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Price Discovery with Divergence of Opinion, Institutional Ownership, and Short Selling 

 
 

Abstract 

 

We investigate how competitive dealers set equilibrium bid and ask prices and how those prices adjust 

towards full information value in a securities market with short selling and divergence of opinion among 

investors.  We model a competitive dealership market in which information is released to traders, who 

arrive in a probabilistic fashion to trade a single risky security for cash with a market maker.  The traders 
fall into two classes, pessimists and optimists, who disagree about the future value of a tradable security in 

spite of observing an identical information signal indicating high or low future value of the security.  A 

security has either a high or low institutional ownership.  Traders choose to trade (buy, sell, or short) or not 

trade at all.  Derived results from the model suggest that while buy or sell reveals private information, 

although asymmetrically, no-trade may provide information about the signal from public information 

depending on the fraction of optimists (pessimists) among incoming traders/investors, which typifies 

bullish (bearish) market conditions.  Empirical results from simulated data confirm asymmetry between bid 

and ask prices and an inverse ‘J’ shaped liquidity premium. We incorporate high frequency trading in our 

model by arbitrarily increasing the rate of trade arrivals and find the bid, ask, and spread functions while 

retain their shape show reduced cross sectional volatility.  Security prices adjust to their full information 

value at a faster rate when discretionary short selling constraints are low but not zero.  However, the speed 

and the nature of adjustment of security prices depend on the market conditions denoted by the interaction 
between the fraction of pessimists in the market and the level of institutional ownership in the security. 

 

 

I. Introduction 

 

One of the basic tenets of market microstructure theory is that trades reveal information 

about future prices of securities and hence frictions such as no trade intervals and short 

constraints impede price discovery.  Easley and O’Hara (1992a) consider no trade 

intervals arising due to discrete trading times and find those do not contain information 

about future values of securities but indicate the absence of relevant information.  On the 

contrary, Diamond and Verrecchia (DV later) (1987) show that short constraints, which 

include regulatory constraints for example, margin restrictions and market frictions such 

as the limited availability of short stocks and the rebate fees on securities lending slow 

price discovery but do not cause overvaluation of stocks.  Nevertheless, Miller (1977), 

Allen et al. (1993), Lim (2011), and Hong and Stein (2003) offer contrary predictions as 

to whether in a finite horizon model short constraints may lead to overvaluation and 

bubble that may potentially end in a market crash.   
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 While little empirical research exists on the price impact of no trade intervals, an 

extensive body of empirical evidence finds consistent excess return and slow price 

adjustments for shorted stocks, which deepen as short constraints intensify fueling the 

argument that short constraints lead to bubbles.1  On the other hand, securities market 

regulators fear and scattered anecdotal evidence indicates unconstrained shorting leads to 

grossly inefficient prices and high volatility caused by large drops in securities prices 

followed by a market wide panic and selloff as observed during bear raids, a term used to 

indicate aggressive short selling for the purpose of price manipulation.2   

Those conflicting empirical evidence on the economics of short constraints aside, 

over the past 30 years, short selling  has more than doubled as a proportion of outstanding 

shares in the market while the US equity market structure and the associated trading 

environment have changed drastically due to the growing institutionalization of the 

equity market (Friedman [1996], Gompers and Metrick [2001], Stein [2009]), which 

impacts multiple aspects of equity trading but disproportionately short selling since 

institutions dominate both the buy and the sale sides of equity lending market.  Boehmer 

 
1 A huge literature documents the consistent predictability of the returns on short stocks.  Ibbotson et al. (2011) reports 
that for the period 1995-2009, long short equity hedge funds, which target generating returns from both long and short 
positions earned the highest compounded annual returns (9.9%) as well as alpha (4.79%) among all hedge fund 
categories; during this period, the return on long only funds. Lynch et al. (2014) report that increase in aggregate short 
volume leads to a decline in future market return. Empirical evidence also exists that when short constraints are more 

severe, there is less arbitrage, more overpricing, and greater return predictability (Jones and Lamont 2002; Lamont and 
Thaler 2003; Ofek, Richardson, and Whitelaw 2004; Ali and Trombley 2006; Bris, Goetzmann, and Zhu 2007; Cohen, 
Diether, and Malloy 2007;Greenwood 2009). Kraus and Rubin (2003) examine the role of short sale constraint removal 
by introducing index options on market volatility while Arnold et al (2000), Biais (2001), and Danielson and Sorescu 
(2001) provide empirical evidence that mitigating short selling constraints by way of introducing options facilitate price 
discovery. Nevertheless, the continued persistence of short profits indicates shorting as a unique strategy that is not 
easily replicable. 
2 Cross sectional analyses find short constraints hinder price discovery and result in a systemic overvaluation of those 

securities. Besides short sale restrictions, trading halts and suspensions are also forms of institutional frictions on 
trading imposed by exchanges. Lamont (2012) finds short squeeze- a mechanism by which directors constrain short 

selling, has a similar effect of lowering negative abnormal return for firms. Jain (2013) provides evidence on the effect 
of short sale constraints in a multi country setting. For evidence on bear raids, please refer to SEC communications 
regarding Lehman Bros., Bear Stearns, and Adventix. Flash crash is a similar market failure phenomenon in a high 
frequency trading environment, although its causes are not clear.   
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et al. (2008) report that 75 (< 2) percent of short sellers are institutions (individuals) 

while D’Avolio (2002) reports that large custodian banks working on behalf of mostly 

passive institutional investors, e.g., pension funds and endowments are the primary and 

most reliable lenders of stocks.  Further, D’Avolio (2002), Asquith et al. (2005), Nagel et 

al. (2009), Anderson et al. (2012), and Lynch et al. (2014) point to multiple trading 

motives- information, liquidity, speculation, and arbitrage associated with short sellers.   

In light of this growing and predominant role of institutions in equity ownership 

and trading including short selling and the recognition of the diverse trading motives of 

traders including short sellers, we re-parameterize DV (1987) and Easley and O’Hara 

(1992a) in order to address the following questions:3  First, how do no-trade intervals 

affect price formation in a competitive market making model for securities with 

heterogeneous traders, institutional ownership, and short selling? Second, in equilibrium, 

are the adverse effects of short constraints on security prices nuanced and asymmetric 

with respect to over and undervalued stocks and their respective paths to convergence to 

equilibrium prices?  Third, can unregulated short constraints be self-enforcing- promoting 

temporary overvaluation while also preventing bubble formation? 

We model a competitive dealership market for securities as in DV (1987) and 

Easley and O’Hara (1992a) with four distinct features- optimist and pessimist traders; 

securities belong to a high or low institutional ownership category; discretionary short 

 
3 Gompers and Metrick (2001) note that institutional holding of equities doubled between 1980 and 1985 while 
Madhavan and Cheng (1994) report that large commonly institutional trades comprise of 57% of trading at NYSE and 
Hendershott et al. () indicate how institutions engage in sophisticated hi-frequency and algorithmic trading to minimize 
their cost of trading. Besides the emergence of institutions as the leading investor in the equity market, the availability 
of large scale trade level data has allowed intensive and robust empirical research to uncover diverse trading motives 

much beyond just informed vs. uninformed. In particular, the evidence in Anderson et al. (2012) on short selling in 
family controlled firms suggests an interaction between ownership and motive for shorting and implies that non-
information motive drives shorting demand for securities with high institutional ownership most commonly observed in 
diversely held corporations. 
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selling; and finally, no trade intervals, which arise due to discrete trade time and limit 

trading activity including shorts.  In our competitive making model, two groups of risk 

neutral informed traders, pessimists (bears) and optimists (bulls) observe a private 

information signal and arrive sequentially to buy, sell, or short a single risky security for 

cash with the market maker; a trader may also choose not to trade.  The traders are 

identically informed but due to their predisposition as pessimists vs. optimists differ in 

their opinions as to the impact of an information signal on the future value of a security.  

A security has either a high or low institutional ownership that denotes availability of 

securities for lending and liquidity.  In addition to the information signal, those two 

unique parameters in our model, divergence of opinion among investors and institutional 

ownership of securities influence the trading decision (buy, sell, or short) of the trader.  

On receiving an order, competitive market makers infer the information content in the 

order and set bid and ask prices as the expected value of the asset conditional on the order 

(buy, sell, or no trade) received.   

Working with the above model, we determine how competitive market makers set 

equilibrium bid, ask, and spread for securities.  Further, we derive how absent 

regulations, discretionary short selling determined by demand and supply in the equity 

lending market affects price adjustment.  We contend that investor, security, and market 

characteristics denoted by divergence of opinion (investor), institutional ownership 

(security), and discrete trading times (market) respectively are responsible for curbing 

discretionary trading including shorts and limiting information transmission while also 
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preventing bubbles and crashes.  This tradeoff is economically efficient since it ensures 

security prices almost surely converge in finite time to their full information values.4   

Our derived results confirm that although buy and sell reveal good (high future 

value of a security) and bad (low future value of a security) news respectively, albeit 

asymmetrically, whether ‘no trade’ reveals any future prices related information depends 

on the fraction of pessimists in the market and the extent of institutional ownership in the 

firm.  Barclay and Hendershott (2008) provide compelling empirical evidence of 

asymmetric price discovery during trading and non-trading (after hours) hours and in 

short constrained vs. unconstrained securities and markets.  Note that in our model 

institutional ownership denotes liquidity and demand supply constraints in equity 

lending.  Further, the results provide a foundation for the asynchronous time series 

properties of bid ask prices and spread for high and low price stocks observed by 

Hausman et al. (1992), Hasbrouck (1991), and Pascual and Pascual-Fuster (2014).   

Analyzing simulated data, we find convincing evidence of asymmetric 

information content in buy vs. sale orders denoted by bid and ask prices and observed in 

Easley and O’Hara (1992b), Chan and Lakonishok (1993), Koski and Michaely (2000), 

Chang et al. (2013), and Pascual and Pascual-Fuster (2014) among others, for all discrete 

prices and a steeply declining inverse ‘J’ shaped relation between return and relative 

spread indicating high liquidity premium for only those stocks, which already enjoy the 

lowest level of spread but negligible (almost zero) premium for all remaining stocks.  

 
4 Theoretically speaking, we contend that there may exist an informationally efficient and socially optimal interior 
point shorting level for each traded security. Although we do not explicitly solve for an optimal shorting level since that 
is beyond the purview of this paper, it’s clearly doable within the present model structure. Further, the concept of 

information efficiency in this paper is different from that in Rappaport (2005), who considers a fundamental efficiency 
where future prices cannot be determined from past or current prices. Instead, we consider price efficiency as the fastest 
path to certain convergence to full information prices. Saffi and Sigurdsson (2010) derive several measures of empirical 
efficiency from return correlations.  
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Further, by arbitrarily increasing trading intervals and hence relaxing the discrete trade 

time constraint on trading activity, we investigate price discovery in a simulated high 

frequency trading environment.  Results from our experiments show that high frequency 

trading does not change the nature of asymmetry between bids and asks for low and high 

price stocks; however, the quote functions turn smoother and less volatile for high 

frequency trades.  In a comprehensive study of US listed stocks, Conrad et al. (2015) 

report pricing efficiency gains due to high frequency trades.  The asymmetries between 

bid and ask functions conspicuously change between low and high institutional 

ownership stocks.  Since institutions typically invest in high liquidity stocks and trade 

frequently often for the purpose of splitting large trades, the evidence in Conrad et al. 

(2015) may also be related to the asymmetry in stocks with high vs. low institutional 

ownership.  

Our results also find that while the adjustment of security prices to their 

respective full information values is certain, its rate and the nature are asymmetric 

between high and low ending values as empirically observed in Chen and Rhee (2010).  

Specifically, the rates of convergence are asymmetric for over and undervalued securities 

and those with high and low institutional ownerships and hence by proxy, securities with 

high and low short constraints; however, the asymmetry is magnified for low values of 

institutional ownership.  Our theoretical and simulated results confirm that security prices 

indeed converge to full information prices, albeit asymmetrically and hence refute the 

notion of short constraints as a catalyst for bubble formation.  Instead, our results validate 

the joint role of heterogeneous investors and institutional ownership in securing market 

efficiency and stability while averting bubbles and crashes likely from unrestricted 
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shorting.  Empirically, Boulton and Braga-Elves (2010), Leece et al. (2012), and Beber 

and Pagano (2013) find investor, security, and market characteristics as factors in curbing 

discretionary trading including shorts and limiting information transmission while 

preventing bubbles and crashes. 

Our research extends the limited theoretical literature on price formation in 

securities markets by blending in market frictions such as discrete trading time and short 

selling demand and supply constraints with heterogeneous traders and private information 

in a tractable competitive market making model.  Theoretically, we build on Miller 

(1977) who contends that shorting constraints affect only pessimists and hence no trades 

due to shorting restrictions lead to overpricing and price bubbles in short constrained 

stocks.  Scheinkman and Xiong (2003) and Hong and Stein (2003) show how 

overconfidence develops divergence of opinion among investors, which combined with 

short sales constraints, causes bubbles in security prices.  In contrast, DV (1987) 

introduce no trade friction in a dynamic price discovery model through short sale 

restrictions, which they show do not bias prices upwards but only slow down the process 

of private information revelation via trade prices.5  Yet, Allen et al. (1993) show the 

existence of price bubbles in a private information model when rational traders have 

heterogeneous belief about the time when a private information will be realized.  Lim 

(2011) confirms that in a private information model, there may be short term bubbles and 

that while security price over time reflects its full information value, short constraints 

hinder the price adjustment process.  Empirically, D’Avolio (2000) and Boehmer et al. 

 
5 In Kyle (1985) and Glosten and Milgrom (1985) time is exogenous to price discovery and hence has no information 
content. Diamond and Verrecchia (1987) skillfully convert time domain to frequency domain, number of steps required 
to attain efficiency. 
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(2008) examine the overall efficiency of the US equity lending market after noting that 

speculative institutions interested in exploiting transient mispricing are the primary short 

sellers while Saffi and Sigurdsson (2010) provide evidence on the price efficiency of 

short supply from a study of 12,000+ shorted securities around the world.   

Methodologically, we build on DV (1987) and Easley and O’Hara (1992) 

extending Lim (2011) in a significant way; however conceptually, our work is most 

closely related to Chen et al. (2002) in which price formation is subject to both 

differences of opinion among investors and short sale constraints.  Our model predictions 

are somewhat similar to those in Bai et al. (2008) but differ in many fundamental ways 

from those of Easley and O’Hara (1992a), Saar (2001), Kraus and Rubin (2003), and Lim 

(2011).  The results of our model yield several equity market design and welfare 

(prevention of market crashes) implications and are particularly relevant in the aftermath 

of the securities market collapse and global financial crisis in 2008.  Specifically, the 

results point to the welfare implications of limited and focused short sale regulations in 

securities and markets with limited liquidity and those in countries where investor 

heterogeneity and institutional ownership of public equities are low.  

 

I. A Competitive Dealers Market Making Model 

 

The security pricing model in this paper builds upon a sequential competitive market 

making model with informed and uninformed traders, no trade intervals, and/or short 

selling as in Easley and O’Hara (1992a) and DV (1987).  However, we deviate from the 

commonplace notion of information asymmetry between informed and uninformed 

traders and advance the idea in Harris and Raviv (1993) that it’s not information per se 
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but the divergence of opinion among identically informed investors as to the effect of 

information is what motivates trading and causes trading volume surge.  Baker and 

Wurgler (2009) and Garfinkel (2007) refer to time varying investor sentiment denoted by 

the fraction of optimists or pessimists as an indicator of divergence of opinion, which 

Chen et al. (2002) and Hong and Stein (2003) contend leads to overpricing and finite 

horizon bubbles in short constrained stocks.6   

 We model orders submitted by identically informed, pessimist (bears) and 

optimist (bulls) traders to trade a security with high or low institutional holding.7  We 

introduce two parameters, μ (1- μ) and θ (1- θ) denoting the proportions of pessimist 

(optimist) traders and high (low) institutional holding respectively.   The parameters μ 

and θ central to our model are motivated by a growing literature that contends and finds 

traders’ psychology and institutional ownership impact trading including short selling and 

the consequent price adjustments towards or away from full information prices.8 

 
6 Refer to Hong and Stein (2007) for a literature review on disagreement due to psychological predisposition. Volume 

and volatility inducing disagreement may also be the effect of ‘agreeing to disagree’ as in Banerjee and Kremer (2010).   
7 The notion of replacing informed and liquidity traders by pessimists and optimists is attractive for several reasons.  
First, it’s impossible to disentangle information and liquidity motives for trading and thus identify traders exclusively 
with one motive or the other.  On the contrary, traders self-identified as bulls (optimists) and bears (pessimists) are 
pretty common. For example, during CNBC Fast Money program, Amazon: Bull vs. bear, Wednesday, 10 Sep 2014 | 
5:40 PM ET, FM traders Jon Najarian and Dan Nathan put forward their contrary positions regarding how to play their 
hands with respect to Amazon stocks. Second, this classification allows traders with multiple motives, for example, 
liquidity or speculation to trade (buy, sell, or short) and hence opens up short selling by informed traders with liquidity 

and speculation motives (Campbell et al. [1993], Blau and Wade (2010), Engelberg et al. [2014]). Regarding 
speculation motive behind shorting, the financial press reports indicate multiple hedge funds were complicit in a 
trading strategy involving naked shorting along with deep out of the money put options with respect to Bear Stearns 
and Lehman Bros., which aggravated the crisis and contributed to their sudden demise. In addition, please refer to SEC 
investigation files related to Adventix on a similar issue. 
8 Note the implications of the parameters, μ and θ in the context of a noisy rational expectations model a la Glosten and 
Milgrom (1985) with short selling and no trade options.  In Glosten and Milgrom (1985), an informed trader observing 
a low (high) signal always sells (buys) and thus absent an uninformed liquidity trader, who buys or sells in an 

uncorrelated fashion, the informed trader’s trade becomes fully revealing.  In our model, all traders are informed; they 
observe the same signal and yet choose different, sometimes contrary trade options- buy, sell, short, or no trade due to 
disagreement regarding the impact of information on security prices and liquidity conditions associated with a security.  
Thus security prices are not instantly fully revealing with certainty (probability=1). 
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Let  0,1  be the probability that an incoming informed trader is a pessimist; 

hence,  1  denotes the probability that an incoming trader is an optimist.  Note that 

the probabilities μ and (1-μ) are estimates of the fractions of pessimists and optimists 

traders respectively at the beginning of each trading day.  There are finitely many trading 

intervals during the day when traders trade.  We assume the number of traders to be 

sufficiently large that a trader’s exit from the market after each trading interval is not 

going to alter the fraction of pessimist or optimist traders, μ during the trading day.  It is 

expected that μ is low in a bull market and high in a bear market.   

All traders, pessimists and optimists alike are informed and rational.  They agree 

on the high and low payoffs but differ on the priors associated with the high and low 

payoffs due to their a priori disposition as pessimists vs. optimists and use an expectation 

model to determine the expected value of a security (Hong and Stein [2007]).9  

Specifically, on receiving an information signal about the future payoff related to a 

security, pessimists (optimists) assign a lower (higher) probability to the realization of a 

high value signal and conversely, a higher (lower) probability to a low value signal and 

hence rationally arrive at different expected values and consequently choose different 

actions for trading.  

A traded security has a high or low institutional ownership that denotes its 

liquidity among other things.10  Let θ ∈ (0, 1) denote the probability that the traded 

security has a high institutional ownership; hence, (1-θ) denotes a security with a low 

 
9 Hong and Stein (2007) refer to those as disagreement due to heterogeneous priors.  They refer to other forms of 
disagreements as due to limited attention and lagged or slow information.  
10 One could operationalize θ, the probability of high institutional holding in a stock from the fraction of securities in 
the market which have institutional ownership above any arbitrary cutoff. Dey and Radhakrishna (2015) report that 
during 1990-91, the mean institutional trading in a stratified sample of NYSE stocks is 18 percent while Madhavan and 
Cheng (1994) report 57% of equity trades at NYSE are large institutional trades.  
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institutional ownership.  Further, empirical research by D’Avolio (2002) and Boehmer et 

al. (2008) finds institutional ownership affects both demand and supply of shorts while 

Nagel (2009), Asquith et al. (2005), and Anderson et al. (2012) have uncovered diverse 

trading motives of short sellers.11  A high (low) institutional ownership because of its 

liquidity and stock lending implications may produce an asymmetric effect on traders’ 

buying, selling, or shorting decisions.  Nature chooses whether a security has high or low 

institutional ownership. 

Figure 1 graphically portrays the first trade of a typical trading day in this market.  

At the beginning of a trading day, nature determines if there is an information event.  An 

information event occurs with probability  that denotes event uncertainty.12  The 

information event may be a firm specific event e.g., earnings announcement as in Kim 

and Verrecchia (1991) or a broad economy wide event e.g., interest rate change as in 

Harris and Raviv (1993) with implications for a high or low future value of the security.13   

 
11 D’Avolio (2002) reports that large custodian banks working on behalf of mostly passive institutional investors, e.g., 
pension funds and endowments, which typically hold more large cap and liquid stocks than other institutions like 
mutual funds and hedge funds are the primary and most reliable lenders of stocks besides discount brokerage houses, 

which often pick up a small slice of the stock lending supply. Boehmer et al. (2008) report that 75 (< 2) percent of short 
sellers are institutions (individuals), which D’Avolio (2002) notes include specialists and market makers (portfolio 
balancing), derivatives traders (hedging), hedge funds (arbitrage), and speculators (outright shorting). Anderson et al. 
(2012) report high levels of informed short selling in concentrated family firms but Asquith et al. (2005) and Nagel 
(2009) find short interests uncorrelated with information. Campbell et al. (1993) find linkages between liquidity 
motivated short sales and buy and sell order imbalances as the driver of asymmetric price effects whereas Cohen et al. 
(2009) find evidence of behavioral bias and profit making by short sellers who exhibit short term overreaction and 
increase trading following positive returns (return chasing).  Blau and Wade (2010) look into short selling around 

earnings announcements and observe that short sellers are not ‘informed’ and most likely speculators.  By contrast, 
Engelberg et al. (2014) conclude that short sellers do not possess private information but are skilled in processing 
public information.  Easley et al. (1998) make similar observations about the universe of traders and Jain et al. (2006) 
find intraday short trading volume in the US as ‘U’ shaped similar to ‘smile’ observed in market trading volume 
implying that as a class, short sellers are just typical investors with multiple diverse trading motives. 
12 Event uncertainty, the uncertainty about whether an information event has occurred is a key element in the price 
discovery process in Easley and O’Hara (1987, 1992). This feature also distinguishes their model from Glosten and 
Milgrom (1985) in which an information event is presumed to exist.  In Dey and Kazemi (2008) where there are three 

types of traders, informed, liquidity and institutions as information-liquidity traders, event uncertainty becomes 
redundant in the price discovery process. 
13 Vega (2006) argues that whether information is private or public is irrelevant for stock price reaction; the arrival 
rates of traders determine the reaction. 
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If an information event occurs, a signal revealing the future value of a security is 

released to all traders in the market.  The future value of a security is a random variable 

v  with two possible values, 1 or 0 corresponding to a high (good news) or low (bad 

news) value signal respectively.  The signal set also contains a null denoting neither high 

nor low values.  Hence, the signal set, s ϵ (L,H,ɸ) denotes low, high, or no signal 

respectively.  Nature determines whether the future value is high or low.  A low value 

occurs with probability   that denotes information uncertainty.  It follows then that the 

future value of the security follows a Bernoulli distribution,  ~ Bernoulliv   with the 

unconditional expected value and variance of the security as follows: 

     * 0 1 *1 1E v         ….1a and 

    21 (say)vVar v      ….1b.  

Following the release of an information signal at the beginning of a trading day, 

trading continues as during each trading interval within a trading day, an informed 

optimist or pessimist trader arrives to trade (buy, sell, or short) one unit of a risky security 

with high or low institutional ownership with a competitive market maker; she may also 

choose not to trade for strategic reasons, for example, a pessimist (bearish) investor 

receives a buy signal or a potential short seller faces constraints in the form of limited 

availability of loanable stocks and high rebate fees and hence decides to forego a trading 

opportunity.14  If an information event does not occur, traders may still submit an order 

 
14 Almazan et al. (2003) report that approximately 70 percent of US mutual funds are explicitly prohibited from 
shorting by their charters. No trade may also be due to lack of ‘relevant’ news.  Chan (2003) finds asymmetric stock 
price reaction between portfolios with ‘news’ and ‘no news’, where a differential return drift is observed only for those 
portfolios subject to ‘bad news’ and that the drift is strongest for illiquid small stocks. 



 14

(buy or sell) for other strategic and non-information reasons like momentum, liquidity, 

and information cascade.15 

A trading day is divided into an increasing ordered sequence of discrete trade 

times denoted by the time of the arrival of a trader, t(n) = t(1)….t(N) where n = 1….N 

denotes the order of traders.  The arrival times of traders, t(n) are separated by 

predetermined intervals of equal length such that each trading interval, the difference 

between two successive arrivals, Δt = t(n) – t(n-1) is just long enough to submit exactly 

one trade.  For example, a 6.5 hours trading day at the NYSE would translate into 390 

one-minute trading intervals, with t(n) = 9:30 9:31…15:59 16:00 further implying that 

with a one minute trading interval, 390 is the highest trade count or maximum number of 

likely order submissions in a day.  Note that Δt denotes the inverse of trading frequency 

or trade counts.  Clearly, as Δt → 0, trading frequency increases without bound 

approaching high frequency and continuous time trading.16  

There are finitely many trading intervals within a trading day during which traders 

opt to trade or not trade.  In terms of an incoming trader’s feasible actions, she chooses to 

trade with probability γ and hence does not trade with probability (1-γ); sell with 

probability α, buy with probability β, leaving the probability (1-α-β) for her to short.  A 

unique feature of the trading options in this paper is that a trader’s probability to short is 

conditional on the values of α > 0 and β > 0.  Conditional on γ > 0, when α = 0 or β = 0, 

 
15 Unlike Glosten Milgrom (1985) and Easley and O’Hara (1992a), in our model all traders receive an information 
signal when there is an information event.  When there is no information event, traders pursue non-information reasons 
e.g. information cascade or liquidity for trade.  Note that in Harris and Raviv (1993) traders having the same 

information may trade differently strictly because of divergence of opinion but not due to information cascade. 
16 Note that holding trade size and time constant, trading frequency and no trade intervals are the respective inversely 
related frequency and time domains of trades, i.e., as number of trades during any unit time interval increases, ‘no 
trade’ intervals decrease. 
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the probability of shorting turns into (1-β) and (1-α) respectively; when α = β = 0, the 

probability is 1 implying certain shorting.17   

Competitive market makers face no inventory constraint and set equilibrium bid 

and ask prices as  * |t t tb E v Sell  and  * |t ta E v Buy  respectively where

    | 1t tE v Q Q   to earn zero profit from each trade based on  Q , the 

conditional probability of a low value signal given a trade/no trade.  Before trading 

begins, a competitive market maker sets  =  u (we drop the u superscript later for 

notational convenience) as the uninformed prior.  During each trading interval, she 

observes an incoming order from a trader belonging to the set  / , ,Q S SS B N  but not 

the information signal and hence updates δ, that is, she computes  Q , the conditional 

probability of a low signal given an order from the set Q (for notational convenience, we 

drop the ‘t’ subscript) as below: 

   
     

Pr 0 |

1.Pr | 0.Pr | Pr |

Q v Q

s L Q s H Q s Q



 

 

     
……..2a 

Further, by Bayes’ rule  

     
   

 , ,

Pr | Pr
Pr |

Pr | Pr
s L H

Q s x s x
s x Q

Q s s


 
 


……..2b. 

The purpose of the game is to determine if competitive equilibrium prices exist 

for any/all possible values of the parameters and also how equilibrium prices change with 

 
17 Note that in Diamond and Verrecchia (1987), investors face different levels of costs of short selling including zero 
cost. Hence, they assume that without short constraints, a trader will always prefer shorting to any other action 

including no trade. In our model, however, a trader may choose not to trade with probability (1-γ) and hence γ*(1-α-β) 
denotes the conditional probability that a trader who chooses to trade, shorts.  Evidently in our model, short selling in 
specific securities is conditioned on the probability of trade and further the conditional probabilities of buy or sell given 
a trader’s intention to trade. Thus a current owner of a security may strategically short instead of selling. 
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respect to changes in the parameter values, particularly those parameters μ and θ denoting 

investor heterogeneity (pessimist vs. optimist) and differences in security characteristics 

(high vs. low institutional ownership) respectively.  We derive equilibrium bid ask prices 

and spread and discuss those results in Section II.  Finally, in section III, we derive a few 

dynamic properties of the bid and ask quotes and the convergence of prices to their full 

information values as the proportion of short sales varies. 

 

II. Effect of Trades on Equilibrium Bid Ask Prices: Cross sectional  Analysis 

 

Before we discuss the equilibrium price formation and the effects of no trade intervals on 

price discovery, we examine and reconcile the occurrence of no trades between DV 

(1987) and Easley and O’Hara (1992a).  This discussion is important since our model 

combines elements of both models, which yields contradictory results with respect to the 

effect of no trades on quotes. 

 In DV (1987), both informed and uninformed traders may opt out of trading due 

to multiple reasons.  First, a fraction of the universe of traders, (1-g) arbitrarily decide not 

to trade; second, a fraction of informed traders, (ga) and a fraction of uninformed traders 

(g(1-a)), who wish to sell but do not own the security and face excessive cost of short 

selling exit the market without trading.  In Easley and O’Hara (1992a), on the other hand, 

only (1-εS) or (1-εB) fraction of uninformed sellers or buyers respectively opt out of 

trading while the informed traders always trade (buy or sell) based on their private 

information signal.  Consequently, no trades in DV (1987) may be informative whereas 

in Easley and O’Hara (1992a) only uninformed traders do not trade and hence no trades 
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do not reveal information about the future value of the security, rather they reveal the 

antecedent condition around an information release.  

 In the graphical representation of our model (Graph 1), (1-γ) > 0 fraction of 

traders may choose to arbitrarily opt out of trading that resembles the model structure in 

DV (1987); however, by allowing 1 ≥ γ > 0 and setting γ = 1 in nodes 1 and 5 (denoted 

by two step lines instead of slanted lines), we embrace the model structure in Easley and 

O’Hara (1992).  In essence, by disallowing the no trade option in those two nodes (γ = 1), 

we compel the traders to sell or short, if there is bad news, and buy or short, if there is 

good news.  Since all traders are informed, absent this no trade option, informed traders 

always trade- buy, sell/short as in Easley and O’Hara (1992).  Specifically, a short option 

allows a pessimist trader, who doesn’t own the security to sell short during bad news 

(node 1) and dodge buying when she doubts a good news signal (node 5).  For the 

purpose of this paper, we mostly follow the model structure in Easley and O’Hara 

(1992a) but present differences in findings, wherever those arise based on the model 

structure in DV (1987).  

 

Proposition 1: No information event increases the likelihood of no-trades. The 

probability of no trade is higher when there is no information event than when an 

information event exists.  

 

 

Define 0 1Pr( | 0) and Pr( | 1)t tN N       respectively as the conditional 

probability of no trades given no information event exists or an information event that 

leads to a signal has occurred.  Derivations show η0 > η1 thus confirming similar 

findings in Easley and O’Hara (1992a), where ε, the probability of an information event 
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leading to noisy signal (a signal contains a buy, a sale, and a null value implying neither 

buy nor sell) is a priced risk factor.   

 Further, the result that the difference between the probability, (η0/η1) is inversely 

related to (1- μθ) points to the important role that the correlation, ρμθ between μ (denotes 

investor type, pessimist or optimist) and θ (indicates high or low liquidity via high or low 

institutional ownership) plays in determining the impact of news events on the incidence 

of trades or no-trades.  Specifically, for ρμθ > 0, 1< η0/η1 < ∞ is increasing; for ρμθ < 0, 

1< η0/η1 <1.33 is increasing for 0 < μθ < 0.25, decreasing for 0.25 < μθ <1.00, and has 

an inflection point μθ = 0.25; while for ρμθ = 0, η0/η1 = 1.  That is, during a bear (bull) 

market with low (high) μ, a high (low) liquidity stock denoted by high (low) institutional 

ownership, θ will experience a monotonically increasing likelihood of a no event 

associated with no trade; however, as market conditions, bull vs. bear market and a 

security’s liquidity, high vs. low go against each other, the likelihood of a no event 

associated with no trade turns non-linear increasing for 0 < μθ < 0.25 and decreasing for 

0.25 < μθ <1.00 with an inflection point at μθ = 0.25.  Note that the inflection point is at 

μ=θ=0.5. 

 As we switch to the model structure in DV (1987) and assume that a proportion of 

traders, namely (1-γ)>0 always opt out of trading, we find η0 = η1, which implies that an 

information event is redundant for a trader’s decision to trade or opt out of trading.  In 

other words, a fraction of traders, perhaps noise traders arbitrarily choose to opt out of the 

market.  From the graphical representation of the game in Graph 1, it’s clear why that is 

true.  In DV (1987) framework, no trades are equally likely irrespective of whether there 

is an information event or not. 
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Proposition 2a: Information content in trades. Trades (sell/short or buy) reveal private 

information and hence impact bid and ask prices; a sale order prompts the market maker 

to lower the bid while a buy order prods her to move the ask price up.  No trades do not 

reveal information and therefore do not affect bid or ask prices. 

 

Proposition 2b: Implicit cost of short selling (to the short seller) is higher in a bear 

market (high μ) than in a bull market (low μ).   

 

The market maker observes either an order (buy or sell) or the absence of an order.  As 

she observes an order or its absence thereof, she updates the probability of low value 

conditional on its status, buy, sale, or no order.  The probability of a security’s low value 

conditional on a sale (buy) order is higher (lower) than the unconditional probability of a 

low value.  Thus a sale (buy) order signals bad (good) news and consequently the market 

maker reduces (increases) the bid (ask) price.  A no trade does not alter the probability of 

low value signal and hence has no effect on prices. 

The equilibrium bid and ask prices for a buy and a sale during a trading interval 

are computed as follows: 
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Note that a buy or sale order diverts the bid and the ask prices away from the pre-

order price; in particular, the first bid and ask quotes of the day move in opposite 

directions farther away from the unconditional price, (1  ).  Easley and O’Hara (1992a) 

find similar evidence of initial price movements with an incoming sell or buy order; 

however, unlike in Easley and O’Hara (1992a), where the price movements are 

symmetric, in the present instance, the movements in the bid and the ask prices are 
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asymmetric with respect to pre-order price level and the direction (buy or sale) of the 

order.  Saar (2001) provides an explanation for this observed asymmetry in the price 

effect between buy and sell based on institutions’ dynamic (tactical!) portfolio 

rebalancing. 

 Transitioning to the price effect of no trades, in Easley and O’Hara (1992a) model 

setup, a ‘no trade’ prompts no change in the conditional probability of a low value signal 

and hence the bid and ask prices remain unchanged.  Based on the computed conditional 

probability of bad news, we also find no price update following a no trade based on DV 

(1987), where 1 > γ > 0.   

 Our results on the zero price effect of no trades corroborate similar findings in 

Easley and O’Hara (1992a) but contradict those in DV (1987), in which no trade is 

perceived as bad news and hence prices are revised downward.  Easley and O’Hara 

(1992a) rationalize that the DV (1987) model structure incentivizes trading by allowing 

traders with multiple motives to trade (buy, sell, or short) and hence no trades point to 

hidden or unidentifiable risk implicit in trading.  Therefore, in DV (1987), no trades are 

bad news.  In our model, no trades are due to informed traders arbitrarily opting out of 

trading in a random fashion and hence do not reveal lack of information. 

 Overall, our results that trades reveal information while no trades do not, find 

mixed empirical support in Barclay and Hendershott (2008) who compare pre-open and 

opening prices for NASDAQ stocks and note that “Considering the emphasis that has 

been placed on trading in the price discovery process, it is surprising that for most stocks 

the opening price reflects the same amount of information with or without trading.”  

However, they also report asymmetric price discovery between pre-open price and 
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opening prices, albeit after a threshold trading volume.  On the contrary, Campbell and 

Hentschel (1992) document asymmetric impact of public ‘news’ and ‘no news’ events on 

volatility in monthly and quarterly CRSP index returns and confirm that volatility 

increases during news events.  By contrast, Hopewell and Schwartz (1976) find security 

specific but no market (bull vs. bear) effects due to temporary suspensions of trading at 

NYSE and Jiang et al. (2010) observe that information flow parameters such as liquidity, 

depth, and spread of ‘information linked’ securities are significantly and adversely 

impacted during NYSE announced halts.   

 We simulate the parameters of bid and ask functions in equations 1a and 1b above 

and plot those in Figures 2A-2E with a follow up discussion.  We generate random 

numbers from several discrete uniform distributions U(0, 1) each denoting a specific 

parameter of the bid and ask functions.  Since in our model, the parameters denoting 

probabilities of an information event and a low value signal ε and δ, respectively for a 

given value of μ and θ are updated daily, while those denoting probabilities associated 

with trading actions, γ, α, are β are updated every trading interval, many times during a 

day, we run the above simulation arbitrarily fixing the values of ε and δ and randomly 

drawing the other intraday parameters from 100 to 500 intervals, in increments of 100,  

during a day.  In order to allow a strictly positive level of short sales, we set α+β < 1.  

We repeat the simulation for 100 times for different values of ε and δ and record the 

mean bid and ask prices.   

Figure 2A plots bid and ask prices as functions of the unconditional pre-trade 

prices of the security.  A visual inspection of the plotted bid and ask price functions 
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establishes the asymmetry between the bid and ask prices based on the conditional 

probability of a low value signal given a buy or sell order.   

Evidently, the asymmetry in bid and ask prices persist over the entire range of 

security prices, low, middle, and high.  The most interesting aspect of the asymmetric bid 

ask prices is that while ask prices show a concave function over pre-trade prices, which 

tapers off at the top right corner indicating a slowing down of growth for high price 

stocks, bids show a convex function over those exact pre-trade prices for which the slope 

attains its maximum (minimum) value for the high (low) price stocks respectively.  

Indeed, only the ask prices in our model show a concave price function similar to the 

transaction price function demonstrated by Kraus and Rubin (2003), while the quasi-

concave mid quote function implies embedded stochastic volatility implied in Black 

Scholes call option price [Hull and White (1987)].  Empirically, such asymmetry in the 

bid and ask prices is documented in Chan and Lakonishok (1993), Campbell et al. (1993), 

and Koski and Michaely (2000).  Chiyachantanya et al. (2004) find evidence of the bid 

ask price asymmetry related to differences in liquidity conditions in bull/bear market.  

 Next, we address quotes formation in a high frequency trading setting.  By many 

estimates, high frequency trading already accounts for a significant and growing 

proportion of equity trading in many major markets in the world and hence we want to 

investigate if more trades lead to higher efficiency in security prices.  Since in our model, 

the probabilities of an information event and a low value signal ε and δ, respectively for a 

given value of μ and θ are updated daily, while the probabilities associated with trading 

actions, γ, α, are β are updated every trading interval, many times during a day, we run 

the above simulation arbitrarily fixing the values of ε and δ and randomly drawing the 



 23

other intraday parameters for 500 to 10,000 intervals, in increments of 500, during a day.  

By increasing the number of orders/quotes, we introduce high frequency trading in the 

market.  We repeat the simulation for 100 times for different values of ε and δ and record 

the mean bid and ask prices.   

Figure 2B plots bid, ask, and spread against pre-trade price of a security in a high 

frequency trading environment.  Evidently, by comparison with Figure 2A, the bid, ask, 

and spread functions retain their respective convex, concave, and quadratic (inverse ‘U’) 

nature over pre-trade prices; however, the functions appear to have become much 

smoother.  The reason is most likely statistical.  Since the simulations are draws from 

identical independent distributions, the bid and ask functions denote the computed means 

of each point of those functions.  However, based on the law of large numbers, as price 

changes become more granular, the estimated means get closer to the true means while 

the sample variance tends towards zero.  Thus high levels of trading seem to reduce the 

variability of bid and ask prices, an indirect measure of spread rather than improving 

liquidity directly by way of reducing bid ask spread.  Intuitively, that is the consequence 

of the disparity between a random information arrival and a predetermined trade arrival 

and pricing processes.  While in theory, high frequency trades may enable fast 

incorporation of information into trading, it’s not clear whether and how the physical 

trading process can catch up to that speed and further incorporate the relevant 

information into pricing for the following reasons.  First, information occurs at different 

points in time and space and thus it is inconceivable how such information would reach 

different traders precisely at the same time; second, it’s unlikely that heterogeneous 

traders will have similar reaction to the information content while many may prefer to 
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mask their information under different trading strategies, for example, split trading; and 

finally, for every few informed trading, there may be hundreds/thousands of liquidity 

trades, which by definition do not contribute to price discovery.  Broggard et al. (2011) 

confirm that algorithmic trades mostly exploit macro news events and limit book 

imbalances, are liquidity motivated, and further find asymmetric liquidity effect for 

liquidity demanding vs. liquidity supplying algorithmic trades where improvement in 

liquidity occurs only for selected large stocks after crossing a threshold trading volume 

barrier.  Hagstromer and Norden (2013) observe market making activities by high 

frequency traders reduce volatility.   

Next, in order to investigate whether the above bid ask price functions are robust 

with respect to different ranges of values of μ and θ, besides fixing ε and δ, we also fix 

quartile intervals of μ and θ to generate random numbers from discrete beta distributions 

along with randomly generated γ, α, are β from discrete uniform distributions for 10,000 

trading intervals as above.  We repeat the simulations 1000 times for each ε and δ and 

record the mean bid and ask prices.  We plot those bid, ask, mid-quote, and spread 

functions for separate ranges of μ and θ.  Figures 2C and 2D show how the first bid and 

ask prices of the day are formed for different ranges of μ and θ respectively.  Figure 2E 

plots the bid, ask, mid quote, and spread for different combinations of μ and θ.  The most 

striking observation in Figure 2E is that the ask function changes dramatically for certain 

combinations of μ and θ; for example, for μ<0.25 and θ<0.25, the ask price function 

turns into almost a 450 line with no visible change in the bid price function. 

 Having discussed the asymmetry in price effect between high and low price 

stocks and also bid and ask for those stocks, we now move on to discuss how spread 
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develops in this market, how no trades affect spread, and the relation between spread and 

return, liquidity premium.  First, the bid ask spread is inverted ‘U’ shaped and closely 

tracks a volatility function that peaks for midprice stocks confirming the information risk 

component in both volatility and spread.   The respective convex and concave bid and ask 

functions indicate that market makers cross subsidize execution costs of high and low 

price stocks charging the highest spreads for midcap stocks confirming evidence of 

stealth trading and gaping information asymmetry in midcap stocks in Chakravarty 

(2001). 

 Second, in our model, no-trade retains the bid and ask at their current price points 

and as such spread remains unchanged at its pre no trade value.  Thus no trade flattens the 

spread function while a trade widens the spread.  Recent empirical studies, for example, 

Broggard et al. (2014) find improved market quality due to lower bid ask spread 

associated with high frequency trades, albeit in a relatively small number of stocks, but 

also point to increased volatility and high trading volume as drivers of market 

inefficiency and that highly volatile markets are more susceptible to crash.   

Third, Figure 3 shows liquidity premium, the inverse return spread relation first 

hypothesized by Amihud and Mendelson (1986).  Compared to an approximately linear 

inverse relation between return and relative spread proposed by Amihud and Mendelson 

(1986), we find a non-linear, reverse elongated ‘J’ relation between return and relative 

spread, much like intraday spread in a competitive dealership market similar to 

NASDAQ, in which securities with the lowest relative spread enjoy the highest rate of 

return.  Lin et al (1995) report a similar nonlinear relation between spread and trade size. 

Such nonlinear relations perhaps justify intense high level of trading and further 
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reduction in spread for selected mid and large cap liquid securities with already low 

relative spread.  Chordia et al. (2011) find evidence of large difference (almost 1/3rd) in 

spreads of large vs. small stocks following decimalization.  Thus high frequency trading 

concentrated in mostly liquid large cap stocks do little to increase market liquidity and 

hence large scale inefficiency continues in those markets where there are a 

disproportionately large number of illiquid and thinly traded securities. 

 Finally, we discuss the implied price effect of sale vs. short in this market.  While 

the market maker cannot distinguish between a short and a sale, in our model, the 

probability of short, (1-α-β) is inversely related to α and β, the probabilities associated 

with a sale and a buy respectively.  By recognizing this inverse relation between the 

probabilities of short vs. sale and with the help of a few comparative statics, we can 

determine that for any given value of β = β*, the price effect of sale vs. short.  A testable 

implication of this result is that the cost of securities lending and the average level of 

short interest is higher in a bullish (more optimists than pessimists) market than in a bear 

(more pessimists than optimists) market.  Karpoff (1988) tests and finds supporting 

evidence that short sales are costlier when volume and return are correlated, typically 

observed in a bullish market.  

 

III. Convergence of Prices to Full Information Value 
 
 
 

Until this point, for simplicity of exposition, we have focused only on the first trade or no 

trade of the day and its impact on the opening bid, ask, and spread.  The evolution of 

intraday quotes and transaction prices (mid quotes) over a trading day, however, requires 

an order flow during a day and hence it is important to determine the conditional 
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probabilities associated with a random sequence of buy, sell, and no orders.  Therefore, as 

a first step, we theoretically determine how a sequence of trades and no trades alters the 

conditional probabilities of a low, high, or no signal.  Specifically, how and whether no 

trades affect a future information signal outcome is important, albeit complicated by the 

fact that we find that a no trade is more likely when there is no information event and 

therefore no signal, despite the findings that no trades seem to have no effect on security 

price updates.  Those conditional probabilities determine the dynamic properties of bid 

and ask and consequently the transaction price of a security.   

 

Proposition 3: Dynamic evolution of quotes following no trades.  

 

Proposition 3a: The conditional probability of no signal given a no trade is higher than 

the conditional probability of no signal given a trade occurs. 

 

Proposition 3b: The forecast conditional probability of a signal or no signal at time t+1 

given a history of trades and no trades until t-1 and a no trade at time t varies. The 

forecast conditional probabilities for high and low signals rise while for no signal, the 

probability falls. The magnitude dependent on the respective values and the correlation 

between the parameters, μ (1- μ) fraction of pessimists (optimists) among traders 

denoting bearish (bullish) market conditions and θ, whether a security has high or low 

institutional ownership.   

 

 

Proposition 3a states that an information signal (not information event) is more likely 

when a trade occurs confirming our earlier related results - ‘no trade is more likely when 

there is no information event.’  As before, this finding correlates the likelihood of an 

information event and that of a trade but goes a step further in separating an information 

event from a signal and asserting that it’s not an event but a signal following from the 

event is the primary driver for trades in the model.  An event causes a signal and hence an 

information motivated trade is more likely when there is an event; however, a signal 

contains a null, neither buy nor sell, which neutralizes the information content in a signal 
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and acts as ‘no event’.  The higher likelihood of an information motivated trade after an 

information release is inversely related to μθ, the covariance between the measures of 

divergence of opinion and liquidity.   

 Proposition 3b states the impact of a no trade preceded by a random sequence of 

buy, sale, and no trades on the conditional probability of a low, high, or no signal.  The 

relevant proofs in the appendix for the above propositions are based on the conditional 

probabilities of trade signals at time t+1 given a history (quotes until time t-1) and no 

trade at time t.  Given a history of trades and no-trades concluding in a no trade at time t, 

the probability of no information event, a high, or a low signal at time t+1 falls; on the 

contrary, the probability of no information event signal at time t+1 increases.  

Consequently, as the market maker’s belief about the probabilities of low and high signal 

fall, the bid and ask too fall.   

The market maker learns from recent trades and no trades.  Note that in 

proposition 2, the conditional probability of a low signal given the first trade of the day is 

a no trade remains unchanged as the unconditional probability of bad news.  In contrast, 

the conditional probability of bad news given a no-trade increases during a bull market 

(low μ) and declines during a bear market (high μ) but only for a stock with given 

liquidity (fixed θ).  Unlike the first no-trade of the day, the market maker learns from the 

history of trades and no trades and uses no trade as a signal for contrary security 

(liquidity) and market (bull vs. bear) conditions.   

Proposition 3 states that no-trade at time t causes the probability of low signal at 

t+1 to decline during market pessimism and the probability of high signal at t+1 to 

decline during market optimism.  Thus bid and ask get closer to the unconditional 
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expected value under different market conditions and thus spread may diminish more in 

one period that the other due to the asymmetry between price movements due to buy or 

sell.  This result is different from those in Easley and O’Hara (1992) and Saar (2001). 

 In the remainder of the paper, we focus on the convergence of prices to full 

information value and investigate how security prices adjust to the full information value, 

0 or 1.  First, in Proposition 4, we show as in Easley and O’Hara (1992) that indeed 

prices converge, with probability tending to 1 to full information value; next, we show 

some simulated sample converging price paths; finally, in Proposition 5, we follow DV 

(1987) and compute the expected number of steps necessary for prices as functions of the 

frequency of short sales to adjust to full information value, 0 or 1. 

 

Proposition 4: Convergence to full equilibrium: Prices almost surely converge to full 

information value, 0 or 1.  

 

The price of the security defined as the conditional expected value, E(v|Q|s) = 1- δ(Q|s) 

where δ(Q|s), the conditional probability of a low signal is bounded by 0 and 1 and 

therefore E(v|Q|s) is bounded by 0 and 1.  Since the information signal, s ϵ (L,H,ɸ) is 

released once at the beginning of the day and remains in place throughout the day, with 

every new order, security price, E(v|Q|s) → E(v|Q|s*), where s* is the realized value of 

the signal and E(v|Q|s*) = 0 or 1, the low and high values respectively.  Further, during 

any trading interval, when there is no trade, 0 < δ(Q|s*) < 1 and hence the expected value 

of the security, E(v|Q|s*) ≥ 0 or 1, unchanged from the prior trade.  Since the discrete 

signal set, s ϵ (L,H,ɸ) is complete and the probabilities associated with the set sum up to 

1, E(v) almost surely (in probability) converges to 1 or 0.   
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 In Easley and O’Hara (1992), the buy and the sell sides are symmetric and thus 

the rates of convergence from both sides are the same; in Saar (2001), the rate of 

convergence from the buy and the sell sides are different due to the asymmetry between 

the buy and the sell sides.  In the present model, asymmetry in convergence is due to both 

buy vs. sell, and optimistic vs. pessimistic market conditions. 

 Using simulated data, we construct sample paths of price convergence to full 

information values, 1 and 0, high and low values respectively.  Due to the relatively 

detailed and complicated action set and the conditional probability structure of low value 

that determines prices, compared to that in Easley and O’Hara (1992b), we need an 

involved logistics for the simulation to generate the relevant price histories.  We do so in 

the following steps. 

First, we decide on the target full information value, 1 or 0.  Second, we count the 

fraction of each action from the action set, (sell/short, buy, no trade) available to traders 

given the information signal is good or bad denoting the full information value of 1 and 0 

respectively.  Third, we generate a sequence of 100 actions retaining the theoretical 

proportion of each action in the action set.  Fourth, we generate a set of random numbers 

from independent discrete uniform distributions to denote the realizations for the 

parameters of the model.  Fifth, using the first set of those random draws including δ, we 

update the conditional probability measure, δ(Q) and further use δ(Q) to generate a 

sequence of prices corresponding to the random sequence of actions.  We stop the 

sequence when the price reaches 1 or 0, as the case maybe.  We repeat the above steps, 1-

5, 10,000 times and compute the mean number of steps, which were necessary for the 

convergence to occur in those 10,000 trials.  For robustness, we increased the sequence of 
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actions to 200 and repeated the trials 10,000 times again recording the mean number of 

steps necessary for convergence to occur.   

Figures 4A and 4B provide histograms of the convergence steps for the 10,000 

trials for convergence to zero (low value) and one (high value) respectively.  The 

convergence results indicate a slower convergence to low value, 0, than to high value 1.    

 Proposition 4 and the accompanying simulation results on almost sure 

convergence confirms the notion that a securities market with short opportunities leads to 

systemic overpricing but rejects bubble formation and market crashes. 

 

IV. Conclusion 

 

We investigate if order time and short sales have any bearing on how prices are formed, 

and how prices adjust to their full information value in a market with multiple dealers in 

an order driven market.  Price adjustment and convergence properties are of common 

interest to a wide variety of financial economists.  We model a trading system where two 

groups of traders, pessimists and optimists trade a risky security with a competitive dealer 

for cash.  A security has a high or low institutional ownership.  All traders receive a 

signal indicating a high or low future value of a security; however, because of their 

predisposition as pessimists or optimists, traders do not agree on the impact of the signal.  

Traders arrive sequentially and trade (buy, sell, or short) a single risky security with a 

competitive market maker; a trader may choose to not trade. 

The derived results from the model find asymmetric price effects for buy and sell 

orders at all prices.  In particular, plots of simulated bid and ask show that the slope of 

those functions are directly opposite to each other.  Said, differently, while ask prices rise 

steeply for low price stocks and flatten as they reach high price stocks, bid prices rise 
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most steeply for the high price stocks. No trade intervals may lead to an increase or 

decrease in bid or ask depending on the fraction of pessimists in the market.  Bid ask 

spread peaks for mid-price stocks and the relation between return and relative spread is 

nonlinear with the steepest slope observed at the lowest level of relative spread.   

The adjustment of security prices to their full information value is asymmetric 

between low and high values of the security.  The speed of adjustment to low value is an 

increasing (decreasing) function of the probabilities of short (no trade); however, while 

the speed of adjustment to high value is increasing with respect to the probability of 

short, it is both increasing/decreasing with respect to the probability of no trade 

depending on the fraction of pessimists and the level of institutional ownership.   
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Table 1: A summary of notations used in Figure 1 and elsewhere in the paper 
 

Notations Definition 
v  Value of a traded security, 0 with probability δ; 1 with probability 1   

  Probability that the value of the security is 0, low value next period 

  Probability that an information event happens leading to a signal being generated about the 
value of the security next period 

μ 
 

Probability that an incoming trader is a pessimist; the probability that the incoming trader is 

an optimist is (1- )  Θ Probability that the tradable security has high institutional ownership.  This probability 

represents the fraction of securities with high institutional ownership and therefore (1- ) 
denotes the fraction of securities with low institutional ownership.  High institutional 
ownership is associated with high liquidity, low cost of lending, and high short interests and 
thus may induce more short sales from traders who do not face constraints. γ  Probability that a trader chooses to trade α  Probability that a trader who chooses to trade, sells β  Probability that a trader who chooses to trade, buys 	1-α-β
 Probability that a trader short sells 

1, 2..,t T  Time of trade or quote denoting a trading interval within a day 

s  Signal set: includes L, H, and  denoting low, high, and no signal respectively  
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Figure 1: Securities market trading game with heterogeneous traders.  Competitive 

market makers set bid ask prices at expected value conditional on buy or sell orders.  

 
Sell

γ Short

θ

γ Sell

μ 1-θ 1-γ No trade

γ Short

δ 1-μ 1-γ No trade

θ

1-θ γ Buy

1-γ No trade
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γ Short

1-δ θ

ε μ 1-θ γ Buy

1-γ No trade

1-μ γ Buy

θ 1-γ No trade

1-θ γ Buy

1-γ No trade

1-ε

Buy

γ Sell

θ 1-γ

No trade

1-θ

μ γ Sell

1-γ No trade

Buy

1-μ γ Sell

θ 1-γ

No trade

1-θ

γ Buy

1-γ No trade  
 
A trade occurs sequentially as follows.  An information event occurs with probability .  In case there is an information 

event, bad news are likely with probability . An incoming trader is likely to be a pessimist with a probability of μ 
while she is likely to be an optimist with a probability of (1-μ). The probability that a tradable stock has high (low) 
institutional ownership is θ (1-θ).  A trader trades with probability γ; hence, the probability of no trade is (1-γ). A trader 

sells with probability , buys with probability β, and hence shorts with probability (1--β).   
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Appendix 

 

Proof of Proposition 1: 

 

Define 0 1Pr( | 0) and Pr( | 1)t tN N       .  Derivation finds η0 = (1-γ) and η1 = 

(1-γ) (1-μθ). Since all parameters are strictly positive and μ <1, θ <1, η0 > η1.  

 

Solution for the limiting case when 1 > γ > 0 based on the model structure in DV (1987) 

finds η0 = η1 = (1-γ). 

 

 

Proofs of Corollaries1-2 and Proposition 2: 

 

Corollary 1: Conditional probability of a low signal,  

a) Pr(s=L|S1) > δu  

b) Pr(s=L|B1) < δu  

c) Pr(s=L|N1) = δu 

 

By applying Bayes’ rule, the conditional probability of a low value signal given a trade 

(buy or sell) or no trade is computed as follows. For a sale/short-sale, the probability of 

low value conditional on a sale order, δ (S1), 

 

δ (S1)> δu » ε(1-δ) [μθα + μ(1-θ) γα + (1-μ)θ)γ(1-α-β)] >0. Since all parameters are 

strictly positive, δ (S1) > δu.   

 

Similarly, the probability of low value conditional on a buy order, δ (B1), 

 

δ (B1) < δu » -ε(1-δ) β [(1-μ)θγ + μθ + μ(1-θ)γ] > 0. Since all parameters are strictly 

positive, δ (B1) < δu.   

 

Further, the probability of low value conditional on a no order, δ (N1) = δu.  

 

For the special case based on the model structure in DV (1987): 

 

Pr(s=L|N1) = δu 

 

Finally, note that  1    (say) is the conditional variance and hence 

1 0
s




, 1 0
s







, and 

2

1 0
s







. 
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Proposition 2: Bid or Ask offers 

 

The market maker’s bid or ask quote for the opening trade, a sale or a buy order, is 

computed as:  

 �
 = �	�| !""
 = 1 − �	#

 and $
 = �	�|�%&
 = 1 − �	'

.  It follows then 

 

a1  = 1 − � � �	
��
	
��
���	
��
	
�����
��
��	
��
	
��
����	
��
�	��	
��
��
�	
��
��	
�����
� 

 

and 

 

b1 = 1 − � � ���	��	
��
�
���	
����
	��	
��
�
�	
��
��	���	
��


���������	
����
	
��
������	
��
�����	
��
	
����
�	
��
��	���	
��

� 

 

 

The opening spread for the first round trip, a buy and a sell orders, 

 

 

 

 

 

Proof of Proposition 3: 

 

Let the conditional probabilities of a low, high, or no-signal conditional on a series of 

sale/short, buy, and no-trade be defined as follows: 
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Derivation finds  
 

Pr(s = ϕ | Nt) = 



(��� > Pr(s ≠ ϕ | Nt) = 

���
(���  

 

Further, by extending and applying Bayes’ law, the forecast probabilities of a low, high 

or no-signal conditional on a history, Qt-1 and Nt, no trade at time t are computed as 

follows: 

 

)*,,�
 =  -.,/
-.,/�	
���
	
�-.,/
 > ρo,t 

)0,,�
 =  -1,/	2345
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�-.,/
 < ρo,t 
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)6,,�
 =  -7,/	2345

-.,/�	
���
	
�-.,/
 < ρo,t 

 
 
 
 
 
 
 
 
 

Proof of Proposition 4: 

 

Consider the following probability density function (PDF) of v, the security value based 

on the discrete domain values of the signal, s ϵ (L,H,ɸ). 

 

1 if 

0 if 

1 0 if 

s H

v s L

v s 




 
   

 

 

The price of the security defined as the conditional expected value, E(v|Q|s) = 1- δ(Q|s) 

where δ(Q|s), the conditional probability of a low signal is bounded by 0 and 1 and 

therefore E(v|Q|s) is bounded by 0 and 1.  Since the random event, in this case the signal 

set, is discrete, mutually exclusive and exhaustive, the conditional probability associated 

with each outcome, s ∈ (H, L, ϕ) is bounded by [0,1] and the probabilities sum up to 1.  

Hence, by standard Bayesian results, E(v|s) ∈ [0,1] almost surely converges (Sveshnikov, 

1968).   

 

 

Proof of Proposition 5: 

 

The details of this proof follow a similar proof in Diamond and Verecchhia (1987).  We 

first compute the expected number of periods until the price of a security reaches its full 

information price, either 0 or 1.  In fact though, instead of 0 and 1, we work with two 

hypothetical boundaries    log ,  and log  where    .  The threshold 

   log  and log  are the possible values of the posterior log likelihood ratios and is 

similar to the Wald’s sequential ratio test, log
1

t

t

p

p

 
  

for the hypothesis v=0 against 

v=1, where tp is the price or conditional expectation of v given low value of the security.  

Let
~

Nbe a random variable denoting the number of periods until the price first reaches 

either the lower boundary  log  or the upper boundary  log  .      
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Further, we define the expected number of periods till the price reaches a boundary, high 

or low true value of the security, as follows: 
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Since the numerators are fixed, we consider the probability of short-sell (1-α-β) indirectly 

via the effect of  and β on the denominator.  Let the denominators be called 0 1 and    

corresponding with 0 1 and N N  respectively.  We derive explicitly the denominators as 

follows: 

 

89 = ∑ ;9<<∈= ">? @A2B
ACBD = ;9E "F	1 + &
 − ;9H "F	1 + I
 + ;9J "F	K
 and 

 

8
 = ∑ ;
<<∈= ">? @A2B
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Where, 
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ACN
A2N = �����	
��
���	
��
��	
����


��	
����
 + 1 = x+1 

 
A2O
ACO = 	
���
	
��


	
���
	
��
 = 1  

 

 

Our interest is to show the effect of (1-α-β) conditional on γ > 0 on 0 1 and N N  and 

therefore we postulate the following relationships in terms of π0 and π1, the absolute rates 

of convergence to low and high values respectively. 

 

 

 

Further to determine any asymmetric effect of β|γ>0  on the relative convergence rate, 

P	. 
 = − R2
RC we need to show that 

STRC
S�S� < 0 and 

STR2
S�S� > 0. 

 

Analytical solutions find the signs of the derivatives as follows. 

 X89X	1 − Y − Z
 = − [\ "F	1 + I
 + ;
] ^1 − ;9]_(\	1 − Y − Z

_	1 − Y − Z
 `a < 0 

 X8
X	1 − Y − Z
 = 

 

− [\ "F	1 + I
 	1 + I
�
 + ;
] ^1 − ;9]_(\	1 − Y − Z

_	1 − Y − Z
 ` b1 − 1

	1 + I
ca < 0 

 
 

The signs of the above derivatives translate into 
SJC

S	
����
 > 0 and  
SJ2

S	
����
 < 0 

respectively.  And finally, using L’Hospital’s rule, 
Sd	.


S	
����
 > 0. 
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Figure 2A: Bid, Ask, Mid-quote, and Spread from moderate trading interspersed with no trade intervals. 
The simulations data are the means of 100 random draws from discrete uniform distributions between 0 and 
1 for each parameter of the bid (b1) and ask (a1) prices.   
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Figure 2B: Bid, Ask, and Spread as functions of pre-trade prices with high trading, low no trade intervals. 
The simulations data are the means of 1000 random draws from discrete uniform distributions between 0 
and 1 for each parameter of the bid (b1) and ask (a1) prices.   
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Mu: 0 – 0.25 

 

 

 

Mu: 0.25 – 0.5 

 

 

 

 

 

 

Mu: 0.5 – 0.75 
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Figure 2C: Bid, Ask, Mid quote, and Spread as functions of the unconditional price for different 

values of μ, fraction of pessimists among traders. The simulations data are the means of 1000 x 

10,000 sets of the parameters of the pricing model.   
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Theta: 0 – 0.25 
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Theta: 0.5 – 0.75 

 

 

Theta: 0.75 – 1  

Figure 2D: Bid, Ask, Mid quote, and Spread as functions of the unconditional price for 

different values of θ, proportion of institutional ownership. The simulations data are the 

means of 1000 x 10,000 sets of the parameters of the pricing model.   
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Mu: 0 – 0.25;   Theta: 0 – 0.25 

 

 

 

Mu: 0 – 0.25;   Theta: 0.75 – 1  

 

 

 

 

 

 

Mu: 0.75 – 1;   Theta: 0 – 0.25 

 

 

Mu: 0.75 – 1;   Theta: 0.75 – 1 

Figure 2E: Bid, Ask, Mid quote, and Spread as functions of the unconditional price for 

different combination of values of μ and θ, proportions of pessimists and 

institutional ownership respectively. The simulations data are the means of 1000 x 

10,000 sets of the parameters of the pricing model.   
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Figure 3: Return vs. relative spread based on high trading low no trade intervals simulated bid ask prices. 
The simulations data are the means of 100 random numbers from discrete uniform distributions between 0 
and 1 for each parameter of the bid (b1) and ask (a1) prices.   

 
 

Figure 4A: Convergence to ‘0’ statistics 

 

 
 

Figure 4B: Convergence to ‘1’ statistics 
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Figure 4C: Ratios of mean convergence to ‘0’ and ‘1’ for quartiles of μ and θ 
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