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Abstract

Forecasting spoofing manipulation in financial markets is the cornerstone of regulators to improve

trading surveillance systems. This paper introduces a new data-driven approach to forecast the

market conditions associated with episodes of spoofing manipulation. Our approach reduces the

importance of model selection through forecasts combination of different traditional machine learn-

ing methods. We apply the forecasting algorithm to a unique dataset of suspicious spoofing cases

detected on the Moscow Stock Exchange. Our results show that learning from the limit order book

and past suspected spoofing cases generates an effective manipulation prediction measure at short

horizons in a high frequency data environment. The Real-Time Spoofing Probability measure pro-

posed is shown to be an effective real-time indicator of risk to trade in manipulative environment,

which can be used by exchangers, market participants and regulators in surveillance systems.

Keywords: Price Manipulation, Spoofing, Forecast Combination, Random Forest, XGBoost,

Ensamble

1. Introduction

Electronic markets and high-speed and automated trading have transformed the financial mar-

ket landscape and introduced new possibilities for disruptive practices. Such practices have the

potential to enable traders to make considerable profits through the artificial manipulation of mar-

ket perceptions, which, in turn, may detrimentally impact other market participants. The strategic

manipulation of markets can lead to price distortions, posing a substantial threat to the trustworthi-

ness and integrity of capital markets. The resulting mispricing may undermine investor confidence
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and damage market participation, efficiency, liquidity and the overall development of financial mar-

kets (Guiso et al., 2008; Imisiker and Tas, 2013; Punniyamoorthy and Thoppan, 2013).

One prominent form of trade-based manipulation is ’spoofing’. Spoofing involves the place-

ment and subsequent withdrawal of limit orders to feign supply or demand interest. In spoofing

strategies, spurious orders are typically situated close to the best bid and ask prices within the

order book, a positioning adopted by manipulators to help them to masquerade as traders with

legitimate buy and sell interests. In the aftermath of the enactment of the Dodd-Frank Act, which

outlawed such activities (Dodd-Frank, 2010), substantial investments have been made in the en-

hancement of automated surveillance systems tasked with its detection. The Commodity Futures

Trading Commission (CFTC) responded to the threat posed by spoofing with the establishment of

a dedicated Task Force in 2018, signaling the critical importance of thwarting such manipulation

for regulatory bodies. Notably, financial institutions such as Citigroup and J.P. Morgan Chase have

been subjected to sizable fines amounting to $25 million and $920 million, respectively, for engaging

in spoofing within the US Treasury futures market between the years 2017 and 2020.

The threat of manipulation and the necessity to police it has prompted the emergence and rapid

expansion of a trade surveillance industry dedicated to the oversight of client transactions and the

identification of illicit trading activities (Cumming et al., 2011; Aitken et al., 2015). However, these

surveillance systems still lack effective tools for predicting spoofing activities — a challenge that

impedes regulators’ real-time monitoring efforts.

This paper provides four innovative contributions to the literature on spoofing manipulation

in financial markets. First and foremost, we develop a novel data-driven approach to forecast the

market conditions associated with episodes of spoofing manipulation. Second, we identify the link

between market states and limit order book variables. Third, we offer an extensive and systematic

comparison of the out-of-sample performance of multiple machine learning techniques applied to

spoofing detection. Finally, we propose an effective spoofing prediction measure, the Real-Time

Spoofing Probability (RTSP), based on the combination of supervised machine learning algorithms.

Our approach is evaluated using a unique and novel data set of suspected spoofing cases detected

by the Moscow Exchange (MOEX).

In the last decade, there has been a growing interest in applying machine learning to the chal-

lenge of detecting market manipulation. Öğüt et al. (2009) investigate the effectiveness of artificial
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neural networks and support vector machines to identify manipulation on the Istanbul Stock Ex-

change. Golmohammadi and Zaiane (2015) advocate for contextual anomaly detection algorithms

and demonstrate their superior performance over k-Nearest Neighbor (kNN) techniques in a broad

stock market manipulation identification. Cao et al. (2014) employ a selection of machine learning

algorithms to ascertain the presence of price manipulation within financial markets. Their out-

comes suggest that the k-Nearest Neighbour algorithm and the One-Class Support Vector Machine

are capable of detecting manipulative behaviors with a notable degree of effectiveness. Expanding

upon this line of inquiry, Cao et al. (2015) evaluate the performance of the Adaptive Hidden Markov

Model against traditional machine learning paradigms, including Gaussian Mixture Models and the

k-Nearest Neighbour algorithm to identify manipulative trade activities on the NASDAQ and the

London Stock Exchange. The results from their analysis indicated a superior detection capability.

Tuccella et al. (2021) use Gated Recurrent Unit (GRU) based architecture for spoofing detection

on several cryptocurrency exchanges while Tao et al. (2022) proposes a quantification instrument to

monitor real-time spoofing behaviour on the TMX market using a conditional Wasserstein distance.

All these studies suffer from certain limitations. First, they identify spoofing orders using

their algorithm, which questions the robustness of the detection method. In contrast, we identify

spoofing using suspected spoofing incidents recognized by exchange authorities. Moreover, most

studies rely on synthetically generated data only to validate their findings. We rely on a novel

and extensive dataset with complete historical information of orders placed on the market. In

the empirical application, we create a unique dataset by combining data provided by MOEX with

suspected spoofing orders identified by the exchange’s internal algorithm on ten liquid stocks and

data of all orders and trades over the same period. Those ten stocks are not the most traded stocks

on the Moscow exchange, so the choice of sample stocks is in line with the results of Williams

and Skrzypacz (2020), which suggest that spoofing should be most prevalent in markets which are

sufficiently liquid but not too liquid. Using files from MOEX with all orders and trades, we track all

orders placed on the market, identify whether they are filled or cancelled and reconstruct an entire

limit order book at each tick, thus replicating the MOEX’s spoofing identification methodology,

albeit with more constrained data sets. To the best of our knowledge, we are the first to use this

level of granularity to address the spoofing problem. All of our algorithms are rigorously trained

on a dataset comprising suspicious spoofing orders, flagged by the Moscow Exchange. Our results
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suggest that using machine learning algorithms trained on public domain data readily can effectively

supplant the need for exclusive data privileged to market participants, such as trader identities and

their respective trading styles.

An additional issue in the current literature is the dependence of the predictive results on the

breadth and depth of the training data. Achieving a sufficient volume of trading data that is

adequately labeled for the purposes of supervised learning presents a significant difficulty. Existing

research on manipulation detection largely utilizes first and second-level data within the order book,

often restricted to the top five tiers of depth, which may not have the sufficient informational depth

to detect spoofing. We circumvent this limitation by adopting a more comprehensive analytical

perspective, leveraging a dataset that encompasses up to fifty tiers within the order book. This

allows us to examine a broader range of potential market state indicators, inclusive of novel metrics

such as the order book filling ratio and the order book spread. We categorize our set of indicators

into three distinct groups: market quality indicators, trade-related metrics, and operational state

descriptors of the order book. Using data-driven feature importance selection, we distill hundreds of

variables down to those of significance in forecasting the optimal market conditions for manipulators

to introduce orders. This approach allows us to encapsulate key economic dynamics prevalent

in limit order markets, yet remains manageable through the implementation of dimensionality

reduction techniques.

Most studies in the current literature focus on the applications of just one or two machine

learning algorithms. In contrast, in this paper we conduct a comprehensive analysis of the out-of-

sample performance of multiple ML techniques, i.e. regularization (lasso, elastic net), tree-based

algorithms (Random Forest, XGBoost and Decision Tree), and Neural Networks. We aim not only

to do a complete comparison across ML methods but also provide evidence of how and why some

of these methods improve the accuracy of forecasting spoofing manipulation. In the comparison,

we calibrate the algorithms using the data from five preceding trading days, and then conduct

predictive analysis for the subsequent 10-, 30- and 60-minute windows. Through the aggregation

of probabilities yielded by each individual machine learning algorithm, we formulate a composite

real-time spoofing likelihood score. Our results confirm the superior forecasting performance of

our methodology with respect to other machine learning methods, thereby affirming the real-time

responsiveness and effectiveness of our RTSP metric in identifying market states with elevated
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spoofing propensities. We hope that our approach may be of interest to regulatory bodies, enhancing

the detection of spoofing within the limit order book (LOB) while simultaneously augmenting

market quality. By incorporating an RTSP-based spoofing risk assessment, market participants can

also adjust their trading strategies, thereby altering the market dynamics and rendering conditions

less amenable for low-risk manipulator gains, thus inherently improving market quality.

The empirical results show that no individual algorithm consistently outperforms the other.

We show that the RSTP measure, a forecast combination of the two best performing learners ,

the Random Forest and XGBoost, achieves a superior out-of-sample predictive performance with

respect to any algorithm. Our analysis provides strong evidence of the model appropriateness for

imbalanced datasets, such as the real-time tick data used in our empirical study and facilitates the

identification of intervals featuring potentially suspicious and fraudulent activities within the order

book.

The remainder of the paper is organized as follows. Section 2 describes the data and the

variables. The following parts of the paper are dedicated to the methodology we use in our study

(Section 3) and the results that we obtain to forecast spoofing (Section 4). In Section 5, we

introduce the novel forecasting measure RTSP and show its predictive power (Section ??). Finally,

some conclusive remarks are offered in Section 6.

2. Data collection and processing

In our empirical investigation, we use high-frequency tick market data for six consecutive months

from January till June 2019 for a total of 103.412 observations. Our data is constructed using two

dataset obtained from the Moscow Exchange (MOEX).

The first dataset contains information on 51,706 cancelled orders of 10 liquid stocks, identified by

MOEX, according to their internal algorithm, as potential spoofing orders. This dataset provides

information on security id, time, buy/sell, volume and price. Data providers do not release the

algorithms used for spoofing detection by the exchange surveillance department, however they track

potential spoofing orders by observing how the order influences the market, whether it tightens the

spread, which is its lifetime and using several other indicators. In addition, the exchange tracks

the trading style of each trader and can mark potential spoofers. Suspicious spoofing orders in this

dataset are identified based on the information regarding proven detected spoofing cases from 2010

to 2019 in the USA, Europe, and the UK.
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The second dataset consists of all orders placed on the stock market and includes for each order:

record number, security code, type of order (sell or buy), time in the format of microseconds, order

number, type of action (placed, cancelled, executed), price, volume, trade number if executed, trade

price if executed. This dataset includes all orders on MOEX, all trades, and best bid and ask prices.

This information allows us to reconstruct the full limit order book (LOB) up to maximum available

level at any time and for any stock. We construct the book 50 levels deep.

We construct our dataset by matching suspicious spoofing orders identified by MOEX with the

second dataset of orders and trades. This allows us to track the manipulative order’s lifetime and

to identify its order book price level and time of cancellation. We call the spoofing orders “True”

orders. We then randomly pick non-spoofing orders during the same period and denote them as

“False” orders. Table 1 includes description and general statistics of the dataset with the spoofing

orders.

Table 1: Description and general statistics of the spoofing orders

format: security id, time, buy/sell, volume, price
time: 6 months from January till June 2019
10 stocks: FIVE’, ’GMKN’, ’MGNT’, ’NVTK’, ’PLZL’, ’POLY’, ’ROSN’, ’SNGS’,’TATN’, ’YNDX’
number of orders: 51 706 spoofing orders
lifetime: on average the lifetime of spoofing order is 0.0045 min with maximum lifetime 0.33 min
price level: on average spoofing order appears on the 5th price level below or above best bid or ask in the order book
max price level: the maximum price level is 48
trades information: on average 84% of spoofing orders do not have any trade during their lifetime
orders frequency: spoofing orders appear every day on each stock
buy or sell: 55% of spoofing orders are sell orders
time of the day: orders appear equally during the day, except YNDX, which spoofing orders appear only after 4pm

For the ten stocks, we reconstruct the limit order book every 10 seconds (Table 1). Each

reconstructed order book consists of 50 ask prices and bid prices. We use price levels depending

on the stock’s minimum price increment, including zero volume price levels. We only consider

normal trading hours1 and omit the first and last half hours of each trading day, since these are

often periods of high volatility and increased spreads (Cartea et al., 2019). Every price level in the

reconstructed order books represents the volume of orders placed on the market from the beginning

of the trading day minus cancelled and executed orders on the same price level. The data structure

enables us to identify the exact time when the suspicious spoofing order was placed and the market

1Normal trading hours on MOEX are from 10:00 till 18:45.
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state just before that order, consisting of the reconstructed limit order book, the trading price and

volume.

In the first part of our analysis , the dataset is split into two parts. A training and validation

sample (in-sample) which includes 75% of the full sample, for a total of and a testing sample which

includes the remaining 25% of the sample. The model development process is performed in the

in-sample dataset and model validation and assessment is conducted on the testing sample. In

the second part of our analysis, we conduct a forecasting assessment of the algorithms on the full

sample, considering real-time prediction of spoofing at the next tick, based on information from the

last five days of trading only.

In developing our model specification, we examine an extended set of variables that follow under

the classification categories of market quality variables, variables of trades and their frequency, and

order book variables. As market quality variables we consider

1. Spread measures:

• QS. Quoted spread is (a− b)/m, where a is the best ask, b is the best bid, and m is the

midquote;

• QS_delta. The difference in quoted spreads measures ten and twenty seconds before

the spoofing order.

• QS_delta_t2. The difference in quoted spreads measures ten and thirty seconds before

the spoofing order.

• ES. Effective (half) spread is (p − m)/m, where p is the trade price and m is the

prevailing midquote (prior to execution) (Lee, 1993; Blume and Goldstein, 1992).

2. Short-term volatility measures:

• V OL_1_Nmin. N-minute price volatility is a standard deviation of the midquotes

within the interval divided by the last midquote (Aitken and Frino, 1996). N ∈ {1, 2, 5, 10}

minutes.

• V OL_2_Nmin. N-minute price volatility is measured as a standard deviation of price

returns, where N ∈ {1, 2, 5, 10} minutes.

• V OL_3_Nmin. Average realized volatility in the time interval is measured as

1/nΣN
s=1

∣∣ln(mt−s − mt−s−1)
∣∣, where ms is the midquote at end of minute s, and N ∈
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{1, 2, 5, 10} minutes.

In constructing variables of trade and its frequency, the interval choice should be aligned with the

main research question. As we have data with orders that live on average less than a second, we

consider short intervals of less than 10 minutes. One-minute intervals coincide with research on

quote stuffing events (Egginton et al., 2016), while 10-minute intervals are used by Cartea et al.

(2019) and Hasbrouck and Saar (2013). For a better picture, we include 1-, 2-, 5-, 10-minute

intervals and consider the following:

1. Hour is a trading hour from 10 am till 6 pm in which the tick prevailing the spoofing order

occurred.

2. UF . Ultra-fast activity measure is a fraction of limit orders submitted and cancelled very

quickly out of all cancelled orders (Cartea et al., 2019). UF_X_N is an ultra-fast measure

cancelled within X ms, where X ∈ {1, 10, 50, 100, 600} ms in one minute, and N indicates how

many minutes before spoofing order ultra-fast activity happened, where N ∈ [1; 10] minutes.

For example, spoofing order was placed at 10:30, so UF_10_5 is a fraction of the limit orders

cancelled within 10 ms measured in the minute from 10:25 to 10:26.

The order book state is a "snapshot" of the LOB at every point in time when at least one action

(trades, placement or cancellation of limit orders) is present. Two neighbouring order book states

could have the time index at least a one-time increment possible on the exchange. 2 However,

neighbouring order book states may be several seconds apart during slow trading times. We consider

the order book state just before the spoofing order is placed 3 and compute separate order book

variables for the LOB’s ask and bid sides. To determine the order book state before the manipulative

order, we have to consider that spoofing orders appear on one side of the LOB. Does it mean that

the market state on this side is the one that attracts manipulators? While separating the dataset

into two subsets of buy and sell orders, we address this question. Also, we calculate the order book

depth variables separately for the ask and bid sides of the LOB.

1. Order book imbalance. Volume imbalance of the limit order book is the ratio of volume posted

at the best bid price minus the volume posted at the best ask price to the sum of the volume

at the best bid and best ask price (Cartea et al., 2020). We compute those imbalances using:

2MOEX provides data in the format HHMMSSZZZXXX, which gives us the minimum time increment of 0.000001
seconds.

3The mean lifetime of spoofing orders is 0.005 seconds.
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• Total order book imbalance:

IMB = (SB − SA)/(SA+ SB),

where SB is a sum of the orders’ volume on all bid price levels, SA is a sum of the

orders’ volume on all ask price levels.

• Order book imbalance until i price level:

IMB_i = (SBi − SAi)/(SAi + SBi),

where i ∈ {0, 1, 2, 3, 4, 5} is a price level in the order book, where i = 0 is the best ask

and best bid price levels.

• Order book imbalance until the price level of the spoofing order:

IMB_order = (SB∗ − SA∗)/(SA∗ + SB∗),

where SB∗ and SA∗ are the sums of the orders’ volume from the bid and ask sides of the

order book, respectively, that lie within the price band defined by the spoofing order.

• Difference in the order book imbalance:

IMB_delta = IBM_10− IBM_20,

where IBM_10 is an order book imbalance measured ten seconds before the spoofing

order. IBM_20 is the order book imbalance variables for the order book twenty seconds

before the spoofing order.

IMB_delta_t2 = IBM_10− IBM_30,

where IBM_30 is the variable for the order book thirty seconds before the spoofing

order.

2. Order book spread. Bid-ask spread is a classical liquidity measure. It is a trade-based effective

cost estimate that has been widely used in studies of market quality. We introduce a measure

of order book spread to indicate hidden liquidity inside the LOB that could be seen not as a

snapshot of market quality but as potential longer-lasting liquidity.

• Order book spread:

DistNormN = (AvAskN − AvBidN)/m, where AvAskN and AvBidN are a mean

ask and bid prices respectively that lies within N ∈ {10, 20, 50} ask and bid price levels

including those with zero volume; m is a midquote;
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• Clean order book spread:

DistNormCleanN is the same measure as DistNormN , but we do not consider price

levels with zero volume. N ∈ {10, 20, 50} not including zero volume levels.

3. Order book depth. Biais et al. (1995) find that thin books elicit orders and thick books result

in trades. Ranaldo (2004) uses similar measures like pending volume in the number of shares

divided by 10,000 at the best quote on the same market side as the incoming trader and on the

opposite side of the market for the incoming trader. We follow a similar logic by introducing

the following variables:

• Average order book depth:

DistV olN = (V olAsk + V olBidN)/V ol_m is the average cumulative volume resting

in the LOB within N ∈ {10, 20, 50} basis points of the best bid and ask (Cartea et al.,

2019). V olAskN and V olAskN are cumulative volumes on the order book’s ask and bid

sides, resting within the N price level.

V ol_m = (V olAsk + V olBid)/2 is an average volume on the best bid and ask price

levels. This measure accounts for the tick size by measuring the depth at given distances

relative to the current best bid and ask. We normalize this measure by average volume

on the best bid and ask price levels.

• Average clean order book depth:

DistV olCleanN is the same measure as DistV olN , but we do not consider price levels

with zero volume. N ∈ {10, 20, 50} not including zero volume levels. For example,

N = 10, but we observe two price levels from the ask side with zero volume. So, we

must count cumulative volume from the ask side until the twelfth price increment from

the best ask.

4. Order book filling ratio. The order book filling ratio is the number of filled price levels with

the limit orders divided by the number of all price levels. The order book has several visible

price levels, however, the difference between neighbouring levels could be more significant

than a minimum price increment. In other words, the order book could be filled with orders

on each price level or many empty price levels. We propose the following novel variables to

capture this ratio:
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• FRA = FA/TotalA and FRB = FB/TotalB, where FA and FB are the counts of

price levels in the order book with at least one sell and buy limit order, respectively.

TotalA and TotalB are the maximum price levels from the order book’s ask and bid

sides.

• FRA_delta = FRA_10− FRA_20 and

FRB_delta = FRB_10 − FRB_20, where FRA_10 and FRB_10 are order book

filling ratios measured ten seconds before the spoofing order. FRA_20 and FRB_20

are order book filling ratios for the order book twenty seconds before the spoofing order.

FRA_delta_t2 = FRA_10− FRA_30 and

FRB_delta_t2 = FRB_10− FRB_30,

where FRA_30 and FRB_30 are order book filling ratios for the order book thirty

seconds before the spoofing order.

The variable generation process leads to a large set of predictors as potential candidates for our

modeling procedures. Our decision to explore such a large set of predictors is motivated by the

fact that the current literature that has inconclusive evidence on which variables to include in

predicting spoofing manipulation (Cao et al., 2015; Tao et al., 2022). That is, our choice is driven

by our intention not to miss any important information.

We first reduce the dimensionality space of the candidate variables that articulate the current

state of the market, so that the core models are developed on a sub sample of variables that in-

cludes the most relevant ones for the purposes of the analysis. As a first step , to ensure a consistent

framework for comparison across different stocks and to facilitate interpretability, each variable is

standardized by removing outliers, characterized by deviations exceeding three standard deviations

from the mean of each feature. Then, considering the large number of explanatory variables, we pro-

ceed by excluding the ones that convey, to a large extent, the same type of information in predicting

the dependent variable using regularisation techniques. We use LASSO (Least Absolute Shrinkage

and Selection Operator) as a regularization technique for variable selection, as detailed by (Tib-

shirani, 1996; Hastie et al., 2009) (see Appendix 7.1) to assess simultaneously the predictive power

of features. However, while LASSO is capable of accommodating pre-specified non-linearities and

interactions, it may exhibit sub-optimal performance in the presence of highly correlated predictors

(Zou and Hastie, 2005). The sample correlation matrix of our candidate predictors is provided in
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Appendix 7.2. Given the substantial correlation among predictors, in line with the findings of Zou

and Hastie (2005), we rely on the Elastic Net to robustify our findings from LASSO. We choose

a parameterization with an alpha of 50% (Appendix 7.1)). The regressors to be included in our

model are selected based on their capacity to minimize the Root Mean Square Error (RMSE). As

the outcome of the variable selection process, we retain 67 regressors as predictors of spoofing ma-

nipulation trading activity. The full list of predictors is reported in documented in Appendix 7.3.

At this point, it is critical to ensure that the final system of variables remains robust for different

model specifications. To this end, we extend our analysis by also applying a Stepwise Logit (SL)

model specification. Detailed results are available upon request from the authors. The variables

selected are robust to the choice of model specification, so our main conclusions regarding the pre-

dictive performance of each model seem not to be biased against the variable selection algorithm

used.

3. Model Development

To predict the probability of spoofing manipulation at the next tick , we consider several machine

learning methods, including deep learning ones, and conduct and extensive comparison. Namely, the

following classical machine learning models are included in our analysis: Logistic Regression (LogR),

Support Vector Machines (SVM), k-Nearest Neighborhoods (KNN), Naive Bayes (NB), Stochastic

Gradient Descent (SGD), Decision Trees (DT), Random Forest (RF), Gradient Boosting(GB),

XGBoost and Adaptive Markov Chain. For the Neural Networks (NNs), we include the Perceptron

and the LSTM and the GRU. All these models are well-documented in the literature.

The Logistic Regression is used as a benchmark. It is a non-linear fully parametric approach and

has several advantages: it is easy to fit and to interpret. Statistical significance tests can be easily

performed. However, parametric methods have a disadvantage: by construction, they make strong

assumptions and if the specified functional form is far from the truth, then the parametric method

will perform poorly. The simplest non-parametric method we consider is the k-Nearest-Neighbors

(k-NN). k-NN categorizes objects based on the classes of their nearest neighbors in the dataset.

Distance metrics are used to find the nearest neighbor. The k-NN algorithm searches for k closest

training instances in the feature space and uses their average prediction. k-NN predictions assume

that objects near each other are similar. When mobilizing k-NNs, memory usage and prediction

speed of the trained model are of lesser concern to the modeler.
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Support Vector Machines (SVM) map inputs to higher-dimensional feature spaces. The SVM

classifies data by finding the linear decision boundary (e.g., hyperplane) that separates all data

points of one class from those of the other class. This machine-learning algorithm separates the

attribute space with a hyperplane, maximizing the margin between the instances of different classes

or class values. It can be used when the researcher needs a classifier that is simple, easy to interpret,

and accurate. A significant number of studies point the usefulness of SVMs in market manipulation

detection (Öğüt et al., 2009; Khodabandehlou and Golpayegani, 2022), since they reduce the possi-

bility of overfitting and alleviate the need of tedious cross-validation for the purpose of appropriate

hyper parameter selection. Their main limitation is the lack of intepretability.

Decision trees are resilient to variable scaling and robust against outliers and have been used

by several authors as tools to predict spoofing.For instance, when the trading volume exceeds the

95th percentile, a split is made based on whether the quoted spread is above or below the median,

otherwise, the split is based on the 25th percentile of order book imbalance. Each of the resulting

four leaves is then assigned an expected frequency of spoofing activity, in line with the historical

averages. In recent years, ensemble algorithms, particularly tree-based algorithms, have emerged as

pivotal tools for addressing prediction and classification challenges across diverse domains, yielding

notable achievements (Zhou, 2012). Rather than relying on a singular model, tree-based methods

amalgamate multiple individual tree models to attain optimal prediction performance. The Ran-

dom Forest, introduced by Ho (1995), operates as a supervised ensemble learning approach based on

decision trees. It aggregates results from multiple random decision trees (Breiman, 2001), averaging

many trees, each built on a bootstrapped sample from a random subset of all predictors originating

from the original dataset.

The Gradient Boosting (XGBoost), effectively implementing Gradient Tree Boosting, as out-

lined in Chapter 10 of Hastie et al. (2017). While Random Forest relies on averaging over random

trees (referred to as bagging), in Gradient Tree Boosting, each new tree focuses on examples that

previous trees found challenging (known as Boosting). Generally, Boosting yields more accurate

forecasts than bagging, albeit the estimation process is considerably slower. XGBoost effectively ad-

dresses this slowdown, making Gradient Tree Boosting nearly as fast as Random Forest. Moreover,

it recognizes the propensity of trees to overfit and imposes penalties on trees with excessive leaves,

favoring simpler and more concise trees—a process commonly referred to as regularization. As dis-
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cussed in Chen et al. (2015), the XGBoost algorithm is equally adept at providing computational

efficiency, particularly when dealing with sizable datasets. Moreover, XGBoost, akin to Random

Forest, is adept atleveraging hyperparameters which aligns well with our data requirements, specif-

ically our need to wield various order book variables for spoofing prediction, incorporating clusters,

rates, and other parameters within a unified algorithm.

4. Model Validation

To compare models performance we conduct an extensive validation exercise in term of predictive

ability in the out of sample (testing) period. To ensure robustness of our findings to the validation

procedure, we consider several different cross-validation approaches in controlling for overfitting.

4.1. Validation measures

To discriminate between competing forecasts, we compare the predictions using a series of

metrics, namely accuracy, precision, recall and f1 − score. These measures overcome any issues

of model performance misinterpretation, which can arise in cases where one uses traditional model

performance metrics that are based on overall model accuracy. We rely on accuracy, precision,

recall and the f1− score, defined as follows:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
, Precision =

tp

tp+ fp
,

Recall =
tn

tn+ fp
, F1− score =

2 ∗Recall ∗ Precision

Recall ∗ Precision
,

where, tp is a number of true positive values, tn is a number of true negative values, fp is a

number of false positive values, and fn is a number of false negative values. The accuracy measure

denotes the proportion of correctly forecasted market states to the total number of all forecasted

market states. In other words, it measures the portion of all testing samples classified correctly.

The precision measures the proportion of all correctly identified samples in a population of samples

which are classified as positive labels. Thus it answers the question: Of all "True" predicted market

states with spoofing orders, how many actually had spoofing orders in the LOB? For example, if

precision of "True" spoofing orders equals 0.82, it means that 82% of all predicted market states

with spoofing orders in the LOB were correctly identified by the ML algorithm. Similarly, if

precision of "False" spoofing orders equals 0.74, it means that 74% of predicted market states

without spoofing orders in the LOB were correctly identified. Recall or sensitivity measures the
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ability of a classifier to identify positive labels correctly. Recall answers the question: Of all actual

"True" market states with spoofing orders, how many were predicted correctly by the ML algorithm?

For example, if recall of "True" spoofing orders equals 0.71, it means that 71% of market states

with spoofing orders in the LOB were identified correctly by the ML algorithm. Similarly, if recall

of "False" spoofing orders equals 0.84, it means that 84% of market states without spoofing orders

in the LOB were identified correctly. The f1 − score combines precision and recall into a single

metric as the harmonic mean of precision and recall, By definitions, it is never higher than the

geometrical mean and tends towards the least number, minimizing the impact of the large outliers

and maximizing the impact of small ones. F1−score, therefore, tends to privilege balanced systems.

To test for equal predictive ability of the models we use the Diebold Mariano test on model pairs

for each of the accuracy measures. Finally, we rely on the Model Confidence set to rank models

forecasting performances.

4.2. Validation Results

The fully balanced nature of our original sample may facilitate the training of the models. To

investigate the robustness of our approach to the more realistic scenario of an unbalanced data set,

we analyze model performance for the case of 1:2 True-False proportion. To this end, we create

a new training sample, including further 51,706 randomly selected False orders. We assess model

performance in the "balanced" (original) and "unbalanced" dataset. As already mentioned, the

validation period refers to 25% of the full data. Our analysis reveals an average prediction accuracy

ranging from 50% and 76% (cf. Table 2) for the balanced sample and indicates the Random Forest

as the model with best performance. These finding our supported also by the Diebold-Mariano test

which allows us to reject the null of equal predictive ability of all models against the Random Forest.

In addidition, the DM test indicates that the Decision Tree and XGBoost models either outperform

or exhibit comparable performance to the other models (see Appendix 8.4). Results from the

Model Confidence set confirm the Random Forest model as the optimal choice in term of prediction

accuracy . Subsequently, in quest of identifying the second-best model, we exclude the Random

Forest from consideration, leading us to identify two other models, Decision Trees and XGBoost

that exhibit similar and commendable performance levels (refer to Appendix 8.5) Following this

first step of analysis, the Random Forest, Decision Tree, and XGBoost undergo calibration to

achieve optimization of the hyperparameters (refer to Appendix 7.6). Table 2: Prediction accuracy
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of ML models. The table shows results of commonly used ML models with True and False orders

proportion of 1:1, splitting the data into 75

Table 2: Prediction accuracy of ML models. The table shows results of commonly used ML models with True and
False orders proportion of 1:1, splitting the data into 75% training and 25% validating sets.

Logistic regression: 52%
Support Vector Machines (SVM): 57%
K-nearest neighbors (KNN): 68%
Naive Bayes (NB): 50%
Stochastic Gradient Descent (SGD): 52%
Decision Tree (DT): 68%
Random Forest (RF): 76%
Gradient Boosting (GB) : 67%
XGBoost: 68%
Adaptive Markov Chains 50%
LSTM Neural Network (10 hidden layers) 55%
LSTM Neural Network (5 hidden layers) 55%
GRU neural network 51%
Percepton neural network 53%

Overall three algorithms on the first step of the analysis predict correctly from 66% to 78% of

spoofing cases for balanced and un blanced data, the Random Forest, the Decision Tree and the

XGboost.

4.3. Robustness

We investigate robustness of the results to various cross validation setting in controlling for

overfitting. Cross-validation is a resampling procedure used to evaluate the consistency of prediction

quality of machine learning models on a limited data sample. The process has a single parameter k

that refers to the number of groups a given data sample will be split into. We start with the 5-fold

cross-validation for each ML model and obtain average prediction accuracy. It generally results in a

less biased or less optimistic estimate of the model skill than other methods, such as a simple train-

test split. The general procedure is as follows: firstly, the dataset is shuffled randomly; secondly, the

dataset is split into k groups to take each group as a hold-out or test data set and then fit a model

on the training set and evaluate it on the test set; and finally, retain the evaluation score and discard

the model. Then we summarize the model’s skill using the sample of model evaluation scores. Then

we assess the model forecasting performance based on the mean accuracy of the prediction of each

fold. We use K-fold, Stratified K-fold, and Shuffle cross-validations, splitting the spoofing events
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into K non-overlapping parts in calendar time. We run cross-validation with different Ks (3, 4, 5,

6, 8, 10) to test for the stability of the outcomes. In K- fold cross validation, every fold is used as

a validation set and other left-outs as a training set. This validation technique is not considered

suitable for imbalanced datasets as the model will not get adequately trained owing to the proper

ratio of each class data, thus on the imbalced data we train the models using the shuffling and block

approach. The typical approach when using k-fold cross-validation is to shuffle the data randomly

and split it in K equally-sized folds. By shuffling the dataset, we ensure that the model is exposed

to a different sequence of samples in each part, which can help to prevent it from memorizing the

order of the training data and overfitting to specific patterns. The blocked k-folds cross-validation

procedure is similar to the standard form described above. The difference is that there is no initial

random shuffling of observations. The stratified K-fold cross-validation , an enhanced version of

the k-fold cross-validation technique, splits the dataset into K equal folds. Each fold has the same

ratio of instances of target variables. This method enables us to work with imbalanced datasets.

Finally, we use the shuffle cross-validation technique that involves splitting the whole data in the

percentage of your choice and keeping the train-test split percentage different. This method allow

us to get the test errors and access the outcomes.

4.4. Forecasting Results for balanced and imbalanced datasets

In the case of a balanced dataset, the three machine learning algorithm models chosen on the

first step of the analysis predict correctly from 66% to 78% . Tables 3, 4, 5, 6 below show the

results.

Table 3: Accuracy of ML models. The table shows results of Random Forest, XGBoost and Decision Tree ML models
with True and False orders proportion are equal to 1:1, splitting the data into 75% training and 25% validating sets.
Accuracy measures the portion of all testing samples classified correctly. Recall measures the ability of a classifier
to correctly identify positive labels. And Precision measures the proportion of all correctly identified samples in
a population of samples which are classified as positive labels. F1 − score combines precision, recall into a single
metric, F1− score = (2 ∗Recall ∗ Precision)/(Recall ∗ Precision).

Random Forest XGBoost Decision Tree

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

False 0.74 0.84 0.79 0.78 0.63 0.69 0.64 0.72 0.68
True 0.82 0.71 0.76 0.70 0.82 0.75 0.69 0.60 0.64

Accuracy 0.78 0.73 0.66
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Table 4: K-fold cross-validation check for of ML models using balanced data with 1:1 True-False proportion. The
table shows the results of two cross-validation approaches: 1. Shuffle: the complete dataset is shuffled in random
k-parts; 2. Blocks: the dataset is sorted by time into blocks without shuffling.

1. Shuffle

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 76.5 72.5 66.0
Max accuracy 76.9 72.7 66.6
Average accuracy 76.7 72.6 66.3

4 Min accuracy 77.1 72.4 65.8
Max accuracy 77.4 72.9 66.4
Average accuracy 77.2 72.7 66.1

5 Min accuracy 77.2 72.4 65.6
Max accuracy 77.7 73.3 66.4
Average accuracy 77.5 72.9 66.1

6 Min accuracy 77.3 72.0 65.7
Max accuracy 78.2 73.4 66.4
Average accuracy 77.7 72.9 66.1

8 Min accuracy 77.4 72.0 65.9
Max accuracy 78.3 73.2 66.8
Average accuracy 77.9 72.7 66.1

10 Min accuracy 77.4 72.4 65.5
Max accuracy 78.4 73.3 66.9
Average accuracy 78.0 73.0 66.3

2. Blocks

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 56.6 62.0 62.8
Max accuracy 61.0 66.4 66.7
Average accuracy 58.4 64.3 64.7

4 Min accuracy 54.9 61.0 59.0
Max accuracy 61.9 67.9 65.8
Average accuracy 57.9 64.7 62.2

5 Min accuracy 55.9 63.0 60.1
Max accuracy 64.2 70.2 69.2
Average accuracy 59.3 65.9 64.4

6 Min accuracy 55.3 60.0 59.3
Max accuracy 63.4 68.5 68.4
Average accuracy 58.6 64.8 64.2

8 Min accuracy 55.3 56.5 56.1
Max accuracy 68.7 68.6 69.1
Average accuracy 58.9 64.5 62.8

10 Min accuracy 54.7 59.6 57.2
Max accuracy 70.3 71.9 71.3
Average accuracy 59.8 65.9 64.1
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Table 5: Stratified K-fold cross-validation check for of ML models using balanced data with 1:1 True-False proportion.

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 76.4 72.0 65.7
Max accuracy 76.9 73.0 66.3
Average accuracy 76.6 72.5 66.1

4 Min accuracy 77.0 72.2 65.3
Max accuracy 77.3 72.9 66.8
Average accuracy 77.1 72.7 66.0

5 Min accuracy 77.2 71.9 65.8
Max accuracy 78.0 73.4 66.8
Average accuracy 77.5 72.8 66.2

6 Min accuracy 77.4 72.5 65.8
Max accuracy 78.0 73.5 66.2
Average accuracy 77.6 72.8 66.0

8 Min accuracy 77.5 72.4 65.5
Max accuracy 78.4 73.5 67.2
Average accuracy 77.9 73.0 66.2

10 Min accuracy 77.5 71.7 65.1
Max accuracy 79.2 73.9 67.1
Average accuracy 78.0 72.9 66.2

Table 6: Shuffle K-fold cross-validation check for of ML models using balanced data with 1:1 True-False proportion,
training on 60% of the data and validating on 20% of the data

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 76.0 71.9 65.8
Max accuracy 76.3 72.7 66.1
Average accuracy 76.2 72.4 65.9

4 Min accuracy 76.1 72.2 65.5
Max accuracy 76.6 72.6 66.8
Average accuracy 76.3 72.4 65.9

5 Min accuracy 75.8 72.1 65.8
Max accuracy 76.7 73.0 66.4
Average accuracy 76.2 72.6 66.2

6 Min accuracy 75.6 71.7 65.8
Max accuracy 76.6 72.7 66.4
Average accuracy 76.2 72.3 66.1

8 Min accuracy 75.7 71.8 65.7
Max accuracy 76.7 72.8 66.4
Average accuracy 76.3 72.2 66.1

10 Min accuracy 75.9 71.6 65.6
Max accuracy 76.6 72.9 66.6
Average accuracy 76.4 72.3 66.1
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Different cross-validation approaches illustrate that the models performance is robust to the

validation approach. It is interesting to notice however that according to the K-fold cross-validation

with blocks the XGBoost outperforms the Random Forest algorithm, while the shuffle k-fold cross-

validation suggests dominance of the Random Forest. There is no uniquely dominant algorithm

across different cross validation approaches. This suggest that combining different algorithms may

improve the overall forecasting performance (Claeskens et al., 2016). In the case of imbalanced

data, the Random Forest model achives 82.3% accuracy. However since the dataset is imbalanced,

this implies that only 57% of True orders are predicted correctly, while for False orders, prediction

accuracy is 95%. The XGBoost model gives overall 78.2% prediction accuracy with 59% accuracy

in predicting True orders and 88% False orders. The decision tree also shows similar results with

little less forecasting accuracy (Tables 7, 8, 9, 10).

Table 7: This table shows results of Random Forest, XGBoost and Decision Tree ML models with True and False
orders proportion are equal to 1:2, splitting the data into 75% training and 25% validating sets. Accuracy measures
the portion of all testing samples classified correctly. Recall measures the ability of a classifier to correctly identify
positive labels. And precision measures the proportion of all correctly identified samples in a population of samples
which are classified as positive labels. F1 − score combines precision, recall into a single metric, F1 − score =
(2 ∗Recall ∗ Precision)/(Recall ∗ Precision).

Random Forest XGBoost Decision Tree

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

False 0.81 0.95 0.88 0.81 0.88 0.84 0.76 0.85 0.80
True 0.85 0.57 0.69 0.71 0.59 0.65 0.61 0.46 0.53

Accuracy 0.82 0.78 0.72
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Table 8: Stratified K-fold cross-validation check for of ML models using imbalanced data with 1:2 True-False pro-
portion.

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 81.6 77.9 71.3
Max accuracy 81.9 78.0 72.0
Average accuracy 81.7 77.9 71.6

4 Min accuracy 81.8 77.9 71.7
Max accuracy 82.2 78.4 72.1
Average accuracy 82.1 78.1 71.9

5 Min accuracy 81.9 77.8 71.5
Max accuracy 82.5 78.4 72.3
Average accuracy 82.3 78.2 71.9

6 Min accuracy 82.0 77.6 71.2
Max accuracy 82.7 78.4 72.2
Average accuracy 82.3 78.2 71.8

8 Min accuracy 82.1 77.8 71.3
Max accuracy 83.0 78.5 72.2
Average accuracy 82.6 78.3 71.8

10 Min accuracy 82.1 77.8 71.2
Max accuracy 83.1 78.6 72.3
Average accuracy 82.7 78.3 71.8
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Table 9: K-fold cross-validation check for of ML models using imbalanced data with 1:2 True-False proportion. We
show the results of two cross-validation approaches: 1. Shuffle: the complete dataset is shuffled in random k-parts;
2. Blocks: the dataset is sorted by time into blocks without shuffling.

1. Shuffle

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 81.7 77.8 71.8
Max accuracy 81.8 77.9 72.0
Average accuracy 81.7 77.9 71.9

4 Min accuracy 81.9 77.9 71.7
Max accuracy 82.3 78.2 72.2
Average accuracy 82.0 78.0 71.9

5 Min accuracy 82.0 77.8 71.6
Max accuracy 82.5 78.3 72.1
Average accuracy 82.2 78.1 71.8

6 Min accuracy 82.2 77.9 71.7
Max accuracy 82.7 78.4 72.1
Average accuracy 82.5 78.2 71.9

8 Min accuracy 82.2 78.1 71.3
Max accuracy 83.0 78.7 72.3
Average accuracy 82.6 78.3 71.9

10 Min accuracy 82.3 78.0 71.4
Max accuracy 83.2 78.6 72.1
Average accuracy 82.7 78.3 71.8

2. Blocks

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 66.4 68.9 69.3
Max accuracy 66.5 70.3 70.7
Average accuracy 66.4 69.7 69.8

4 Min accuracy 66.1 67.6 67.5
Max accuracy 66.7 72.1 71.6
Average accuracy 66.5 69.8 69.6

5 Min accuracy 64.7 69.2 68.0
Max accuracy 70.6 72.7 71.3
Average accuracy 67.3 70.8 69.7

6 Min accuracy 65.8 68.1 66.2
Max accuracy 66.9 71.6 71.7
Average accuracy 66.5 69.7 69.6

8 Min accuracy 64.0 66.0 66.2
Max accuracy 68.3 73.4 73.7
Average accuracy 66.6 69.7 69.6

10 Min accuracy 65.0 66.9 66.2
Max accuracy 74.8 77.3 74.5
Average accuracy 67.4 71.0 69.8
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Table 10: Shuffle K-fold cross-validation check for of ML models using imbalanced data with 1:2 True-False propor-
tion,training on 60% of the data and validating on 20% of the data.

K Accuracy (%) Random Forest XGBoost Decision Tree

3 Min accuracy 81.0 77.8 71.6
Max accuracy 81.3 78.0 71.9
Average accuracy 81.2 77.9 71.8

4 Min accuracy 81.1 77.7 71.3
Max accuracy 81.6 78.0 72.1
Average accuracy 81.4 77.9 71.6

5 Min accuracy 81.2 77.7 71.7
Max accuracy 81.5 78.1 72.2
Average accuracy 81.4 78.0 71.9

6 Min accuracy 81.2 76.9 71.3
Max accuracy 81.6 78.2 72.2
Average accuracy 81.4 77.6 71.8

8 Min accuracy 81.0 77.3 71.4
Max accuracy 81.7 78.0 72.1
Average accuracy 81.3 77.7 71.7

10 Min accuracy 80.9 77.4 71.3
Max accuracy 81.9 78.4 72.3
Average accuracy 81.5 77.8 71.8

To shed some more light on the performance of the models in the imbalanced dataset, we run

the chosen algorithms increasing the proportion of False orders up to 15 by cutting the number of

True spoofing orders. The results are presented in Table 11 and confirm that validity of the method

strongly relies on the proportion of the data trained.

Various state-of-the-art learning techniques have been suggested in the past few years to ad-

dress classification problem in imbalanced dataset, including algorithm level methods and data level

methods. The algorithm driven approach or classifier level approach keeps the training dataset

invariable and adjusts the inference algorithm to facilitate learning specifically related to the mi-

nority class. To illustrate this approach, we run the Random Forest for imbalanced datasets called

“BalanceRandomForestClassifier” (Appendix 7.6), which randomly under-samples each bootstrap

sample to balance it. We obatain a higher predictive accuracy of 80% with a True order predic-

tion of 71%. For the XGBoost to balance order weights, we significantly change the parameter

‘scale_pos_weight’ from 1 to 500 (Appendix 7.6), which puts 500 times more priority on True

orders prediction and we obtain 81% overall accuracy. Results are reported in Table 12.
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Table 11: This table shows the results of training ML algorithms on imbalanced data, achieved by cutting the initial
dataset of True spoofing orders to achieved the proportion presented in the first column. We split the data into 75%
training and 25% validating sets. We report Accuracy and Recall measures. Accuracy measures the portion of all
testing samples classified correctly. Recall measures the ability of a classifier to correctly identify positive labels. In
other words, Recall could be seen as an accuracy for True and False orders separately.

True:False Random Forest XGBoost Decision Tree

Accuracy Recall False Recall True Accuracy Recall False Recall True Accuracy Recall False Recall True

1:1 0.77 0.84 0.70 0.72 0.63 0.82 0.66 0.72 0.59
1:2 0.80 0.95 0.50 0.77 0.88 0.57 0.72 0.90 0.38
1:3 0.83 0.97 0.41 0.81 0.95 0.42 0.77 0.98 0.14
1:4 0.86 0.98 0.36 0.84 0.97 0.35 0.81 0.99 0.13
1:5 0.88 0.99 0.33 0.87 0.99 0.29 0.84 0.99 0.09
1:6 0.89 0.99 0.33 0.89 0.99 0.27 0.86 0.99 0.11
1:7 0.90 0.99 0.28 0.90 0.99 0.23 0.88 0.99 0.09
1:8 0.91 0.99 0.28 0.91 1.00 0.23 0.89 1.00 0.05
1:9 0.92 0.99 0.27 0.92 1.00 0.22 0.90 1.00 0.05
1:10 0.92 0.99 0.24 0.92 1.00 0.20 0.91 1.00 0.06
1:11 0.93 0.99 0.25 0.93 1.00 0.21 0.92 1.00 0.04
1:12 0.93 0.99 0.22 0.93 1.00 0.19 0.92 1.00 0.6
1:13 0.94 0.99 0.24 0.94 1.00 0.21 0.93 1.00 0.3
1:14 0.94 0.99 0.23 0.94 1.00 0.18 0.93 1.00 0.3
1:15 0.95 1.00 0.21 0.94 1.00 0.17 0.94 1.00 0.6

Table 12: This table shows results of modified parameters for Random Forest model using ‘BalanceRandomForest-
Classifier’ (1); and XGBoost ML model with 500 and 10 modification in ‘scale_pos_weight’ parameter, (2) and (3)
respectively. We use imbalanced True and False orders proportion equal to 1:2, splitting the data into 75% training
and 25% validating sets. Accuracy measures the portion of all testing samples classified correctly. Recall measures
the ability of a classifier to correctly identify positive labels. And precision measures the proportion of all correctly
identified samples in a population of samples which are classified as positive labels. F1− score combines precision,
recall into a single metric, F1− score = (2 ∗Recall ∗ Precision)/(Recall ∗ Precision).

Balanced RF XGBoost (500) XGBoost (10)
(1) (2) (3)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

False 0.85 0.86 0.86 0.83 0.91 0.87 0.79 0.86 0.82
True 0.72 0.70 0.71 0.77 0.63 0.70 0.66 0.55 0.60

Accuracy 0.81 0.81 0.75

5. A real-time spoofing probability measure

Results from the previous sections, suggest that the XGBoost and the Random Forest are the

best performing models in term of Precision and Recall respectively. Furthermore cross-validation

robustness checks show these two algorithms emerge as the dominant ones in different cross valida-

tion approaches.

This section introduces a new forecasting measure, the Real-Time Spoofing Probability (RTSP),

based on the combination of the XGBoost and Random Forest algorithms. The RTSP aims at pro-

viding a real-time indicator of the risk of interacting with a spoofer. Unlike liquidity measures such
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as effective or quoted bid-ask spreads, a spoofing manipulation measure is not easy to identify. Ma-

nipulators usually hide behind retail trades’ order flow to avoid being detected. Empirical measures

are typically motivated by theoretical studies of spoofing trading to overcome these limitations. For

example, Cartea et al. (2020) model the trading strategy of an investor who spoofs the limit order

book (LOB) and computes the LOB volume imbalance as a measure that is important for spoof-

ing strategy to be profitable. We propose a data-driven approach to measuring trading risk when

spoofing manipulation is highly probable.

To test the forecasting performance of the RSTP measure on out-of-sample data, we train

models on five consecutive trading days and the current trading day before 14:00. As the lifetime

of spoofing order is less then a minute according to Table 1. Moreover, taking into account that

features in our model are based on limit order book information, that changes quickly, we need to

add new information to the training set often. So, we forecast spoofing orders for the next 10, 30,

and 60 minutes from 14:00 to 18:00. We forecast each market state or tick. We keep the variety

of 10, 30, and 60 minutes forecast for the robustness of our findings. For example, in a 10-minute

setting, we train data on the previous five trading days and today’s morning, then forecast spoofing

risk for each tick, and every 10 minutes, we retrain the model with new data. The model outcomes

ranges from zero to one and represents the probability of the spoofing order occurring in the next

tick. So, the RTSP is higher when spoofing trading is more likely. We do not use rounding to

compute RTSP measure . We train models on the balanced dataset with a 1:1 True-False orders

proportion. Then we predict the imbalanced dataset with a 1:2 True-False orders proportion as it

is closer to the actual trading environment. We use two validation approaches where we add more

data to train the dataset. Fig. 3 shows the logic of the expanding validation approach when we add

more data for the training period while keeping the testing period 10, 30 or 60 minutes. Moreover,

we also run a rolling validation approach when we keep the training period the same for all the

splits (Fig.4). We show the results of both approaches in Table 13. We forecast 70,347 orders

including of 19,971 True and 50,376 False suspect spoofing orders. Table 13 shows the forecasting

results of the three best performing models and RTSP measures with the two validation approaches

illustrated in Fig. 3 and Fig. 4.

Overall, we do not observe significant differences in predictive quality across

10-, 30- and 60-minute rolling forward predictions. So, whether we re-estimate our model every 10
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Table 13: Forecasting performance of RTSP. The table shows the results of ML models and the RTSP measure
with 10-, 30- and 60-minute forecasting re-estimation settings, where column All correct shows the percentage of
correctly predicted all market states, while columns True correct and False correct show the percentage of correctly
predicted market states with True and False spoofing orders respectively. The first number shows the result using
the expanding validation approach (Fig. 3) when we add new data to the training dataset while keeping the testing
time frame the same (10, 30, or 60 minutes). The second number after the slash shows the results using the rolling
validation approach illustrated in Fig. 4.

10-minute re-estimation frequency

Model All correct (%) True correct (%) False correct (%)

XGBoost 67.2 / 66.4 74.4 / 46.9 75.0 / 75.3
Random Forest 68.7 / 68.8 22.2 / 22.1 87.1 / 87.3
Decision Tree 65.0 / 64.5 49.5 / 47.4 71.1 / 71.3

RTSP 68.2 / 68.3 42.5 / 41.9 78.4 / 78.8

30-minute re-estimation frequency

Model All correct (%) True correct (%) False correct (%)

XGBoost 66.8 / 66.7 47.1 / 46.1 74.6 / 74.8
Random Forest 68.2 / 68.5 21.4 / 21.9 86.8 / 86.9
Decision Tree 65.3 / 64.6 50.2 / 48.7 71.3 / 70.9

RTSP 68.1 / 68.3 42.7 / 42.4 78.1 / 78.6

60-minute re-estimation frequency

Model All correct (%) True correct (%) False correct (%)

XGBoost 66.3 / 66.4 47.0 / 46.2 74.0 / 74.4
Random Forest 67.9 / 68.2 21.3 / 21.9 86.4 / 86.5
Decision Tree 65.0 / 64.3 50.1 / 48.2 70.9 / 70.7

RTSP 67.9 / 67.8 42.7 / 42.1 77.9 / 78.0

minutes or every hour does not significantly improve the results. XGBoost and Decision Tree models

predict around 50% of True and 70-75% of False spoofing cases correctly with an overall predictive

quality of approximately 67%. The Random Forest predicts only 20-25% of True cases; however,

87% of False cases, with overall approximately 68% events predicted correctly. The RTSP measure

overperfroms all three alogorithms. Different forecasting validation approaches show similar results.

Additionally, we test our method on buy and sell suspect spoofing orders separately. Table 14

shows that forecasting accuracy for market states with buy spoofing orders is slightly better. This

example indicates that one could train models differently depending on the required task; for

example, the exchange wants to know the risk of spoofing occurrence only from the bidding side of

the limit order book.

The RTSP shows a probability in real time that the market state is preferable for the spoofers

to place their order. Out-sample forecasting reveals that a forecast combination is better than
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Table 14: The table shows the performance of ML models and the RTSP measure for buy and sell spoofing risk with
10-, 30- and 60-minute forecasting re-estimation settings. The column All Buy shows the percentage of correctly
predicted market states with buy spoofing orders, while columns True Buy and False Buy show the percentage
of correctly predicted market states with True and False buy orders, respectively. The same logic is applied for
forecasting market state with sell spoofing orders.

10-minute re-estimation frequency

Model All Buy (%) True Buy (%) False Buy (%) All Sell (%) True Sell (%) False Sell (%)

XGBoost 70.4 40.9 80.2 67.9 40.3 77.0
Random Forest 72.2 24.1 88.2 70.5 22.7 86.3
Decision Tree 65.9 43.5 73.2 63.6 45.2 69.7

RTSP 70.5 37.6 81.4 68.4 37.9 78.5

30-minute re-estimation frequency

Model All Buy (%) True Buy (%) False Buy (%) All Sell (%) True Sell (%) False Sell (%)

XGBoost 70.6 41.6 79.8 67.7 41.1 76.6
Random Forest 72.1 24.1 87.9 70.4 22.8 86.2
Decision Tree 65.6 42.4 73.3 63.6 45.5 69.6

RTSP 70.2 37.0 81.2 68.3 38.1 78.2

60-minute re-estimation frequency

Model All Buy (%) True Buy (%) False Buy (%) All Sell (%) True Sell (%) False Sell (%)

XGBoost 70.3 41.9 79.6 67.6 41.3 76.4
Random Forest 72.0 24.0 87.8 65.1 22.9 85.9
Decision Tree 65.0 42.9 72.3 63.2 45.7 69.0

RTSP 70.0 37.6 80.7 68.2 38.7 77.9

an individual forecast. Table 13 shows that Random Forest slightly overperforms RTSP measure

while assessing all spoofing and non-spoofing market states forecast. However, for example, in

10-minute re-estimation frequency, we observe RTSP measure significantly overperforming in fore-

casting "True" spoofing orders, which is a high priority for the regulator and traders as final users

and beneficiaries of the developed algorithm. The aim of the machine learning application is equally

important to forecast the market state when spoofing is likely to occur and the market state which is

safe to trade without manipulative orders. RTSP smoothes the prediction of the individual machine

learning algorithms, making the forecasting outcomes more reliable.

When comparing the forecasting performance of RTSP to the performance of other ML al-

gorithms, we observe that our designed methodology performs better in the given environment.

Table 15 shows the forecasting power of alternative models, and we observe worse results than

those from the RTSP measure.

Finally, we illustrate one of many possible applications that could be developed using the RTSP
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Table 15: Forecasting results of alternative models. The table shows 60-minute forecasting results using alternative
models, where column All correct shows the percentage of correctly predicted all orders, while columns True correct
and False correct show the percentage of correctly predicted True and False orders, respectively.

Model All correct (%) True correct (%) False correct (%)

Logistic Regression 57.7 37.4 65.7
Logistic Regression (Lasso) 57.9 37.6 65.9
Logistic Regression (Ridge) 57.7 37.4 65.7
K-nearest neighbors 58.5 38.2 66.5
Stochastic Gradient Descent 53.9 43.8 57.9
Support Vector Machines 29.9 17.5 34.8
LSTM with 10 layers 54.6 44.0 58.9
GRU 61.4 25.9 75.5
Percepton 46.6 55.4 43.1

measure, as a real-time risk indicator for authorities or exchanges showing the market conditions

when spoofing orders may appear in the order book leading to a worse market state for the order

execution. Fig. 1 shows an example of the graphical spoofing risk indication. We set a critical value

for the RTSP measure as 0.4 and marked it as a horizontal black dotted line on the bottom chart.

We observe that RTSP rises above the critical value at the end of the trading day around 18:30. On

the top chart, we see that many True suspicious spoofing orders appear at that time, which we mark

as green dotted lines. Another example on the graph is the time between 17:30 and 17:45 when

RTSP significantly rises above 0.4 and correctly forecasts the spoofing order placement. The user

may change the critical value parameter and adjust the signal appearance as a number, warning, or

trading feature on the chosen platform. So, the RTSP measure could be incorporated into trading

platforms or surveillance systems. The model is self-training; no adjustments are needed to detect

other manipulative practices.
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Figure 1: RTSP implementation. The figure illistates an example of RTSP measure signals on GMKN stock. The
vertical green dotted lines on the top chart indicate when True spoofing orders happened. The horizontal black
dotted line on the bottom chart indicates a critical value for the RTSP measure of 0.4.
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6. Conclusions

In this paper, we introduce a data-driven methodology to identify and forecast market states

associated with spoofing events in real time. Our approach is holistic, ranging from the selection

of the most significant order book variables, which can predict spoofing events, to the choice of the

appropriate machine learning algorithms that aggregate all critical information into a single score,

the Real-Time Spoofing Probability (RTSP) measure, designed to signify the market vulnerability

to intra-day manipulative activity. State-of-the-art ML techniques help us learn from the data

and find how the Limit order book when suspected spoofers trade differ from the Limit Order

book when they do not trade. This flexible approach accounts for non-linearities and interactions

between variables, while cross-validation and regularization avoid overfitting the data. Our analysis

provides strong evidence of the model appropriateness for imbalanced datasets, such as the real-

time tick data used in our empirical study. This performance consistency implies a much stronger

generalization capacity compared to the state-of-the-art models, which renders our approach much

more attractive to researchers and regulators working in financial institutions.

The main contributions of this empirical study and its stark differences from other studies in

the related literature can be summarized in three layers. First, to the best of our knowledge,

this study is the first to extensively implement a broad selection of the most widely applied ML

methods and compare their predictive performance to forecast periods with a potential of suspicious

activities. Second, our approach provides a comprehensive characterization of the limit order book

state by identifying the relevant financial microstructure indicators and establishes its pivotal role in

detecting fraudulent trading activities. Third, we focus on suspected spoofing incidents recognized

by exchange authorities, ensuring replication of their spoofing identification methodology, albeit

with a more constrained data sets.

Our approach facilitates the identification of intervals featuring potentially suspicious and fraud-

ulent activities within the order book. Additionally, by leveraging our methodology, exchanges can

proactively pinpoint periods with elevated risk of fraudulent activity, drawing from insights on past

suspicious orders, typically identified retrospectively through comprehensive analysis of traders’ IDs

and their historical trading strategies. By integrating our method into their surveillance systems,

exchanges stand to achieve substantial enhancements in market quality, coupled with a notable

reduction in instances of market manipulation.
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One aspect that this work does not consider is whether allowing for our model to account

for market shocks, news, dividend activities, or macroeconomic variables can improve prediction

performance. In the future, we aim to perform our analysis on an enriched dataset with high

frequency tick data and lower frequency macro-level data using a MIDAS approach.In addition, our

framework does not consider sequential aggressive spoofing orders. Nevertheless, the results of this

analysis provide valuable information to regulators and exchanges to mitigate mitigate artificial,

manipulative orders, improving the overall market quality.
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7. Appendices

7.1. Appendix 1. Regularization for variables choice

Table 16: Lasso regularization for variables choice. This table shows the results of the lasso regularization technique.
We remove from the analysis those predictors that have the value of the coefficient less than 0.001 (column Coef.).

Feature Coef Std.Err. z P> |z| [0.025 0.975]

IMB -0.3212 0.10522 -3.05267 0.002268 -0.52743 -0.11497
IMB_order -0.00843 0.027257 -0.30911 0.75724 -0.06185 0.044997
FRA -1.60787 0.144537 -11.1243 9.56E-29 -1.89116 -1.32458
FRB 0.880062 0.14531 6.056448 1.39E-09 0.595259 1.164864
QS 383.8753 34.00574 11.28854 1.49E-29 317.2252 450.5253
ES 122.714 49.63106 2.472524 0.013416 25.43888 219.9891
IMB_0 0.006483 0.014956 0.433459 0.664682 -0.02283 0.035795
IMB_1 0.097356 0.014714 6.616393 3.68E-11 0.068516 0.126196
IMB_2 0.077485 0.015252 5.080211 3.77E-07 0.047591 0.107378
IMB_3 0.078047 0.015426 5.059438 4.20E-07 0.047813 0.108282
IMB_4 -0.07434 0.015573 -4.77395 1.81E-06 -0.10487 -0.04382
IMB_5 -0.03868 0.01498 -2.58226 0.009816 -0.06804 -0.00932
UF_1ms_1 0.000422 0.000366 1.155149 0.24803 -0.00029 0.001139
UF_1ms_2 -0.00073 0.000496 -1.46944 0.141714 -0.0017 0.000243
UF_1ms_3 0.000657 0.000566 1.159823 0.246121 -0.00045 0.001766
UF_1ms_4 0.001032 0.000529 1.950864 0.051073 -4.80E-06 0.002068
UF_1ms_5 -0.00035 0.000502 -0.69271 0.48849 -0.00133 0.000636
UF_1ms_6 0.000565 0.000578 0.976952 0.328593 -0.00057 0.001698
UF_1ms_7 3.50E-05 0.000778 0.044997 0.96411 -0.00149 0.001559
UF_1ms_8 -0.00119 0.000701 -1.70177 0.088799 -0.00257 0.000181
UF_1ms_9 0.001496 0.000532 2.814629 0.004883 0.000454 0.002538
UF_1ms_10 -0.00107 0.000321 -3.32851 0.000873 -0.0017 -0.00044
UF_10ms_1 -0.00077 0.000741 -1.03415 0.301067 -0.00222 0.000686
UF_10ms_2 0.001162 0.000977 1.189622 0.234195 -0.00075 0.003076
UF_10ms_3 0.001405 0.001069 1.314504 0.188677 -0.00069 0.0035
UF_10ms_4 -0.00322 0.001053 -3.05752 0.002232 -0.00528 -0.00116
UF_10ms_5 0.003332 0.001106 3.012135 0.002594 0.001164 0.0055
UF_10ms_6 -0.00368 0.001174 -3.13422 0.001723 -0.00598 -0.00138
UF_10ms_7 0.002428 0.001261 1.924943 0.054237 -4.40E-05 0.0049
UF_10ms_8 0.001425 0.001161 1.227215 0.219742 -0.00085 0.0037
UF_10ms_9 -0.00373 0.000965 -3.86287 0.000112 -0.00562 -0.00184
UF_10ms_10 0.002529 0.000562 4.500931 6.77E-06 0.001428 0.00363
UF_50ms_1 0.007226 0.0018 4.015637 5.93E-05 0.003699 0.010754
UF_50ms_2 -0.00568 0.002153 -2.63767 0.008348 -0.0099 -0.00146
UF_50ms_3 0.000266 0.002007 0.132356 0.894703 -0.00367 0.004199
UF_50ms_4 0.000947 0.002137 0.443233 0.657597 -0.00324 0.005137
UF_50ms_5 -0.00443 0.00232 -1.90867 0.056305 -0.00897 0.000119
UF_50ms_6 0.01228 0.00243 5.053454 4.34E-07 0.007518 0.017043
UF_50ms_7 -0.0053 0.002431 -2.1814 0.029154 -0.01007 -0.00054
UF_50ms_8 -0.00452 0.001985 -2.27897 0.022669 -0.00841 -0.00063
UF_50ms_9 0.00126 0.001604 0.785475 0.432175 -0.00188 0.004405
UF_50ms_10 -0.001 0.001095 -0.91578 0.359781 -0.00315 0.001143
UF_100ms_1 -0.00551 0.001667 -3.30508 0.000949 -0.00878 -0.00224
UF_100ms_2 0.004442 0.002013 2.20594 0.027388 0.000495 0.008388
UF_100ms_3 -0.00302 0.001863 -1.61985 0.105264 -0.00667 0.000634
UF_100ms_4 0.002616 0.001967 1.330229 0.183443 -0.00124 0.006471
UF_100ms_5 0.000583 0.002108 0.276438 0.782211 -0.00355 0.004714
UF_100ms_6 -0.00897 0.002183 -4.11074 3.94E-05 -0.01325 -0.00469
UF_100ms_7 0.004389 0.002155 2.036936 0.041656 0.000166 0.008612
UF_100ms_8 0.001557 0.001819 0.856017 0.391988 -0.00201 0.005123
UF_100ms_9 0.004167 0.00153 2.722724 0.006475 0.001167 0.007166
UF_100ms_10 -0.0023 0.001034 -2.22182 0.026296 -0.00432 -0.00027
UF_600ms_1 -0.00046 0.000486 -0.93692 0.348798 -0.00141 0.000497
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UF_600ms_2 0.000218 0.000583 0.37335 0.708888 -0.00092 0.00136
UF_600ms_3 0.001369 0.000599 2.283564 0.022397 0.000194 0.002544
UF_600ms_4 -0.00127 0.000594 -2.13249 0.032967 -0.00243 -0.0001
UF_600ms_5 0.000823 0.000608 1.35409 0.175708 -0.00037 0.002015
UF_600ms_6 0.000205 0.00062 0.330751 0.740833 -0.00101 0.001421
UF_600ms_7 -0.00108 0.000626 -1.7199 0.08545 -0.0023 0.00015
UF_600ms_8 0.001556 0.000608 2.559037 0.010496 0.000364 0.002748
UF_600ms_9 -0.00257 0.000598 -4.30355 1.68E-05 -0.00374 -0.0014
UF_600ms_10 0.00148 0.000354 4.175298 2.98E-05 0.000785 0.002175
VOL_1_1min -332.465 112.7972 -2.94746 0.003204 -553.544 -111.387
VOL_1_2min 67.88061 179.9601 0.377198 0.706026 -284.835 420.596
VOL_1_5min -55.8454 271.0023 -0.20607 0.836736 -587 475.3093
VOL_1_10min 36.52509 286.0571 0.127685 0.898399 -524.137 597.1868
VOL_2_1min 6.095202 1.104971 5.516166 3.46E-08 3.929499 8.260905
VOL_2_2min -5.96658 1.590235 -3.75201 0.000175 -9.08338 -2.84978
VOL_2_5min -4.02738 2.149298 -1.87381 0.060956 -8.23993 0.185166
VOL_2_10min 19.84205 2.331745 8.509528 1.75E-17 15.27192 24.41219
VOL_4_1min 2.754861 6194.337 0.000445 0.999645 -12137.9 12143.43
VOL_4_2min 2.870529 10254.95 0.00028 0.999777 -20096.5 20102.19
VOL_4_5min 2.577828 13808.9 0.000187 0.999851 -27062.4 27067.52
VOL_4_10min 3.352821 11427.39 0.000293 0.999766 -22393.9 22400.62
Hour 0.019725 0.002944 6.700296 2.08E-11 0.013955 0.025495
DistNorm50 20.25476 4455.851 0.004546 0.996373 -8713.05 8753.562
DistNorm20 -199.294 20273.16 -0.00983 0.992157 -39934 39535.38
DistNorm10 -194.514 18044.84 -0.01078 0.991399 -35561.7 35172.72
DistNormClean50 149.5656 27.31266 5.476056 4.35E-08 96.03381 203.0975
DistNormClean20 -176.587 31.28896 -5.64374 1.66E-08 -237.912 -115.262
DistNormClean10 93.17991 48.21986 1.932397 0.053311 -1.32927 187.6891
DistNormVol50 0.553286 0.078023 7.091356 1.33E-12 0.400364 0.706207
DistNormVol20 0.089309 0.030394 2.938428 0.003299 0.029739 0.14888
DistNormVol10 -0.01351 0.018983 -0.71187 0.476548 -0.05072 0.023692
DistNormVolClean50 -0.61615 0.09366 -6.57852 4.75E-11 -0.79972 -0.43258
DistNormVolClean20 -0.05694 0.036533 -1.55872 0.119063 -0.12855 0.014659
DistNormVolClean10 -0.08247 0.025564 -3.22598 0.001255 -0.13257 -0.03236
IMB_order_delta -0.25393 0.188881 -1.3444 0.178818 -0.62413 0.116268
FRA_delta -0.04651 0.375481 -0.12387 0.901414 -0.78244 0.689416
FRB_delta -0.97608 0.377774 -2.58377 0.009773 -1.71651 -0.23566
QS_delta 70.65095 65.19404 1.083702 0.278497 -57.127 198.4289
IMB_order_delta_t2 0.366445 0.155094 2.362738 0.01814 0.062468 0.670423
FRA_delta_t2 -0.08441 0.315573 -0.26749 0.789091 -0.70293 0.534099
FRB_delta_t2 -0.36953 0.31831 -1.16091 0.245679 -0.99341 0.254347
QS_delta_t2 45.82324 57.36325 0.798826 0.424391 -66.6067 158.2531
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Table 17: Elastic net regularization for variables choice. This table shows the results of the lasso regularization
technique with an alpha 50%. We remove from the analysis those predictors that have the value of the coefficient
equals to zero (column Coef.).

Features Coef. Features Coef.

IMB -0.0000020571 UF_100ms_7 -0.0000346457
IMB_order 0.0000011417 UF_100ms_8 -0.0000283937
FRA -0.0000063929 UF_100ms_9 0.0000230656
FRB -0.0000061548 UF_100ms_10 -0.0000084160
QS 0.0000000000 UF_600ms_1 -0.0000389521
ES 0.0000000000 UF_600ms_2 0.0000076768
IMB_0 0.0000007831 UF_600ms_3 0.0000759581
IMB_1 0.0000050115 UF_600ms_4 0.0000072271
IMB_2 0.0000032278 UF_600ms_5 -0.0001139139
IMB_3 0.0000030746 UF_600ms_6 -0.0000864398
IMB_4 -0.0000034290 UF_600ms_7 -0.0000397455
IMB_5 -0.0000029741 UF_600ms_8 0.0001119282
UF_1ms_1 0.0002037987 UF_600ms_9 0.0001552371
UF_1ms_2 0.0001268850 UF_600ms_10 0.0002367776
UF_1ms_3 0.0002629904 VOL_1_1min 0.0000000000
UF_1ms_4 0.0002236545 VOL_1_2min 0.0000000000
UF_1ms_5 0.0002090883 VOL_1_5min 0.0000000000
UF_1ms_6 0.0001877748 VOL_1_10min 0.0000000000
UF_1ms_7 0.0001086263 VOL_2_1min 0.0000001040
UF_1ms_8 -0.0000996961 VOL_2_2min 0.0000000555
UF_1ms_9 -0.0001278121 VOL_2_5min 0.0000001025
UF_1ms_10 -0.0002366476 VOL_2_10min 0.0000001424
UF_10ms_1 0.0001470780 VOL_4_1min 0.0000000000
UF_10ms_2 0.0000016729 VOL_4_2min 0.0000000000
UF_10ms_3 0.0000927591 VOL_4_5min 0.0000000000
UF_10ms_4 0.0000683550 VOL_4_10min 0.0000000000
UF_10ms_5 0.0001042563 Hour -0.0000807383
UF_10ms_6 0.0001729422 DistNorm50 -0.0000000461
UF_10ms_7 0.0001453083 DistNorm20 -0.0000000167
UF_10ms_8 0.0000134912 DistNorm10 -0.0000000069
UF_10ms_9 0.0000455122 DistNormClean50 -0.0000000466
UF_10ms_10 0.0000721976 DistNormClean20 -0.0000000175
UF_50ms_1 0.0000791259 DistNormClean10 -0.0000000077
UF_50ms_2 -0.0000835425 DistNormVol50 0.0000051493
UF_50ms_3 -0.0000380171 DistNormVol20 0.0000037754
UF_50ms_4 -0.0000731352 DistNormVol10 0.0000003867
UF_50ms_5 -0.0001232195 DistNormVolClean50 0.0000038100
UF_50ms_6 -0.0000435570 DistNormVolClean20 0.0000026168
UF_50ms_7 -0.0000991683 DistNormVolClean10 -0.0000005011
UF_50ms_8 -0.0001743680 IMB_order_delta -0.0000000849
UF_50ms_9 -0.0001484642 FRA_delta 0.0000000824
UF_50ms_10 -0.0001885770 FRB_delta -0.0000001857
UF_100ms_1 0.0000356753 QS_delta 0.0000000000
UF_100ms_2 -0.0000570796 IMB_order_delta_t2 0.0000001432
UF_100ms_3 -0.0000136687 FRA_delta_t2 0.0000000255
UF_100ms_4 -0.0000411564 FRB_delta_t2 -0.0000001150
UF_100ms_5 -0.0001139238 QS_delta_t2 0.0000000000
UF_100ms_6 -0.0000416980
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7.2. Appendix 2. Correlation matrix between predictors

Figure 2: Correlation matrix between predictors
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7.3. Appendix 3. List of features
We remove from the further analysis unnecessary features using the elastic net (Enet) variable

selection method with coefficients equal to 0. Unnecessary features are the following: QS, ES,
VOL_1_1min, VOL_1_2min, VOL_1_5min, VOL_1_10min, VOL_3_1min, VOL_3_2min,
VOL_3_5min, VOL_3_10min, QS_delta, QS_delta_t2. Variable ’Hour’ leads to over-fitting of
the model due to the absence of False orders in the first and last trading hours. ’VOL_2_1min’ vari-
able has many unidentified values. Therefore, we remove both features ’Hour’ and ’VOL_2_1min’.

The final selection of predictors for further analysis is the following: IMB, IMB_order,
FRA, FRB, IMB_0, IMB_1, IMB_2, IMB_3, IMB_4, IMB_5, UF_1ms_4, UF_1ms_8,
UF_1ms_9, UF_1ms_10, UF_10ms_2, UF_10ms_3, UF_10ms_4, UF_10ms_5, UF_10ms_6,
UF_10ms_7, UF_10ms_8, UF_10ms_9, UF_10ms_10, UF_50ms_1, UF_50ms_2,
UF_50ms_5, UF_50ms_6, UF_50ms_7, UF_50ms_8, UF_50ms_9, UF_50ms_10,
UF_100ms_1, UF_100ms_2, UF_100ms_3, UF_100ms_4, UF_100ms_6, UF_100ms_7,
UF_100ms_8, UF_100ms_9, UF_100ms_10, UF_600ms_3, UF_600ms_4, UF_600ms_7,
UF_600ms_8, UF_600ms_9, UF_600ms_10, VOL_2_2min, VOL_2_5min, VOL_2_10min,
DistNorm50, DistNorm20, DistNorm10, DistNormClean50, DistNormClean20, DistNormClean10,
DistVol50, DistVol20, DistVol10, DistVolClean50, DistVolClean20, DistVolClean10, IMB_delta,
FRA_delta, FRB_delta, IMB_delta_t2, FRA_delta_t2, FRB_delta_t2.
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7.4. Appendix 4. Diebold-Mariano test

Table 18: Diebold-Mariano test. The table shows the test result that compares the models’ predictive qualities in
pairs. We compare Random Forest, Decision Tree and XGBoost with other ML models. The null hypothesis is that
models are equal. If the p-value is less than 0.05, then the models are not equal. We mark the results with the ’-’
sign if the first model is better than the second model; the ’+’ sign shows the opposite.

First model Second model Diebold-Mariano statistic P-value

Random Forest Logistic regression -54.09 0.00
Random Forest SVM -48.59 0.00
Random Forest KNN -24.51 0.00
Random Forest Naive Bayes -62.61 0.00
Random Forest SGD -59.31 0.00
Random Forest Decision Tree -22.97 0.00
Random Forest Gradient Boosting -26.32 0.00
Random Forest XGBoost -26.81 0.00
Random Forest LSTM with 10 layers -50.05 0.00
Random Forest GRU -52.20 0.00
Random Forest Percepton -54.35 0.00

Decision Tree Logistic regression -37.09 0.00
Decision Tree SVM -26.91 0.00
Decision Tree KNN -1.83 0.07
Decision Tree Naive Bayes -37.16 0.00
Decision Tree SGD -36.24 0.00
Decision Tree Gradient Boosting -1.66 0.10
Decision Tree XGBoost -2.12 0.03
Decision Tree LSTM with 10 layers -33.51 0.00
Decision Tree GRU -37.10 0.00
Decision Tree Percepton -34.42 0.00

XGBoost Logistic regression -33.59 0.00
XGBoost SVM -25.31 0.00
XGBoost KNN 0.25 0.80
XGBoost Naive Bayes -39.49 0.00
XGBoost SGD -36.87 0.00
XGBoost Gradient Boosting 1.63 0.10
XGBoost LSTM with 10 layers -29.46 0.00
XGBoost GRU -32.16 0.00
XGBoost Percepton -33.03 0.00
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7.5. Appendix 5. Model Confidence Set test

Table 19: Model Confidence Set test. The table shows the implementation of the Model Confidence Set (MCS)
procedure for model comparison at the 95% confidence level (alfa is 0.05) and MAE (mean absolute error) loss
function. Panel A shows that comparing all the models we use in the research, Random Forest is the best model.
Panel B shows the results of the model’s comparison test, excluding Random Forest, to find the second-best model.

Panel A

Model Elimination result

Logistic regression eliminated
SGD eliminated
GRU eliminated
Naive Bayes eliminated
LSTM with 10 layers eliminated
SVM eliminated
XGBoost eliminated
Gradient Boosting eliminated
KNN eliminated
Random Forest eliminated

Superior Set Model created Rank_M v_M MCS_M Rank_R v_R MCS_R Loss

Random Forest 1 -28.06988 1 1 -28.06988 1 0.2332108
p-value : [1] 0

Panel B

Model Elimination result

Logistic regression eliminated
Naive Bayes eliminated
GRU eliminated
SGD eliminated
LSTM with 10 layers eliminated
SVM eliminated

Superior Set Model created Rank_M v_M MCS_M Rank_R v_R MCS_R Loss

KNN 3 0.6730877 0.769 3 1.886552 0.212 0.3200074
Decision Tree 1 -2.3702309 1.000 1 -1.876958 1.000 0.3126542
Gradient Boosting 2 0.6042045 0.813 2 1.876958 0.223 0.3192163
XGBoost 4 1.7018618 0.159 4 2.368780 0.081 0.3210779
p-value : [1] 0.159
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7.6. Appendix 5. Optimization of the parameters for ML models
To optimize the chosen models, we tune the parameters while training models on 75% of the

data and testing on 25% of the data. For Random Forest, increasing ’max_depth’ to 41 and
’n_estimators’ to 600 improves the accuracy. Further increasing ’max_depth’ does not improve
the results, and an increase of ’n_estimators’ to 1000 improves the accuracy by 0.5%; however,
it dramatically raises the complexity of the models, causing a decrease in model performance.
For XGBoost, we choose ’n_estimators’ of 500, as the increase to 1000 adds only 1.5% to the
model’s accuracy, raising the complexity and decreasing the performance speed and decreasing
’n_estimators’ to 100 results in a significant drop of the accuracy by 5%. Decreasing ’max_depth’
below 10 results in a drop of the accuracy. For Decision Tree, ’max_depth’ over 5 does not yield
the results; also, increasing ’min_samples_leaf’ over 3 does not improve results either.

So, we choose the following parameters for selected machine learning models.

Random Forest parameters:

clf = RandomForestClassifier (random_state = 0
n_estimators = 600, min_samples_split = 5,
min_samples_leaf = 1, max_features =′ sqrt′,
max_depth = 41, bootstrap = False)

XGBoost parameters:

clf = xgb.XGBClassifier (learning_rate = 0.01,
n_estimators = 500,
max_depth = 10,
min_child_weight = 1,
gamma = 0.1,
subsample = 0.8,
colsample_bytree = 0.8,
objective =′ binary : logistic′,
nthread = 4,
scale_pos_weight = 1.5,random_state = 0)

Decision Tree parameters:

clf = DecisionTreeClassifier
(random_state = 0,max_depth = 5,min_samples_leaf = 3)
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7.7. Appendix 6. Expanding and rolling validation

Figure 3: Illustration of the expanding validation approach

Figure 4: Illustration of the rolling validation approach
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