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Abstract

Latency is the time delay between an exchange streaming market data to a trader, the trader
processing information and deciding to trade, and the exchange receiving the order from the
trader. Liquidity takers face a moving target problem as a consequence of their latency in the
marketplace. They send marketable orders that aim at a price and quantity they observed
in the limit order book (LOB), and by the time their order is processed by the Exchange,
prices could have worsened, so the order may not be filled, or prices could have improved, so
the order is filled at a better price. We show how to choose the discretion of liquidity taking
orders to walk the LOB to increase the chances of filling orders if, due to latency, prices or
quantities in the LOB have worsened. The latency-optimal strategy balances the tradeoff
between the costs of walking the LOB and targeting a desired percentage of filled orders over
a period of time. We employ a proprietary data set of foreign exchange trades to analyze
the performance of the strategy and build a function that maps latency of a trader to the
percentage of orders filled by the trader’s strategy. We employ this function to compute the
shadow price of latency that a trader would be willing to pay for co-location and hardware
to reduce their latency in the marketplace.

Keywords: Latency, fill ratio, high-frequency trading, algorithmic trading.

1. Introduction

With the advent of computerized trading, the speed at which agents operate in electronic
markets is down to milliseconds or microseconds. While speed to process information and
take decisions is paramount to the success of trading strategies, being faster than one’s peers
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provides a valuable competitive edge. Traders require time to devise strategies and their
instructions take time to arrive and to be processed by the Exchange. This time delay, known
as latency, affects the efficacy of trading strategies because, in the meantime, the Exchange
processes other instructions that update the limit order book (LOB) with information not
known by the trader at the time she devised the strategy.

In foreign exchange (FX) markets, the supply of spot currency pairs displayed in the
LOB might undergo thousands of updates over very short periods of time. When the best
bid and best ask prices in the LOB are changing very rapidly, liquidity takers face a moving
target problem as a consequence of their latency in the marketplace. Liquidity takers send
marketable orders that aim at a price and quantity they have observed in the LOB, but by
the time their order is processed by the Exchange, prices or quantities may have worsened,
so the order cannot be filled; alternatively, prices or quantities may have improved, so the
order is filled at better prices. Traders can buffer the adverse effects of missing a trade by
including a price limit in their marketable orders to increase the probability of filling the
order when it is processed by the Exchange. This price limit consists of the best price seen
by the trader in the LOB plus a discretionary buffer that specifies the number of ticks the
order can walk the LOB. This buffer does not preclude the order from being filled at better
prices if the LOB is updated with more favorable prices or quantities.

In this paper we show how to choose the discretion of marketable orders of FX traders
in an optimal way to improve fill ratios over a period of time (days, weeks, months), while
keeping orders exposed to receiving a price improvement. Increasing fill ratios is costly.
Everything else being equal, the chances of filling a marketable order increase if the order can
walk the LOB. Thus, there is a tradeoff between ensuring high fill ratios and the execution
costs borne by the trading strategy. In our approach, the dynamic optimization problem
solved by the trader balances this tradeoff by minimizing the discretion specified in the
marketable orders, while targeting a fill ratio over a trading horizon. The trader’s optimal
strategy specifies the discretion for each transaction depending on the proportion of orders
that have been filled, how far is the strategy from the target fill ratio, the cost of walking
the LOB, and the volatility of the exchange rate.

We employ a proprietary data set of FX trades to analyze the performance of the op-
timal strategy developed here. The data are provided by LMAX Exchange — an electronic
multilateral trading facility in the FX market (www.lmax.com). We use transaction data
for two FX traders, trader 1 (T1) and trader 2 (T2), to compare the fill ratios they have
achieved to those attainable with the optimal strategy derived in this paper. We propose
three measures of fill ratios. These are based on the number of trades sent to the Exchange,
the number of misses due to latency, volume, and type of order, and the state of the LOB.
The data spans a set of dates from December 2016 to March 2017. During this period both
traders filled between approximately 80% and 90% of their liquidity taking orders in the
currency pair US dollar and Japanese yen, which we refer to as the USD/JPY pair. Latency
causes T1 and T2 to miss trades because by the time the Exchange processes their orders,
the best bid and best ask prices in the LOB are updated. The effect of latency on trade fills
is exacerbated during times of heightened volatility in the exchange rate. When volatility is
arranged in quartiles, we find that 36.5% (resp. 40.0%) of T1’s (resp. T2’s) unfilled trades
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occur in the top quartile of volatility.

Clearly, due to latency, trades are not filled because the market moves away from the
prices and quantities that T1 and T2 are attempting to achieve. If T1 and T2 were to
return to the market to complete unfilled trades, the prices they would receive would be
highly likely to be worse than those at which they attempted in the original trade. The cost
we impute to a missed trade is the mark-to-market price of a market order that walks the
LOB until filled, and is sent 20ms or 100ms after the Exchange receives the instruction to
execute the order that could not be filled. We find that the average mark-to-market cost!
for T1’s missed trades is 2.33 and 2.88 ticks and for T2 is 3.18 and 3.06 ticks, 20ms and
100ms later respectively (in the currency pair USD/JPY one tick is 1073 JPY).2

We employ the optimal strategy developed here to show the tradeoff between increasing
fill ratios and the costs incurred by the strategy. For example, for a particular choice of
model parameters, we show that T1 and T2 can increase the percentage of filled trades,
during the period 2 December 2016 to 30 March 2017, from 91% and 89%, respectively, to
99% in both cases. The increase in the fill ratios is due to the discretion included in the
liquidity taking orders to walk the book, which come at a cost. In this example, the average
cost incurred by T1 to fill missed trades is 1.76 ticks and for T2 is 1.24 ticks. On the other
hand, the mark-to-market average cost of filling the missed trades (which were filled by
the optimal strategy) employing market orders 20ms and 100ms later is 2.01 and 2.58 ticks
respectively for T1, and 2.82 and 2.75 ticks respectively for T2.

The performance of the optimal strategy is more remarkable during times of heightened
volatility of the exchange rate. In the top quartile of volatility, the average cost of filling
missed trades is 1.88 ticks when T1 employs the optimal strategy, while the mark-to-market
average cost of filling these missed trades with market orders 100ms later is 3.04 ticks.
Similarly, for T2 the average cost of filling missed trades with the optimal strategy is 1.86
ticks, while the mark-to-market average cost of filling the missed trades with a market order
100ms later is 3.31 ticks.

Finally, we use the proprietary data to map different levels of latency to the corresponding
percentage of filled orders. We use this mapping to calculate the shadow price of latency that
T1 would be willing to pay to reduce latency in the marketplace. We show that T1 would
be better off employing the latency-optimal strategy developed here, instead of investing in
hardware and co-location services to reduce latency. The latency-optimal strategy is superior
because it not only achieves the same fill ratios as those obtained with better hardware and
co-location, but it scoops price improvements that stem from orders arriving with latency
at the Exchange. Note that if latency is reduced with hardware and co-location, T1’s
liquidity taking strategy would be less affected by the moving target problem, so fill ratios
are high, but would benefit little from changes in the LOB that, due to latency, provide
price improvements.

!The average mark-to-market cost is calculated by taking the difference between the cost of filling all
the volume missed in the order and the cost that the trader initially attempted to pay to fill the order, and
dividing by the missed volume of the order.

2From February 2018, the tick size for the pair USD/JPY is 10™* JPY in LMAX Exchange.
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A number of authors have recently addressed various aspects of latency in electronic
markets. Moallemi and Saglam (2013) look at the cost of latency in high-frequency trading.
The authors employ market data to quantify the costs of latency in equity markets and
show that the latency costs are of the same order of magnitude as other trading costs
such as commissions and exchange fees. The data employed is publicly available from the
NYSE, which does not contain trader identification to analyze latency for individual market
participants. Our study, on the other hand, focuses on liquidity taking orders in the FX
market and how to develop trading strategies that minimize the adverse effects of latency.

The work of Stoikov and Waeber (2016) shows how to execute a large order in electronic
markets by employing the volume imbalance of the LOB to predict price changes and study
the effect of latency in the efficacy of the execution strategy. The authors backtest their
strategy on publicly available data for US Treasury bonds and show that the advantage of
observing the LOB to compute volume imbalance dissipates quickly as latency increases.
Lehalle and Mounjid (2017) employ data from Nasdaq-Omx and also find that as latency
increases, the informational content in the volumes of the LOB diminishes.

Recent literature on high-frequency trading and algorithmic trading discusses various
characteristics of trading and how the speed of traders is used to obtain informational
advantages. Other strands of the literature discuss the relationship of market quality and the
speed of market participants. See for example Bayraktar and Ludkovski (2010) and Guéant
(2016) for trading in illiquid markets. Barger and Lorig (2018) model the rapid updates of
the best quotes in the LOB to propose a model of stochastic price impact. Finally, Cartea
and Penalva (2012), Hoffmann (2014), Biais et al. (2015), Foucault et al. (2016), and Fricke
and Gerig (2018), look at issues of market quality and the speed of trading.

We believe that our paper is the first to employ proprietary data to analyze the effect
of latency on the fill rates of liquidity taking strategies in FX markets and to compute
the shadow price of latency for particular traders. Latency is specific to each trader and
the effects of latency depend on the type of strategy employed by the trader. Access to
proprietary data of FX transactions allows us to quantify the effects of latency on the
efficacy of trading strategies and to develop and test latency-optimal strategies to compute
the shadow price of latency for types of market participants.

The remainder of the paper is organized as follows. In Section 2 we define latency and
propose various ways to measure the fill ratios of marketable orders. In Section 3 we describe
the proprietary data set that we employ and we present empirical evidence of the relationship
between fill ratios and the volatility of the exchange rate. In Section 4 we present the model
of fill ratios and solve the trader’s dynamic optimization problem, where we also assume that
the trader makes her model of fill ratios robust to misspecification. In Section 5 we show
how we estimate model parameters, and in Section 6 we show the performance of the trading
strategy. Section 7 discusses the tradeoff between latency and fill ratios and computes the
shadow price of latency for T1. Finally, Section 8 concludes, and we collect proofs in the
Appendix.



2. Latency and Fill Ratios
2.1. Latency

Latency is defined as the time “delay between sending a message to the market and it
being received and processed by the Exchange. Sometimes the time it takes for the Exchange
to acknowledge receipt is also accounted for”, see Cartea et al. (2015). This concept is useful
if traders are only interested in measuring how long it takes a message to reach the Exchange
once it has been sent. However, this definition is ‘narrow’ because it only takes into account
hardware capacity and co-location to measure latency and does not account for other factors
that affect how quickly the trader can process and react to market information before sending
an instruction to the Exchange.

In this paper we employ a broader definition of latency. To the time delay considered in
the narrow definition of latency we add the time it takes the trader to devise the trading
strategy. Thus, latency consists of three layers of time delay associated to these events:
(i) The Exchange streams quotes to the trader. (ii) The trader receives quotes from the
Exchange and processes this and other relevant information to make a decision. (iii) Once
a decision is made, the trader sends a message to the Exchange. The decision could be to
trade using limit or marketable orders, or to amend or cancel a limit order already resting
in the LOB, see Moallemi and Saglam (2013) and Stoikov and Waeber (2016) who employ
a similar definition of latency.

We focus on two types of orders: Immediate-or-Cancel (IoC) and Fill-or-Kill (FoK). IoC
and FoK are marketable orders in which the trader specifies the maximum (minimum) price
they are willing to pay (receive) when buying (selling) currency pairs. IoC is an order to buy
or sell currency pairs which must be executed immediately, obeying the price limit, and any
portion of the volume of the order that cannot be filled at the desired price limit is cancelled.
FoK is an order to buy or sell currency pairs which must be executed immediately in full or
cancelled.

We provide an example of the steps in the life of a FoK order to illustrate the effect of
latency on the fill of the trade.

Assume the Exchange streams a quote to a trader at time ¢y,. The trader receives the
quote at time t; >ty and at time ¢ > t; the trader sends a buy FoK order for 100 lots of the
currency pair USD/JPY. The limit price of the FoK order is the best ask streamed by the
Exchange at time ty. Finally, the Exchange receives and processes the order at time t3 > t5,
thus our measure of latency is t3 — tg. The order will be filled in full if at time ¢3 the best
ask in the book is equal or lower (i.e., price improvement) than the best ask at time ¢, and
there are at least 100 lots posted at that price, otherwise the order is not filled — in either
case, the Exchange sends a message to the trader notifying the outcome of the trade.

The effect of latency on the outcome of strategies depends on a number of factors that
affect the supply and demand of liquidity in the FX market, including: magnitude of latency,
type of order sent by trader, volatility of the mid-exchange rate, and trend in the mid-
exchange rate.

On the supply side of liquidity, the number of updates in the LOB will determine if the
trade will be filled at the price, or a better price, than that specified in the FoK order, or
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if the order is not filled because prices have worsened. Changes in the best quotes of the
LOB are difficult to predict and depend on many factors such as news announcements and
other idiosyncratic needs of the liquidity providers who send, update, and amend their limit
orders in the LOB.

On the demand side of liquidity, the effect of latency will depend on the type of strategy
employed by the trader. For example, latency will increase the chances of missing trades
and decrease the chances of obtaining price improvements for momentum trading strategies,
i.e., buy before rates increase or sell before rates decrease.

2.2. Fill ratios and post-trade analysis

Fill ratios of orders sent by a trader to an exchange can be computed in a number of
ways. A trader who only sends FoK orders will receive fills of all volume or nothing, as
opposed to IoC orders, which can be partially filled.

A measure of fill ratio is important because it summarizes how effective is an agent’s
strategy in completing trades. A simple measure is to compute the number of filled orders
divided by the number of trade attempts. Here we propose new measures of fill ratios that
include relevant post-trade information such as orders that were filled at better prices (i.e.,
price improvement), and orders that were not filled, but could have been filled at worse
prices, had the order walked the LOB until filled in full. Below we provide more details
about the post-trade information we include in the measures of fill ratio. Next, we describe
the variables and notation we employ.

We denote by n the number of marketable orders employed to compute the trader’s fill
ratio. Let 71, 7o, ..., 7, be the times at which the trader sends liquidity taking orders to the
Exchange and denote by ¢1, {5, ..., ¢, the times at which the orders are processed by the
Exchange, ¢; > 7;.

Marketable orders specify a limit price, denoted by L;, which is the maximum (minimum)
the trader is willing to pay (receive) per unit of bought (sold) currency pair. When the
Exchange processes the trader’s message, the order is filled if there is enough liquidity
resting in the LOB up to, and including, the limit price L;. A marketable buy (sell) order
with limit price L; = oo (L; = 0) will walk all levels of the LOB until the order is filled in full
at the average price B; per unit of currency pair.

The quantity L; — B; (which can be computed only after the Exchange receives and
processes the order) is important because it gives post-trade information about different
outcomes such as: (i) by how much did prices move to cause the liquidity taking order to
miss its target, which we refer to as potential slippage, or (ii) by how much did the execution
price improve, which we refer to as price improvement. For example, when the trader sends
a buy order with a price limit of L; per unit of currency pair, there is a price improvement
if L;— B; > 0. On the other hand, if the average price required to fill the order is higher than
limit price the trader is willing to pay, then the potential slippage is L; — B; < 0 — note that
in this second case the trader does not incur the potential slippage because the order is not
filled in full due to the limit price.

Moreover, the variable I; € {-1, 1} is used to indicate the direction of the liquidity
taking order, where 1 denotes a buy order and —1 denotes a sell order. Finally, V; denotes
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the volume of currency pair lots the trader attempts to fill, and V;f denotes the filled volume,
clearly V/ < V.

We propose three ways to compute a fill measure of n consecutive trades. These measures
are based on: (1) number of trades, (2) average volume of trades, and (3) volume of trades.

1.
1 n
= E Z]'IiLiZIiBi +F(n)’ (1)
2. ;
13V
FV==% - +F 2
3.
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FV _ Z?:l ‘/;7,‘*'@1
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where 1 is the indicator function and

F(n) = ZI(L B)(L ;) (4)

+F(n), (3)

is a post-trade measure of price improvement and potential slippage.
Note that F(n) € [-oo, oo], so the three measures of fill ratio we propose lie in [-oc0, co].
Equation (4) does not change if we include trade volumes.

3. Empirical Analysis

3.1. Data

We employ a set of proprietary data of transactions for T1 and T2 during the period 2
December 2016 to 30 March 2017 in the currency pair USD/JPY. Both traders are liquidity
takers, i.e., do not send limit orders to provide liquidity in the LOB, during the period we
study. We have the following information: side of order (buy or sell), time-stamp of when
the Exchange processed the order, volume, currency pair, type of order (FoK, IoC), limit
price L;, and whether the order was filled and at what price(s). Finally, we have the LOB
for the pair USD/JPY at millisecond intervals. A summary of the main variables is given
in Table 1.

Number of Successful Successful Avg. vol. Avg. Order
attempts filled trades filled trades attempted filled vol. type Fn F]‘\L,‘V F]‘\{
N (incl. partial) (only full) x10% USD x10% USD
T1 116,912 106,878 106,878 4.5 4.1 FoK 90.78%  90.78%  90.54%
T2 68,129 61,440 59,303 1.2 1.0 IoC 87.04% 88.62%  79.00%

Table 1: Proprietary data and measures of fill ratios for period 2 December 2016 to 30 March 2017.
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During this period, both traders send orders that aim at the best bid or best ask price
that was streamed to them by the Exchange. T1 sent FoK orders with zero discretion and
T2 sent IoC orders with zero discretion.

3.2. Fill ratios and volatility

The liquidity provided in the LOB is constantly being updated as a result of news,
changes in liquidity providers’ willingness to trade, and the arrival of liquidity taking orders,
see for example Almgren (2012) for a discussion of trading with stochastic liquidity. Most of
the updates of limit orders (cancellations, amendments, and arrival of new limit orders) take
place in the best quotes and ticks closest to the prevailing mid-exchange rate. Traders with
non-zero latency face a moving target problem when they attempt to hit bids and lift offers
in the LOB. This problem is exacerbated during periods of high volatility of the exchange
rate.

The top figure in the left-hand panel of Figure 1 shows the evolution of T1’s fill ratio,
using measure (1) with n = 50, during 26 January 2017. The bottom figure shows the
volatility of the mid-exchange rate over the same period. Throughout this paper volatility is
computed as the standard deviation of the log-returns of the micro-exchange rate (sampled
every 500 milliseconds) over a 10-minute rolling window. The micro-exchange rate at time
t is denoted by m,; and given by

my = PrQb+ PP Q;
Qr+Q

where Q¢ and QY are the quantities available at the best ask price (denoted by P?) and the
best bid price (denoted by P?), respectively.

From Figure 1, left-hand panel, we observe that there is an inverse relationship between
volatility and the fill ratios achieved by T1’s strategy, which always aims at the best bid or
best offer price she observed before sending the marketable order. Clearly, volatility is high
when the micro-exchange rate undergoes many changes and updates — this explains why the
number of unfilled marketable orders (with zero discretion to walk the book) is higher when
volatility is high.

The right-hand panel of Figure 1 shows a scatter plot of fill ratio and volatility. The solid
line in the figure is obtained by performing an Ordinary Least Squares (OLS) regression of
fill ratio on volatility.
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Figure 1: Left-hand top panel: fill ratio using measure (1) with n = 50. Left-hand bottom panel: volatility
of micro-exchange rate. Right-hand panel: Scatter plot and OLS regression of volatility and fill ratio. Data
are from 26 January 2017.

4. Model

In this section we describe the model of fill ratios and the dynamic optimization problem
solved by the trader. We develop the model of fills in three steps. First, we present a model
for the dynamics of volatility of the micro-exchange rate. Second, we propose a model of
fill ratios that includes the effect of volatility of the micro-exchange rate on fills. Third, we
specify how marketable orders with discretion to walk the LOB affect the dynamics of fill

ratios.

Volatility of micro-exchange rate

We denote the volatility of the micro-exchange rate, see (5), by v = (v;) (g<scpy and assume
it satisfies the stochastic differential equation (SDE)

dv, = k(0 -v)dt + oy v, AW, (6)

where £ > 0 is the exponential speed at which volatility reverts to its long-term level, denoted
by v >0, o, > 0 is a dispersion parameter (i.e., volatility of volatility), and W@ = (W}) (0<t<T)
is a standard Brownian motion.

Fill ratio: orders with no discretion to walk the LOB

The fill ratio of marketable orders (buy and sell) with no discretion to walk the LOB is
denoted by F' = (Ft){()stsT} and satisfies the SDE

dFy = (A (F-F) - h(v)) dt + op AW (7)



Here, the function h : R, » R, describes the effect of the volatility of the micro-exchange
rate on the fill ratio of the trader’s strategy. The parameter A\ > 0 is the exponential speed at
which the fill rate reverts to the level F' € R, the dispersion parameter oy is a non-negative
constant, and W¥ = (W/[") (0<t<r 15 @ standard Brownian motion uncorrelated to W*. Recall
that we propose three ways to compute fill ratios, see (1), (2), (3), so here F refers to one
of those choices.

The parameters )\, F, o, and the function h(v) are specific to each trader in the FX
market. Latency and type of liquidity taking strategy are the key characteristics that make
the fill ratio dynamics specific to each trader. For example, the dynamics of the fill ratio
for a trader with zero latency are as in (7) with parameters op =0, A >0, F' = 1, and the
function A = 0 (or one can also assume that A - oo and F' =1, o > 0).

The term o dWF represents the combined effect of two sources of uncertainty in the
dynamics of the fill ratio, both of which depend on latency. One, the volatility of the micro-
exchange rate will affect fill ratios via a deterministic component, given by h(v) in (7),
and an uncertain component. Two, between the time the trader is streamed quotes and
the time the Exchange receives the trader’s marketable order, the LOB will have processed
instructions from other market participants, hence the fill of the order is uncertain.

Fill ratio: orders with discretion to walk the LOB

Liquidity takers acknowledge that however fast their computers are, or efficient their
software is, or whether their hardware is co-located, the time to reach the market and
execute a marketable order is not zero. A trading strategy where market orders aim at only
the best bid or best ask prices in the LOB will hardly deliver fill ratios of 100%.

One alternative to compensate for not reaching the market in time is to include a dis-
cretion in the marketable order. This discretion specifies the maximum (minimum) price
the trader is willing to pay (receive) when sending a marketable order with a price limit. In
particular, the trader specifies a discretional amount ¢, which is the additional slippage she
is willing to incur relative to the best quote she observed at the time of making the decision
to submit the order to the Exchange — the discretion to walk the LOB does not preclude the
strategy from benefiting from price improvements. For example, if the trader sees the bid
(ask) exchange rate at 1.000, then a marketable sell (buy) order with discretion ¢ = 0.001
will be filled by the Exchange with limit buy (sell) orders resting in the LOB down (up) to
a minimum (maximum) bid (offer) price of 0.999 (1.001).

When the trader includes discretion in her marketable orders she will exert upward
pressure on the fill ratio of her strategy because the order can walk the LOB. Thus, we
assume that the trader’s fill ratio, denoted by the controlled process F® = (F?) (0<t<T}> follows
the SDE

dF) = (AN (F-F)+g(6) - h(vy)) dt + op dW}, (8)

where the function ¢ : R = R models the impact of discretion on the fill ratio — when g = 0
we obtain (7).
Assume the impact functions are of the form
g(d)=aéd and h(v) =b(v-12),
10



with a and b non-negative constants.

As usual, we work on a completed filtered probability space (2, F, (F;)is0,P), with F;
the natural filtration generated by the 2—dimensional Brownian motion W = (WF Wv),
and we refer to IP as the trader’s reference measure.

4.1. Model uncertainty

The trader acknowledges that the model of fill ratios (8) may be misspecified, so she
considers alternative dynamics of the fill ratio to make the model robust to misspecification,
see Cartea et al. (2017). This ambiguity about model choice, or model uncertainty, will
affect the optimal strategy employed by the trader when choosing the discretion of the
orders she sends to the Exchange. We incorporate the trader’s ambiguity about model
choice in two steps. First, we characterize alternative measures that describe the fill ratio
dynamics considered by the trader, and then we determine how the trader chooses the
reference measure P or one of the alternative measures.

The trader considers candidate measures Q(x) that are equivalent to P and characterized
by the Radon-Nikodym derivative

dQ(z)| _ Lot t
dP |t‘exp{ 2/0 P du fo w"dW“}’ ¥

where x; = (zI', 0) is a two-dimensional F;-adapted process such that (d@(a:) /d]P” )
t/o<t<T
is a martingale. Thus, we denote by Q the class of alternative measures

Q=1{Q(x)|x is F — adapted and (&(m)’ ) is a martingale ¢ .
dP Tt/o<i<r

Next, the trader penalizes deviations from the reference measure using the relative en-
tropy from ¢ to T', which is given by

_ L (4Q/dP|r
Her (QIP) = log (d@/dP|t) |

Here the parameter ¢ is a non-negative constant that represents the trader’s degree
of ambiguity aversion. If the trader is confident about the reference measure P, then the
ambiguity aversion parameter ¢ is small and any deviation from the reference model of
fill dynamics is very costly. In the extreme ¢ — 0, the trader is very confident about the
reference measure, so she chooses P because the penalty that results from rejecting the
reference measure is too high. On the other hand, if the trader is very ambiguous about
the reference model, considering alternative models results in a very small penalty. In the
extreme  — oo, deviations from the reference model are costless, so the trader considers
the worst case scenario.
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4.2. Value function

The trader’s value function is

) T 2 T A\ 2
V(. £.0) = s éggE?f,v[—%[t (6,-0) ds—or [ (F2-F) ds+%t7T(@|P>],
(10)

where F' denotes the target fill ratio and 0 is a constant that denotes a fixed discretion to
target.

Recall that the control variable ¢ denotes the discretion of the order to walk the LOB,
which is measured from the best quote observed by the trader when receiving the quotes
from the Exchange. The penalty parameters ¢s and ¢ are non-negative constants. For large
values of the parameter ¢ the optimal discretion will be larger the higher is the target ratio
F.

Finally, recall that Q represents all the measures equivalent to the reference measure P,
and the set of admissible strategies is

T
Ay = {5 = (0t) {o<try | 0 18 F —adapted, E [[ (8,)* ds] < oo, and (11)
== 0
O = u(t, F?, vt), for p € MO,T}, (12)
where

M07T={,u:[O,T]><Rer—>R|EIKeRs.t. Vo, y e R? and t € [0, T

u(t.@) - (1) < K & —y| and [u(t. @) < K2 (1+|f) } (13)

We require the set of admissible strategies to satisfy the condition appearing in (12), so
that the change of measure specified by (9) is valid.

By standard results, the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation associated to
problem (10) is given by

Vi +sup inf(()\(F—f)+a5—b(v—27)—apa:) Vf+%a%fo+ix2
6 X
+/<(U—U)V§,+%v2ang,—¢5(5—3)2—¢F(f—]5)2):0, (14)

with terminal condition V (T, f, v) = 0. Here, subscripts in the function V' represent partial
derivatives, for example, V; = 9V [0t.
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Proposition 1. The supremum and infimum in HJBI (14) are achieved (in feedback form)

at

2 an

=0+ — d = Vi
2¢5 s an s Yor 1

respectively.

Proof. Apply first order conditions to the supremum and infimum terms in (14), and check
second order conditions to verify that these are the maximizer and minimizer, respectively.

O
Substituting the optimal controls §* and x* in (14), the HJBI becomes
Vit (MF-f)-b(v-0)) Vy+ %aivfﬁ Ci—q‘f - %¢vf2ag+avf$
R0Vt S22 Ve bp (f-F)' =0, (15)
V(T, f,v)=0.
By inspection of PDE (15) and its terminal condition, we propose the ansatz
V(t, f,v) =ho(t) + hy(t) f +ho(t) £+ hs(t) v+ hya(t) V> + hs(t) fo, (16)

which we substitute in equation (15) and obtain a coupled system of ordinary differential
(ODEs). The system of ODEs can be solved explicitly to obtain closed-form solutions for
the deterministic functions hg, h1, ha, hs, ha, hs, see Appendix A.1.

Theorem 1. (Verification) Define the time-dependent deterministic functions
g1, G2, g3+ [0, T] =R as

G (t) = h(t) +2F ho(t) +0hs(t),  ga(t) = —2ha(t), g5(t) = hs(t).

Then, the optimal discretion

5 =0+ 208 (gl(t) + go(t) (F_Ff*) +g3(t) (ve —77)) ; (17)

a
5
and
x; =pop (hi(t) +2ha(t) F + hs(t) vy) | (18)
are admissible controls and equation (16) is the trader’s value function (10).
Proof. For the proof see Appendix A.2. O

We explain the intuition of the terms appearing in the optimal discretion (17). The first
term on the right-hand side of (17) is the target discretion 4. For example, if the trader
imposes an arbitrarily large penalty on deviations from this discretion target, i.e. penalty
parameter ¢s — oo, then the optimal discretion J; — 4.
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The second term, g;(t), is the time-dependent baseline level of discretion the trader posts
when her fill ratio is close to the target £ and volatility is around its long-term level o.

The third term, go(t) (F - Ft‘;), adjusts the strategy if the fill ratio is not on target. The
function go(t) is positive for ¢t < T, so when the fill ratio is below (above) its target F' the
discretion to walk the LOB is increased (decreased).

The last term of the optimal strategy shows how the optimal discretion depends on the
volatility of the micro-exchange rate. The function g3(¢) is positive for ¢ < T, so when
volatility is higher (lower) than its long-term level, the strategy increases (decreases) the
discretion of the marketable orders.

5. Estimation of model parameters

In this section we show how to estimate the parameters of the models of volatility and
fill ratio.

Volatility parameters
We discretize the continuous-time volatility model (6) and write

’(77; :’l}i,l + K ('l_)—'lh}ifl) A+O’1} 177,'71 \/Z€i7 (19)

where i € {1,2,..,.N-1}, 0=t; <ty <..<ty=T,T=1,t=4iT/N, ¢ ~N(0,02A), and
A=T/N.
Assume {0}, 5 y_py are positive and divide (19) by 9;-1, so that

(%

- 1=-KkKA+KrVA = +av\/Zei,

Vi-1 Vi1

which we write as the OLS problem

y=05l+fixz+e. (20)

Here y is a (N - 1)-dimensional vector containing the dependent variables with entries
y; = 0;/0;-1 -1, 1 is an (N - 1)—dimensional vector of ones, 5y and (31 are scalar parameters,
@ is an (N - 1)—dimensional vector containing the regressors x; = 1/7;_1, and € is the vector
of residuals with i.i.d. entries ¢; ~ N (0, 02 A).

To obtain parameter estimates for fy and ; we employ the volatility of the micro-
exchange rate at 500 millisecond intervals (see subsection 3.2) and use a standard OLS
routine to compute the parameter estimates By and Bl. Now, because By = -k A and §; =
kv A, we obtain the estimates

/%,:—Bo/A, 62—31/30, and 6U:06/\/Z, (21)

where o, is the standard deviation of the residuals in (20).
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Fill ratio parameters
We discretize the continuous-time fill ratio model (8) and write

E—ﬁ;‘_l=/\FA+CL(SZ‘_1A—/\AE_1—Z)(’lji_l—?j) A+O‘F\/Z’I7i, (22)

where, as above, i € {1,2,..,.N-1}, 0 =t; <ty < .. <ty =T, T =1,t; =iT|N, n; ~
N(0,02A), and A=T/N.
We write (22) as the OLS problem

z=ypl+nut+trpw+yr+n, (23)

where the vector z contains the dependent variables, vq, v1, 72, and 3 are scalar parameters,
the vectors u, w, r are regressors, and 7) is the vector of residuals with i.i.d. entries n; ~
N(0, 02 A).

To estimate the impact parameter a in (22) we compute the effect of the discretion §
on fill ratios for the set of values é; = 0, 1, 2, 3, 4, 5, as follows. Throughout the day we
assume that all FoK trades sent by T1 included a fixed discretion of 6 = 0, and then repeat
the analysis assuming 6 = 1, and § = 2, and so on. This provides us with six scenarios
with fixed discretion for the whole trading day. We employ LOB data to determine if the
orders were filled and create six (/N — 1)-dimensional vectors zg, 21, 22, 23, 24, 25, Where
each vector corresponds to each scenario with fixed discretion. Next, we pool all the data
so that the dependent variable on the left-hand side of the regression and the regressors on
the right-hand side are 6 x (N - 1)—dimensional vectors. We run a standard OLS routine to
compute the parameter estimates 7y, J1, J2, and #43. Then, the parameters of the fill ratio
dynamics are

N=A/A, F=-Afj,  b=-A/A,  a=4/A,  r=o, VA,  (24)

where o, is the standard deviation of the errors in (23). To estimate model parameters for
T2 we proceed in the same way and use the definition of fill ratio (2) because T2 sends IoC
orders to the Exchange.

Table 2 shows parameter estimates for T1 for the trading day starting at 22:05 of 3
January 2017 and ending at 22:00 on 4 January 2017, which for simplicity we refer to as the
trading day of 4 January 2017.

15



Parameter Estimate p-value

b 0.0073 0.00
3 12.3887 0.00
G 1.3894 -
A 58.7206 0.00
F 0.9331 0.00
6p 0.1944 -
a 1.0027 0.00
b 527.44 0.01

Table 2: Parameter estimates for T1’s model, 4 January 2017.

6. Performance of strategy

In this section we show the performance of the optimal discretion strategy developed
above. In subsection 6.1 we employ two days of trading data for T1 to discuss features of
the strategy. In subsection 6.2 we employ data during the period December 2016 to March
2017 to study the performance of the strategy for T1 and T2. Finally, in Section 7 we use
trade data to infer the latency of T1 and calculate the shadow price of latency that T1 would
be willing to pay to reduce her latency in the marketplace.

6.1. Stylized features of latency-optimal discretion strategy

We showcase features of the strategy for T1. We employ parameter estimates for 4
January 2017 to compute the optimal discretion for the trading day 5 January 2007. During
5 January 2017, T1 sent 3,043 FoK orders (1,601 buys and 1,442 sells) to the Exchange. All
orders were sent with a discretion of § = 0, and due to latency, T1 missed 279 trades, thus
the fill ratio for the whole day was Fs403 = 90.83%.

Had T1 employed the strategy developed here, the optimal discretion in the marketable
orders would have been as depicted in the top panel of Figure 2 and would have attained
a fill ratio of F3,; = 99.17%, i.e., miss 25 out of the 3,043 trade attempts. Compared to
the fill ratio of the suboptimal strategy 0 = 0, which we refer to as the naive strategy, the
latency-optimal strategy would have filled 254 more trades at an average cost of 1.74 ticks —
recall that one tick in the USD/JPY pair is 1073 JPY and that the naive and latency-optimal
strategy receive the same price improvements. The average cost is calculated as the ratio of
the cost of filling the 254 trades, in JPY, to the total volume of currency pairs of the 254
trades. The bottom panel of the same figure shows the volatility of the micro-exchange rate.
In the next subsection we analyze in more detail the costs incurred by the optimal strategy
to fill missed trades.
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Figure 2: Parameters are F= 100%, ¢s = 5x107°, ¢ =5, p = 1073, T = 5 days, and other model parameters
are in Table 2.

The left-hand panel of Figure 3 shows a heatmap of the fill ratio FJ,,; (i.e., 5 January
2017) for a range of parameters ¢ and ¢5. We observe that when the penalty parameter
¢s is low, the strategy obtains the highest fill ratios because the trader is more willing to
bear the costs of walking the LOB. In the heatmap we also show, with a star, the pair
(¢5, dr) = (5x 1075, 5), which are the parameters we use in the analysis of subsection 6.2.

The right-hand panel of the figure shows a heatmap of the average cost of the fill ratios
attainable by the optimal strategy. The cost reported is the slippage of the order relative
to T1’s naive strategy.

-3
310 " ; 99.0% 3 x10°

98.5%

98.0%

s
13

=
97.5% 573

= =
w B
Average Tick Cost

97.0%

96.5%

Figure 3: Fill ratio Fg543 for 5 January 2017. Parameters are ¢ = 1073, b= 0, F =100%, T =5 days, and
other model parameters in Table 2.

Finally, Figure 4 shows the fill ratio F¥,, for the range ¢ € [0, a%/¢s0%) of the ambiguity
aversion parameter when the trader employs the optimal discretion strategy. Recall that the
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higher is ¢, the less confident is the trader about the dynamics of F°. When ¢ — a?/¢s 0%
the trader has very little confidence in her model of fill ratios, so the optimal strategy is to
send orders with higher discretion to the Exchange — the ambiguity averse trader is more
willing to bear slippage to ensure high fill ratios.

100% |

99.8%

99.6%

6*
F3O43

99.4%

99.2% 1

99% ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5
® %10°

Figure 4: Fill ratio for optimal strategy. Parameters are ¢s =5 x 1075, ¢p = 5, F= 100%, T =5 days, and
other model parameters are in Table 2.

6.2. Performance of strategy for traders T1 and T2

We employ trade data for T1 and T2 between 5 December 2016 and 31 March 2017 to
analyze the performance of the latency-optimal strategy. For each trading day we compute
the optimal discretion (17) in Proposition 1, using the parameter estimates from the previous
day and the volatility of the exchange rate (recall that the volatility is calculated over a ten-
minute window). We use LOB information to determine if the orders sent with the optimal
discretion 0* would have been filled, and if so, at what price(s).

For each day we employ the first 10 minutes of the trading day (22:05 to 22:15) to
compute the first observation of volatility of the micro-exchange rate. The first fill ratio
observation (Fso for T1 and FZ" for T2) is computed the first time there are 50 trades after
22:15. Throughout the period we study, 4,115 trades for T1 and 4,089 for T2 are employed
to compute the first observations of volatility and fill ratio for each trading day, and to
calibrate the parameters of the model for the first day we employed 2,339 trades for T1
and 772 for T2. Thus, the number of trades we employ to analyze the performance of the
strategy is reduced to 110,458 for T1 and 63,268 for T2.

6.2.1. Performance of latency-optimal strategy for T1

Tables 3 and 4 provide information of the costs that T1 would have incurred had she
employed the latency-optimal strategy and shows the mark-to-market costs of going back
to the Exchange to complete missed trades using marketable orders with discretion = 0.
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During the period 5 December to 31 March 2017, T1 attempted 110,458 trades, all with
discretion 6 = 0, and, due to latency, missed 9,483 trades, and T1 received 3,938,559 JPY in
price improvements. Had T1 employed marketable orders with discretion ¢ = oo, the cost of
filling the 9,483 trades would have been 8,914,046 JPY, see row (a) in Table 3. The last two
columns of the same row show the mark-to-market cost, employing marketable orders with
discretion 9 = oo to walk the LOB 20ms and 100ms later, of filling the 9,483 trades missed by
the naive strategy — time is measured from the time-stamp recorded by the Exchange when
T1’s order, which could not be filled, was received. For example, if T1 were to return to
the market (20ms and 100ms later) to retry the missed trade using a market order that can
walk the LOB until the order is filled in full, then the costs to fill the 9,483 missed trades
would have been 9,841,755 JPY and 12,158,945 JPY, respectively.

In rows (b) to (e) we show the performance of the latency-optimal strategy for discretion
targets o € {0, 1, 2, 3}, respectively. For example, row (b) shows that a strategy with target
discretion & = 0 would have filled 8,318 more trades than the naive strategy. The cost of
filling the 8,318 trades is 6,528,965 JPY and the mark-to-market total costs of these trades
20ms and 100ms later, using marketable orders with discretion § = oo, are 7,459,198 JPY
and 9,601,222 JPY, respectively.

Table 4 presents the costs of filling missed trades in ticks (1072 JPY). Column 3 in row
(a) shows that the average mark-to-market cost to fill the 9,483 trades missed by the naive
strategy, employing marketable orders with 0 = oo, is 2.11 ticks (i.e., 2.11 = 8,914,046/4, 222x
10%). Row (b) shows that the average cost of filling 8,318 trades missed by the naive strategy,
which were filled by the optimal strategy with discretion target 6= 0, would have been 1.76
ticks, and the mark-to-market cost of the 8,318 trades employing marketable orders with
discretion ¢ = oo, which are submitted 20ms or 100ms later, is 2.01 or 2.58 ticks.

The last two columns in Table 4 show the ‘excess cost’ (in percentage terms relative to
optimal strategy’s attainable cost) of returning to the market, 20ms and 100ms later, to
complete unfilled trades employing orders with discretion § = co. For example, the costs of
filling missed trades with market orders 20ms (100ms) later are between 13% and 14% (44%
and 47%) more than the cost of filling them with the optimal strategy.

The costs of returning to the market to fill missed trades employing orders with discretion
0 = oo is, on average, greater than the costs of completing the trades, on the first attempt,
employing the latency-optimal strategy. Thus, not only does the optimal strategy attain
a very high fill ratio, it does it at a cost which is lower than the mark-to-market value of
completing the trades on a second attempt. These savings justify the extra cost of optimally
walking the LOB in the first trade attempt to achieve higher fill ratios than the fill ratios
achieved by the naive strategy. Note that we are not imputing other costs that the trader
may incur if a trade is not filled. For example, some trades could be one leg of a trade,
which if not completed, will affect other trades or strategies, see Cartea et al. (2018).
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Missed by naive, filled by alternative strategies

Extra Extra Cost Cost Cost
Fills Volume x10° in JPY 20ms later 100ms later
in JPY in JPY
(a) g =o00,Vt 9,483 4,222 8,914,046 9,841,755 12,158,945
o* 5t:oo,\1t 5t:00,vt
Target
(b) 5= 8,318 3,718 6,528,965 7,459,198 9,601,222
(c) 5=1 8,603 3,839 6,807,416 7,770,984 9,959,191
(d) 5=2 8,758 3,906 6,999,804 7,950,543 10,185,240
(e) 5=3 8,938 3,982 7,232,545 8,181,285 10,447,450

Table 3: Performance of optimal strategy for T1. The total number of trade attempts is 110,458. Cost-
related quantities are in JPY. Parameters: ¢5 = 5x107°, ¢ =5, ¢ = 1073, F' = 100%, and T = 5 days. Period
is from 5 December 2016 to 31 March 2017, currency pair USD/JPY.

Missed by naive, filled by alternative strategies

Extra Avg. Avg. cost Avg. cost Cost increase Cost increase
Fills cost 20ms later 100ms later 20ms later 100ms later
in ticks in ticks in ticks Y% %
(a) br=o0,Vt 9,483 2.11 2.33 2.88 10% 36%
(S* 5t=007vt 6t:oo,Vt
Target
(b) 5=0 8,318 1.76 2.01 2.58 14% 47%
(c) b=1 8,603 1.77 2.02 2.59 14% 46%
(d) §=2 8,758 1.79 2.04 2.61 14% 46%
(e) 5=3 8,938 1.82 2.05 2.62 13% 44%

Table 4: Performance of optimal strategy for T1. The total number of trade attempts is 110,458. Cost-related
quantities are weighted by volume and expressed in ticks, 1073 JPY. The metrics in column 6 (resp. 7) are the
proportional increase of the values in columns 5 and 6 (resp. 5 and 7) in Table 3. Parameters: ¢5 = 5x 1075,
dp =5, ¢ =1073, F= 100%, and T =5 days. Period is from 5 December 2016 to 31 March 2017, currency
pair USD/JPY.

Table 5 shows the results of the optimal strategy arranged in volatility quartiles when the
discretion target is 6 =0. As discussed above, when the micro-exchange rate is more volatile,
the chances of missing trades are greater than when volatility is low because the LOB is
undergoing many more updates. The optimal strategy developed here counterbalances the
adverse effects of high volatility on fill ratios, so that in periods of high volatility, everything
else being equal, the trader sends orders with more discretion to walk the book. The table
shows that as volatility increases, the strategy maintains a stable level of fills, while T1’s
naive strategy misses more trades as volatility increases.

The last three columns in Table 5 show the cost of filling trades missed by T1’s naive
strategy, but filled by the optimal strategy with § = 0. The first of the last three columns
shows the cost incurred by the optimal strategy to execute missed trades for each volatility
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quartile. The penultimate and last columns of the table show the cost of returning to the
market to fill the missed trades with market orders that walk the LOB until they are filled.
As discussed earlier, the cost incurred by the latency-optimal strategy to fill trades missed
by the naive strategy are lower than the costs of returning to the market 20ms and 100ms
later. The gap between the costs of returning to the market 20ms and 100ms later and the
costs incurred by the optimal strategy widen as volatility increases.

Missed by naive, filled by §* with § =0
Volatility Trades Fills % Fills % Avg. Avg. cost Avg. cost
Quartiles sent to 6t =0,Vt 0;,0=0 cost 20ms later 100ms later
% Exchange in ticks in ticks in ticks
0-25 27,615 26,151  94.7% | 27,274  98.8% 1.61 1.77 2.02
25-50 27,614 25,588  92.7% | 27,303 98.9% 1.73 1.92 2.20
50 —75 27,615 25,086  90.8% | 27,339  99.0% 1.67 1.91 2.49
75 —-100 27,614 24,150 87.5% | 27,377 99.1% 1.88 2.19 3.04

Table 5: Performance of strategy in volatility quartiles for T1. Parameters: ¢5 =5 x 1075, ¢pp =5, p=1073,
F =100%, and T = 5 days. Ticks are 1073 JPY. Period is from 5 December 2016 to 31 March 2017, currency
pair USD/JPY.

6.2.2. Performance of optimal strategy: T2

We repeat the analysis of the performance of the strategy using T2’s trades. Tables 6
and 7 are presented in the same format as Tables 3 and 4 respectively.

During the period 5 December 2016 to 31 March 2017, T2 attempted 63,268 IoC trades,
all with discretion 6 = 0, and, due to latency, missed 7,038 trades, including partial misses.
The cost of achieving better fill ratios using the optimal strategy (for various discretion
targets 5) is justified by the cost of returning to the Exchange to fill missed trades 20ms or
100ms later with market orders. For example, had T2 employed the optimal strategy with
discretion target 5= 0, only 755 trades would have been missed, as opposed to the 7,038
misses by the naive strategy. The average cost of filling the 6,283 trades missed by the naive
strategy is 1.24 ticks, as opposed to 2.82 and 2.75 ticks, which are the mark-to-market costs
of returning to the market 20ms and 100ms later.
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Missed by naive, filled by alternative strategies

Extra Extra Extra Cost Cost Cost
Fills Fills Volume x10° in JPY 20ms later 100ms later
(incl. partial)  (only full) in JPY in JPY in JPY
(a) Ot =o00,Vt ‘ 7,038 7,038 ‘ 1,455 2,294,999 4,628,993 4,455,516
o* (St:0<>7vt 5t=oo,Vt
Target
(b) 5=0 6,283 6,238 1,320 1,634,888 3,727,171 3,631,491
(c) =1 6,446 6,411 1,340 1,665,638 3,742,734 3,649,011
(d) 5=2 6,548 6,517 1,354 1,667,995 3,801,813 3,690,360
(e) 5=3 6,648 6,627 1,373 1,733,090 3,903,934 3,795,341

Table 6: Performance of optimal strategy for T2. The total number of trade attempts is 63,268. Cost-related
quantities in ticks (1073 JPY). Parameters: ¢5 = 5x 10™°, ¢p = 5, ¢ = 1073, F' = 100%, and T = 5 days.
Period is from 5 December 2016 to 31 March 2017, currency pair USD/JPY.

Missed by naive, filled by alternative strategies

Extra Avg. Avg. cost Avg. cost Growth Growth
Fills cost 20ms later 100ms later 20ms later 100ms later
(incl. partial) | in ticks in ticks in ticks % %
(a) 6t =00,V | 7,038 | 158 3.18 3.06 102% 94%
6* (;t:OO,Vt 5t:OO,Vt
Target
(b) 5=0 6,283 1.24 2.82 2.75 128% 122%
(c) b=1 6,446 1.24 2.79 2.72 125% 119%
(d) 5=2 6,548 1.23 2.81 2.73 128% 121%
(e) 5=3 6,648 1.26 2.84 2.76 125% 119%

Table 7: Performance of optimal strategy for T2. The total number of trade attempts is 63,268. Cost-related
quantities are weighted by volume and expressed in ticks (1072 JPY). The metrics in column 6 (resp. 7) are
the growth of the values in columns 5 and 6 (resp. 5 and 7) in Table 3. Parameters: ¢s =5x 107, ¢p = 5,

0 =1073, F' = 100%, and T = 5 days. Period is from 5 December 2016 to 31 March 2017, currency pair
USD/JPY.

Table 8 shows the results of the optimal strategy arranged in volatility quartiles when
the discretion target is 6 =0. The interpretation is the same as that of Table 5 for T1. The
cost incurred by the latency-optimal strategy to fill the trades missed by the naive strategy
are lower than the costs of returning to the market 20ms and 100ms later. The gap between
the costs of returning to the market 20ms and 100ms later and the costs incurred by the
optimal strategy widen as volatility increases.
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Missed by naive, filled by §* with § =0
Volatility Trades Fills % Fills % Avg. Avg. cost Avg. cost
Quartiles sent to 6t =0,Vt 05,0=0 cost 20ms later 100ms later
% Exchange (incl. partial) (incl. partial) in ticks in ticks in ticks

0%—25% 15,817 14,950 94.5% | 15,658  99.0% 0.94 1.90 1.87
25%-50% 15,817 14,545  92.0% | 15,631 98.8% 1.12 2.72 2.68
50%—-75% 15,817 14,226 89.9% | 15,629 98.8% 1.25 2.75 2.92
75%-100% 15,817 13,329 84.3% | 15,610 98.7% 1.86 3.51 3.31

Table 8: Performance of strategy in volatility quartiles for T2. Parameters: ¢5 =5 x 1075, ¢pp =5, p=1073,
F =100%, and T =5 days. Period is from 5 December 2016 to 31 March 2017, currency pair USD/JPY.

7. The cost of latency

One approach to mitigate the effects of latency on the efficacy of trading strategies is
to invest on hardware and co-location services to reduce the time delays associated to the
different components of the life cycle of a trade, see definition of latency in Section 2. As
latency shortens, traders that aim at the best prices they observe in the LOB will be on
target more often. This improvement in the marksmanship of the trader increases the fill
ratio of the strategy, but also reduces the chances of receiving price improvements.

Another approach is to devise latency-optimal strategies that lessen the adverse effects
of time delays, e.g., failing to complete trades. Although these strategies do not reduce time
delays in the life cycle of trade, they are a substitute for cutting down latency when the
objective is to increase the percentage of marketable orders that are filled.

Neither approach is free. The first approach requires the trader to pay fixed costs to
operate in the marketplace with lower latency, which increases the efficacy of the marketable
orders but reduces opportunities of obtaining price improvements. In the second approach,
costs accrue to the strategy when marketable orders walk the LOB, while benefits accrue
because the latency-optimal approach scoops price improvements when the market, due to
latency, moves in the trader’s interest.

In this section we compute the shadow price that T1 would be willing to pay to reduce
her latency in the marketplace. We proceed as follows. i) Consider hypothetical traders who
employ the same naive strategy (i.e., zero discretion to walk LOB) as that of T1, but each
trader acts in the market with a different fixed latency — for simplicity we assume latency
is not stochastic. ii) Compute the fill ratio achieved by each hypothetical trader’s naive
strategy. iii) Map levels of latency to fill ratios. iv) Find the hypothetical trader whose
fill ratio is the same as that achieved by T1’s latency-optimal strategy developed above
and compute the price improvements of the hypothetical trader’s strategy. v) Compute
the difference of the latency-optimal costs of walking the LOB and its price improvements.
Thus, the difference between the costs in (iv) and (v) is the shadow price of latency that
T1 would be willing to pay to employ a naive strategy (no discretion to walk LOB), which
obtains the same fill ratio as that of the latency-optimal strategy.
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7.1. Latency and fill ratios

Recall that the attributes we have for each order include: type of trade, volume of the
trade, price limit, and direction (buy or sell) of the trade. We also have the time-stamp of
when the order is processed by the Exchange (this time is denoted by ¢3 in our discussion
of latency in Section 2 above). However, we do not know the time it took the trader to
process information and make a decision before instructing the Exchange, or the time when
the trader sent the orders to the Exchange — all of which affect the latency of the trader in
the marketplace.

To map latency to fill ratios we devise fifty hypothetical traders who are clones of T1.
The only difference between T1 and the hypothetical traders is that each clone has a different
latency in the market. We denote each hypothetical trader by T; with j =0, 1, 2, ---, 50,
and assume that the latency of T, is j ms, i.e. 3%y = j ms. Note that although impossible
for a trader to operate in the marketplace with a latency of Oms, we include it in our list of
hypothetical traders for comparison purposes.

Note that in our approach we assume that the trader employs the same strategy regardless
of her latency. However, this may not be the case because if T1’s latency was lower than
her actual latency, her trading strategy could be different from the one she employed during
the period we analyze. For example, T'1 may not be attempting potentially profitable trades
because she acknowledges that her latency is too long to successfully complete trades that
require more speed.

We use Tyg to illustrate how we map a latency of 10ms to a measure of fill ratio — the
fill ratio of the other hypothetical traders is calculated in the same way. The fill ratio is
computed as the percentage of filled orders in one trading day — this coincides with definition
F,,, provided in (1), where n is the number of trades in the day. We assume that T, replaces
T1 in the market. Thus, Ty sends orders that have the same direction, volume, type (i.e.,
FoK), and discretion to walk the LOB, as those of T1, and assume the orders from T}, reach
the LOB an instant before T1’s trade was filled (for which we have a time-stamp), so the
hypothetical trader and T1 face the same market conditions. Therefore, orders sent by T4
and T1 only differ in that T attempts to fill the trade at the best quote streamed by the
Exchange 10ms before the Exchange receives the order.

For example, to compute the fill ratio that T;y would have obtained on 5 January 2017,
we employ the time-stamps of the 3,043 orders sent by T1 on that day and compute the fill
ratio that Ty would have achieved. We repeat this approach for each hypothetical trader on
the same day and depict the results in the left-hand panel of Figure 5. As expected, there is
a (monotonic) decreasing relationship between latency and fill ratio. In one extreme, when
latency is zero, Ty would have obtained a fill ratio of 100%. At the other extreme Tx’s fill
ratio is 89%.

In the figure, the square marker shows the point where latency of 27ms is mapped to
90%, which is the fill ratio obtained by T1’s naive strategy. The diamond marker in the
upper-left corner of the figure shows the latency of a hypothetical trader who achieved a fill
ratio of 99%. Note that this fill ratio corresponds (approximately) to the fill ratio T1 would
have obtained (F3,,; = 98.73%) had she employed the latency-optimal strategy with targets
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6 =0 and F = 100%. Thus, we say that, on 5 January 2017, T1’s implied latency is 27ms
and the implied latency of the optimal strategy is 3ms.

We repeat the analysis separately for each day between 2 December 2016 and 30 March
2017. The right-hand panel of Figure 5 shows the implied latencies of T1’s naive strategy
(solid line) and that of the latency-optimal strategy with target 6 = 0 (dotted line). The
variations in ‘implied’ latency are due to a number of factors, including the volatility of the
best quotes which, as discussed above, has a considerable effect on fill ratios. For ease of
presentation the y—axis is capped at 50ms — there were two days when T1’s implied latency
was over 50ms.
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Figure 5: Left-hand panel: Mapping of latency and fill ratio employing T1’s trade time-stamps and LOB
information on 5 January 2017. Square marker is T1’s implied latency. Diamond marker is latency-optimal
implied latency. Right-hand panel: implied latency for T1 and implied latency for latency-optimal strategy
employing T1’s trade time-stamps and LOB information during the period 2 December 2016 to 31 March
2017.

Table 9 summarizes the results. The top panel of the tables show the mean, standard
deviation, and median of the latency implied by the naive strategy and by the latency-
optimal strategies with various discretion targets 5. The bottom panel provides summary
statistics of the daily fill ratio obtained by the strategies. Here, the fill ratio Fy refers to
the percentage of orders that were filled each day, and the table shows the mean, standard
deviation, and median of the daily percentage of fills. For the latency-optimal strategy the
mean fill is between 98.9% and 99.5% and for T1’s naive strategy the mean fill is 91.0%.
We observe that the standard deviation of the fill ratio of the optimal strategy is also
considerably lower than that of the naive strategy. Therefore, the optimal strategy achieves
much higher fill ratios than the naive strategy, and produces more stable results because the
optimal strategy depends on the volatility of the micro-exchange rate.
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Naive Optimal Strategy 8* 0t = o0
strategy Target vt

5=0 4=1 5=2 45=3

Latency
mean 20.02 2.34 2.01 1.70 1.53 0
std 11.31 1.72 1.57 0.89 0.80 0
median 18.00 2.00 2.00 1.00 1.00 0
Fy
mean 91.9% 98.9% 99.2% 99.3%  99.5% 100%
std 2.9% 0.4% 0.4% 0.4% 0.3% 0%

median 92.2% 98.9% 99.2% 99.4%  99.5% 100%

Table 9: Shadow price of latency for T1. Period if 2 December 2016 to 30 March 2017, currency pair
USD/JPY.

7.2. Shadow price of latency

The shadow price of latency is the price that T1 would be willing to pay to reduce her
latency, so that the naive and the latency-optimal strategy obtain the same fill ratio. To
compute this price we need: Latency-optimal cost of walking the LOB and price improve-
ments, (ii) price improvements received by the hypothetical trader with latency equal to
that implied by the latency-optimal strategy.

For example, on 5 January 2017, the latency-optimal strategy incurs 92,771 JPY in
costs from walking the LOB and receives 69,305 JPY in price improvements. On the other
hand, the naive strategy of the hypothetical trader with latency 3ms, receives 7,592 JPY in
price improvements. Thus, on 5 January 2017, T1 would be willing to pay 31,058 JPY to
reduce her latency from 22ms to 3ms. We repeat the analysis for all trading days between 2
December 2016 and 30 March 2017 and compute T1’s shadow price of latency for each day.
Table 10 contains summary statistics of the results.

The table shows that T1 would be willing to pay approximately 3-10% JPY (around 30,000
USD) to reduce her latency from 20.02ms to 2.34ms. The upper bound of approximately
5-10% JPY (around 50,000 USD) for the shadow price of latency is given by the last column
and last row of the table, where we show the costs of always employing a marketable order
with infinite discretion. These shadow prices are, according to market participants, lower
than co-location, hardware, and other costs that traders would have to incur to reduce
latency in the life cycle of a trade.
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Naive Optimal Strategy 8* 0t = o0
strategy Target vt
§=0 §=1 §=2 §=3

Implied Latency (ms) | 20.02 | 2.34 2.01 1.70 1.53 | 0
Walk LOB Cost 0 6,528,965 6,807,416 6,999,804 7,232,545 | 8,914,046
Price Improvement 3,938,559 | 3,938,559 3,938,559 3,938,559 3,938,559 | 3,938,559

Price Improvement

with Reduced Latency 3,938,559 384,035 291,070 179,875 135,744 0

Shadow Price to Reduce Latency ‘ 0 ‘ 2,974,441 3,159,927 3,241,120 3,429,730 ‘ 4,975,487

Table 10: Shadow price to reduce latency reported in JPY. Period if 2 December 2016 to 30 March 2017,
currency pair USD/JPY.

8. Conclusions

We employed a set of proprietary data of FX transactions to show how latency affects the
percentage of liquidity taking orders filled by a trader’s strategy. We analyzed the trades of
two liquidity takers over a four-month period and showed that approximately 10% of their
orders were not filled due to latency.

To mitigate the adverse effects of missing trades due to latency of liquidity takers, we
proposed a model where the trader chooses the discretion of the orders to walk the LOB
to increase the percentage of marketable orders that are filled. The optimal discretion for
each liquidity taking order balances the tradeoff between the costs from walking the LOB
and how far is the fill ratio from the trader’s desired target. The trader’s optimal strategy
specifies the discretion for each transaction depending on the proportion of orders that have
been filled, how far is the strategy from the target fill ratio, the cost of walking the LOB, and
the volatility of the exchange rate. For example, everything else being equal, the optimal
discretion to walk the LOB is higher (resp. lower) when the volatility of the exchange rate
is above (resp. below) its long-term level.

We showed the performance of the latency-optimal strategy using trade data for two
FX traders. We computed the costs incurred by the latency-optimal strategy to increase
fill ratios and showed that the costs of the strategy are lower than the costs of returning
to the market 20ms or 100ms later to fill a missed trade. Moreover, we showed that the
latency-optimal strategy obtains similar fill ratios for different levels of volatility. This is in
contrast to the performance of the naive strategy where the majority of the missed trades
occur when the volatility of the exchange rate is high.

We employed the proprietary data set to build a function that maps latency of traders
to fill ratios. We use this mapping to compute the shadow price of latency that traders
are willing to pay to reduce latency in the marketplace. We computed the shadow price a
particular trader is willing to pay to reduce her latency by investing in hardware, co-location,
and other services. Our results showed that the trader would be better off employing the
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latency-optimal strategy developed here, instead of investing in hardware and co-location
services to reduce latency.
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Appendix A. Proofs

Appendix A.1. System of ODEs satisfied by ansatz

Insert ansatz (16) into HIBI (15) and collect terms to obtain the following coupled system of
six ODEs:

ho(t) + (b +ad+AF)hi(t) + 0% ho(t) + k0 hs(t) +% (%2 —w%) (1) -prE2=0, (A1)
9

2
h’l(t) + (2b17+2AF+2a5) hg(t) —)xhl(t) +/€?7h5(t) + 2 (% —QOO'%) hl(t) ]’Lg(t) +2¢FF:0,

(A.2)
hy(t) =2 M ha(t) +2 (;—Z—soa%) (ha(1))* ~¢r =0, (A.3)
Ry (t) —bhi(t) + (bT+ad+ANF)hs(t) + 25T ha(t) — K ha(t) + ((‘;—z - W%) hi(t)hs(t) =0, (A.4)
(E) = b b () + (07 = 2) ha(8) + (Z)—z - w%) (hs())? =0, (A.5)
RE(t) = 2bha(t) = (N + k) hs(t) +2 ((‘;—z - gpa%) ho(t) hs(t) =0, (A.6)

with terminal conditions
ho(T) =0, hi(T) =0, ho(T) =0, h3(T) =0, hgy(T) =0, hs5(T) =0.

Here the notation A'(t) is short-hand for dh(t)/dt. Next we provide solutions for hgy, hs, and hq,
which are the functions required to write the optimal control in closed-form.

Explicit solution for hs.
The function ho satisfies the Riccati ODE in (A.3) with terminal condition ha(7") = 0 and its
solution depends on the sign of the coefficient goa% —a?/¢s. Therefore:

e Case 1: p<a®/o% ¢s, then
hg(t) = 1 tanh (Cgt + 03) +cyq,

with
2
a 2 C2
a1 = —-—pop, c=—, C=—\20¢p+A\2,

on C2aq
A

c3 = atanh(——)+T 200 pp+ A2, cp=—.
Cc2

e Case 2: p =a?/o% ¢s, then

hz(t) - ;S_i (1 _6—2/\(T—t)) .
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e Case 3: > a®/o% ¢s, then
hQ(t) =C tan(EQt + 53) +Cyq,

with
B s a®>  _ e N —
a1 = YOop— T, Cl=—"—, Cy = — 2&1¢F—)\2,
o 20
- A — 5 - A
¢3 = —atanh|-—|+T\2a1¢0r—-X*, ¢1=—.
()] 20&1

From now on we focus on Case 1 to obtain closed-form formulae for h5 and hq; Cases 2 and 3
are similar.

Explicit solution for hs.
We use the integrating-factor technique to write

hs(t) = —eli (2arha(w)=r-X)du / L b hy(s) e S @ar haw)-m-d)du g
t

which can be explicitly written as

ek (T-t)

hs(t —_—_—
5(t) cosh (teg + c3)

dz(Tft)ﬁLdg _ ,ds3 dq (T,t),dS _ ,—ds
« | £ ¢ b(ci+cq)+ ¢ ‘ b(ca—c1)],
d2 dl

where the constants di = kK + co, dg = kK — co, and dg = c3 + 1 co.

Explicit solution for h;.
Similarly, we write

T
ha(t) = efi" 2eaha(u)-Adu [ (kD hs(s) +e1ha(s) +e2) o [ 201 ha(w)-Adu ds,
t

where the constants e = 2bo+2AF +2aé and ez = 2¢p . The integrals can be solved explicitly
to obtain
-Kv

ha(t _—
1) cosh(cat + c3)

b (61 -+ 64) €d3 ek (T-t) _ 1 e (T-t) _ 1
X —
d2 K Co

+b (ca—c1) e s (602 (T-t) _ 1 e n(T-1) _q ) ]

+
dq Co K

€1C1

" h(co T +¢3) — cosh(cat +
¢z cosh(cat + c3) (cosh(ea T + ¢5) = cosh(eat +¢3))

e1C4 + €9

inh(co T + —sinh(cot + .
o cosh(cat + 03) (sinh(eo c3) —sinh(cat + ¢3))

Finally, the functions hg and hs are obtained explicitly in a similar way. Note that to obtain
the optimal controls explicitly we only require hy, ho, hs.
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Appendix A.2. Proof of Theorem 1.

We first present the reader with a class of controls that produce strong solutions for F % and
v, which is explicitly written in Lemma 1. We use Lemma 1 to prove admissibility of *, which is
presented in Corollary 1, then we prove that the control z* is also admissible, and finally, conclude
with the verification of the value function.

Lemma 1. Let 6; = pu(t, Fy,ve) with p € Mor. Then, for allt € [0, T'] there exist strong solutions
to the SDEs of F° and v.

Proof. Let 6, = pu(t, Fy, v), for p € Mop. Thus, there exists K € R such that for all ¢ € [0,T7],
x,y € R?

u(t, @) - p(ty)| <K |-y, and |u(t,z) <K (1+[2f) . (A7)
Let Z) = (F?, v;)’, thus
dZ) = (A(t) + B(t) Z} + p(t, Z7)) dt + C, AWy,

with A(t), B(t), C, and p given by

A(t):[)\i;bv], B(t):[—o)\ :b]’ Ct:[ag 0 ] u(t,Zf)=[““(t(;Z?)]-

K Oy Ut

Define the functions ¢ : [0, T] x R? = R2, and o : [0, T] x R? — R*2, which are given by

0 Oy Ut

c(t,Z) = (A@t) + B(t) Z + u(t, Z)) , o(t,Z) = ["F 0 ]

Now, let t € [0,T], Z1, Z2 € R?. We first verify the Lipschitz condition on c,
lc(t, Z1) - c(t, Z2)| = [B(t) (Z1 - Z2) + u(t, Z1) - p(t, Z2)|
<[BW| 121 - Zo| + |u(t, Z1) - p(t, Z2
<B|Zy-Zo|+K |Z1 - Zs| = K |Z1 - Zs]

for K=K + B, and B = max, ¢ [o,7] B(t), which is clearly attained. For o, we have
|O‘(t, Zl) —O'(t, Z2)| < 0oy |Zl - Zz| .

We now test the linear growth condition on ¢, we use triangle inequalities and simple bounds
to obtain
le(t, Z1)]” = |A(t) + B(t) Z1 + u(t, Z1) [P < (JA()] +|B(t) Za| + |u(t, Z1)])?
<3 [A@P +3 B[ 121 +3 |u(t, Z1))
<3A%+3B*|Z:1 +3K*(1+|Z:1])
<D?+D*|Z:i +3K?(1+|Z1)
=(D*+3K%) (1+ ]Zl\z) ,
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for A =max;c[o7) A(t), which is clearly attained. Finally, we take D* = max { A%, B?}.
On the other hand, for o, we have

lo(t, Z1)[* <20% + 202 | Z4|
<E? (1+]Z1%),

for E = max{0%,02}. Lipschitz and linear growth conditions follow by choosing

szax{E, D? +3K2, UU,K}<M.

It is then proved that the Lipschitz and linear growth conditions are satisfied, therefore, for
all t € [0, T], there exits a strong solution to the SDE satisfied by Z°, and subsequently F° and
V¢. O

Corollary 1. Let § € A, 1. Then, for allt € [0, T there exist strong solutions to the SDEs of F°
and v.

This straightforward implication proves that as long as the control ¢ is admissible, F° and v
have strong solutions.

Proof. Let § € A, this implies that there exist y € Mg such that §; = pu (¢, F;, v¢). By Lemma
1, for all t € [0, T'] there exist strong solutions to the SDEs of F° and v. O

Proof. The control §* is admissible .
Recall that §* is given by

* _ ¢ L o*
5t =5+ 30 (hl(t)+2h2(t)Ft +h5(t)vt).

Define f: [0, T]xRxR ~ R as
ahg(t) o+ ah5(t) Y,
b5 2¢5

we see that 0; = f (¢, Ft,v:), and, since f is linear in = and y, and a continuous function of ¢, then
f € Mpr. The control §* is F-adapted, because it is a continuous function of two F-adapted
processes. Then, we only need to prove that

E[fOT(5;)2ds] < oo.

Based on Young’s inequality we find the following bound for the optimal control:

f(t,a,y) =6+ 2%;}““) +

. A a 2 242 a2 a®
5107 < 2 (3 55 m0) + S () () 555 (s ()* )

and because hy, he and hs are continuous functions in the closed interval [0, T'], they are bounded.
Let U be an upper bound for |h|, |he|, and |hs| on [0, T'].
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As 0f = f(t, Fy,v) for f e Mor, by Lemma 1, we have that F% and v have strong solutions
for all t € [0, T'], thus

2
E[ sup (F{s ) ] < o0, and E[ sup (vt)Z] < 00, (A.8)
0<t<T 0<t<T

Finally, using the bound U and the inequalities in (A.8), we conclude that

E[[OT(5;)2ds] < E[fOTQ (5+ %%hl(t))QJr 2—?(@(@)2 (Fté*)2 + 2a—;§ (h5(t))2 (vt)2]
CL2

(UY sup W]

s a 2 242 2 )2
<E 2T(5+—U) + 2 (U)? sup (FY) +T
[ 5 ( ) 5 ( ! ) 2‘% 0<t<T

25 ¢5 0<¢<T

< 00.

Proof. The control z* is admissible.

This proof is similar to that of Theorem 1 in Cheridito et al. (2007).

Let 6 € A7, then 3 € My p, such that §; = (¢, Fy, v;). Recall that the optimal control z* is
given by

a; = por (hi(t) +2ha(t) F) + hs(t) vy)
= 77(t7Ft7Ut) 3

which is adapted because it is a continuous function of adapted processes, so only remains to show

that 1 b .
Zt:eXp{_§f0 (x2)2du—[0 deWf},

is a martingale. As the control x* is a well-defined continuous process, Z is a well-defined local
martingale with respect to P, and subsequently, because Z is non-negative, it follows that it is a
super-martingale, and for it to be a martingale, we only need to prove

EF [Zr]=1.
Consider the function x@ given by

OoF
/’LQ(tthvt) = /’L(tthvt) - 7 n(taFt7Ut) )

and since the term 7(t, F;,v;) is continuous in time and linear in F' and v, it belongs to My r,
therefore p@ ¢ M.
Given that u, pu@ € M7, by Lemma 1, we know there is a strong solution for the SDEs given
by
dF; = (A(F - F) +ap(t, Fy,v) = b (v - 0)) dt + op dW/, (A.9)
dFy = (AN(F - F) +ap®(t, Fyv) - b(v - 0)) dt +op AW/ (A.10)
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Now define

7y =por (hi(t) +2ha(t) FY + hs(t) vy) (A.11)
= n(t, Fy,vt) (A.12)
and, for n € N, consider the stopping times 7, and 7,
T =inf{t >0 |z >n} AT, (A.13)
Tp=inf{t>0|2 2n} AT, (A.14)

and since x* and Z* are P-a.s. finite, then
gi_{goIP(Tn=T)=gi_>rgoP(%n=T)=1. (A.15)
Define for each n € N the process
xin) =z loer,ys

which satisfies the Novikov’s condition
2
T 2 n*T
EP [exp{%fo (z) du}] < eXp{T} < o0,
Then it follows that

d (n)
M = exp _1 ! :U,gn) 2 du — t.:U,l(ln) dW’lZL
t 2 Jo 0

dP
=z,

defines an equivalent measure to P, and by Girsanov’s theorem, W}* = W[ + fot xgn) ds is a Brownian
motion under the measure Q (x(”)), abbreviated as Q". Finally,

EP [ZT] = ]EP I:T}l_glo ZT ].{Tn:T}:I

E" [ lim Z7 1 {TR:T}]
lim EF [Z} 1, -7y ]
lim EQn [1{Tn:T}]

n—oo

lim Q" (7, =T) ,

n—oo

where the first two equalities hold because the control z* is P-a.s. finite and from definition
(A.13). The third equality follows from the monotone convergence theorem. The fourth equality
is the change of measure imposed by Z7.

Finally, starting at Fp, the stopped process Finr,, under Q" is given by

tATR

tATh _
Firr, =F0+f0 ()\ (F—Fs)+a,u(s,FS,vS)—0F:Ug")—b(vs—T))) ds+/0- op dW
tATH _ tATR
=F0+/0 ()\(F—FS)+CL/L(S,FS,US)—O'FJJ;—b(vs—l_})) d5+f0 opdW
tATR

= Fy+ fomm ()\ (F—FS) +auQ(s,Fs,vs) - b(vs —17)) ds + fo opdW,
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and similarly, the stopped process ﬁ’m;n, under P is given by

tATn

th=F0+[OW"(A(F—FS)+au@(s,ﬁs,vs)—b(vs—a))ds+f0 opdWr.

Therefore (F’m;n) and (Fiar, )o<<r have the same distribution under Q™ and P respectively,

0<t<T’
thus
lim Q" (7, =T) = lim P(7,=T) =1,
n—>00 n—>00
and
EF [Z7] = lim Q" (1, =T)
n—>00
= lim P(7,=T)
n—>00
=1,

which concludes the proof.
O

Finally, we present the last proof of Theorem 1. We prove that (16) is the trader’s value
function (10).

Proof. V is the value function of the agent’s control problem in (10).
Let Q* = Q*(8) be the measure inferred by z; (5) = pop (h1(t) + 2 ha(t) FJ + hs(t) v;), in other

words,
dQ* O T T .
1P |T=exp{—§ fo x ;wudu—fo xuqu}, (A.16)
where x; = (z{, 0). Clearly x; (0) represents the infimum measure of (10) for an admissible J.
The dynamics of v under Q* do not change, but that of F*Q" does, specifically

AFP Y = (AP - (A +2003ha(t)) F*© +ady+b0 - (b+ 9ot hs(t)) v - pod (1)) dt+opdi ™

As V e CH*2 | applying Itd’s Lemma under Q*, and considering a & € A 7, we have

1) T * T % T F O
V(T,FT,UT):V(t,f,v)+/ o,V + LY Vds+f B,V 7y vy AW Q +f 0¢V opdWH
t t t
(A.17)

where WI™* and W¥* are standard Q*-Brownian motions. The function V is a solution of (14),
and ¢ is an arbitrary control, thus

* A - 1
OV + LYV <65 (5-0) +or (f-F) = = ().
P
Now, take expectations on both sides of (A.17) to obtain

0=E2,  [V(T,F},vr)],

* [ T *
= V(t, f.v) +EZ; ft O,V + L2 Vds],

o [ T 2 T 5 2n2 L T 2
<Vt L) +EY, (65 [ (6,-8) dswor [ (FI-F) ds—ﬁft (z?) ds],

T T ) T . 1 T 1 /T X
- V(t, fv) +EZ, @ft (65—5)2ds+¢pft (Ff—F)2ds—ﬁ/t (x;)2ds+;£ x;dWS],
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therefore

. T R T T .
w8 [0 [ G- as-or [T (- as o [T a2 [Caaw® < v o),
v t o Jt t

¥

or alternatively,

A T . 1 T 1 T
tfv[ %f (6.-8) ds—or [ (Ff—F)st—ﬁ[t (wé)zds—;ft xidWs]SV(t,f,v),
* T A T R
EY, |0 [ (6-8)ds o [ (FI-F)'ds+ Hor @IP)| <Vt S0,

and because V (¢, f,v) is a bound for any § € A; 7 , we have that

T R T «
sup EZ, | [ @ft (53—5)2ds—¢Fft (Fj—F)QdH%t,T(Q*m)]sV(t,f,v)

deAy T

sup inf Etﬁ [ (/56/;T(55_3)2d8—¢F/;T(Ff_ls’)zdSJrHt,T(@m)]SV(t7f7U)7 (A.18)

56.»4,5 T QGQ

which completes the first part of the proof.
Now, fix the strategy 0%, then for any Q € Q, because V' is a solution of (14), and as in (14)
the inf and sup can be interchanged, we have that

OV L% 2 05 (5 =5) w0 (1= F)' - o

70 (z)?, (A.19)

and, following the same steps as before, but now using (A.19) and working under Q, we have
+ 8\2 T 6* )2
B8 [-os [ (000 ds—or [ (FF - FY as e @) 2V f0),
v t
and because this is true for all Q € Q, we have
T " ) T 5* N2
1nf Etf’ [ m/t (67 -9) ds—(bpft (FS -F) ds+Ht,T(@|P)]zV(t,f,v)
T 9 T, s .9
sup inf B, | [ ¢5f (6, - ) ds—d)F/ (F? - F) ds+ﬂt,T(@|P)]zV(t,f,u), (A.20)
v t t

6€At T QEQ

which completes the second part of the proof.
After combining (A.18) and (A.20) we obtain the desired result.
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