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Abstract

A network analysis for limit order books (LOB) across stocks yields a better
understanding of market behavior. The network is constructed in the presence of
microstructure noise and non-synchronous trading. This paper contributes to di-
rected network estimation through penalized vector autoregressive (VAR) approach.
The connectedness table can be constructed for both Gaussian and non-Gaussian
models, with a connectedness measure directly derived from generalized impulse re-
sponse function by way of bootstrapping. The directional connectedness "from" and
"to" are associated with the forecast error variation for specific order book across
various stocks when the arising shocks transmit from one stock to the others. To
balance the sparsity and estimation accuracy, a moderate tuning parameter in pe-
nalized VAR is determined by Bayesian information criterion (BIC), followed by a
ordinary least squares (OLS) post-Lasso estimator, which can be configured to re-
duce finite-sample bias and ensure better model performance. Moreover we look for
the short-horizon large portfolio allocation decisions, and provide novel empirical
evidence using high frequency data trading in NASDAQ market.

JEL classification: C02, C13, C22, C45, G12
Keywords : limit order book, high dimension, generalized impulse response, high frequency,
market risk, market impact, network, bootstrap
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1 Introduction

Advancements in trading technologies allow an extremely rapid placement of buy and
sell orders. These rapid-fire trading algorithms can make decisions in milliseconds. The
dynamic changes of the high frequency (HF) limit order book (LOB) gives us vital in-
sights into the market behavior. In an LOB shown in Figure 1, the order book contains
a quantity of limit orders and the corresponding price at which you would issue a "buy"
or "sell" limit order. When an investor places an order to purchase or sell a stock, there
are two fundamental execution options: place the order "at market" or "at limit." The
market ones are orders of purchase or sale at the best available quote. On the other hand
the limit orders are not immediately executed since they are placed at a quote which is
less favorable than the best quote, e.g. the second level bid/ask order. The schematic
representation of an LOB reflects the local decisions and interactions between thousands
of investors, and thus generates a high dimensional dynamic and complex system. In-
sights into this highly dynamic LOB is therefore vital for pricing of assets, but requires
skillful dimension reduction techniques in combination with generalized impulse response
analysis.

Figure 1: A simplified example of the three level LOB, with market order and first two
levels of limit orders.

The limit order book has been analyzed in a variety of ways, theoretical analysis of limit
orders include Parlour and Seppi (2003), Foucault et al. (2005), Roşu (2009) etc. Empirical
examples are Handa et al. (2003) and Bloomfield et al. (2005). These pieces of literature
provide useful characterizations of limit orders, and discuss in detail the evolution of liq-
uidity in an LOB market. Kavajecz and Odders-White (2004) suggests that limit orders
may, in part, be informative about pockets of future liquidity. However empirical evi-
dence on the actual market impact of limit order placements across stocks is virtually not
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existent, many questions of interest to regulators and traders are unsolved: i) How does
the order flows interact with price dynamics, and further affect the market behavior? ii)
Are the impacts on price responding to incoming ask and bid market/limit orders widely
symmetric? iii) If not symmetric, how does the heterogeneous market impact caused by
bid and ask order for various stocks affect the whole market? iv) How to measure the
impact of market/limit order quantitatively? To address the arising questions, in this
paper we conduct a comprehensive study on the interaction among price, bid and ask
order sizes. LOB provides a more complicated scenario that inspires us to construct a
high-dimensional object using both price and several levels of depth of order sizes with
historical order flow. Of particular interest is vast directed network analysis based on the
constructed high-dimensional object. The underlying assumption is that there exists a
sparse representation of the data. This may help us to understand how information is
impounded into price. For instance, the orders posted on the selected order levels that
induce significant price impact would be treated as price drivers. In this way, investors’
decision-making can be addressed by making trading price driven by order flows. The
motivation to construct a network of LOB stems from the lack of both theoretical setup
and empirical support.

To do so the VAR model is without doubt one of the most useful tools that allows us
to capture in a simple fashion their dynamic evolution. However it imposes challenges
of high dimensionality when we incorporating a variety of time series, particularly where
the vector observed at each time is high dimensional relative to the time period. Re-
searchers have developed various penalized estimators to filter out less relevant variables,
key papers are on the Lasso Tibshirani (1996), SCAD Fan and Li (2001), adaptive Lasso
Zou (2006), elastic net Zou and Hastie (2005), Dantzig selector Candes and Tao (2007).
This paper is different from this structure of thoughts since it focuses on network con-
nectivity, which is derived from generalized impulse response function. There has been a
large literature discussing sparse VAR estimation through different penalty terms. For in-
stance, Negahban and Wainwright (2011) imposed sparse dependence assumption on the
transition matrix of VAR model and studied the theoretical properties. Kock and Callot
(2015) discussed theoretical properties of Lasso and adaptive Lasso in VAR model that
may reveal the correct sparsity pattern asymptotically. Basu et al. (2015) investigated
theoretical properties of Lasso-type estimators for high-dimensional Gaussian processes.
Wu and Wu (2016) studied the systematic theory for high-dimensional linear models with
correlated errors. The Lasso-type estimators penalize the regression coefficients with the
model size via a shrinkage procedure. Belloni et al. (2012) and Belloni et al. (2013) studied
the post-model selection estimator that apply OLS to the first-step penalized estimators
to alleviate shrinkage bias.
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Diebold and Yılmaz (2014) proposed connectedness measures built from generalized fore-
cast error variance decomposition (GFEVD) based on VAR systems, where the GFEVD
is developed by Pesaran and Shin (1998) and Koop et al. (1996) with an intrinsic appeal
to order-invariance. However the contributions of shares of forecast error variation in
various locations do not add to unity, and it is restricted to Gaussian innovations. To
solve this, we use the LN-GFEVD that has been recently proposed by Lanne and Nyberg
(2016). The LN-GFEVD is economically interpretable, and can be implemented to both
linear (Gaussian and non-Gaussian) or nonlinear models. To keep the sparsity structure
of high-dimensional VAR estimator, we apply a bootstrap-based method rather than a
moving-average (MA) transformation which is often done in fixed dimensional cases. In
summary a new connectedness table is obtained, where the directed connectedness "from"
and "to" are associated with the new forecast error variation for specific order book across
various stocks when the arising shocks transmit from one stock to the others. This pa-
per contributes to network construction through high-dimensional VAR estimation, the
resulting connectedness table facilitates convenient interpretation. At the same time, a
parsimonious algorithm without MA transformation can help to improve the accuracy of
final connectedness estimator.

We progress by focusing on the dynamics of LOB networks and their evolution. First,
we find that the network involving the trading volumes is a better measure of the stock
connectedness, finance sector dominates the market in the sense that they have stronger
influence on the others. Second, financial stocks are size-dominated, their price patterns
are highly related to the market trading activity. The impacts caused by ask and bid or-
ders generally exist and assymetric. In particular, the NASDAQ market is more sensitive
to the market sell pressure. Third, we investigate the LOB trading activity and find out
significant own-price and cross-price market impacts. Moreover, we are able to identify
the significant market impact caused by the arrival of a large market/limit order, and
several robust risk transmission channels. Overall, our findings on the time-varying LOB
networks yield a better understanding of market behavior.

The rest of the paper is organized as follows. Section 2 introduces NASDAQ LOB market
and the non-synchronous LOB data, we then elaborate the data preparation based on
volume-synchronization algorithm. In Section 3 we present the theoretical framework for
high-dimensional VAR estimation, and construct the connectedness estimator based on
our setting. The empirical results of time-varying network are illustrated in Section 4.
Section 5 measures price dynamics under uncertainty shocks. Section 6 concludes, while
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more technical details are relegated to the Appendix.

2 Description of the Market and Data Preparation

2.1 NASDAQ Limit Order Book Market

Our sample consists of intraday trading data for selected NASDAQ stocks for the sample
period spanning 1st, June 2016 to 30th, July of 2016. These data come from the LOB-
STER academic data, which is powered by NASDAQ’s historical TotalView using very
detailed event information.

The basic structure of LOB is shown in Figure 2. The sample file has one time-stamped
record for every order entered for each stock throughout the trading day. Trades are time
stamped up to the nanosecond and signed to indicate whether they were initiated by a
buyer or seller by the "Direction" ticker, i.e. sell trade direction are set to ‘-1’ and buy
trade direction are set to ‘1’. The ticker of "Event Type" indicates the trading type, for
example, 1: Submission of a new order, 2: Cancellation (partial deletion of a order order),
3: Deletion (total deletion of a market/limit order), 4: Execution of a visible limit order,
5: Execution of a hidden limit order etc. Another important feature of this dataset is
that each quote has been associated with trading information and limit order book. To
be more specific, the k-th row in the "message" file (upper panel of Figure 2) describes
the limit order event causing the change in the limit order book from line k − 1 to line k
in the "orderbook" file (lower panel).

Figure 2: Structure of LOBSTER data

The sample is stratified by market capitalization and industry sector. The industry break-
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Industry Stock Company MktCap (billion $)
Technology IBM International Business Machines Corp. 171.72

MSFT Microsoft Corporation 499.35
T AT&T Inc. 257.53

Healthcare JNJ Johnson & Johnson 328.91
PFE Pfizer Inc. 206.69
MRK Merck & Co. Inc. 181.56

Finance JPM JP Morgan Chase & Co. 326.04
WFC Wells Fargo & Company 293.39
C Citigroup Inc. 168.06

Table 1: Sample data. MktCap is the market capitalization by Feb 25th, 2017.

NumObs AvgTrd AvgAP1 AvgBP1 AvgAS1
(∗103) (∗103) (in $) (in $) (100 shrs)

IBM 118.25 5.82 153.07 153.04 1.92
MSFT 584.55 25.91 52.28 52.26 24.19

T 223.45 6.67 38.75 38.74 36.36
JNJ 172.77 8.17 113.99 113.98 4.11
PFE 427.51 12.49 34.83 34.82 41.96
MRK 188.84 5.82 56.70 56.68 7.43
JPM 414.35 11.49 65.48 65.46 9.47
WFC 275.29 10.91 50.90 50.89 18.02
C 472.90 12.19 46.82 46.81 14.19

AvgBS1 AvgAS2 AvgBS2 AvgAS3 AvgBS3
(100 shrs) (100 shrs) (100 shrs) (100 shrs) (100 shrs)

IBM 2.17 1.95 2.26 2.09 2.26
MSFT 24.53 28.12 31.06 33.90 35.37

T 33.76 43.63 41.96 55.53 63.67
JNJ 3.62 5.86 4.44 7.74 4.90
PFE 42.29 48.07 48.09 50.94 55.68
MRK 7.36 14.34 11.30 24.20 13.87
JPM 9.45 13.10 11.82 17.41 15.09
WFC 17.01 20.68 17.72 23.58 19.05
C 12.97 18.58 16.48 22.23 19.60

Table 2: Summary statistics of selected stocks. NumObs denotes the average number
of observation. AvgTrd is the average number of execution trades of a market/limit
order. AvgAP1 gives the average ask price for the first order, and AvgAS1 represents the
corresponding ask size.
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down of NASDAQ market is technology of 45.38%, Health Care of 11.43% and Financials
of 8.42% (as of 23.02.2018). We consider a sample portfolio with 9 assets listed in Table
1, together with their market order and first two levels of limit orders, which attract the
majority of trading activity, therefore becoming our research interest.

We present the summary statistics of sample dataset in Table 2. The data is collected for
the normal trading day involving both visible and hidden orders, which run from 9:30 a.m
to 4 p.m ET. To avoid erratic effects during the market opening and closure, our sample
period covers only the continuous trading periods between 9:45 and 16:00.

The main challenge in dealing with HFT data is the presence of microstructure noise aris-
ing from market frictions, where the noise-induced bias at very high sampling frequencies
contaminates the observed price. Whereas infrequent sampling frequency leads to im-
precise estimates, optimal sampling frequency is needed to acquire bias-variance tradeoff,
see Bandi and Russell (2006), Aït-Sahalia et al. (2005), Bandi and Russell (2008). Here
we implement the pre-averaging approach to exclude the impact of microstructure noise,
technical details can be found in Appendix A.

2.2 Volume synchronization Algorithm

This section is devoted to the data preparation procedure by involving the order flows.
We propose an algorithm that achieves volume synchronization for high-dimensional sta-
tistical setting.

As we know, the market order gets transacted at whatever price in that market, while the
limit order specify the price at which to execute the order. For larger orders placed in the
market, it takes longer to fill and can actually move the market on their own. In contrast
to a moderate time interval for price to reduce the microstructure noise, the time interval
for trading volumes should be small enough to capture the large orders submitted by the
market trader. Considering the facts, we propose a trading volume measure, size intensity,
S̃tj that captures the trading crowd that provides a substantial amount of liquidity at the
quotes,

S̃tj = Stj(tj+1 − tj) (1)

where tj denotes the time stamp of jth LOB, Stj is the corresponding tick size at tj.
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By size intensity can be summed up over a given moderate time interval and therefore,
matched with returns.

In the following we shall illustrate how to explicitly prepare the raw HF data. For ease
of illustration, the volume synchronization algorithm can be divided into four steps,

Step 1: Set equally-spaced k time intervals starting at time T0

T0 + k∆T, k = 0, 1, 2, . . . , K

Step 2: Define the price and size at time T0 + k∆T as

P̃T0+k∆T = Ptm , tm = max{tj; tj ≤ T0 + k∆T}

S̃T0+k∆T =
∑

T0+(k−1)∆T≤tj≤T0+k∆T

Stj(tj+1 − tj)

the size variables denoted as S̃T0+k∆T are the size intensity measure (1).

Step 3: Compute the changes of the log values,

∆pT0+k∆T = log P̃T0+k∆T − log P̃T0+(k−1)∆T

∆sT0+k∆T = log S̃T0+k∆T − log S̃T0+(k−1)∆T

Step 4: Pre-averaging both ∆pT0+k∆T and ∆sT0+k∆T to remove microstructure noise,

∆p̃T0+k∆T =
J∑
j=0

gj∆pT0+j∆T

∆s̃T0+k∆T =
J∑
j=0

gj∆sT0+j∆T

where gj ≥ 0 and
∑J

j=0 gj = 1, the details are in Appendix A.

Preparing data in this way alleviates microstructure noise, matches the price to the size
in a moderate interval and solves the problem of non-synchronicity.

For each stock, we take the mid price on the first level and the corresponding bid and ask
sizes on the first three levels, i.e. market order, best limit order and 2nd best limit order.
Then we construct the variable,

y
(n)>
t = [∆p̃

(n)
t ,∆s̃

a1(n)
t ,∆s̃

a2(n)
t ,∆s̃

a3(n)
t ,∆s̃

b1(n)
t ,∆s̃

b2(n)
t ,∆s̃

b3(n)
t ] (2)
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where ∆p̃
(n)
t is the prepared price factor for stock n, ∆s̃

ar(n)
t stands for the corresponding

rth level of ask size factor, whereas ∆s̃
br(n)
t stands for the rth level of bid size factor for

stock n.

By stacking the vector y(n)>
t for different N stocks together, we define the large vector

Y >t to estimate as

Y >t = [y
(1)>
t , y

(2)>
t , . . . , y

(N)>
t ] (3)

Note that a critical assumption imposed to ensure the consistency of estimator is the
observations are weakly dependence. In our setting we divide the trading period into 1-
minute intervals and pre-average both ∆p̃

(n)
t , ∆s̃

br(n)
t and ∆s̃

ar(n)
t to reduce microstructure

noise over 15-min, yielding 375 observations per day.

3 Methodology

3.1 High-dimensional VAR estimation

Statistically, a high-dimensional (HD) VAR model facilitates consistent estimation and
better finite-sample performance. Economically speaking, estimation results derived from
a sparsity assumption help to explain the economic intuition. By incorporating the lags
terms in the penalized VAR model, we aim to show the "sluggished" price adjustments
caused by market/limit orders.

The standard VAR(p) model, Lütkepohl (2005) is,

Yt = A1Yt−1 + A2Yt−2 + · · ·+ ApYt−p + ut

= (A1, A2, . . . , Ap)
(
Y >t−1, Y

>
t−2, . . . , Y

>
t−p
)>

+ ut (4)

where Yt = (y1t, y2t, . . . , yKt)
> ∈ RK is a random vector, t = 1, . . . , T . Ai are fixed

(K ×K) coefficient matrices. p is the lag and ut = (u1t, u2t, . . . , uKt)
> ∈ RK is the i.i.d

innovation process. In our LOB setting, dimension of K = 7N with N is the number of
stocks in the portfolio.

Assumption 1. Assume (4) satisfies that,
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1. The roots of |IK −
∑p

j=1 Ajz
j| = 0 lie outside unit circle.

2. ut are i.i.d innovations;
each element has bounded (4 + δ)th moment, δ > 0.

3. ‖Σu‖2 <∞ and ‖(A1, A2, . . . , Ap)‖2 <∞.

In practice, the coefficients A1, . . . , Ap are unknown and have to be estimated from {Yt}Tt=1.
Define,

Y = (Y1, Y2, . . . , YT ) A = (A1, A2, . . . , Ap)

Zt = (yt, yt+1, . . . , yt−p+1)> Z = (Z0, Z1, . . . , ZT−1) (5)

Then equation (4) reads,

Y = AZ + U (6)

with U = (u1, u2, . . . , uT ). The compact form (6) is equivalent to

y = (Z> ⊗ IK)β + u = xβ + u (7)

where the length of the parameter vector β is pK2, the number of observations is KT .

In practice, the ration Kp
T

could be large due to high dimensionality, which deteriorates
the accuracy of final estimate. Worse still, if Kp > T , the number of coefficients to be
estimated increases quadratically in terms of the number of lags p, therefore the model
cannot be identified with traditional methods such as OLS. Therefore variable selection
techniques like Lasso is introduced to concentrate on a subset of non-zero parameters.
For multiple time series data, especially high dimensional time series, it is preferred to
use elastic net approach rather than pure Lasso to remedy potentially strong correlation
among regressors. Besides, under normal assumption of error term, the upper bound of
estimated error is positively correlated in log(K2p)

T
, part of oracle inequality. The method-

ologies introduced in the proceeding paragraph are of great importance in the sense that
the true underlying model has a sparse representation.

The HD VAR estimates β by minimizing the objective function,

arg min
β

(
‖y− xβ‖2

2 + α1,T‖β‖1 + α2,T‖β‖2
2

)
(8)
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which is equivalent to,

arg min
A1,A2,...,AP

T∑
t=1

‖Yt −
P∑
j=1

AjYt−j‖2
2 + α1,T

P∑
j=1

‖vec(Aj)‖1 + α2,T

P∑
j=1

‖vec(Aj)‖2
2 (9)

where Aj is the (K × K) coefficient matrices of interest. α1,T and α2,T are the penalty
parameters. Note that the notation ‖M‖p depends on whether M is a vector or a matrix.
To avoid confusion, we use vec(M) here to tranform the object within ‖‖p into a vector.

We choose a sequence of decreasing positive numbers α1,T and α2,T to control the regu-
larization. In the case of regularization parameter is large, setting it too high will throw
away useful information, whereas the estimated graph is not sparse when the αT is small.
To balance the sparsity and estimation accuracy, we choose a moderately small tuning
parameter using the Bayesian information criterion (BIC). In addition, we apply OLS
post-model selection estimator to the first-step penalized estimator (8) or (9) to reduce
shrinkage bias and ensure better model model performance.

3.2 Structural Analysis of High-dimensional LOB Portfolio

This section discusses the effects of uncertainty shocks in the LOB. In general, uncertainty
responds to all shocks through its relation to the lags of the LOB variables as specified in
the HD VAR model (8). Let us first consider the generalized impulse response function
(GI) for the case of an arbitrary current shock.

For the multivariate case, following Koop et al. (1996) and Pesaran and Shin (1998), we
assume shocks hitting only one equation at a time rather than all the shocks at time t. The
effect on j-th equation of yt of a one-standard deviation shock to perceived uncertainty
are given by GI,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ û?jtej (10)

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1)

where û?jt are independent draws with replacement from the set of residuals {ûjt}Tt=1 over
the sample period, with {ûjt} is the model-implied residual of jth equation at time t.
E(yt+1 | ujt = δjt,Ft−1) represents the expectation conditional on the history Ft−1 and a
fixed value of j-th shock δjt on time t at horizon l. Ft−1 consists of the information used
to compute the conditional expectations based on (4).
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To measure the persistent effect of a shock on the behaviour of a series, the basic object
in 10 is the conditional expectation. However the sparse estimation of HD VAR is non-
linear, the GI functions cannot be expressed in closed form. Therefore we use bootstrap
methods to produce simulated realizations that can be used to form draws from the joint
distribution of shocks. The steps for computing the conditional expectations in GI are
described in Appendix B.

3.3 Network Construction

The LN-GFEVD denoted as λij,Ft−1(h) is defined by j-th shock hitting i-th variable at
time t,

λij,Ft−1(h) =

∑h
l=0GI(l, δjt,Ft−1)2

i∑K
j=1

∑h
l=0GI(l, δjt,Ft−1)2

i

, i, j = 1, . . . , K (11)

where h is the horizon, Ft−1 refers to the history. Therefore λij,Ft−1(h) ∈ [0, 1], measuring
the relative contribution of a shock δjt to the j-th equation in relation to the total impact
of allK shocks on the i-th variable in yt after h periods. Compared to traditional GFEVD,
LN-GFEVD has the attractive property that the proportions of the impact accounted for
by innovations in each variable sum to unity. The LN-GFEVD is thus economic inter-
pretable.

Many literature characterizes connectedness of the variables in the VAR systerm, for in-
stance, Diebold and Yılmaz (2014) and Demirer et al. (2017) proposed connectedness
measures built from GFEVD for both univariate and multivariate cases. However, to our
knowledge, the combination of bootstrap-based GI analysis and network construction
seems to be new to the literature: Upon the HD VAR estimation of (8) and (9), we use
the sparsity concept that filters out less relevant variables. Instead of transforming into a
MA process, which is often done in fixed dimensional cases, we apply a bootstrap-based
method to compute λij,Ft−1(h), then naturally produce the population connectedness, see
Table 3. By this way, the connectedness table can be constructed for both linear and
nonlinear models. Besides, the bootstrapped LN-GFEVD relies neither on the ordering
of the variables nor on the distribution of the innovations. At the same time, a parsi-
monious algorithm without MA transformation can help to improve the accuracy of final
connectedness estimator.
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x1 x2 . . . xK From others
x1 λb11(h) λb12(h) . . . λb1K(h)

∑K
j=1 λ

b
1j(h), j 6= 1

x2 λb21(h) λb22(h) . . . λb2K(h)
∑K

j=1 λ
b
2j(h), j 6= 2

...
...

...
...

...
xK λbK1(h) λbK2(h) . . . λbKK(h)

∑K
j=1 λ

b
Kj(h), j 6= K

To
∑K

i=1 λ
b
i1(h)

∑K
i=1 λ

b
i2(h) . . .

∑K
i=1 λ

b
iK(h)

1

K

∑K
i=1,j=1 λ

b
ij(h)

others i 6= 1 i 6= 2 i 6= K i 6= j

Table 3: Connectedness table of interest, estimated by bootstrap-based methods.

The details for computation steps can be found in Appendix B. In particular, the numer-
ical techniques for conditional mean forecast from nonlinear models for more than one
period ahead are implemented in this paper, we use bootstrap to calculate GI(l, δjt,Ft−1),
see more details in Teräsvirta et al. (2010).

We then have the directional connectedness "from" and "to" associated with the forecast
error variation λbij(h) for a specific order book across various stock when the arising
shocks transmit from one stock to the others. These two connectedness estimators can
be obtained by adding up the row or column elements. Hence the pairwise directional
connectedness from j to i can be written as,

Ci←j = λbij(h) (12)

Furthermore, the total directional connectedness "from" Ci←· (others to i) given by

Ci←• =
K∑
j=1

λbij(h), i 6= j (13)

equals to unity based on (11), and the total directional connectedness "to" C·←j (j to
others) is defined as

C•←j =
K∑
i=1

λbij(h), i 6= j (14)

The corresponding net total directional connectedness

Ci = Cto,i − Cfrom,i = C•←i − Ci←• (15)

measures the direction and magnitude of the net spillover impacts.
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4 Network Analysis

Upon the estimates of the sparse HD VAR model, we calculate the bootstrapped LN-
GFEVD and corresponding connectedness at horizon h = 30 for every trading day.

4.1 Individual Stock Network

4.1.1 Pairwise Connectedness of Stocks

Let us first focus on the individual stock network to understand how the impact of a shock
originating in one stock can be transmitted and amplified to the other stocks.

Basically a network can be considered as a graph G = (V , E) consisting of two core
items: nodes (or vertexs) V and edges E . Nodes are the entities we are evaluating and
edges are the connections between them. Here we first consider the cross-stock network
Gp = (Vp, Ep) with only price factors p(n),

Vp = p(n), n = 1, . . . , N and Ep = Ci←j, i, j ∈ Vp (16)

We model each trading day as a separate network and extract the pairwise connectedness
estimate for each stock. To understand the behavior of networks, there are various ap-
proaches for evaluating the node importance. We employ the centrality measures proposed
by Freeman (1978) to evaluate the relative importance of nine stocks,

• degree centrality deg(V): refers to the number of edges attached to one node. This
is simplest measure of node connectivity, but it is can be interpreted as a form
of popularity. We use “out-degree” centrality outdeg(V), i.e. the number of ties
that the node directs to others to measure the impact of “to”-connectedness, and
“in-degree” centrality indeg(V) (number of inbound links) to measure the impact of
“from”-connectedness.

• closeness centrality Clos(V): is defined as the inverse of the sum of its distances
to all other nodes, it scores each node based on their closeness to all other nodes
within the network. Thus we are able to identify the nodes who are best placed to
influence the entire network most quickly. The more central a node is, the closer it
is to all other nodes. This centrality measure will be useful to distinguish influencers
in the network.

• betweenness centrality Bet(V): quantifies the number of times a node lies on the
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shortest path between other nodes. Nodes that have a high probability to occur
on a randomly chosen shortest path between two randomly chosen vertices have a
high betweenness. This centrality measure is helpful to decide which nodes act as
“bridges” between nodes in a network, and can potentially influence the spread of
information through the network.

To better grasp the results, given the large amount of estimation results, we will use the
summary results in tables throughout the paper. Table 4 provides the summary of the
corresponding centrality measures. Citigroup, AT&T and Johnson&Johnson are central
in the network, in the sense that nodes with higher “out-degree” play the role of choice
maker. Meanwhile JNJ is a choice receiver with high “in-degree” value of 3.57, slightly
smaller than 3.88 of Microsoft. JP Morgan and IBM are the nodes who are best placed
to influence the entire network most quickly, with IBM acts as “bridge” between nodes at
the same time. The above conventional centrality measures are helpful to understand the
evolution of the pairwise network, but we cannot accurately classify the most important
nodes demonstrating the high centrality values with above results. Even though each
measure works well for probing certain phenomena, it fails to capture the node’s spreading
potential, e.g. Johnson&Johnson.

MSFT T IBM JNJ PFE MRK JPM WFC C
Qoutdeg(Vp)(0.25) 2.00 3.00 1.25 2.00 2.00 1.00 1.00 2.00 2.00
Qoutdeg(Vp)(0.75) 4.00 4.00 4.00 5.00 4.00 4.00 4.00 4.00 5.00

µoutdeg(Vp) 3.26 3.33 2.52 3.33 3.07 2.81 2.83 2.50 3.40
Qindeg(Vp)(0.25) 2.25 1.00 2.00 2.00 1.00 0.00 1.00 0.00 2.00
Qindeg(Vp)(0.75) 6.00 4.75 5.75 5.00 3.00 3.75 5.00 4.75 5.00

µindeg(Vp) 3.88 2.86 3.43 3.57 2.38 1.69 3.21 2.60 3.45
QClos(Vp)(0.25) 12.56 20.08 19.72 15.26 18.94 14.27 16.93 20.08 15.33
QClos(Vp)(0.75) 254.51 228.13 265.74 257.15 242.92 211.66 283.35 237.15 237.09

µClos(Vp) 167.70 163.99 173.45 159.09 159.43 154.56 175.89 171.95 157.81
QBet(Vp)(0.25) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QBet(Vp)(0.75) 10.50 14.75 14.75 6.50 5.00 4.75 10.00 9.00 10.00

µBet(Vp) 6.00 7.55 7.98 4.33 4.43 3.02 5.98 5.24 6.07

Table 4: Summary of different centrality measures for Gp from 06.2016 to 07.2016. Q·(α)
is the quantile function, µ· is the mean.

4.1.2 Including Order Flows

We now investigate how the network is affected by the presence of liquidity effects, i.e.
by including the order volumes in the book.

We take the first trading day after Brexit as an example. In accordance with the discussion
in section 3.3, we depict the estimated full sample directional connectedness Table 3 in
left panel of Figure 3. Directed connectedness are drawn as directed lines connecting two
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nodes. The price factor and size factors that belong to the same company appear in the
same colour, the width of edges between two nodes represents the connectedness. The full
sample network plot reveals that the stocks with LOB factors are massively connected,
it is quite informative about the total directional connectedness of each factor. However,
it is not easy to decipher all pairwise connectedness. On the right panel, each stock is a
node in the network, links between nodes represent the overall “from”’ and “to” impacts
on the system, i.e., aggregating the connectedness measure of both price and size factors
for each stock. The respective links of Citigroup and JP Morgan and Wells Fargo reveal
that they are the stocks that generated highest “to”-connectedness, whereas the other six
stocks are mainly risk receiver.

Figure 3: Left panel: the full sample network plot. Right panel: the aggregated network
plot of nine stocks, on 24.06.2016

To formalize the analysis we construct the network based on (16), the aggregated indi-
vidual stock network is given by Gg = (Vg, Eg) consisting of,

Vg = v(n)
g (17)

v(n)
g = p(n) +

∑
r

bs(n)
r +

∑
r

as(n)
r , n = 1, . . . , N (18)

Eg = Ci←j, i, j ∈ Vg (19)

where as(n)
r and bs

(n)
r are the r-th level ask/bid size factors for stock n. By including

the size factors from LOB, we are able to investigate how the network is affected by the
presence of liquidity effects. For a network with smaller number of nodes, it is easy and
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appealing to identify the characteristics and patterns between individual stock.

Table 5 tabulates the centrality measures based on aggregated nine stock network, which
produces different results comparing to those obtained for pairwise stock network in 4.1.1.
The primary reason is that these conventional centrality measures are rarely accurate
when the majority of nodes are not highly influential in the network. Each centrality
measure assess the node’s importance based mostly on the path lengths and distances.
The impacts caused by the less important nodes may be neglected, this will potentially
cause inaccuracy and thus result in the poor performance. Therefore we use net total
directional connectedness proposed in (15) as a refined centrality measure to capture the
most influential spread in the following full sample network analysis.

MSFT T IBM JNJ PFE MRK JPM WFC C
Qoutdeg(Vg)(0.25) 1.00 1.00 1.00 1.00 0.00 0.25 0.00 0.00 0.00
Qoutdeg(Vg)(0.75) 114.50 131.00 115.75 111.00 110.00 103.75 105.75 98.00 105.25

µoutdeg(Vg) 128.83 147.02 132.71 129.76 127.95 125.48 120.31 113.50 123.00
Qindeg(Vg)(0.25) 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qindeg(Vg)(0.75) 100.50 89.75 97.00 100.75 96.50 90.50 111.25 108.00 98.00

µindeg(Vg) 136.29 122.50 121.24 118.31 121.88 121.00 136.79 133.98 136.60
QClos(Vg)(0.25) 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02
QClos(Vg)(0.75) 0.08 0.08 0.07 0.08 0.09 0.08 0.08 0.08 0.09

µClos(Vg) 0.13 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.13
QBet(Vg)(0.25) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QBet(Vg)(0.75) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µBet(Vg) 4.17 3.26 2.36 2.07 2.79 2.19 3.12 3.57 3.69

Table 5: Summary of different centrality measures for Gg from 06.2016 to 07.2016. Q·(α)
is the quantile function, µ· is the mean.

Specifically, the element in the connectedness table measures the total impact of all K
shocks on the i-th variable, and these contributions sum to unity, which suggests the row
sum of the pairwise connectedness produces one unit of “from”-connectedness for each
factor, therefore the “net”-connectedness Ci is associated with “to”-connectedness and
measures the share of volatility shocks to other. To understand the dynamic behavior of
the risk transmission in the system, Table 6 reports the net spillover effects for each stock
using the quantile functions,

Ci = C•←i − 2r − 1 =
∑
j

Cj←i − 2r − 1, i, j ∈ Vg

QCi
(α) = F−1(α) = inf{Ci : F (Ci) ≥ α} (20)

In the table, JP Morgan is the stock with the highest “net” connectedness to others, with
mean value of 0.97 over the sample period, followed by Citigroup 0.35, Wells Fargo 0.34,
Microsoft 0.17, Pfizer 0.14. The “net” total connectedness of the left four stocks are all
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MSFT T IBM JNJ PFE MRK JPM WFC C
QCi

(0.05) -3.19 -3.51 -3.72 -3.79 -2.84 -3.38 -2.57 -2.80 -3.35
QCi

(0.15) -2.15 -3.01 -3.24 -2.99 -2.16 -2.62 -1.97 -2.30 -2.61
QCi

(0.50) 0.17 -0.70 -0.91 -0.50 0.14 -0.71 0.97 0.34 0.35
QCi

(0.85) 2.01 1.47 1.31 2.27 1.78 2.47 3.68 3.21 3.04
QCi

(0.95) 3.84 2.54 2.99 2.70 3.81 3.28 5.11 4.63 4.74

Table 6: The net spillover of nine-stock aggregation from 06.2016-07.2016

negative. As an evident result one see that that the JP Morgan is most influential in the
network, while the technology companies like IBM and AT&T are main risk receivers in
the aggregated system. Even though the magnitude of financial stock estimates differs
to some extent, their “net”-connectedness are larger than the other in most cases. This
suggests that financial companies are dominant stocks driving the networks over time.
We conclude that the sign and magnitude of “net”-connectedness provide different infor-
mation regarding the role for each stock in the network. The aggregated individual stock
network is a better measure of how central a stock is within the network since it takes
into consideration the trading volumes.

4.1.3 Total Connectedness and Volatility

We now turn our focus on time-varying pattern of the aggregated individual stock network
in comparison with daily volatility estimates using the full sample high-frequency obser-
vations. Estimating volatility in this context is important as they are commonly known
as proxies of market fear, a high degree of volatility is likely to correspond to increasing
market risk and represent the market consensus on the expected future uncertainty.

Inspired by a voluminous literature such as Andersen et al. (2000), Andersen and Boller-
slev (1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2001), the real-
ized volatility (RV) is illustrated as measure of daily volatility in high-frequency setting.
In literature, several main approaches to improve the realized volatility (RV) estimator
include the preaveraging estimator of Jacod et al. (2009), the realized kernel estimator
of Barndorff-Nielsen et al. (2008), the two scales estimator of Zhang et al. (2005) and
multiscale estimator of Zhang et al. (2006) and Zhang (2011). Here we compute the two-
scale realized variance (TS-RV) proposed by Zhang et al. (2005) as a robust estimator of
the RV. The TS-RV estimator computes a subsampled RV on one slower time scale and
then combine with another subsample RV calculated on a faster time scale to correct for
microstructure noise.
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Figure 4: The time varying total net connectedness and volatility measure, 06-07.2017

Figure 4 compares the total net connectedness with estimated daily volatility, where the
dotted lines illustrate the total connectedness estimates of (20), and the barplots indicate
the TS-RV estimates. Visual inspection of the time series plots suggests, for all stocks,
a rising volatility phase since the beginning of June, with the peak volatility observed
around 24th of June, after that volatility decreases given the selloff in stocks following the
Brexit vote followed by a rebound to record highs. The findings are consistent with the
results of net connectedness measures, where a very small value of Ci is usually observed
near Brexit: in other words the stocks are less connected when high market volatility
occurs. In addition, we observe another peaks in volatility appear around 18th of July
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2016 for three technology stocks, when Turkish shares closed down by 7.1% following the
attempted coup in Turkey on 17th of July 2016. Then the volatility level come back in
as the market fear caused by after coup attempt in Turkey is resolved. While important
events play out, investors are likely to join a selloff as geopolitical risk is always important
for decision-making in financial market. Since the peaks of volatility are generally cor-
respond to a very low net connectedness value, this can be a signal for market investors
because a peak in volatility is followed by a market rally in most cases.

4.2 Limit Order Book Network

4.2.1 Asymmetric Market Sell/Buy Pressure

Besides the purpose of studying the impacts between individual stocks, the information
contained in the LOB is very valuable. Limit orders are stored in the LOB and are exe-
cuted in sequence according to price priority, large trading quantities may cause a price
drop or rise. The intuition behind a typical mechanism resulting in mid-price movement
can be illustrated in combination with Figure 1. If there is an arrival of a market order
that is sufficiently large to match all of the best bids, then the limit order will be updated
with a lower best bid price.

Figure 5 shows the graphical display of the networks consisting of price factors, ask size
factors and bid size factors, with the connectedness Ci←j color-coded by the type of fac-
tors that is causing the relationship, i.e., the factor j which has an impact on the others.
Blue indicates the ask size factors, red indicates the bid size factors, and grey indicates
the price factors. The upper left panel of Figure 5 depicts the full-sample connectedness
on 22.06.2016, which is hard to decipher important pairwise connectedness. Therefore
we decompose the full-sample connectedness into two parts, the price&ask size connect-
edness graph and price&bid size connectedness graph as shown in colored circles on the
right panel. It shows how the LOB network changed during Brexit announcement, we
typically observe changes in the behavior of bid size factors. The price&bid size factor
network is less connected on 23.06.2016, while the price&ask size factor network is slightly
tightly connected on the same day. This result could indicate that, when there is a risk
caused by political uncertainty, the buying pressure is much weaker and selling pressure
slightly stronger.

The impacts on returns respond to ask and bid limit orders are not symmetric. Recent
studies have showed that limit orders and cancelations, not just trades, have a tangible
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Figure 5: Plots of LOB networks from 22.06.2016-24.06.2016

effect on prices, see Hautsch and Huang (2012) and Eisler et al. (2012). Building on these
ideas, we construct a graph Gs = (Vs, Es) to study the asymmetric impact from aggregated
size factors to price factors,

Vs =

(
p(n),

∑
n

bs(n)
r ,
∑
n

as(n)
r

)
n = 1, . . . , N (21)

Es = Ci←j i ∈ {p(n)}, j ∈

{∑
n

bs(n)
r ,
∑
n

as(n)
r

}
(22)

In Table 7 we provide the summary of Es in (22), i.e. impacts from aggregated size factors
to the stock price factor. The higher are the values in this table, the stronger are the
stocks affect by trading activities over time. We notice that JP Morgan on average is
more likely to be affected by ask side trading activity, while Wells Fargo is most sensitive
to the bid side trading activity. In addition, both best bid and ask limit orders (i.e. 2nd
level of ask/bid size) exhibit opposite results, with JP Morgan and Wells Fargo are less
likely to be affected by best ask and bid limit order respectively. We find this result very
interesting, because it brings into question how best limit orders are correlated with the
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MSFT T IBM JNJ PFE MRK JPM WFC C
QC

p(n)←
∑

as1
(0.25) 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00

QC
p(n)←

∑
as1

(0.75) 0.31 0.41 0.39 0.26 0.42 0.34 0.72 0.45 0.43
µC

p(n)←
∑

as1
0.44 0.43 0.45 0.34 0.45 0.68 0.86 0.53 0.83

QC
p(n)←

∑
as2

(0.25) 0.02 0.02 0.00 0.01 0.01 0.02 0.01 0.01 0.01
QC

p(n)←
∑

as2
(0.75) 0.61 0.50 0.58 0.43 0.26 1.00 0.30 0.24 0.40

µC
p(n)←

∑
as2

0.53 0.41 0.59 0.48 0.60 0.65 0.33 0.50 0.64
QC

p(n)←
∑

as3
(0.25) 0.02 0.02 0.00 0.01 0.01 0.02 0.03 0.01 0.02

QC
p(n)←

∑
as3

(0.75) 0.71 0.52 0.54 0.34 0.37 0.50 0.88 0.45 0.46
µC

p(n)←
∑

as3
0.90 0.69 0.54 0.33 0.58 0.89 1.03 0.54 0.39

QC
p(n)←

∑
bs1

(0.25) 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.01
QC

p(n)←
∑

bs1
(0.75) 0.11 0.34 0.21 0.20 0.23 0.28 0.26 0.66 0.42

µC
p(n)←

∑
bs1

0.12 0.44 0.47 0.40 0.32 0.41 0.46 0.61 0.40
QC

p(n)←
∑

bs2
(0.25) 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.02 0.01

QC
p(n)←

∑
bs2

(0.75) 0.26 0.29 0.31 0.11 0.46 0.27 0.33 0.16 0.26
µC

p(n)←
∑

bs2
0.50 0.35 0.38 0.20 0.37 0.22 0.48 0.20 0.28

QC
p(n)←

∑
bs3

(0.25) 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.03 0.01
QC

p(n)←
∑

bs3
(0.75) 0.43 0.40 0.15 0.20 0.32 0.21 0.49 0.71 0.45

µC
p(n)←

∑
bs3

0.63 0.37 0.24 0.39 0.51 0.38 0.43 0.73 0.47

Table 7: Summary of the aggregated impacts from size factors to the stock price factor
from 06.2016-07.2017. Q·(α) is the quantile function, µ· is the mean.

order flow preceding their arrival and therefore have very little impacts on the price. This
may be explained by the assumption that both market and limit orders tend to drive
prices, while prices tend to impact best limit orders and their cancellations in the book.
We conclude that the financial stocks are size-dominated stocks, their price patterns are
highly related to the market trading activity. When selling pressure increases, the Health-
care stocks are more stable. While the technology stocks appear to be more stable for
buying pressure.

It follows that the depth of the book at which limit orders are submitted is driving the
price. Accordingly, we calculate the impacts from the aggregated ask/bid size factors to
the aggregated price factors given by,

C∑
N p←

∑
N s

(n)
r

=
N∑
i=1

Ci←j (23)

i ∈ {p(n)}, j ∈

{∑
n

bs(n)
r ,
∑
n

as(n)
r

}
(24)
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Table 8 compares the aggregated impacts for six types of size factors in our study. The
impacts on return (aggregated price factors) respond to incoming ask and bid market/limit
orders are not symmetric. In general, the impacts from ask orders are larger than the bid
orders, ranging from the lowest value of 0.30 for aggregated impacts of bs2 to the highest
value of 0.59 for as3 on average. Please note that this results are consistent with the
results of Table 7, indicating that we can observe stronger impacts on prices caused by
market sell pressure.

QC(0.25) QC(0.50) QC(0.75) µC
C∑

N p←
∑

N as
(n)
1

0.12 0.27 0.67 0.50
C∑

N p←
∑

N as
(n)
2

0.19 0.30 0.55 0.47
C∑

N p←
∑

N as
(n)
3

0.17 0.35 0.83 0.59
C∑

N p←
∑

N bs
(n)
1

0.09 0.18 0.39 0.36
C∑

N p←
∑

N bs
(n)
2

0.08 0.16 0.41 0.30
C∑

N p←
∑

N bs
(n)
3

0.13 0.29 0.63 0.42

Table 8: Summary of the impacts from aggregated size factors to the aggregated price
factor from 06.2016-07.2017. Q·(α) is the quantile function, µ· is the mean.

More precisely, let µ1 be the mean of the overall impacts from selling orders over the
sample period (T = 42), and µ2 the corresponding mean of the overall impacts from
buying orders, i.e.,

µ1 =
1

3T

(
C
t,
∑

N p←
∑

N as
(n)
1

+ C
t,
∑

N p←
∑

N as
(n)
2

+ C
t,
∑

N p←
∑

N as
(n)
3

)
(25)

µ2 =
1

3T

(
C
t,
∑

N p←
∑

N bs
(n)
1

+ C
t,
∑

N p←
∑

N bs
(n)
2

+ C
t,
∑

N p←
∑

N bs
(n)
3

)
(26)

therefore the hypothesis of interest can be expressed as,

H0 : µ1 − µ2 = 0

Ha : µ1 − µ2 > 0

Table 9 suggests that both the pooled t-test and the Welsh t-test give roughly the same
results. Since the p-value is very low, we reject the null hypothesis, indicating that there
is strong evidence of a significant larger impact from selling orders in the market.

4.2.2 Own-price and Cross-price Market Impact

The discussion in section 4.2.1 concludes that the impacts on return respond to different
level of depth of the book are widely asymmetric. In this subsection we provide further
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t-statistics p-value
Pooled t-test 2.7557 0.003144
Welsh t-test 2.7557 0.003168

Table 9: Comparison of two hypothesis tests, when assuming/not assuming equal standard
deviation.

empirical evidence of own-price and cross-price market impact at the level on the individ-
ual stock. First, we analyze the market impacts of their own trades for each stock, and
then we undertake a detailed analysis of the impact of trades in one stock on the prices
of other stocks.

At first, we consider own-price market impact for different levels of depth of the book
for the selected stocks, i.e. the own-price market impacts are caused by their own order
flows. The results are presented in Table 10. Based on the averaged connectedness over
two months, JP Morgan receives highest market impact from its own ask orders, especially
when the orders are placed in the market order or the 2nd best limit order. Even though
Wells Fargo and Microsoft are the two stocks receiving highest market impacts from their
own bid trades, the market impacts from their ask trades are high as well. In addition,
the Johnson&Johnson responds weakly to both ask orders and bid orders.

MSFT T IBM JNJ PFE MRK JPM WFC C
µC

p(n)←as1(n)
0.47 0.90 1.28 0.06 0.31 2.95 3.58 2.47 0.26

µC
p(n)←as2(n)

0.34 0.31 0.47 0.13 0.07 1.42 0.38 2.17 1.43
µC

p(n)←as3(n)
2.57 0.26 1.30 0.25 1.69 0.90 5.26 0.74 0.32∑

µC
p(n)←as(n)

3.38 1.47 3.05 0.44 2.07 5.27 9.22 5.38 2.01
µC

p(n)←bs1(n)
0.09 0.59 0.14 0.05 0.60 1.14 1.12 2.47 0.70

µC
p(n)←bs2(n)

1.35 0.18 0.29 0.05 0.43 0.08 0.83 0.89 0.42
µC

p(n)←bs3(n)
2.58 0.07 0.23 1.20 0.11 2.16 1.37 2.14 1.42∑

µC
p(n)←bs(n)

4.02 0.84 0.66 1.30 1.14 3.38 3.32 5.50 2.54

Table 10: The mean of own-price market impacts caused by market orders {as1(n), bs1(n)},
best limit order {as2(n), bs2(n)} and {as3(n), bs3(n)} for each stock n from 06.2016-07.2017.
All numbers are multiplied by 100. µ· is the mean.

In contrast to (21), we measure the cross-price market impacts by adding up the impacts
from all ask/bid orders for each stock. The graph we construct is denoted as Gcross =

(Vc, Ec), with cross-stock market impacts from the aggregated size factors to the price
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factor given by,

Vc =

(
p(m),

∑
r

bs(n)
r ,
∑
r

as(n)
r

)
(27)

Ec = Ci←j i ∈ {p(m)}, j ∈

{∑
r

bs(n)
r ,
∑
r

as(n)
r

}
(28)

m,n ∈ {1, . . . , N} r = 1, 2, 3 m 6= n (29)

When j ∈
{∑

r as
(n)
r

}
in (29), we compare the cross-price market impacts of ask trades

for each stock in Table 11. Obviously, the diagonal elements measuring the market im-
pacts of their own trades are the same as

∑
µC

p(n)←as(n)
summerised in Table 10. We

observe three large values on the diagonal, indicating that JP Morgan, Merck and Wells
Fargo have higher own-price market impacts than cross-price market impacts. Further-
more, JP Morgan is the stock with the highest cross-price market impact to Microsoft
and Citigroup. IBM receives stronger cross-price market impact from Wells Fargo and
Citigroup. The price of Pfizer is more sensitive to the ask order flows of Merck and Wells
Fargo. Therefore we conclude that the stock price can be affected not only by their own
ask order flows, but also by the ask order flows of financial stocks.

MSFT T IBM JNJ PFE MRK JPM WFC C
µC

p(MSFT )←
∑

r as
(n)
r

3.38 0.68 1.82 0.65 1.76 0.73 5.46 0.54 3.66

µC
p(T )←

∑
r as

(n)
r

3.08 1.47 1.00 0.62 1.86 2.58 1.08 1.29 2.38

µC
p(IBM)←

∑
r as

(n)
r

1.52 0.38 3.06 1.33 0.91 1.57 1.41 3.58 2.05

µC
p(JNJ)←

∑
r as

(n)
r

1.69 0.62 1.04 0.45 1.47 1.05 1.37 0.31 3.49

µC
p(PFE)←

∑
r as

(n)
r

1.07 0.96 0.44 0.13 2.06 4.83 1.86 2.89 2.12

µC
p(MRK)←

∑
r as

(n)
r

3.18 1.17 0.43 0.83 2.44 5.27 4.15 2.25 2.57

µC
p(JPM)←

∑
r as

(n)
r

2.09 1.10 1.81 0.72 2.68 1.13 9.22 1.34 2.16

µC
p(WFC)←

∑
r as

(n)
r

1.22 2.38 1.70 0.55 1.93 1.22 0.79 5.37 0.60

µC
p(C)←

∑
r as

(n)
r

2.55 1.11 2.37 0.84 2.57 1.33 4.51 1.23 2.01

Table 11: The mean of the market impacts caused by ask orders of stock m for each stock
n. All numbers are multiplied by 100. µ· is the mean.

We proceed with the summary of the market impacts of bid trades for each stock when
j ∈

{∑
r bs

(n)
r

}
. Table 12 reports the results. The table reveals that financial stocks have

stronger cross-price market impacts compared with healthcare and technology stocks. For
example, the bid trades of Citigroup and Well Fargo have strong cross-price market im-
pact on Johnson & Johnson, IBM receives stronger cross-price market impact from the
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MSFT T IBM JNJ PFE MRK JPM WFC C
µC

p(MSFT )←
∑

r bs
(n)
r

4.02 2.26 0.62 0.53 0.59 1.67 0.41 0.89 1.61

µC
p(T )←

∑
r bs

(n)
r

1.36 0.84 0.22 1.04 1.41 3.67 0.92 1.10 1.03

µC
p(IBM)←

∑
r bs

(n)
r

0.79 1.29 0.66 0.13 0.58 0.97 3.47 1.85 1.15

µC
p(JNJ)←

∑
r bs

(n)
r

0.63 0.85 0.30 1.30 0.86 0.99 0.50 1.90 2.59

µC
p(PFE)←

∑
r bs

(n)
r

2.12 0.36 1.10 0.19 1.13 0.37 1.43 4.08 1.23

µC
p(MRK)←

∑
r bs

(n)
r

0.72 0.49 0.25 0.25 1.35 3.37 1.59 0.84 1.27

µC
p(JPM)←

∑
r bs

(n)
r

1.66 0.47 1.25 0.97 1.39 0.59 3.32 1.87 2.16

µC
p(WFC)←

∑
r bs

(n)
r

1.99 1.29 0.30 0.73 1.37 0.83 1.75 5.50 1.67

µC
p(C)←

∑
r bs

(n)
r

1.02 1.80 0.42 1.24 0.84 1.08 1.41 1.12 2.54

Table 12: The mean of the market impacts caused by bid orders of stock m for each stock
n. All numbers are multiplied by 100. µ· is the mean.

bid order flows of JP Morgan and Wells Fargo.

So far we analyze the individual stock network with and without the order flows in the
book, the network study enables us to investigate the interaction between order flows and
price dynamics. Furthermore, we discover both bid and ask trading volumes of the limit
order book affect the price. Hence we are able to answer the first three questions proposed
in the very beginning, i) How does the order flows interact with price dynamics? ii) Are
the impacts on return responding to incoming ask and bid limit orders widely symmetric?
iii) If not symmetric, how does the heterogeneous market impact caused by bid and ask
order for various stocks affect the whole market? Our model has implied that in an LOB
market, the huge sell/buy volume queued on the ask/bid side could induce strong sell/buy
pressure on the market and therefore changing the price. In the following, we will focus
on the last question, iv) How to measure the impact of market/limit order quantitatively?

5 Measuring Price Direction under Uncertainty Shock

When a large market order to buy or sell a stock arrives, the market order will auto-
matically execute, this causes a temporary market impact. Even though sufficiently large
market order immediately affects the price direction, the bid/ask sizes alone do not give
enough information on price direction. To solve this, we use structural analysis proposed
in section 3.2 to measure the persistent effect of shock in the LOB. In this section, our aim
is to gain some insights into the details of the price formation and explore the existence
of arbitrage opportunities.
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5.1 Price and Order Flows

To measure the impacts of market/limit order and whether the impacts identified by
our model are temporary or robust over time, we resort to generalized impulse response
analysis similar to the GI defined in (10). However we assume a unit shock hitting only
one equation at a time, its impact on jth equation of yt is the following,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ ej (30)

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1)

where E(yt+1 | ujt = δjt,Ft−1) represents the expectation conditional on the history Ft−1

and a fixed value of j-th shock δjt on time t at horizon l. Ft−1 consists of the information
used to compute the conditional expectations based on bootstrap method.

Our starting point is based on market impacts regarding their own trading activities. To
measure the market impacts of the order flows on price factor at a given horizon l for
a stock n, the response of price factor ∆p̃

(m)
t are quantified by equation (30) when the

shock δjt is treated as one of the size factors (∆s̃
a1(n)
t , ∆s̃

a2(n)
t , ∆s̃

a3(n)
t , ∆s̃

b1(n)
t , ∆s̃

b2(n)
t ,

∆s̃
b3(n)
t ) hitting the system. With a moderate sparse structure selected by BIC after post-

LASSO, we are able to identify not only the existence of significant market impact, but
also the pattern of own-price market impact when m = n and cross-price market impact
when m 6= n. Here we use l = 30min and calculate the corresponding bootstrapped GI
estimation for every trading day.

We identify in total 10 days where there are significant own-price market impacts for
Wells Fargo. As an example, Figure 6 depicts the result on 25th of July. We observe
a negative correlation between the magnitude of its ask market order and price factor.
It is normal for financial market in the sense that the investors will start marking down
their bid price when there is a wave of sell orders coming into the order book. As ex-
pected, the price (average of bid and ask quotes) factor tends to decrease significantly
after the arrival of a large ask market order. This argument holds for the case of bid
market order as well. In Figure 7, we observe a positive market impact from bid market
order on 19th of July, 2016. Both impacts can last for almost 10 minutes before the price
shifts back, this gives the HF investors enough time of reaction to arbitrage opportunities.

Figure 8 shows the market impacts of orders posted deeper in the book for Citigroup.
This implies the positive pile-on effect where larger ask order may further perpetuating
a price decrease, the orders may not necessarily set at the current market price of the
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Figure 6: Own-price market impact of WFC (Wells Fargo) on 25th of July, 2016.
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Figure 7: Own-price market impact of WFC (Wells Fargo) on 19th of July, 2016.

stock (i.e. they are not market orders, they are limit orders). The estimated market
impact lasts for almost 20 minutes, the price goes up after 10 minutes because the market
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MSFT T IBM JNJ PFE MRK JPM WFC C
as1 					 ⊕⊕⊕ ⊕	 			 			 	
as2 			 ⊕ ⊕⊕ ⊕ 		 						
as3 ⊕⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ 	 ⊕⊕ 	
bs1 ⊕		 ⊕			 ⊕ ⊕ ⊕⊕ ⊕⊕⊕	 ⊕⊕ ⊕
bs2 	 	 ⊕	 ⊕ ⊕ ⊕
bs3 	 		 		 	 		 	
rsize 44% 46% 0% 14% 25% 57% 80% 78% 100%

Table 13: The summary of own-price market impacts.

investors may buy trades picking up the posted volume or by cancellations on the ask side.
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Figure 8: The bootstrapped market impact of Citigroup on 1st of June, 2016.

Table 13 reports the summary of significant market impacts identified by our model.
For each trading day, we use 	 and ⊕ to represent the significant negative and positive
response of price after the arrival of a market/limit order. Specifically, we define a ratio
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denoted as rsize to measure the price direction of market impacts,

rsize =
| sgn(GIt)|

42

sgn(GIt) =


−1 −GIt(h) > Q0.05(GIt(h))

0 |GIt(h)| ≤ Q0.05(GIt(h))

1 GIt(h) > Q0.05(GIt(h))

t = 1 . . . T, h = 1, . . . , 30 (31)

The results suggest that the group of financial stocks is of higher rsize values, this may be
explained by the fact that finance sector is leading the market, the history information
indicates that their response of price to trading volumes is stable and thus robust for
statistical arbitrage, see Hautsch and Huang (2012). The Citigroup performs well among
them. Interestingly, the healthcare and technology stocks sometimes show opposite re-
sults, we notice that their prices are positively linked to ask order flows in some cases. This
is because they are price-dominated stocks, i.e., they have multiple risk sources except for
their own trading activity. This result is consistent with our main findings in subsection
4.1.2 and 4.2.1 where we conclude that financial stocks are size-dominated stocks and
they are influencers in the system. Alternatively, the price of healthcare and technology
stocks are risk receivers. Based on our methodology, it would be more profitable to invest
in financial stocks for algorithm traders.
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6 Conclusion

This paper build upon and extend current literature where the connectedness measures
are often estimated by MA transformation of VAR systems and restricted to Gaussian
innovations. We combine bootstrap-based generalized impulse response analysis with net-
work construction. In this way, the network we construct relies neither on the ordering
of the variables nor on the distribution of the innovations, the resulting connectedness
measures is economic interpretable. Furthermore, given the HF LOB NASDAQ data,
network analysis of LOB across stocks becomes interesting. Throughout the paper, we
first show how network for LOB can be constructed in the presence of microstructure noise
and non-synchronous trading, then we progress by focusing on the models that capture
the dynamics of LOB and their influence over time. Our primary finding is that the net-
work that involving the trading volumes is a better measure of the stock connectedness.
With our methodology, we identify the significant market impact caused by the arrival
of a large limit order, and order imbalance generally exists across stocks, bootstrapped
market impacts can be quantified. The financial institutions are connected more closely
compared with the firms come from other industry.
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A Pre-averaging estimation

Suppose that we observe non-synchronous noisy data Yt following,

Yt = Xt + εt, t ≥ 0 (32)

with efficient log price Xt is latent. The error term εt represents microstructure noise and
is assumed to be independent and identically distributed with

E(εt) = 0, E
(
ε2
t

)
= ψ (33)

The price process Xt follows a semi-martingale form, Delbaen and Schachermayer (1994),

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs (34)

where (as)s≥0 is a càdlàg drift process, (σs)s≥0 is an adapted càdlàg volatility process,
(Ws)s≥0 is a Brownian motion. In addition, we assume Xt and εt are independent, i.e.

E(εt | X) = 0 (35)

If one can only observe Y n
i at discrete times t, i indexes the time points with interval

length ∆n, the returns ∆n
i Y is thus defined as,

Y n
i = Yi∆n , ∆n

i Y = Y n
i − Y n

i−1, i = 1, . . . , n (36)

A pre-averaging is conducted to alleviate microstructure noise and solve non-synchronicity,
we follow the notations originally used by Jacod et al. (2009). The basic idea is to con-
struct smoothing functions to diminish the impact of the noise induced by εt. Specifically,
there is a sequence of integers denoted as kn which satisfies,

∃θ > 0, kn
√

∆n = θ + O
(

∆
1
4
n

)
(37)

and a continuous weight function g : [0, 1] 7→ R. g is piecewise C1 with a piecewise
derivative g′ , g(0) = g(1) = 0, and

∫ 1

0
g2(s)ds > 0. Furthermore, the following real-valued
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numbers and functions are associated with function g on R+,

ψ1 =

∫ 1

0

{g′(u)}2du, ψ2 =

∫ 1

0

{g(u)}2du

Φ1(s) =

∫ 1

s

g
′
(u)g

′
(u− s)du, Φ2(s) =

∫ 1

s

g(u)g(u− s)du

Φij =

∫ 1

0

Φi(s)Φj(s)du, i, j = 1, 2, u ∈ [0, 1] (38)

Here we choose g(x) = x∧ (1− x), as in Podolskij et al. (2009), Christensen et al. (2010)
and Hautsch and Podolskij (2013). Therefore we have

ψ1 = 1, ψ2 =
1

12
, Φ11 =

1

6

Φ12 =
1

96
, Φ22 =

151

80640
(39)

The pre-averaged returns Y n

i associated with the weight function g are given as,

Y
n

i =
kn−1∑
j=1

g

(
j

kn

)
∆n
i+jY

= −
kn−1∑
j=0

{
g

(
j + 1

kn

)
− g

(
j

kn

)}
Y n
i+j, i = 0, . . . , n− kn + 1 (40)

The window size kn defined in equation (37) is chosen of O
(√

1
∆n

)
, balance the noise

εni = Op
(√

1
kn

)
and the efficient price Xn

i = Op
(√

kn∆n

)
.

B Bootstrap-based multistep forecast methods

Here we describe the computational steps to obtain the E(yt+1|ujt = δjt,Ft−1), GI,
GFEVD via Bootstrap method, more details can be found in Koop et al. (1996), Lanne
and Nyberg (2016), Teräsvirta et al. (2010).

1. Denote Ft−1 as all the information prior to Yt, and select a forecast horizon h.

2. Randomly sample NB vectors of shocks (δ1t, δ2t, . . . , δKt)
> from the residuals of

estimated model,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ û?jtej (41)
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û?jt = Yt −
(
Â1, Â2, . . . , Âp

) (
Y >t−1, Y

>
t−2, . . . , Y

>
t−p
)>

= Yt − g(Yt−1) (42)

3. Compute conditional multistep forecast E(yt+l|Ft−1),

ft,0 = g(Yt−1) (43)

ft,1 = E[Yt+1 | Ft−1] = E[g(ft,0 + û?t ) | Ft−1]

ft,2 = E[Yt+2 | Ft−1] = E[g(ft,1 + û?t+1) | Ft−1]

. . .

with û?t+l, l = 1, . . . , h are independent draws with replacement from the set of
residuals {ût+l}Tt=1 over the sample period.

4. Repeat steps 3 for all NB vectors of estimated innovations with bootstrap methods,
iterating on the estimated model,

fbt,1 =
1

NB

NB∑
i=1

g(ft,0 + û
?(i)
t ) (44)

fbt,2 =
1

NB

NB∑
i=1

g(g(ft,0 + û
?(i)
t ) + û

?(i)
t+1)

. . .

5. By the same logic, we compute E(yt+l | ujt = δjt,Ft−1) when the shock is given as
δjt = û?jtej,

ft,0 = g(Yt−1) (45)

ft,1 = E[Yt+1 | Ft−1] = E[g(ft,0 + û?jtej) | Ft−1]

ft,2 = E[Yt+2 | Ft−1] = E[g(ft,1 + û?j,t+1ej) | Ft−1]

. . .

with û?j,t+l, l = 1, . . . , h are independent draws with replacement from the set of
residuals {ûj,t+l}Tt=1 over the sample period.

6. Repeat steps 5 for all NB vectors of estimated innovations with bootstrap methods,
iterating on the estimated model,

fbt,1 =
1

NB

NB∑
i=1

g(ft,0 + û
?(i)
jt ej) (46)

fbt,2 =
1

NB

NB∑
i=1

g(g(ft,0 + û
?(i)
jt ej) + û

?(i)
j,t+1ej)

. . .
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7. Plug in the GI function

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1) (47)

to obtain the relative contribution of a shock δjt to the i-th variable with horitzon
h at time t,

λij,Ft−1(h) =

∑h
l=0GI(l, δjt,Ft−1)2

i∑K
j=1

∑h
l=0 GI(l, δjt,Ft−1)2

i

, i, j = 1, . . . , K (48)

8. Repeat steps 2-6 for all histories.

9. Construct table 3 using averaged λij,Ft−1(h) generated from step 7.

If there is a unit shock,

δjt : (δ1t, δ2t, . . . , δKt)
> ∼ ej (49)

then we can simiply replace û?jtej of (41) with ej of (49), and repeat the steps from 1 to
6 stated above, the generalized impulse response can be calculated based on (47), i.e.

GI(l, δjt,Ft−1) = E(yt+l | ujt = δjt,Ft−1)− E(yt+l | Ft−1) (50)

We should note that if K is extremely large in empirical study, the denominator of equa-
tion (48) might be unnecessarily large due to accumulated noise caused by the large
amount of irrelevant variables. Therefore one more step of prescreening is preferred to
filter out less relevant variables.
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