that (C (1) j +i> < C for some positive constant C.

Hence
C A et s C 23 +k, A
<= 2),)° = A, —1 "~ 2
Hence g
n C
S E[Aiall < - =0
J=1

Consequently, by Lemma 2, kivy (3) is asymptotically negligible.
Part 1: Proof of the convergence in probability of vl* (4)
n

First, by conditioning on (p;) we readily obtain E;_; [vj

n AN 2
<U]k( )> =Ain+ Ao,

(4)] = 0. Next, consider the decomposition:

where
O 2hns? (21 2
A =15 < > 6(1)ie(l)zC(l)j+iC(1)j+z> ;

and

C 2kn—3 2kn—2 [2k, 2k, —1
A2y = 76 Z Z (Z )ie(1)1€(1)+:¢(1 )]-‘rl) ( Z 6(1)m€(1)u<(1)j+m4(1)j+U>7

n o i=0 m=i+1 l=i+1 u=m-+1
2kp—3 2kn—2 2k, —1 2k, —1

= kg Yoo Y Y eselthe(DmeD)uC(1)+iC (1)g¢ (L4l (L rme

=0 m=i+1 l=i+1 u=i+2

By conditioning on (p;) again, we have E [((1);4+:¢(1)4:¢(1)j+uC(1)j+m] = 0 if at least two of the indexes 4,1, u, m are
different. Since in the sums that appear in As ,, one among m, [ or w is different from 4, we have E [A; ,] = 0. Analogously,

the expected value of the cross-product terms in A, ,, is zero. Next, since |((1);4:| < C, for some constant C > 0,

2k —22k,—1
n 2 2 C(2ky —2)(2kn —1) 1
.Al n = k‘ﬁ E E E |: ]—HC( )]+l)2:| S ( ]{,‘25( ~ 7]@4 .

n =0 l=i+1 n n

Hence,
9n o™ 2 C
J
kZE( )]SkiAn%O'
Consequently, by Lemma 2, kivy (4) is asymptotically negligible. Part 1: Proof of the convergence in probability of
vi' (5)

By successive conditioning and using Lemma 10, we obtain

Qk ,—2 2k, —1 2 2k, —2 2k, —1
5 C’A ~C A2 K2
Bl Ol Y O c@ue@idl =072 3 Y ki
=0 Il=i+1 =0 Il=i+1

where we use the fact that Z% -2 Z?kz_: €(2);€(2); ~ k. Hence, we have
gn

1
Z kf |Ej_1 [U? (5)” ~ Ankn — 0.

j=1
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Next, we have

where

2

C 2kn—2 [2kn—1
Ln kG ( Z ( )lC( )JJrZC( )J+l> ,

=0 l=i+1
2kn—3 2kn—2 2kn—1 2k, —1

A2,n:k£6 DX D D e2)ie2ie(2)me(2)ul(2)4:€(2) 541 ()i ul (2)im-

n j=0 m=j+1 l=i+1 u=j+2

Furthermore, we have

Ain =A11n + Al2.n,

where
C 2kn—22k,—1
A = 7 Z Z (€(2)i€(2)i€(2)4:¢(2)54)%
C 2;?33 ;::—‘:12 2k, —1
A gn = 7 3D (e (2)1€(2)m (§(2)544)° €(2)5116(2)j4m-

=0 [=i4+1 m=i42

Using the estimate (32) of Lemma 10, and the fact that Z%" 1252;11 (e(2):€(2):)* ~ kS, we obtain:

kn—22k,—1

[A11n<CA22Z Z )* ~ A7

nzOlz+1

gn
which implies that &k, > E[A1,1,,] <k, A, — 0. Next, using the estimates (32) and (33) of Lemma 10, we have

i=1
2 Ai? l=m
E[(¢(2)40)* C@ysaC@sim| €3
A i FELFEm.
Hence, we have
A% A7 2, A8
E [Al,Q,n] S CkTS]_ + CkTSQ ~ An V Ankru
where
2k —3 2k —2 2k —1 2k, —3 2k, —2
Si= 3 > > (@) e@ue@nl({l=m}) = > Y (e(2))* () ~ kY,
=0 l=i+1 m=i+2 i=0 l=i+2
Qhp—3 2k —2 2k, —1 2k —3 2k —2 2k —1
=Y Y Y G Ne@ul{@£mh =3 3 Y (e (2)1€(2)m — Si ~ KT
=0 [=1+1 m=1i+2 =0 Il=i+1 m=i+42
Consequently,

9n
kn Y E[A12,] < CApky, — 0.
j=1

65



So, summing up k, Z?;l E[A; ;] — 0. With a procedure similar to that used for A, 2 ,, we obtain
In
kn Y E[A2,] < C ALK, — 0.
j=1

Thus, év}’ (5) is asymptotically negligible by Lemma 2.
Proof of the convergence in probability of vj* (6) and v} (7) First, by conditioning on (p;) we readily obtain E;_; [ 5 (6)] =

76\ 2
<U]k( )> =Ain+ Ao,

0. Next, consider the decomposition

where )

C 2kn—2 [2k,—1
Ln =35 < > e(1)ie(2)i¢(1 )a+i§(2)j+z> ;

=0 l=i+1

and

C 2kp,—3 2kp—2 2k, —1 2k, —1
N DD (Z )ie(2i¢(1) (2 m)( ) e<1>me<2>u<<1>j+m<<2>j+u>7

1=0 m=i+1 \l=i+1 u=m-+1
2kp—3 2kn,—2 2k, —1 2k, —1

= ,§ Yoo Y Y bie@ie(Dme(2)uC ()46 (2)541¢ (14 uC ()4 me

1=0 m=i+1 [=i+1 u=i+42

By conditioning on (p;), E[As,] = 0, because E [((1);+:¢(1)+.] = 0 for u > . Analogously, the expected value of the

cross-product terms in A, ,, is zero. Hence, we have

2k, —22k,—1 A 2k, —22k,—1 A

2 n 2 n
E[A;,] = k-G Z Z [ (2)1€(1)j4:€(2)41) } SCk—G Z Z (e(2)1)? ~ =5
n4=0 =i+l n o iT0 1—in1 2

Thus,
g’ﬂ C
anE[AM] <0
Jj=1
Consequently, kivgl (6) is asymptotically negligible by Lemma 2. Analogously, kiv? (7) is asymptotically negligible as

well.
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