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Abstract

We propose a dynamic model of the limit order book to derive conditions to test if a trading algo-
rithm will learn to manipulate the order book. Our results show that as a market maker becomes
more tolerant to bearing inventory risk, the learning algorithm will find optimal strategies that ma-
nipulate the book more frequently. Manipulation occurs to induce mean reversion in inventory to
an optimal level and to execute round-trip trades with limit orders at a higher probability than was
otherwise likely to occur; spoofing is a special case when the market maker prefers that manipula-
tive limit orders are not filled. The conditions are tested with order book data from Nasdaq and we
show that market conditions are conducive for an algorithm to learn to manipulate the order book.
Finally, when two market makers use learning algorithms to trade, their algorithms can learn to
coordinate their manipulation.

Keywords: Market Microstructure, Market Making, Market Manipulation, Spoofing, Learning
Algorithms, Inventory Model

1. Introduction

There is growing concern that unintended behavior may arise when decision making is dele-
gated to artificial intelligence algorithms. Recently, the OECD and the Dutch Authority of Finan-
cial Markets (AFM) expressed concerns about algorithms learning to manipulate financial markets
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(see OECD, 2021; AFM, 2023).1 In this paper, we derive conditions to test if an algorithm will
learn to manipulate the market through manipulative quote-based strategies such as spoofing.

A manipulative quote-based strategy consists of submitting limit orders to both sides of the
order book when the objective is either to buy or to sell an asset. If the objective is to buy an asset,
the strategy submits a large sell limit order that will be cancelled, and posts a limit order on the
bid which is the one intended to result in a transaction. The large ask order is a manipulative order
that tilts the order book and creates misleading information about the sell pressure of the asset.
Market participants interpret the increase in sell pressure as an expected drop in the price of an
asset, so a sell-heavy tilt in the book is followed by an increase in the arrival rate of sell orders that
cross the spread in anticipation of a price drop. With the increase in the number of liquidity taking
orders, the probability of buying the asset with a limit order is higher than was otherwise likely to
occur because market participants will trade on the misleading signal. Similarly, if the objective is
to sell an asset, then a manipulative order on the bid creates buy pressure that market participants
interpret as an expected increase in the price of an asset, which allows one to sell an asset with a
limit order at a higher probability than was otherwise likely to occur.

Quote-based manipulation relies on the change in behavior elicited by a manipulative order,
and this change in behavior can be explained with the asymmetric information model of Glosten
(1994) and a non-zero tick size in the order book. The step-function theory of Fox et al. (2021)
explains that asymmetry in the volumes posted on the best bid and the best ask is interpreted by
market participants as good or bad news about the asset. Specifically, when a sell limit order for
a large number of shares arrives at a price equal to the existing best offer and there is no increase
in the bids at the best bid price, market participants tend to react as if bad news arrived about the
asset. Similarly, upon the arrival of a bid for a large number of shares at a price equal to the best
bid and there is no increase in the orders at the best offer price, market participants react as if good
news arrived about the asset. Therefore, when there is an imbalance between the liquidity posted
at the best bid and the best ask quotes, market participants tend to interpret this as a signal to trade
in a particular direction, buy or sell, in anticipation of a change in the price of the asset.

We summarize the volume imbalance between limit orders resting on the bid and on the ask
sides of the book as buy-heavy, sell-heavy, and neutral. The rates with which market orders, limit
orders, and cancellations arrive at the market depend on the tilt of the book; thus, the probability

1More generally, regulatory bodies around the world are concerned about market manipulation with trading al-
gorithms, and they introduced legislation to address this concern. In the EU, RTS 6 and 7 require firms to test their
trading algorithms so they do not behave in an unintended manner or contribute to disorderly trading conditions. In
the US, the SEC approved FINRA’s rule that requires algorithmic trading developers to register as securities traders,
and are therefore subject to the SEC and FINRA rules that govern their trading activities.
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with which limit orders are executed depends on the volume imbalance of the book. Specifically,
our empirical results with data from Nasdaq show that the fill probability of a sell limit order is
highest (lowest) when the book is buy-heavy (sell-heavy), and the fill probability of a buy limit is
highest (lowest) when the book is sell-heavy (buy-heavy). Quote-based manipulation is profitable
because traders can manipulate the tilt of the book to buy or to sell an asset with a limit order at a
higher probability than was otherwise likely to occur.

To analyze if algorithms can learn to manipulate the book, we develop a dynamic model where
the market maker interacts with the limit order book at discrete time intervals for an infinite trad-
ing horizon.2 The market maker is non-myopic and is averse to holding high levels of inventory.
Specifically, her objective (i.e., optimality criterion) is to maximize the present value of her ex-
pected wealth, while penalizing exposure to inventory risk. The market maker provides liquidity
at the best bid and the best ask prices, and she delegates decision making to a learning algorithm to
find an optimal trading strategy.3 As with most learning algorithms, the marker maker’s algorithm
learns a stationary Markov strategy.4 Here, the Markov strategy depends on her level of inventory
and the state of the limit order book, which is given by its volume imbalance (i.e., tilt of the book).
To understand unintended behavior that may emerge, we do not focus on the behavior of a par-
ticular learning algorithm. Instead, we analyze the decision framework of learning algorithms, so
our results and testable conditions apply to any learning algorithm that finds an optimal stationary
Markov strategy.

In our analysis, the market maker does not endow the algorithm with an action that manipu-
lates the order book. Instead, we focus on how an innocuous set of actions leads to manipulation
when individual actions are sequenced in a particular order. Unintentional manipulation emerges
because the learning algorithm dynamically maximizes the market maker’s optimality criterion.
Indeed, manipulation in our setting is unintentional, but it is the best course of action when the al-
gorithm learns the optimal strategy. This is different from unintended behavior that arises when an
algorithm fails to optimize the optimality criterion. In such cases, the unintended behavior differs
on a case-by-case basis and depends on the idiosyncratic assumptions of the learning algorithm.

In our model, manipulation occurs when a large limit order is placed at time t on the side of
the book that counters one’s objective to buy or sell an asset, and the following action at time

2We focus on an infinite trading horizon because most learning algorithms are designed for this setting.
3There are several reasons why a market maker would delegate decision making to an algorithm. For example,

the rise of high-frequency trading means that delegating decision making to an algorithm is necessary for a market
maker to remain competitive.

4See Puterman (1994), Szepesvári (2010), and Sutton and Barto (2018) for examples of generic learning algo-
rithms. See also Calvano et al. (2020, 2021), and Abada and Lambin (2023) for examples of learning algorithms that
have been studied in the context of algorithmic collusion.
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t + 1 is to place a limit order on the side of the book that aligns with one’s objective to buy or
sell an asset. To derive conditions to test if an algorithm will learn to manipulate the order book,
we characterize the optimal stationary Markov strategy as a function of the value of the market
maker’s inventory aversion parameter for each state of the Markov strategy, i.e., for each pair of
inventory level and volume imbalance regime.5 The optimal strategy manipulates the book when
the optimal action in the current state (i.e., inventory and volume imbalance pair) is a manipulative
order (i.e., a large limit order in the “wrong” direction that will be cancelled), and the subsequent
state prescribes an optimal action of placing a limit order on the side of the book that is intended
to result in a transaction to complete the manipulative sequence.

Our main result provides sufficient conditions on the limit order book to test if an algorithm
can learn to manipulate the order book. If certain conditions hold and a trader can tilt the book
with manipulative orders, then there is a range of values of the inventory aversion parameter where
the algorithm will learn to manipulate the book. In particular, we show that as the market maker
becomes more tolerant to bearing inventory risk, the learning algorithm is more likely to learn
manipulative strategies. The conditions depend only on the parameters of the model, and are ap-
plicable to any limit order book, e.g., Euronext, LSE, Nasdaq, NYSE. Our results show that market
conditions in Nasdaq are conducive for algorithms to learn optimal strategies that manipulate the
order book. In all the stocks we consider, we find that an algorithm will always learn to manipulate
the order book for a range of values of the inventory aversion parameter.

One of the consequences associated with quote-based manipulation is that the manipulative
order can get “caught out”, i.e., the manipulative order inadvertently leads to a transaction. Our
model and the learning algorithms account for this possibility. The market maker’s decision to ma-
nipulate the order book balances the tradeoff between the probability of a fill of the manipulative
order, the increase in inventory risk, and profits from round-trip trades due to the manipulative or-
der. Often, when making markets, inventory levels deviate from the preferred inventory position.6

In our model, the longer and further one deviates away from the preferred inventory position, the
more severe is the penalty arising from inventory risk aversion, so the optimal strategy increases
the pressure to ensure mean reversion to the preferred level of inventory. Thus, the market maker’s
strategy balances the trade-off between (i) buying or selling an asset to revert to the preferred in-
ventory position at standard fill probabilities (i.e., without manipulating the book), or (ii) posting
a manipulative order to manipulate the fill probabilities through the tilt of the book, which exposes
the strategy to deviate further from the preferred inventory position (at least temporarily), but it

5Our characterization follows a similar spirit to the characterization of the optimal order choice in Parlour (1998).
6In our model, the preferred inventory position is zero when the fundamental value of the asset is a martingale.
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also exposes the strategy to a round-trip trade. With this trade-off in mind, it is clear that a ma-
nipulative strategy becomes dynamically optimal and a more frequent optimal strategy when the
market maker is less averse to holding high levels of inventory.

Counter-intuitive to the goal of quote-based manipulation, it is not always bad for the market
maker to receive a fill on her manipulative order. Indeed, there are situations in which the prefer-
ence is for the manipulative order to be filled because the expectation is to unwind the acquired
position very quickly. In particular, we analyze if the market maker prefers that her manipulative
order is filled and we find two driving forces behind the manipulation. One, the manipulation is
optimal because it can lead to a manipulative round-trip trade that, in expectation, will be com-
pleted faster than otherwise. In these cases, the manipulative order is submitted with the preference
for it to be filled and to unwind it immediately with an increased probability due to the tilt in the
book caused by the manipulative order. Two, the manipulation is optimal because it increases
the chances that the market maker’s inventory will revert to a preferred position. In these cases,
the preference is that the manipulative order is not inadvertently filled, which is more commonly
understood as spoofing. That is, the quote-based manipulation we study includes (i) spoofing as
a refinement when the preference is that the manipulative order is not inadvertently filled, and (ii)
manipulation for a round-trip trade as a refinement when the preference is that the manipulative
order is filled.

Additionally, our model shows that as the quoted spread narrows, learning algorithms will be
less likely to manipulate the order book. Specifically, as the quoted spread decreases, the range
of values of the inventory aversion parameter where manipulation is optimal decreases. In the
limit, when the quoted spread is zero, an algorithm will not learn to manipulate the book because
manipulation is suboptimal. Of course, theory shows that the quoted spread is positive even if
the tick size is zero.7 Nonetheless, the insight is that (i) if the profits from using limit orders
are negligible and the costs from using market orders are negligible, then it is more efficient to
use market orders to revert to the preferred inventory position, and (ii) if the expected profit from
the opportunistic round-trip trade, where one leg is a manipulative order, does not outweigh the
penalty imposed to manage the inventory risk, then quote-based manipulation is not optimal.

We extend our results in three directions. One, derive testable conditions to determine if manip-
ulative strategies are learned when a manipulative order does not always succeed in manipulating
the book. Our results show that if a manipulative order meaningfully affects the probability of
tilting the book, then our testable conditions continue to hold. Two, we use backward induction

7See for example Stoll (1978), Ho and Stoll (1981), Copeland and Galai (1983), Glosten and Milgrom (1985),
Amihud and Mendelson (1986), and Glosten (1994).
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to solve numerically for an optimal strategy and find that algorithms can also learn to manipulate
the order book when the trading horizon is finite. Finally, we study the effect of introducing a
competing market maker. We find that if both market makers train their algorithms offline, then
their algorithms either coordinate or mis-coordinate depending on their initial inventory level. On
the other hand, if both market makers train their algorithms online, then their algorithms learn to
coordinate by either riding the manipulative sequences of each other or by allowing one market
maker to ride the other market maker’s manipulative sequences to avoid mis-coordination.

In the literature, traders can attempt to manipulate the market in several ways. Studies focus
on information-based manipulation and trade-based manipulation. Information-based manipula-
tion occurs when the manipulator releases misleading information (see for example Bagnoli and
Lipman, 1996; Van Bommel, 2003; Vila, 1989), whereas trade-based manipulation occurs when
the manipulator buys or sells an asset to effect changes in the price (see for example Allen and
Gale, 1992; Allen and Gorton, 1992; Chakraborty and Yılmaz, 2004a,b).

On the other hand, spoofing is a particular case of quote-based manipulation that has received
little analysis (see Fox et al., 2021). One exception is Williams and Skrzypacz (2021) who ex-
tend the setup of Glosten and Milgrom (1985) to show that spoofing can occur in equilibrium,
and to study the equilibrium consequences. In our paper, instead of using an information-based
model, we use an inventory model to analyze if algorithms can learn to manipulate the order book.
Similar to the approach in Ho and Stoll (1981), we propose a model of the market dynamics that
is consistent with empirical stylized facts, where the market dynamics do not necessarily derive
from principles of individual economic behavior. The purpose of our paper is not to explain the
underlying economic reasoning of the market dynamics, but to use the market dynamics to derive
conditions to test if an algorithm will learn to to manipulate the market.

We focus on the broader quote-based manipulation because existing legislation does not ex-
plicitly outlaw spoofing.8 Spoofing is illegal because the manipulative order (also known as a
spoof order) creates misleading information to buy or to sell an asset with a higher probability
than was otherwise likely to occur. The manipulative order is what is considered illegal under ex-
isting legislation, and the reason why spoofing is illegal. Thus, our results allow us to understand
and test for quote-based manipulation, but also include spoofing as a particular case. Moreover,
our model allows us to make the key distinction between spoofing and other forms of quote-based
manipulation based on one’s preference of a fill of a manipulative order.

Our results have implications for how a rational market maker should behave within the market
dynamics of our model. Indeed, our work is a discrete-time analogue to papers that use stochastic

8The exception is the Dodd-Frank (2010) Act, but the Act only applies to the US commodities market.
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optimal control and continuous-time models to derive algorithmic trading strategies. For example,
Cartea et al. (2020) derive a manipulative quote-based strategy to acquire or liquidate a large posi-
tion. A key difference is that they explicitly encode a manipulative action, whereas manipulation
is optimal but unintentional in our model because the market maker does not endow the algorithm
with an action that manipulates the book. Also, their paper is not about learning algorithms.

On the empirical side, Lee et al. (2013) use a proprietary dataset with trader identification
from the Korea Exchange to show that spoofing achieves substantial extra profits and spoofing
tends to target stocks with higher return volatility, lower market capitalization, lower price level,
and lower managerial transparency. Wang (2019) uses data from the Taiwan Futures Exchange to
show that market participants spoof the order book in stocks that exhibit high volumes of trading,
high volatility, and high prices. Wang also shows that spoofing increases the volume of trading,
increases the volatility of prices, and increases the quoted spread. Our empirical results comple-
ment their findings because we find that market conditions from Nasdaq are such that algorithms
will learn to manipulate the order book.

Finally, our work is closer to the literature that studies the unintentional effects of algorithms
that learn to collude (see for example Calvano et al., 2020, 2021).9 Our approach is similar to
that in Cartea et al. (2023) who prove that algorithms can learn to collude. They analyze the
equilibria that can be learned and prove convergence to collusive equilibria; whereas in this paper,
we analyze the decision framework where algorithms learn optimal strategies and derive testable
conditions to determine if algorithms will learn to manipulate the order book. Additionally, similar
to the algorithmic collusion literature, we find that algorithms can also learn to coordinate their
manipulation when they learn together.

The remainder of the paper proceeds as follows. The next section shows the relationship
between volume imbalance and the behavior of market participants. Section 3 presents our model
and Section 4 derives the optimal strategy and testable conditions to determine if a manipulative
strategy can be learned. Section 5 analyzes the mechanics of quote-based manipulation, its relation
to spoofing, and how the parameters of the model affect quote-based manipulation as the optimal
strategy. Section 6 tests the conditions with order book data from Nasdaq. Section 7 relaxes
model assumptions and extends our testable conditions. Finally, Section 8 studies manipulation
with multiple market makers and Section 9 concludes with some regulatory implications.

9See also Cartea et al. (2022a,b), Colliard et al. (2022), and Dou et al. (2023) for studies on algorithmic collusion
in financial markets.
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2. Volume Imbalance and Order Book Activity

This section uses data from Nasdaq for April 2023 to illustrate the relationship between volume
imbalance and the activity in the limit order book that is central to quote-based manipulation. For
each trading day, we remove the first and last 15 minutes to exclude behavior in the limit order
book during the opening and closing auctions.

Volume imbalance at time t is given by

ωt =
V b
t − V a

t

V b
t + V a

t

∈ (−1, 1) , (1)

where V b
t , V a

t > 0 are the liquidity posted at the best bid and the best ask, respectively, at time
t. Volume imbalance summarizes the tilt of the limit order book, so when ωt is close to 1 there is
a strong buy pressure and when ωt is close to −1 there is a strong sell pressure. To simplify our
subsequent analysis, we discretize volume imbalance into three regimes: buy-heavy (BH) when
ωt ∈ (1/3, 1), neutral (N ) when ωt ∈ [−1/3, 1/3], and sell-heavy (SH) when ωt ∈ (−1,−1/3).

Table 1: Arrival rates of market orders (MOs) for April 2023.

Ticker
Buy MO arrival rates

(per second)

Sell MO arrival rates

(per second)

SH N BH SH N BH

AAPL 0.060 0.176 0.525 0.606 0.179 0.058

AMZN 0.067 0.168 0.447 0.456 0.167 0.065

CSCO 0.008 0.025 0.101 0.104 0.033 0.012

INTC 0.014 0.042 0.138 0.139 0.036 0.013

MSFT 0.297 0.350 0.461 0.475 0.352 0.286

TSLA 0.532 0.677 0.773 0.750 0.635 0.529

Table 1 presents the arrival rates (per second) of buy and sell market orders in each volume
imbalance regime for the several assets, and Table 2 presents the average volume of the market
orders that arrive. The arrival rate of buy (sell) market orders is highest when the book is buy-heavy
(sell-heavy). However, the average volume of buy (sell) market orders is lowest when the book is
buy-heavy (sell-heavy). Nevertheless, the net effect (i.e., arrival rate times average volume) is that
there are more buy (sell) transactions when the book is buy-heavy (sell-heavy).

Similarly for limit orders, Table 3 presents the arrival rates (per second) of buy and sell limit
orders in each volume imbalance regime for the assets we consider, and Table 4 presents the
average volume of the limit orders that arrive. The arrival rates of buy limit orders are higher than
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Table 2: Average volume of market orders (MOs) for April 2023.

Ticker
Buy MO average volume Sell MO average volume

SH N BH SH N BH

AAPL 145.58 111.16 62.27 64.29 103.11 135.29

AMZN 205.95 108.59 61.68 60.92 107.78 181.50

CSCO 149.88 182.33 110.30 111.74 161.72 131.67

INTC 212.79 256.93 143.67 134.62 266.80 227.45

MSFT 72.17 46.41 20.66 21.25 45.57 70.14

TSLA 132.27 56.33 26.55 25.35 54.34 120.54

Table 3: Arrival rates of limit orders (LOs) for April 2023.

Ticker
Buy LO arrival rates

(per second)

Sell LO arrival rates

(per second)

SH N BH SH N BH

AAPL 4.245 7.000 4.129 4.285 6.970 4.303

AMZN 4.367 7.346 4.381 4.637 7.600 4.213

CSCO 0.567 1.345 0.951 0.882 1.416 0.641

INTC 1.090 2.386 1.829 1.686 2.330 1.106

MSFT 3.631 4.126 4.452 4.830 4.268 3.582

TSLA 3.913 4.628 3.309 3.560 4.784 4.088

Table 4: Average volume of limit orders (LOs) for April 2023.

Ticker
Buy LO average volume Sell LO average volume

SH N BH SH N BH

AAPL 98.19 109.51 112.32 115.30 109.50 97.40

AMZN 87.95 96.32 101.95 101.53 95.44 87.83

CSCO 228.77 271.07 307.59 319.84 267.68 234.34

INTC 298.83 372.36 415.56 415.82 364.61 292.29

MSFT 42.93 44.81 45.69 45.25 45.73 44.76

TSLA 49.64 55.64 60.97 66.90 61.38 57.94

those of sell limit orders when the book is buy-heavy, and the arrival rates of sell limit orders are
higher than those of buy limit orders when the book is sell-heavy. On the other hand, the average
volume of buy (sell) limit orders is largest when the book is buy-heavy (sell-heavy). The net effect
(i.e., arrival rate times average volume) is that there are more buy (sell) limit orders than sell (buy)
limit orders when the book is buy-heavy (sell-heavy).
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Table 5: Arrival rates of limit order cancellations for April 2023.

Ticker
Arrival rates of limit buy

cancellation (per second)

Arrival rates of limit sell

cancellation (per second)

SH N BH SH N BH

AAPL 3.092 6.037 3.785 3.946 6.154 3.334

AMZN 3.594 6.464 3.631 3.885 6.734 3.529

CSCO 0.398 1.021 0.701 0.682 1.054 0.452

INTC 0.818 1.812 1.308 1.193 1.755 0.801

MSFT 3.673 3.561 3.082 3.316 3.756 3.719

TSLA 2.641 3.475 2.824 3.066 3.607 2.777

Table 6: Average volume of limit order cancellations for April 2023.

Ticker
Average volume of

limit buy cancellations

Average volume of

limit sell cancellations

SH N BH SH N BH

AAPL 92.25 109.29 112.92 116.77 111.55 91.26

AMZN 78.53 95.69 106.34 103.48 94.28 79.87

CSCO 172.01 281.82 370.26 378.71 281.96 179.55

INTC 230.90 393.75 499.81 489.77 392.68 228.14

MSFT 23.17 41.34 63.64 63.67 41.85 23.55

TSLA 29.17 50.51 71.24 82.05 54.89 35.21

Similarly, Table 5 presents the arrival rates (per second) of limit buy and limit sell cancellations
in each volume imbalance regime for the three assets we consider, and Table 6 presents the average
volume of limit order cancellations that arrive.

Volume imbalance clearly influences the behavior of market participants. This is consistent
with the work of Harris and Panchapagesan (2005), who find that market participants condition
their quotation behavior on volume imbalance. These empirical findings are further supported by
a survey sent to Dutch algorithmic trading firms, where AFM found that trading algorithms use
between 100 and 1000 features, and volume imbalance is one of the key features (see AFM, 2023).

Finally, Table 7 reports the probability that a limit order on the best bid or best ask is filled
within the next five seconds, one second, and half of a second, respectively. These fill probabili-
ties account for the effect of time-priority; see Section 6 for details about the estimation procedure.
This link between the fill probability and volume imbalance regimes makes quote-based manipu-
lation viable and profitable. By manipulating the volume imbalance and tilting the order book, the
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Table 7: Fill probabilities.

Ticker Side
5 seconds 1 second 0.5 seconds

SH N BH SH N BH SH N BH

AAPL
Ask 0.4393 0.4782 0.5819 0.1048 0.1286 0.1910 0.0449 0.0579 0.0928
Bid 0.6210 0.5207 0.4687 0.2196 0.1499 0.1180 0.1121 0.0697 0.0518

AMZN
Ask 0.4155 0.4651 0.5669 0.1008 0.1232 0.1903 0.0451 0.0566 0.0933
Bid 0.5587 0.4570 0.4201 0.1767 0.1228 0.1044 0.0863 0.0566 0.0479

CSCO
Ask 0.0674 0.1005 0.1768 0.0093 0.0151 0.0384 0.0040 0.0060 0.0198
Bid 0.1851 0.1034 0.0713 0.0400 0.0154 0.0109 0.0201 0.0064 0.0048

INTC
Ask 0.0970 0.1384 0.2353 0.0158 0.0222 0.0561 0.0071 0.0095 0.0274
Bid 0.2124 0.1314 0.1116 0.0501 0.0211 0.0161 0.0251 0.0089 0.0070

MSFT
Ask 0.5577 0.5838 0.6286 0.2033 0.2135 0.2529 0.1037 0.1095 0.1333
Bid 0.6101 0.5739 0.5605 0.2339 0.2081 0.2041 0.122 0.1064 0.1048

TLSA
Ask 0.6051 0.6280 0.6729 0.2618 0.2751 0.3222 0.1459 0.1517 0.1876
Bid 0.668 0.6201 0.6047 0.3137 0.2660 0.2661 0.1820 0.1482 0.1480

probability of buying or selling the asset with a limit order is higher than it was otherwise likely
to occur.

3. The Model

Here, we present our dynamic model of the limit order book where the market maker provides
liquidity at the best bid and best ask. The market maker is non-myopic and interacts with the limit
order book at discrete times t = 0, 1, 2, ...,+∞. The market maker delegates the decision making
process to a learning algorithm that can be trained online or offline.

3.1. Setup

Framework. We model the decision process of the market maker as a Markov decision process
M = ⟨S, (As)s∈S , p, (us)s∈S , δ⟩. Let s ∈ S denote the state, where the set S is finite, and let
As denote the finite set of actions for the market maker in state s. The state evolves according
to the transition function p : S × As → ∆(S), where ∆(S) is the set of probability measures
on S. We denote by p(s′|s, a) the probability that the subsequent state is s′ given that the current
state is s and action a is played. At every time step t, the payoff is given by a utility function
u : S × As × S → R, where |u(s, a, s′)| < ∞ for all a ∈ As and s, s′ ∈ S . The payoff from the
utility function u(s, a, s′) depends on the transition from state s to state s′ under action a. Finally,
δ ∈ [0, 1) is the parameter with which the market maker discounts the future stream of payoffs.
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Strategies. The market maker uses an algorithm to learn a time-invariant strategy that depends
only on the state s, i.e., we consider stationary Markov strategies. A stationary Markov strategy
describes a mapping to a set of probability measures on As for each state s, i.e., σ ∈ ΣSM =∏

s∈S ∆(As) such that σ : S → ∆(As). Similarly, a stationary pure Markov strategy describes
a mapping to an action As for each state s, i.e., σ ∈ ΣSPM =

∏
s∈S As such that σ : S → As.

More generally, a strategy is a mapping from the set of all possible histories to a set of probability
measures on As, i.e., σ ∈ Σ such that σ : H → ∆(As), where H = ∪∞

t=0Ht and Ht satisfies the
recursion Ht = Ht−1×S×∪s∈SAs with H0 = S. In general, a strategy need not be time-invariant.

The restriction to stationary Markov strategies is essential for a learning algorithm to find
an optimal strategy because it significantly reduces the space of possible strategies. Hence, an
algorithm does not need to search for an optimal strategy over the space of all possible (history-
dependent) contingency plans. Our focus on stationary Markov strategies is not restrictive be-
cause classical results (given below) show that there exists a stationary pure Markov strategy that
achieves the same optimality criteria as an optimal strategy from Σ. Indeed, most learning algo-
rithms search for an optimal strategy in the space of stationary Markov strategies.

Optimality Criteria. The value of a strategy σ ∈ ΣSM ,ΣSPM ,Σ that starts in state s is the con-
tinuation value of the strategy from state s, i.e., the expected discounted stream of payoffs from
implementing strategy σ is given by

υs(σ) = Eσ

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s

]
, (2)

where the expectation in (2) is with respect to the strategy σ. That is, actions are sampled from σ

and the expectation is taken over p(st+1|st, at).
For a fixed value of the discount parameter δ ∈ [0, 1), the optimal continuation value is given

by υ∗
s = supσ∈Σ υs(σ). Existence and uniqueness of υ∗ = (υ∗

s)s∈S is guaranteed by Theorem
6.2.5a in Puterman (1994). Therefore, an optimal strategy σ∗ ∈ ΣSM ,ΣSPM ,Σ exists if υ∗

s =

υs(σ
∗) ≥ υs(σ) for all s ∈ S and all σ ∈ Σ. Crucially, Theorem 6.2.10 in Puterman (1994)

guarantees that there exists an optimal stationary pure Markov strategy σ∗ ∈ ΣSPM , such that
υs(σ

∗) ≥ υs(σ) for all s ∈ S and all σ ∈ Σ.
Therefore, with these theoretical guarantees, we ignore all strategies that are history-dependent

contingency plans, and for the remainder of the paper, a strategy refers to a stationary Markov
strategy, and a pure strategy refers to a stationary pure Markov strategy.
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3.2. Trading Environment

We present our model of the limit order book. Many of our assumptions are for tractability
purposes and conform with the market dynamics described in Section 2. We use the midpoint of
the bid-ask spread as a proxy for the fundamental value of the asset Z. At each time point, the
value of the asset either goes to Z + φ with probability β ∈ (0, 1), or goes down to Z − φ with
probability 1− β, where φ > 0 is the tick size. The fundamental value of the asset is a martingale
when β = 0.5, and it drifts up or down when β > 0.5 or β < 0.5, respectively.

States. The set of states S is the Cartesian product of a set of environmental variables Ω and the
inventory of the market maker Q, i.e., S = Ω × Q. We restrict the level of inventory to the set
Q = {−q̄, ..., 0, ..., q̄}, where q̄ is some positive integer. The set Ω contains a finite number of
environmental variables which are relevant features of the order book and that affect the payoffs
the market maker receives. Here, the elements of Ω are the three regimes of volume imbalance in
the limit order book, i.e., ω ∈ Ω = {BH,N, SH}, because quote-based manipulation is the focus
of our analysis.

As discussed in Section 2, volume imbalance affects the behavior of market participants, and
therefore affects the probability with which a limit order is filled. To capture this effect, let pbω ∈
(0, 1) and paω ∈ (0, 1) denote the probability that a limit buy and a limit sell order, respectively, are
filled in [t, t + 1) for each regime ω ∈ Ω.10 These fill probabilities account for the effect of time-
priority in the limit order book and need not sum to unity. Our empirical results in Section 2 (see
Table 7) show that the fill probabilities of bids and offers are similar when the book is neutral (i.e.,
pbN ≈ paN ), the fill probabilities of offers are higher when the book is buy-heavy (i.e., pbBH ≪ paBH),
and the fill probabilities of bids are higher when the book is sell-heavy (i.e., pbSH ≫ paSH).

Actions. The market maker does not endow the algorithm with an action that manipulates the
order book. Instead, we focus on how an innocuous set of actions leads to manipulation when

10In addition to affecting the fill probabilities, volume imbalance has substantial explanatory power in predicting
future price movements (see e.g., Harris and Panchapagesan, 2005; Cao et al., 2009). Therefore, submitting a ma-
nipulative order may change the volume imbalance regime, which may affect future price movements; however, it
should not affect the fundamental value of the asset because manipulative orders contain no real information about the
fundamentals. In our model, we do not model how volume imbalance affects future price movements because we use
the midpoint of the bid-ask spread as a proxy for the fundamental value of the asset. This prevents unnecessary com-
plications that arise when computing the change in wealth for the payoffs received as a consequence of submitting a
manipulative order. Our analysis focuses specifically on how manipulative orders affect the fill probabilities, and how
the fill probabilities affect the payoffs at the next period. If manipulative orders were to affect future price movements
(temporarily), then quote-based manipulation would become more prevalent in our model because a manipulative
order will increase the profits of round-trip trades. In Section 5, we show that the profit from round-trip trades is a key
factor to determine if quote-based manipulation is optimal.
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individual actions are sequenced in a particular order. That is, quote-based manipulation occurs
when the set of actions produces unintended manipulative behavior as a consequence of a learning
algorithm dynamically optimizing the market maker’s optimality criteria.

The set of actions at time t consists of:

• Submit a buy limit order (LB) on the best bid or a sell limit order (LS) on the best offer for
one unit of the asset. If the limit order is not executed between [t, t + 1), then the order is
cancelled before the start of t+ 1.

• Submit a large buy limit order (LLB) on the best bid or a large sell limit order (LLS) on the
best offer and cancel the order before the start of t+ 1.

• Submit a market order to buy (MB) or to sell (MS) one unit of the asset.

• Do nothing (DN ).

When a large limit order is submitted, the probability that the manipulative order is filled is
low. Recall that when the large limit buy (limit sell) tilts the book to buy-heavy (sell-heavy),
Table 1 shows that the arrival rate of sell (buy) market orders is very low. Therefore, we assume
that at most one unit of the large limit order can be executed. This assumption allows us to validate
that a particular sequence of actions has the intention to manipulate; see the analysis in Section 5.

We do not model the strategic cancellation of limit orders for the sake of analytical tractabil-
ity.11 Rather, we focus on when algorithms learn to create misleading information to buy or to sell
an asset with a higher probability than was otherwise likely to occur, which is the key feature that
enables quote-based manipulation. Explicitly cancelling a limit order, i.e., sending an instruction
to the exchange to cancel an outstanding limit order, is not necessary in Nasdaq if the limit order
is submitted with a time-in-force between t and t+1 because the limit order expires at time t+1.

The set of actions available to the market maker depends on the state s ∈ S. The market maker
has access to the full set of actions As = {LB,LS, LLB,LLS,MB,MS,DN} when s = (ω, q)

for all ω ∈ Ω and for all q ∈ Q\{q̄,−q̄}. At the boundaries of the inventory constraint, the market
maker does not buy or does not sell any additional assets. That is, the set of actions reduces to
As = {LS,LLS,MS,DN} when s = (ω, q̄) for all ω ∈ Ω, and to As = {LB,LLB,MB,DN}
when s = (ω,−q̄) for all ω ∈ Ω.

11Including cancellation of an order as part of the action prevents us from including an additional state variable
that tracks if a market maker has an outstanding order in the book. Additionally, the fill probability between time
[t, t+ 1) and [t+ 1, t+ 2) for a limit order submitted at time t is not the same unless the fill probability is Markov.
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(a) Transition dynamics and probabilities conditional
on the action starting from state q ∈ Q.
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(b) Transition dynamics and probabilities conditional on small orders
or no orders, i.e., a ∈ {LB,LS,MB,MS,DN}.

Figure 1: State transition diagram of (a) the level of inventory, and (b) the volume imbalance regime.

In this setup, individual actions are not manipulative. Although a large limit order can tilt the
book, the action is not manipulative because there is no advantage to be gained from the action
alone; rather, a large limit order will only be manipulative when the action following a large limit
order aims to profit from the tilt created. For this reason, we focus on a manipulative sequence of
actions. We formalize and refine this later in Definition 1.

Transition Dynamics. We present the transition dynamics over the set Q and Ω separately to
simplify the presentation, and recall that the set of states is S = Ω×Q.

The transition dynamics of the inventory level is intuitive. If an action resulted in a buy trans-
action, then the level of inventory increases by one unit, i.e., qt+1 = qt + 1; if an action resulted
in a sell transaction, then the level of inventory decreases by one unit, i.e., qt+1 = qt − 1; and
if an action resulted in no transaction, then the level of inventory stays the same, i.e., qt+1 = qt.
The transition probabilities depend on the action taken and the fill probabilities (for limit order
submissions). Figure 1a presents the state transition diagram when the current state is q ∈ Q. The
edges indicate the transition probability conditional on the action taken.

The transition probabilities of the volume imbalance regime depend on two distinct cases:
when a small or no order is submitted, i.e., a ∈ {LB,LS,MB,MS,DN}, and when a large order
is submitted, i.e., a ∈ {LLB,LLS}. When a small or no order is submitted, volume imbalance
evolves according to the baseline dynamics in Figure 1b because unit orders and no orders have
little to no impact on the liquidity at the best bid-ask quotes, and hence have little to no impact on
the volume imbalance in (1).
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On the other hand, when a large limit order is submitted, the volume of the buy (sell) limit order
is large enough to tilt the volume imbalance regime to the buy-heavy (the sell-heavy) regime. If
we ignore the change in behavior of other market participants, then the volume imbalance regime
changes at time t and reverts back before time t + 1 because of the timing of submission and
cancellation of large limit orders posted by the market maker. However, in Section 2, we saw
that market participants adjust their own liquidity provision. Empirically, we have the following
observations: (i) the average volume of limit orders and limit order cancellations is similar in size
under each volume imbalance regime, but the arrival rates of limit orders are higher than the arrival
rates of limit order cancellations, and (ii) there are more buy (sell) limit orders than sell (buy) limit
orders when the book is buy-heavy (sell-heavy). Therefore, the empirical results show that market
participants adjust their own liquidity provision to submit more limit orders to the same side of
the book as the market maker’s large limit order. However, market participants can never react
instantaneously and will have a delay when reacting to a large limit order from the market maker.
Such delay can occur for a number of reasons, for example, other market participants do not have
the monitoring capabilities (i.e., latency, see Aquilina et al., 2021), or do not have the infrastructure
to react immediately.

The effect of the delay and change in liquidity provision is that the volume imbalance regime
at time t + 1 corresponds to the change in regime caused by the market maker’s large limit or-
der at time t. Therefore, when a large limit order is submitted, the volume imbalance regime
moves to the buy-heavy (the sell-heavy) regime with probability one at the next time step, i.e.,
p(BH |ω, LLB) = 1 and p(SH |ω, LLS) = 1 for all ω ∈ Ω, and the change in fill probabilities
comes into effect at time t+ 1 (as a consequence of the delay); Section 7.1 below considers large
limit order that do not always succeed in tilting the book.

These stylized facts are important for unintentional quote-based manipulation to occur. They
create the necessary temporal link between past actions and future actions of the market maker
so that quote-based manipulation becomes dynamically optimal as a sequence of actions. Thus,
quote-based manipulation emerges as an optimal sequence of actions even if the market maker
does not encode quote-based manipulation as a possible action into the learning algorithm.

Utility. The market maker is averse to holding inventory and maximizes the present value of her
wealth. The wealth W = X + Z q of the market maker is the sum of her cash position X and the
marked-to-market value of the inventory Z q, where Z is the fundamental value of the asset that
is proxied by the midpoint of the bid-ask spread. To cast the market maker’s objective into the
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optimization problem of a learning algorithm, we write the one-step utility as

u(s, a, s′) = Y (s, a, s′)− α (q′)2 , (3)

where q′ ∈ Q is the inventory after action a and α > 0 is the inventory aversion parameter.12

The quadratic penalty ensures that the utility function is concave in the level of inventory. Hence,
the inventory aversion parameter α affects the willingness of the market maker to take on larger
levels, long or short, of inventory. For example, as the value of α increases, the market maker is
more averse to inventory risk so she is less willing to increase the level of inventory, long or short.
On the other hand, Y (s, a, s′) is the change in wealth as a consequence of action a ∈ As in state
s ∈ S. For a value of the tick size φ > 0, the expected change in wealth from state s = (ω, q) ∈ S
and taking action a ∈ As is given by

E [Y (s, a, s′)] =



pbω ϑ/2 + (2 β − 1) (φ q + pbω φ) for a = {LB,LLB} ,

paω ϑ/2 + (2 β − 1) (φ q − paω φ) for a = {LS,LLS} ,

−ϑ/2 + (2 β − 1) (φ q + φ) for a = MB ,

−ϑ/2 + (2 β − 1) (φ q − φ) for a = MS ,

(2 β − 1)φ q for a = DN ,

where the expectation is taken with respect to the fundamental value of the asset Z and the fill
probabilities pbω, p

a
ω of limit orders, and ϑ > 0 is the expected quoted spread.

With this one-step utility function, the optimal continuation value is given by

sup
σ∈Σ

Eσ

[
∞∑
t=0

δt
(
Y (st, at, st+1)− α q2t+1

) ∣∣∣∣∣ s0 = s

]
, (4)

which corresponds to maximizing the present value of wealth subject to a running inventory
penalty.13 The optimization problem in (4) is similar to the optimization problem posed in O’Hara
and Oldfield (1986) where they assume a negative exponential for the one-step utility function.
Our choice of (3) leads to a clear interpretation of the continuation value, and it also simplifies our

12The units of α are such that (4) is in units of wealth. In our model, the value of α is allowed to range between
(0,∞), but in practice, as a rule-of-thumb, the value of α must be several orders of magnitudes smaller than the
expected quoted spread, i.e., α ≪ ϑ, otherwise the market maker will not be willing to make markets.

13In (4), the payoffs received depends on the realization of the inventory level at the next time step; however, the
payoffs are discounted from the start of the period. The timing of the payoffs is constructed to fit within the framework
of learning algorithms, where the payoffs are assumed to be immediate. This construction presents no issue in (4)
because of the expectation operator, and the timing is also consistent with the model of O’Hara and Oldfield (1986).
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analysis in the next section.
The objective to maximize wealth subject to a running inventory penalty is closely related to

robustness and ambiguity aversion from Hansen and Sargent (2007). Specifically, Cartea et al.
(2017) show in a related problem that the market maker’s objective of maximizing wealth subject
to a running inventory penalty is equivalent to a risk-neutral to inventory market maker who is
ambiguous to the drift of the fundamental value of the asset.

Finally, the optimality criterion in (3) produces behavior consistent with inventory models. The
behavior of the optimal strategy depends on the level of inventory, and there is a preferred inventory
position (the preferred inventory position is zero when the fundamental price is a martingale),
which is consistent with the results of Amihud and Mendelson (1986).14 The optimal strategy also
prefers to sell if inventory is long and prefers to buy if inventory is short, which is consistent with
the results of Stoll (1978) and Ho and Stoll (1981).

For simplicity, the remainder of the paper assumes that the fundamental value of the asset is a
martingale, i.e., β = 0.5, so that the expected one-step utility from state s = (ω, q) ∈ S and taking
action a ∈ As is given by

ū(s, a) =



pbω ϑ/2− α pbω (q + 1)2 − α (1− pbω) q
2 for a = {LB,LLB} ,

paω ϑ/2− α paω (q − 1)2 − α (1− paω) q
2 for a = {LS,LLS} ,

−ϑ/2− α (q + 1)2 for a = MB ,

−ϑ/2− α (q − 1)2 for a = MS ,

−α q2 for a = DN .

4. Theory

This section derives conditions to test if quote-based manipulation will occur when decision
making is delegated to a learning algorithm. Our analysis focuses on q ̸= 0, where the overall
intention is to buy or to sell the asset so that inventory reverts to the preferred position q = 0. We
omit the case when q = 0 because the overall intention to buy or to sell is unclear.

Throughout the paper, we maintain the following assumptions on the parameters of our model.

Assumption The expected quoted spread and the inventory aversion parameter are both greater

than zero (i.e., ϑ > 0 and α > 0), the fill probabilities pbω ∈ (0, 1) and paω ∈ (0, 1) for all ω ∈ Ω,

and the market maker is not myopic, i.e., δ > 0.

14See also Madhavan and Smidt (1993) and Hasbrouck and Sofianos (1993) who examine this preferred inventory
position in more detail.
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4.1. Optimal Strategy

The optimal strategy satisfies Bellman’s optimality equations, so the optimal action in each
state s = (ω, q) ∈ S is given by

a∗ = argmax
a∈As

{
ū(s, a) + δ

∑
ω′∈Ω

p(ω′|ω, a)
∑
q′∈Q

p(q′|q, a) υ∗
ω′,q′

}
, (5)

where υ∗ is the optimal continuation value. The optimal action is non-myopic and balances the
immediate expected payoff ū(s, a) with the expected future stream of discounted payoffs. Hence,
the optimal action takes into account how the current action will affect the transition to subsequent
states s, and therefore accounts for how the current action will affect future actions.

To gain some insight into the optimal strategy, the following lemma shows that the optimal
continuation value υ∗ decreases in value as the level of inventory deviates further away from zero.
Therefore, the optimal continuation value υ∗ achieves its maximum value at zero inventory.

Lemma 1 For q ≥ 0, the optimal continuation value υ∗
ω,q is non-increasing as q increases, i.e.,

when 0 ≤ q′ ≤ q, we have υ∗
ω,q ≤ υ∗

ω,q′ for all ω ∈ Ω. Similarly, for q ≤ 0, the optimal continuation

value υ∗
ω,q is non-decreasing as q increases, i.e., when q′ ≤ q ≤ 0, we have υ∗

ω,q′ ≤ υ∗
ω,q for all

ω ∈ Ω.

The result is intuitive because the market maker’s aversion to higher levels of inventory and
because the fundamental value of the asset is a martingale. One implication is that the preferred
level of inventory is zero because it leads to the highest expected stream of discounted payoffs;
hence, optimal strategies will induce mean reversion to zero inventory. The concavity of the
optimal continuation value υ∗

ω,q as a function of inventory holds for each volume imbalance regime
ω. The relationship between the optimal continuation value υ∗

ω,q and the volume imbalance regimes
is key for spoofing to be optimal.

The following lemma eliminates suboptimal actions, which reduces the number of actions to
consider when solving (5).

Lemma 2 For all volume imbalance regimes ω ∈ Ω, the following two statements hold. The

actions do nothing (i.e., DN) and market buy order (i.e., MB) are suboptimal if q > 0. The actions

do nothing (i.e., DN) and market sell order (i.e., MS) are suboptimal if q < 0.

The following proposition characterizes the optimal action for each state s = (ω, q) when
q ̸= 0. The optimal action is characterized in terms of the value of the inventory aversion parameter
α, i.e., the willingness to hold inventory. Figure 2 shows the optimal action as a function of the
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value of the inventory aversion parameter α when q > 0. For each pair of neighboring actions in
Figure 2, there is a cutoff value of α such that the optimal strategy is indifferent between the two
actions because they yield the same expected stream of discounted payoffs. Hence, for a given
value of α, the optimal action is one that maximizes the expected stream of discounted payoffs.

α0(ω, q) α1(ω, q) α2(ω, q) α3(ω, q)

LB LLB LLS LS MS

Figure 2: Optimal action choice for each state s = (ω, q) for q > 0.

For the remainder of the paper, we denote x ∨ y = max{x, y}, and x ∧ y = min{x, y}.

Proposition 1 Let q > 0 and assume paSH < paN < paBH holds. Then, for each state s = (ω, q),

there exist cutoff values of the inventory aversion parameter α0(ω, q) < α1(ω, q) < α2(ω, q) <

α3(ω, q) such that the optimal stationary pure Markov strategy σ∗ ∈ ΣSPM is given by

σ∗(ω, q) =



LB if α ∈
(
0, 0 ∨ α0(ω, q)

)
,

LLB if α ∈
(
0 ∨ α0(ω, q), 0 ∨ α1(ω, q)

)
,

LLS if α ∈
(
0 ∨ α1(ω, q), 0 ∨ α2(ω, q)

)
,

LS if α ∈
(
0 ∨ α2(ω, q), 0 ∨ α3(ω, q)

)
,

MS if α ∈
(
0 ∨ α3(ω, q),+∞

)
.

Similarly, let q < 0 and assume pbSH > pbN > pbBH holds. Then, for each state s = (ω, q), there

exist cutoff values of the inventory aversion parameter α0(ω, q) < α1(ω, q) < α2(ω, q) < α3(ω, q)

such that the optimal stationary pure Markov strategy σ∗ ∈ ΣSPM is given by

σ∗(ω, q) =



LS if α ∈
(
0, 0 ∨ α0(ω, q)

)
,

LLS if α ∈
(
0 ∨ α0(ω, q), 0 ∨ α1(ω, q)

)
,

LLB if α ∈
(
0 ∨ α1(ω, q), 0 ∨ α2(ω, q)

)
,

LB if α ∈
(
0 ∨ α2(ω, q), 0 ∨ α3(ω, q)

)
,

MB if α ∈
(
0 ∨ α3(ω, q),+∞

)
.

In general, the cutoff values α0(ω, q), α1(ω, q), and α3(ω, q) are different for positive and
negative inventory. However, the cutoff values are the same for positive and negative of inventory
in the particular case when paBH = pbSH , paSH = pbBH , and paN = pbN , and when the transition
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probability matrix for the Markov chain given in Figure 1b is a centrosymmetric matrix (i.e., a
matrix that is symmetric about its center).

For q > 0 and α = α0(s), the optimal strategy is indifferent between a buy limit order and
a large buy limit order in state s; similarly, for q < 0 and α = α0(s), the optimal strategy is
indifferent between a sell limit order and a large sell limit order in state s. A similar interpretation
applies to the remaining cutoff values α1(s), α2(s), and α3(s). The conditions in the proposition
include the maximum operator because the inventory aversion parameter is strictly positive and
there is no guarantee that the cutoff values are positive. The conditions on the fill probabilities are
not restrictive because they hold for all assets and all the timescales considered (see Table 7).

The proposition is intuitive because the optimal strategy induces mean reversion to zero in-
ventory. For example, when there is less willingness to hold larger values of inventory (i.e., for
large values of α), the action preference favors actions that aim to sell the asset and reduce the
level of inventory when q > 0, and the action preference favors actions that aim to buy the asset
and increase the level of inventory when q < 0. Similarly, for a fixed value of α, as the level
of inventory deviates away from zero, the cutoff value α1(ω, q) shifts closer to zero (the value of
ᾱ1(ω, q) in (6) decreases as the absolute value of q increases). Hence, the action preference favors
actions that aim at selling the asset to reduce the level of inventory when q > 0, and that aim at
buying the asset to increase the level of inventory when q < 0.

4.2. Quote-Based Manipulation

To derive the conditions to test if algorithms will learn to manipulate the order book, we first
define quote-based manipulation in terms of the set of actions available. Recall that an explicit
consideration of our model is that the market maker does not endow her algorithm with an individ-
ual action that manipulates the book; rather, manipulation occurs in our model when a particular
combination of actions is sequenced together. The following definition includes a refinement that
also accounts for the market maker’s objective to buy or to sell the asset.

Definition 1 (Manipulation) For q > 0, quote-based manipulation occurs if a large buy limit

order is placed at time t, and it is followed at time t + 1 by a unit or large sell limit order.

Similarly, for q < 0, quote-based manipulation occurs if a large sell limit order is placed at time

t, and it is followed at time t+ 1 by a unit or large buy limit order.

The sequence of actions in Definition 1 is manipulative because the optimal strategy intends
to revert to the preferred inventory position of zero, so sending a large buy limit order when
the market maker is long or a large sell limit order when the market maker is short counters
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this objective. Therefore, if these sequences arise in optimality, then the market maker must be
profiting through this manipulative order by tilting the book in her favor for future actions.

Type I:

Manipulation

0 α0(ω, q) α1(ω, q)

LLB

Starting in s = (ω, q)

at time t

α1(ω
′, q′) α2(ω

′, q′) α3(ω
′, q′)

LLB LS LLS MS Transition to s′ = (BH, q)
at time t+ 1

Type II:

Manipulation

0 α0(ω, q) α1(ω, q)

LLB

Starting in s = (ω, q)

at time t

α1(ω
′, q′) α2(ω

′, q′) α3(ω
′, q′)

LLB LS LLS MS Transition to s′ = (BH, q + 1)
at time t+ 1

Figure 3: Quote-based manipulation is optimal when the value of the inventory aversion parameter α lies within
the shaded region for q > 0. The top panel describes type I manipulation, and the bottom panel describes type II
manipulation.

One consequence of quote-based manipulation is that the manipulative order may get caught
out and lead to a transaction. We distinguish this possibility into two cases. Type I manipulation
occurs when the manipulative order is not caught out, i.e., it is not filled. Specifically, type I
manipulation is the sequence initiated by LLB in state s = (ω, q) and followed by LS or LLS in
state s′ = (BH, q) when q > 0, or the sequence initiated by LLS in state s = (ω, q) and followed
by LB or LLB in state s′ = (SH, q) when q < 0. On the other hand, type II manipulation occurs
when the manipulative order is caught out, i.e., it gets filled. Specifically, type II manipulation
is the sequence initiated by LLB in state s = (ω, q) and followed by LS or LLS in state s′ =

(BH, q + 1) when q > 0, or the sequence initiated by LLS in state s = (ω, q) and followed by
LB or LLB in state s′ = (SH, q − 1) when q < 0.

Figure 3 illustrates the two types of manipulation when q > 0. Here, manipulation occurs if the
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value of the inventory aversion parameter α is within the shaded region. We say that manipulation
occurs in state s = (ω, q) if the optimal action is to submit a large buy limit order in state s =

(ω, q), and when the market transitions to the subsequent state s′ the optimal strategy prescribes to
submit either a sell limit order or a large sell limit order.

We formalize the definition of quote-based manipulation in the context of an optimal strategy.
We adopt the standard convention that the interval (x, y) = ∅ if x ≥ y, and recall that x ∨ y =

max{x, y}, and x ∧ y = min{x, y}.

Definition 2 (Manipulative Strategy) If there exists a state s = (ω, q) such that

(i) ∅ ≠ I1(s) =


(
0 ∨ α0(ω, q) ∨ α1(BH, q),

(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(BH, q)

))
if q > 0 ,(

0 ∨ α0(ω, q) ∨ α1(SH, q),
(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(SH, q)

))
if q < 0 ,

or

(ii) ∅ ≠ I2(s) =


(
0 ∨ α0(ω, q) ∨ α1(BH, q + 1),

(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(BH, q + 1)

))
if q > 0 ,(

0 ∨ α0(ω, q) ∨ α1(SH, q − 1),
(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(SH, q − 1)

))
if q < 0 .

Then, if the value of the inventory aversion parameter α ∈ I1(s), the optimal strategy is a ma-

nipulative strategy, where type I manipulation occurs in states s where condition (i) is satisfied.

Similarly, if the value of the inventory aversion parameter α ∈ I2(s), the optimal strategy is a ma-

nipulative strategy, where type II manipulation occurs in states s where condition (ii) is satisfied.

The intervals I1(s) and I2(s) describe conditions for quote-based manipulation to be dynami-
cally optimal as a sequence of actions. Specifically, if α ∈ I1(s) or α ∈ I2(s), then manipulation
occurs in state s; if α ∈ I1(s), then manipulation occurs in state s when the manipulative order is
not filled; if α ∈ I2(s), then manipulation occurs in state s when the manipulative order is filled;
and if α ∈ I1(s)∩I2(s), then manipulation occurs in state s regardless of whether the manipulative
order was filled or not.

4.3. Testable Conditions

To obtain testable conditions that apply to a wide variety of learning algorithms, we make the
following assumption.

Assumption A The learning algorithm used by the market maker learns an optimal stationary

pure Markov strategy σ∗ ∈ ΣSPM .

This assumption is not restrictive and allows us to analyze the framework where algorithms
learn optimal strategies so that the testable conditions we derive apply to generic learning algo-
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rithms. The premise and objective of designing a learning algorithm is to learn an optimal sta-
tionary pure Markov strategy. Indeed, the most popular offline learning algorithms (such as policy
iteration and value iteration) and online learning algorithms (such as Q-learning and SARSA)
satisfy this assumption (see for example Puterman, 1994; Sutton and Barto, 2018).15

Clearly, when Assumption A and the conditions for manipulation in Definition 2 hold, the
algorithm will learn a manipulative strategy. The issue is that the intervals I1(s) and I2(s) may
be empty. Additionally, the intervals depend on the cutoff values, which in turn, depend on the
parameters of the model and on the optimal continuation value υ∗. The following theorem pro-
vides sufficient conditions to determine if algorithms will learn manipulative strategies. These
conditions depend only on the fill probabilities of the limit orders.

Theorem 1 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If the conditions

pbBH < paBH (C1)

and

paSH < pbSH (C2)

hold, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i) s = (SH, q > 0), (ii) s = (BH, q <

0), and (iii) s = (N, q) for either q > 0 or q < 0.

These testable conditions have strong implications summarized in the following corollary.

Corollary 1 Let the following hold: (i) Assumption A, (ii) paSH < paN < paBH and pbSH > pbN >

pbBH , and (iii) (C1) and (C2). Then, for any state s = (ω, q) outlined in Theorem 1, there exist

values of the inventory aversion parameter α for which the algorithm will learn a type I manip-

ulation strategy in state s; similarly, there exist values of the inventory aversion parameter α for

which the algorithm will learn a type II manipulation strategy in state s.

In short, if the fill probabilities satisfy certain conditions, then there are values of the inventory
aversion parameter α where an algorithm will learn a manipulative strategy in which type I and/or
type II manipulation occurs in state s. Whether both types or only one type is learned depends on
the value of the inventory aversion parameter α and if the intervals I1(s) and I2(s) overlap.

The role of the conditions in Theorem 1 is intuitive. The conditions for the fill probabilities of
the ask and of the bid are so that the ordering of action preferences in Proposition 1 hold. For q > 0,

15See Watkins and Dayan (1992) for a convergence proof of Q-learning and Singh et al. (2000) for a convergence
proof of SARSA. See also Hambly et al. (2023), Ning et al. (2021), and Spooner et al. (2018) for applications of
learning algorithms in financial markets that satisfy this assumption.
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condition (C1) ensures that buy limit orders are not optimal when the book is buy-heavy, while
condition (C2) ensures that there are values of the inventory aversion parameter α for which it is
optimal to initiate the manipulative sequence with a large buy limit order in sell-heavy. Similarly,
for q < 0, condition (C2) ensures that sell limit orders are not optimal when the book is sell-heavy,
while condition (C1) ensures that there are values of the inventory aversion parameter α for which
it is optimal to initiate the manipulative sequence with a large sell limit order in buy-heavy.

For the neutral regime, conditions (C1) and (C2) ensure that the manipulative sequence will be
completed for positive inventory and negative inventory, respectively. Although we show that there
are values of the inventory aversion parameter α for which it is optimal to initiate the manipulative
sequence, we do not know if the manipulative sequence is initiated with a large buy limit order
for q > 0, or if the manipulative sequence is initiated with a large sell limit order for q < 0. The
following theorem imposes stronger conditions to resolve this indeterminacy.

Theorem 2 Let paSH < paN < paBH , pbSH > pbN > pbBH , (C1) and (C2) hold, and let

paBH − pbSH < min

{
(pbSH −max{paN , pbN})

pN |BH

pBH|BH

, (pbSH −max{paN , pbN})
pN |N

pBH|N

}
pbSH − paBH < min

{
(paBH −max{paN , pbN})

pN |SH

pSH|SH
, (paBH −max{paN , pbN})

pN |N

pSH|N

} (C3)

hold.

2.1 If (pbN − paN) >
δ

1 + δ
(pbSH − paBH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all states

s = (N, q > 0).

2.2 If (paN − pbN) >
δ

1 + δ
(paBH − pbSH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all states

s = (N, q < 0).

Condition (C3) is a formal condition to describe that the values of the fill probabilities paBH

and pbSH are similar, i.e., paBH ≈ pbSH . This condition simplifies the analysis to determine if the
manipulative sequence is initiated in the neutral regime with a large buy limit order for q > 0,
or if the manipulative sequence is initiated with a large sell limit order for q < 0. On the other
hand, the conditions (pbN − paN) >

δ
1+δ

(pbSH − paBH) and (paN − pbN) >
δ

1+δ
(paBH − pbSH) describe

the condition to determine if manipulation occurs when inventory is long or short in the neutral
regime. These conditions are such that one inequality will always hold, but never both or neither.

One can think of the fill probabilities in the neutral regime as the short-term incentives asso-
ciated with the immediate payoffs, and the fill probabilities in the heavy regimes as the long-term
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incentives associated with discounted future payoffs. The intuition behind these conditions is
clear. If the signs of pbN − paN and pbSH − paBH are different, then the short-term and long-term
incentives align. On the other hand, if the signs of pbN − paN and pbSH − paBH are the same, then
the short-term and long-term incentives are not aligned, so the determining factor is the tradeoff
between short-term and long-term incentives.

For example, for manipulation to occur in the neutral regime for q > 0, it must be that there
are values of the inventory aversion parameter α for which it is optimal to initiate the manipulative
sequence with a large buy limit order. If pbN > paN and pbSH < paBH , then the signs of pbN − paN and
pbSH − paBH are different, so the short-term and long-term incentives align because the immediate
payoff from a buy limit order is greater than that of a sell limit order, and the future payoffs from
being in buy-heavy (proxied with paBH) are better than the future payoffs from being in sell-heavy
(proxied with pbSH). Thus, it is clear that there are values of the inventory aversion parameter α
for which it is optimal to initiate the manipulative sequence with a large buy limit order because
the incentives align. On the other hand, if pbN > paN and pbSH > paBH , then the signs of pbN − paN
and pbSH − paBH are the same, so the short-term and long-term incentives are not aligned. In this
case, if the immediate payoff outweighs the discounted future payoffs, then there are values of the
inventory aversion parameter α for which it is optimal to initiate the manipulative sequence with
a large buy limit order.

Both Theorems 1 and 2 are sufficient (but not necessary) conditions for the intervals I1(s) and
I2(s) to exist. Hence, the theorems provide conditions to test when a manipulative strategy could
be optimal; however, failure to satisfy the conditions does not mean that a manipulative strategy
cannot be optimal. Moreover, the theorems do not specify the values of the inventory aversion
parameter α for which a manipulative strategy is optimal. To narrow the search for values of the
inventory aversion parameter α where an algorithm will learn to manipulate the book, we derive
an interval I ′(s) that contains both I1(s) and I2(s), which uses the following upper bound.

Lemma 3 Let m ∈ (0, 1) be the minimum element of the transition probability matrix for the

Markov chain given in Figure 1b. Then for all ω, ω′ ∈ Ω and q ∈ Q, we have υ∗
ω,q − υ∗

ω′,q ≤ ϑ/m.

With this lemma, the following proposition characterizes the interval I ′(s) that contains both
I1(s) and I2(s), and does not depend on the optimal continuation value υ∗.

Proposition 2 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. For all s = (ω, q) when q ̸= 0,

the interval I ′(s) =
(
0, ᾱ1(ω, q)

)
is such that I1(s) ⊂ I ′(s) and I2(s) ⊂ I ′(s).

The interval I ′(s) is characterized in terms of the upper bound of the cutoff value α1(ω, q)
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given by

α1(ω, q) ≤ ᾱ1(ω, q) =


[(

pbω − paω
)
ϑ/2 + ϑ/m

][
paω (2 q − 1) + pbω (2 q + 1)

]−1
if q > 0 ,[ (

paω − pbω
)
ϑ/2 + ϑ/m

][
− paω (2 q − 1)− pbω (2 q + 1)

]−1
if q < 0 ,

(6)

for all ω ∈ Ω. The value of ᾱ1(ω, q) is strictly positive, depends only on parameters of the model,
and is easy to compute. The interval I ′(s) narrows the search for values of the inventory aversion
parameter α for which an algorithm will learn a manipulative strategy.

Indeed, α ∈ I ′(s) is a necessary but not a sufficient condition for an algorithm to learn a
manipulative strategy in state s. Specifically, not all values of α ∈ I ′(s) will lead to manipulation
in state s because not all values of α ∈ I ′(s) lie within I1(s) or I2(s). Nonetheless, if α /∈ I ′(s),
then an algorithm cannot learn a strategy that manipulates the order book in state s. In the next
section, we use this condition to analyze how parameters of the model affect an algorithm’s ability
to learn to manipulate the order book.

5. Understanding Manipulation and Spoofing

This section analyzes the mechanics of what makes quote-based manipulation dynamically
optimal and how parameters of the model affect the optimality of manipulative strategies.

5.1. Workings of Manipulation

Mechanics of Manipulation. Figure 4 illustrates the mechanics behind manipulation in optimal-
ity with data from AMZN and CSCO at 0.5 second decision intervals. The model parameters are
estimated with the dataset from Section 2; the estimation procedure is discussed below in Sec-
tion 6. With a discount factor of δ = 0.95, we solve for the optimal strategy with the policy
iteration algorithm and solve for the optimal continuation values υ∗

ω,q for each volume imbalance
regime as a function of the inventory level. The inventory aversion parameter is α = 10−5.

For each volume imbalance regime, there is a gravitational pull towards zero inventory because
υ∗
ω,q achieves its maximum at q = 0. However, the optimal continuation values υ∗

ω,q as a function of
inventory q differs based on the volume imbalance regimes, i.e., there is asymmetry in the volume
imbalance regimes. This asymmetry is key for quote-based manipulation to arise. Specifically,
consider AMZN at ω = SH with q = 1, and focus only on the expected discounted future
payoffs. If the market maker tries to revert to zero inventory with a sell limit order, then the
expected discounted future payoffs is an expectation across the optimal continuation values υ∗

ω,q for
all regimes and for inventory levels q = 0 and q = 1. On the other hand, if the market maker uses
a manipulative order (a large buy limit order), then the expected discounted future payoffs is an
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Figure 4: Optimal continuation values υ∗
ω,q.

expectation across the optimal continuation values υ∗
ω,q for buy-heavy and for inventory levels q =

1 and q = 2. This difference in the expected discounted future payoffs induced by the asymmetry
in the volume imbalance regimes is a key factor that makes a manipulative strategy dynamically
optimal. Specifically, if this difference outweighs the gravitational pull to zero inventory and the
immediate payoffs, then a manipulative strategy becomes dynamically optimal.

The concavity of these curves decreases as the value of the inventory aversion parameter α
decreases. A decrease in the concavity increases the difference in the expected discounted future
payoffs induced by the asymmetry; hence, quote-based manipulation is more likely to become
dynamically optimal as the market maker becomes more tolerant to bearing inventory risk.

Spoofing and Fill Preferences. Counter-intuitive to the motivation to manipulate the book, we
find that getting caught out with a manipulative order is not always suboptimal. Indeed, there
are situations in which manipulation occurs with the preference for the manipulative order to get
filled. To show this, we analyze if the market maker prefers that her manipulative order is caught
out, or if she prefers that her manipulative order does not get caught out. We compute

υs(LLB, filled) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = LLB, q1 = q0 + 1

]
,

υs(LLB, not filled) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = LLB, q1 = q0

]
,

28



which corresponds to the expected stream of discounted payoffs conditional on a manipulative
order getting filled or not for q > 0. If υs(LLB, filled) > υs(LLB, not filled), then the mar-
ket maker prefers that her manipulative order is caught out. Conversely, if υs(LLB, filled) <

υs(LLB, not filled), then the market prefers that her manipulative order does not get caught out.
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Figure 5: Expected stream of discounted payoffs when the manipulative order is filled or not for s = (SH, q = 2).

Figure 5 illustrates this preference. The shaded region denotes the values of the inventory
aversion parameter where manipulation is optimal, i.e., I1(s) ∪ I2(s). The vertical black line
denotes the cutoff value of α for which the preference switches. Within the shaded area, when α

is to the left of the vertical line, the market maker prefers that her manipulative order is caught
out; and to the right of the vertical line, the market prefers that her manipulative order does not get
caught out.

A market maker who prefers a fill of her manipulative order may seem counter-intuitive when
the motivation to manipulate the book is to manage inventory risk and revert to the preferred
inventory position. However, managing inventory risk is only one part of the optimization problem
to determine if manipulation is optimal. The market maker may prefer that her manipulative order
is filled because the manipulative order increases the probability to complete a round-trip trade;
i.e., the additional profit from the round-trip trade outweighs the costs to manage inventory risk.

Based on the fill preferences, we further refine quote-based manipulation into two forms: ma-
nipulation for a round-trip trade where manipulation occurs with the preference that the manipu-
lative order is filled, and spoofing where manipulation occurs with the preference that the manip-
ulative order is not filled. This refinement is different from type I and type II manipulation, which
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determines the optimality of the manipulation sequence. The refinement of fill preferences allow
us to determine the intention behind a market makers manipulative order, which allows us to make
the distinction between spoofing and manipulation for a round-trip trade.

One might argue that manipulation for a round-trip trade is not market manipulation but rather
a byproduct of making markets. In our model, we assume (based on empirical results) that at most
one unit of the large limit order can be executed. We make this assumption so that the market
maker has the same expected one-step utility if she sends a limit order for one unit. Therefore,
if she were to make markets without manipulating the book, then she would not use a large limit
order. Given that a limit order for one unit (in the same direction as the manipulative order) is
never suboptimal (see Figure 6 in Appendix B), it means that the market maker only sends a large
limit order to tilt the book to complete a round-trip trade that, in expectation, will be completed
faster than otherwise.

5.2. Model Parameters and Manipulation

Building on the insights behind the driving forces of quote-based manipulation, we formalize
how parameters of the model affect an algorithm’s ability to learn to manipulate the order book.
The results rely on Proposition 2 so that if α /∈ I ′(s), then an algorithm cannot learn a strategy
that manipulates the order book in state s.

Inventory Aversion. The following proposition shows that if the market maker is sufficiently
averse to holding larger levels of inventory, then their algorithm will not learn to manipulate the
order book.

Proposition 3 Let Assumption A hold and let paSH < paN < paBH and pbSH > pbN > pbBH hold. If

the market maker’s inventory aversion parameter is such that

α > max
ω∈Ω, q∈{−1,1}

{ᾱ1(ω, q)} , (7)

then the algorithm will not learn to manipulate the order book for any state s = (ω, q ̸= 0).

For a fixed volume imbalance regime ω, the upper bound of the cutoff ᾱ1(ω, q) decreases
monotonically as the absolute value of q increases. When the value of the inventory aversion
parameter α satisfies (7), then α /∈ I ′(s) for all states s = (ω, q) where q ̸= 0, and the algorithm
will not learn a manipulative strategy for all q ̸= 0.

Conversely, if the value of the inventory aversion parameter does not satisfy the inequality in
(7), then α ∈ I ′(s) for some states s = (ω, q) where q ̸= 0. Here, there is a possibility that an
algorithm will learn a manipulative strategy, but it is not guaranteed.
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The result is intuitive if we consider the factors that make a manipulative strategy dynamically
optimal. When initiating the manipulative sequence with a large limit order, there is a possibility
that the large limit order is filled. Therefore, if the market maker is sufficiently averse to holding
larger levels of inventory, then the cost associated with a manipulative order getting filled is too
high for manipulation to be optimal; thus, the algorithm will not learn to manipulate the order
book.

Quoted Spread. The following proposition shows how the expected quoted spread affects an al-
gorithm’s ability to learn to manipulate the order book.

Proposition 4 Let Assumption A hold and let paSH < paN < paBH and pbSH > pbN > pbBH hold. If

the expected quoted spread ϑ → 0, then the algorithm will not learn to manipulate the order book

for any state s = (ω, q) where q ̸= 0.

The result follows because ᾱ1(ω, q) → 0 for all ω ∈ Ω and q ̸= 0 as ϑ → 0. This ensures that
for α > 0, we have α /∈ I ′(s) for all states s = (ω, q) where q ̸= 0, so the algorithm will not learn
a manipulative strategy.

Theory shows that the quoted bid-ask spread will not be zero even if the tick size is zero (i.e.,
φ = 0) because market makers must recover inventory costs (e.g., Stoll, 1978; Ho and Stoll, 1981),
and losses due to asymmetric information (e.g., Copeland and Galai, 1983; Glosten and Milgrom,
1985; Glosten, 1994). Nonetheless, the proposition demonstrates the relationship between the ex-
pected quoted spread and quote-based manipulation. As the expected quoted spread decreases, the
range of values of the inventory aversion parameter for which manipulation is optimal decreases.
Conversely, as the expected quoted spread increases, the range of values of the inventory aversion
parameter for which manipulation is optimal increases.

The result is also intuitive when one analyzes the factors that make manipulation optimal. First,
as the expected quoted spread decreases, the gains from using limit orders and the costs from using
market orders become negligible, so it is more efficient to revert to the preferred inventory position
using market orders because they guarantee execution. Therefore, the uncertainty of a limit order
execution and the possibility that a manipulative order is caught out makes a manipulative strategy
suboptimal. Finally, as the expected quoted spread decreases, the expected profit from round-trip
trades also decreases. The decrease in the profits does not outweigh the costs required to manage
the inventory risk, and hence a manipulative strategy is suboptimal.
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6. Empirical Estimation

This section uses Nasdaq data to test the conditions derived in Section 4. We discuss the
estimation procedure for the parameters of our model, and we use these estimates to determine if
market conditions from Nasdaq are conducive for an algorithm to learn to manipulate the order
book. We use the dataset from Section 2.

Table 8: Summary statistics for April 2023.

Ticker
Decision

interval ∆t

Ave. spread

(ticks)

Ave. queue

size best bid

Ave. queue

size best ask

Ave. volume

traded per ∆t

Ave. volume

imbalance

AAPL

5 seconds 1.168 583 600 1217 0.008

1 second 1.167 583 600 243 0.006

0.5 seconds 1.168 584 601 122 0.006

AMZN

5 second 1.205 532 572 1146 -0.027

1 seconds 1.206 532 571 229 -0.028

0.5 seconds 1.206 533 571 115 -0.027

CSCO

5 seconds 1.005 2088 2046 488 0.012

1 second 1.006 2100 2060 98 0.012

0.5 seconds 1.011 2120 2078 49 0.012

INTC

5 seconds 1.005 3378 3517 975 -0.014

1 second 1.005 3385 3530 195 -0.016

0.5 seconds 1.006 3405 3557 97 -0.017

MSFT

5 seconds 1.783 114 119 746 -0.021

1 second 1.784 114 119 149 -0.022

0.5 seconds 1.788 114 119 75 -0.022

TSLA

5 seconds 2.231 190 200 2089 -0.01

1 second 2.235 195 198 418 -0.01

0.5 seconds 2.232 194 198 209 -0.009

Table 8 provides summary statistics for seven assets at three different decision intervals ∆t: 5
seconds, 1 second, and 0.5 seconds. We estimate the statistics by sampling the relevant features at
every decision interval.

6.1. Estimation Procedure

In our model, there are two sets of model parameters to estimate: the transition probabilities
of the volume imbalance regime pω′|ω for all ω, ω′ ∈ Ω, and the fill probabilities in each volume
imbalance regime paω and pbω for all ω ∈ Ω.
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Transition probabilities. Let nω,ω′ denote the number of times that volume imbalance moved from
state ω to ω′. Then, from standard results, we have that

p̂ω′|ω =
nω,ω′∑
ω′′ nω,ω′′

,

where transitions from the end of one trading day to the start of the next trading day are excluded
from the count. Table 12 of Appendix B provides the estimates of the transition probability matrix
for the assets at the three different decision intervals.16

Fill probabilities. We estimate the fill probabilities with counterfactual analysis. Following Ar-
royo et al. (2023), we submit “hypothetical” limit orders (with unit volume) at the end of the best
bid and best ask queues at time t, and we track if the hypothetical order was filled between t and
t+1 following price-time priority. These hypothetical orders account for all the change in behavior
of market participants described in Section 2.

6.2. Spoofing Conditions

Table 9 uses the estimates from Tables 7 and 12 to check if conditions in Theorems 1 and 2 are
satisfied. The entry NA indicates that the conditions in Theorems 4.1 and 4.2 are not applicable
because condition (C3) does not hold.

Table 9: Testable conditions from Theorems 1 and 2.

Ticker
5 seconds 1 second 0.5 seconds

(C1), (C2) (C3) Side (C1), (C2) (C3) Side (C1), (C2) (C3) Side

AAPL ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0

AMZN ✓ ✓ q < 0 ✓ ✓ q > 0 ✓ ✓ q > 0

CSCO ✓ ✓ q < 0 ✓ ✓ q < 0 ✓ ✓ q > 0

INTC ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0

MSFT ✓ ✓ q < 0 ✓ ✓ q > 0 ✓ ✗ NA

TSLA ✓ ✓ q < 0 ✓ ✓ q < 0 ✓ ✓ q < 0

For all assets and decision intervals considered, conditions (C1) and (C2) are satisfied. There-
fore, there are values of the inventory aversion parameter α where a manipulative strategy is op-
timal for s = (SH, q > 0), s = (BH, q < 0), and s = (N, q) for either q > 0 or q < 0. On the

16The rows of the estimates of the transition probability matrix do not always sum to unity because we round the
estimates to the second decimal point.
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other hand, condition (C3) allows one to determine if manipulation occurs in the neutral regime
when inventory is long or short.

Figure 7 in Appendix B plots ᾱ1(ω, q) as a function of inventory, so the area under the curves
describes the intervals I ′(s), where α ∈ I ′(s) is a necessary condition for the algorithm to learn to
manipulate the order book. Therefore, for all assets and decision intervals considered, there exists
a range of values of the inventory aversion parameter α below the curve where an algorithm will
learn to manipulate the book.

7. Extensions

This section analyzes extensions to our model, including additional testable conditions to de-
termine when algorithms will learn to manipulate the order book.

7.1. Transition Probability

In our model, when a large limit order is submitted, the volume imbalance regime moves to the
buy-heavy (the sell-heavy) regime with probability one at the next time step, i.e., p(BH |ω, LLB) =

1 and p(SH |ω, LLS) = 1 for all ω ∈ Ω. Here, we relax the assumption so that a large buy (sell)
limit order moves the volume imbalance regime to buy-heavy (sell-heavy) with probability 1− κ,
and the volume imbalance moves to the “wrong” regime with probability κ/2, where κ ∈ [0, 1).
Formally, we have p(BH |ω, LLB) = 1− κ, p(N |ω, LLB) = κ/2, and p(SH |ω, LLB) = κ/2

when a large buy limit order is submitted; and p(SH |ω, LLS) = 1 − κ, p(N |ω, LLS) = κ/2,
and p(BH |ω, LLS) = κ/2 when a large sell limit order is submitted. We recover the original
model when κ = 0.

The following theorem shows that our testable conditions from Theorem 1 continue to hold
if the transition probabilities from large limit orders (i) tilt the volume imbalance regime into
the appropriate heavy regime with a higher probability than the baseline transition dynamics in
Figure 1b, and (ii) tilt the volume imbalance regime into the wrong regime with a lower probability
than the baseline transition dynamics in Figure 1b.

Theorem 3 Let paSH < paN < paBH , pbSH > pbN > pbBH , (C1), and (C2) hold. If the transition
probabilities associated with large limit orders are such that

p(BH |ω,LLB) = 1− κ > pBH|ω , p(N |ω,LLB) =
κ

2
< pN |ω , p(SH |ω,LLB) =

κ

2
< pSH|ω ,

p(SH |ω,LLS) = 1− κ > pSH|ω , p(N |ω,LLS) = κ

2
< pN |ω , p(BH |ω,LLS) = κ

2
< pBH|ω ,

(C4)

hold for all ω ∈ Ω. Then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i) s = (SH, q > 0), (ii)

s = (BH, q < 0), and (iii) s = (N, q) for either q > 0 or q < 0.
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The conditions on the fill probabilities play the same role as before. However, condition (C4)
on the transition probabilities ensures large limit orders meaningfully affect the transition proba-
bilities so that one can exploit the benefits created by a manipulative order, i.e., to facilitate the
market maker in reverting her inventory position, or to exploit a round-trip trade.

For most assets in Table 12 of Appendix B, we see that condition (C4) holds for values of κ
ranging from 0.2 to 0.5 depending on the stock. Therefore, in certain instruments, if a manipulative
order allows one to transition to the appropriate heavy regime half of the time, then a manipulative
strategy can become dynamically optimal. On the other hand, assets such as CSCO and INTC
only hold for small values of κ ranging from 0.04 to 0.2 depending on the decision interval. In
these cases, a manipulative strategy may no longer be dynamically optimal if a manipulative order
does not allow one to transition to the appropriate heavy regime almost all of the time.

7.2. Finite Trading Horizon

Our analysis above focused on the tractable case with an infinite trading horizon because most
learning algorithms are designed for the infinite horizon setting. However, a finite horizon model
best captures intraday trading because many market makers close inventories before the end of the
trading day. To capture this, we assume the one-step utility at time T corresponds to DN . With a
finite trading horizon, theoretical results guarantee only that there exists an optimal non-stationary
pure Markov strategy (see for example Proposition 4.4.3 in Puterman, 1994), so the space of
strategies to search over significantly increases. This is intuitive because the optimal action with a
few minutes before the end of the trading horizon differs from the optimal action with a few hours
before closing. Nonetheless, the problem can be readily solved through backwards induction.

Intuitively, for a sufficiently long horizon T , the trading behaviour at the start should resemble
that from an infinite horizon problem. Although we do not have testable conditions for a finite
trading horizon, we use dynamic programming to solve numerically for the optimal non-stationary
pure Markov strategy. Figures 8 and 9 of Appendix B use the empirical estimates from Tables 7
and 12, and discount factor δ = 1, to plot the optimal actions for each state and at each point in
time t = 0, 1, 2, ..., T = 30 . From the figure, we can string together the optimal action from one
time step to another, and we show that quote-based manipulation can occur at every time point t,
and that manipulation occurs for inventory levels closer to zero.

8. Multiple Market Makers

Our analysis thus far focused on quote-based manipulation by a single market maker. An
extension is to study multiple market makers who delegate their decision making processes to
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learning algorithms. How does the introduction of another market maker (who also uses a learning
algorithm) affect a single algorithm’s ability to manipulate the order book?

We ignore competition between limit orders from the different algorithms to simplify the anal-
ysis. Instead, we analyze the effect of multiple algorithms attempting to control the volume imbal-
ance regime through manipulative orders. To formalize the new transition dynamics of the volume
imbalance regime, we focus on two market makers where a = (a1, a2) is the action profile. The
transition dynamics now depend on the action profile p(ω′ |ω, a) for all ω, ω′ ∈ Ω, which we
summarize below:

• If both market makers submit a small or no order, then the volume imbalance evolves ac-
cording to its baseline dynamics in Figure 1b.

• If one market maker submits a large limit order and the other market maker submits a small
or no order, then the volume imbalance regime moves to buy-heavy or sell-heavy with prob-
ability one (depending on which side the large limit order is placed).

• If both market makers submit large limit orders on the same side of the book, then the volume
imbalance regime moves to buy-heavy or sell-heavy with probability one (depending on
which side the large limit orders are placed).

• If both market makers submit large limit orders on opposing sides of the book, then the
volume imbalance evolves according its baseline dynamics in Figure 1b.

The notion of optimality with multiple market makers is based on equilibrium solution con-
cepts. In turn, the solution concepts depend on the game and the strategies used by the learning
algorithms. Generic learning algorithms search for an optimal strategy in the space of station-
ary Markov strategies; hence, an algorithm conditions its behavior on the set of states encoded in
the algorithm. In our setting, each algorithm conditions their behavior on the volume imbalance
regime which is publicly observable, but they also condition their behavior on their own level of
inventory which is private information.

With private information, the most appropriate equilibrium solution concept in this setting is a
perfect Bayesian equilibrium, where the belief determines the opponent’s level of inventory, and
the optimal strategy should be optimal with respect to the belief. However, generic learning algo-
rithms use stationary Markov strategies and do not account for an opponent’s level of inventory, so
a perfect Bayesian equilibrium is not appropriate for generic algorithms.17 Nevertheless, we can

17A Berk–Nash equilibrium (see Esponda and Pouzo, 2016) is the most suitable equilibrium solution concept for
this misspecified setting, but the analysis is beyond the scope of the paper, and also not applicable to generic learning
algorithms.
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analyze the effect of this misspecification on an algorithm’s ability to manipulate the order book.

Table 10: Average number of manipulative sequences over 50 trading intervals.

Ticker Setup
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AMZN

Baseline

5 seconds 24.87 20.87 20.79 25.93 21.97 22.11

1 second 25.22 14.92 14.78 29.25 18.52 18.77

0.5 seconds 27.03 14.51 14.52 32.42 17.37 14.45

Offline

5 seconds 24.92 26.29 21.01 22.65 20.85 22.52

1 second 27.01 29.62 17.12 19.02 17.46 19.40

0.5 seconds 30.71 32.76 16.20 18.32 22.05 18.27

Online

5 seconds 24.40 25.89 20.47 22.12 20.41 22.04

1 second 22.49 29.16 12.69 19.26 11.98 18.16

0.5 seconds 21.27 32.13 1.21 15.20 1.12 14.43

CSCO

Baseline

5 seconds 25.56 15.25 15.12 29.19 18.29 18.82

1 second 32.98 13.88 13.70 36.48 11.59 10.40

0.5 seconds 37.27 9.54 9.55 40.27 7.73 7.89

Offline

5 seconds 29.72 29.65 20.50 18.91 21.67 19.99

1 second 37.13 37.10 14.73 12.62 21.25 18.53

0.5 seconds 40.90 41.04 9.40 8.66 21.07 19.69

Online

5 seconds 22.16 29.33 12.75 17.94 11.69 18.78

1 second 20.13 36.46 0.0 13.00 0.0 10.79

0.5 seconds 32.59 39.78 0.0 14.91 0.0 14.49

To study the effect of introducing a second learning algorithm, we first establish a baseline with
one market maker who uses an algorithm to learn the optimal trading strategy. The market makers
solve for the optimal strategy with the policy iteration algorithm using the empirical estimates
from Tables 7 and 12, discount factor δ = 0.95, and inventory aversion α = 10−4 for market
maker one and α = 10−5 for market maker two. Although we have two market makers for the
baseline, we do not study their interaction for the baseline setting. For each market maker, we
simulate their optimal strategy over 50 time steps 10,000 times when the market maker starts with
different values of the initial level of inventory. The initial volume imbalance regime is sampled
with equal probability. Table 10 reports the average number of manipulative sequences for each
market maker. We count a manipulative sequence as LLB at time t followed by LS or LLS at
time t+ 1 for q ≥ 0, or LLS at time t followed by LB or LLB at time t+ 1 for q ≤ 0. The table
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reports the results of two representative assets AMZN and CSCO. The results of the other assets
are reported in Tables 13–15 of Appendix B.

8.1. Offline Learning

Here, both market makers train their algorithms offline with the misspecified model (the origi-
nal model from Section 3) which ignores the strategic behavior of other algorithms, and we analyze
the outcome of the interaction between the algorithms in the market. With the same setup as that
of the baseline, we simulate the interaction of the market makers over 50 time steps 10,000 times
when (i) both market makers start with zero inventory, (ii) both market makers start with the same
level of inventory (q = 4), and (iii) the market makers start with opposing levels of inventory
(q = 4 and q = −4).

When comparing the result with the baseline, the introduction of another market maker in-
creases the number of times manipulation occurs in the market (i.e., market makers ride the ma-
nipulative sequences of each other) when the market makers start with zero inventory and with
opposing levels of inventory. On the other hand, the introduction of another market maker de-
creases the number of times manipulation occurs in the market when the market makers start with
the same level of inventory.

Table 11: Average manipulation statistics.

Ticker Setup ∆t
Mismatching manipulative orders Single manipulative order

Zero inv. Same inv. Opposing inv. Zero inv. Same inv. Opposing inv.

AMZN

Offline

5s 0.1554% 0.2388% 0.4408% 13.46 18.42 18.75

1s 0.1215% 1.3516% 0.0054% 22.47 22.01 29.52

0.5s 0% 0% 0% 19.07 18.71 34.65

Online

5s 0.2256% 0.3738% 0.4949% 19.39 21.58 21.92

1s 0.4190% 1.8937% 2.3348% 24.25 26.66 23.93

0.5s 0.7635% 0% 0% 25.25 25.96 25.69

CSCO

Offline

5s 0.3008% 0.0591% 1.0232% 20.13 19.82 34.29

1s 0.0115% 1.7566% 4.6456% 12.63 7.66 38.89

0.5s 0.0109% 0% 4.5198% 8.82 2.98 41.07

Online

5s 0.6417% 2.2775% 4.6541% 24.77 26.35 25.06

1s 1.4149% 0% 0% 25.85 24.88 20.30

0.5s 2.2263% 0% 0% 16.17 30.77 29.38

To analyze the impact of introducing another market maker, Table 11 reports the percentage
of times when competing market makers submit large orders that cancel each other out divided by

38



the number of times the market makers used a large order (mismatching manipulative orders), and
the number of times where only one out of the two market makers submits a large order (single
manipulative order). The results of the other assets are reported in Tables 16 and 17 of Appendix B.

When starting with zero inventory or opposing levels of inventory, the additional market maker
does not lead to many instances where the large orders cancel each other out, but it does lead to
more instances where the order book moves to a heavy regime. This allows the market makers
to exploit the manipulative sequences of each other so that we have more manipulative sequences
than would otherwise occur with only one market maker. When starting with the same level of in-
ventory, the additional market maker does not lead to many instances where the large orders cancel
each other out, but there are fewer instances where only one market maker submits a manipula-
tive order. We see that market maker one disrupts market maker two because market maker one
manipulates as often as the baseline setting but market maker two has significantly fewer manipu-
lative sequences. In the offline learning setting, the algorithms either coordinate or mis-coordinate
depending on their initial inventory.

8.2. Online Learning

Next, we assume that both market makers pre-train their algorithms offline with the misspec-
ified model and use the results to initialize an online learning algorithm. With the same setup as
that of the baseline, the market makers pre-train with the policy iteration algorithm and then use Q-
learning to learn online (see Sutton and Barto, 2018; Calvano et al., 2020, for a basic explanation
of Q-learning).18

For the online learning, we follow the experimental setup of Calvano et al. (2020). The Q-
learning algorithms learn have an ε-greedy choice rule with a time-declining exploration rate given
by εt = exp(−τ t), where the parameter τ > 0 controls the rate of decay of exploration. The ε-
greedy choice rule picks the (current) optimal action with probability 1 − ε, and a random action
is chosen with probability ε. The learning rate of the algorithms is 0.125 and the exploration
parameter is τ = 10−5. Similar to Calvano et al. (2020), we say that the online learning converged
if the optimal strategy for each player does not change for 100,000 consecutive periods.

To analyze the effect of online learning, we simulate the learning process until convergence
1,000 times. Once each learning process converges, we use the learned strategies to simulate the

18Training an algorithm online by interacting with the market is costly because the algorithm needs to experiment
frequently to learn to behave optimally. In most situations with multiple algorithms, learning algorithms are longer
guaranteed to behave optimally. Realistically, market makers train their algorithms offline or partially train their
algorithms offline (with some online experimentation) to minimize the cost of experimentation. We use the policy
iteration algorithm to solve for the optimal continuation value υ∗ in the misspecified model, which we use to compute
the optimal action values to initialize the Q-values for Q-learning.
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interaction of the market makers over 50 time steps 10 times when (i) both market makers start
with zero inventory, (ii) both market makers start with the same level of inventory (q = 4), and
(iii) the market makers start with opposing levels of inventory (q = 4 and q = −4). This produces
a total of 10,000 interactions over 50 time steps as in the case of the baseline.

When comparing the number of manipulative sequences to the baseline, we see that online
learning often leads to a reduction in manipulation by market maker one, but an increase in manip-
ulation by market maker two when the market makers start with zero inventory and with opposing
levels of inventory. When the market makers start with the same level of inventory, there is a re-
duction in manipulation from both market makers. When comparing the manipulation statistics to
offline learning, we see that online learning leads to more instances where only one market maker
sends a manipulative order when the market makers start with zero inventory and with the same
level of inventory. When the market makers start with opposing levels of inventory, there are fewer
instances where only one market maker sends a manipulative order.

In the online learning setting, we see that the market makers learn to coordinate. How they
coordinate depends on their initial inventory. If the market makers start with zero inventory, then
they coordinate by riding the sequences of each other to increase market manipulation. On the
other hand, if the market makers start with the same level of inventory or with opposing levels
of inventory, then they coordinate by allowing market maker one to ride market maker two’s
sequences to avoid their large limit orders cancelling each other out.

9. Discussion

Our analysis focuses on when an algorithm learns to create misleading information to buy
or to sell an asset with a higher probability than was otherwise likely to occur, and spoofing is
a special case when the preference is for the manipulative order not to be filled. In both types
of manipulation, the manipulative step is to submit a large quantity of limit orders to mislead
other market participants who react to the misleading signal, so the manipulator benefits from this
manipulation. Indeed, this manipulative step is consistent with what is considered illegal in Article
12(2)(c) of Regulation (EU) No 596/2014 and Section 9(a)(2) of the Securities Exchange Act of
1934.19,20 Therefore, our results can help identify limit order books in both the European Union
and US securities exchanges where quote-based manipulation is likely to occur.

19Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02014R0596-20210101 and
https://www.govinfo.gov/content/pkg/COMPS-1885/pdf/COMPS-1885.pdf, respectively.

20It is worth noting that Section 9(a)(2) of the Securities Exchange Act of 1934 refers to trade-based manipulation,
whereas spoofing is a form of quote-based manipulation. However, existing case law roughly accomplishes the goal
of making spoofing illegal, but it lacks clarity and makes errors in its reach.
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In this paper, we define spoofing as a manipulative sequence in Definition 1 with the prefer-
ence for the manipulative order not to be filled. Another definition of spoofing is given by the
Dodd-Frank (2010) Act, which defines spoofing as bidding or offering with the intent to cancel
the bid or offer before execution. Our definition encapsulates the spirit of the Dodd–Frank def-
inition by including the preference not to get caught out with the manipulative order, while also
having greater reach.21 For example, manipulative orders with a time-in-force achieve the same
effect as cancellations, but the Dodd–Frank definition will not cover this case because there are
no cancellations. Another shortfall of the Dodd–Frank definition is its specific focus on spoofing,
which is only a particular case of quote-based manipulation. This narrow focus fails to prohibit
other forms of quote-based manipulation.

Our model predicts simple manipulative sequences that are easy to identify. However, in prac-
tice, identifying and detecting these sequences is not straightforward. For example, market frag-
mentation allows for cross market manipulation, so our sequences need not appear within the same
order book. Moreover, the interaction of multiple market makers makes it more difficult to detect
these sequences because the market makers can coordinate and ride the manipulative sequences
of each other. Nonetheless, a straightforward mechanical artifact of quote-based manipulation is
that the volatility of the microprice (volume weighted midprice) increases as quote-based manipu-
lation increases; how one establishes a counterfactual baseline without quote-based manipulation
remains unclear. Finally, although we focused on quote-based manipulation, our approach can
be used to understand analytically other forms of unintended market manipulation from learning
algorithms such as layering or quote stuffing.
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CARTEA, ÁLVARO, RYAN DONNELLY, AND SEBASTIAN JAIMUNGAL (2017): “Algorithmic Trading with Model
Uncertainty,” SIAM Journal on Financial Mathematics, 8, 635–671.
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Results for Single-Step On-Policy Reinforcement-Learning Algorithms,” Machine Learning, 38, 287–308.
SPOONER, THOMAS, JOHN FEARNLEY, RAHUL SAVANI, AND ANDREAS KOUKORINIS (2018): “Market Making

via Reinforcement Learning,” in Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems,
AAMAS ’18, 434–442.

STOLL, HANS R. (1978): “The Supply of Dealer Services in Securities Markets,” The Journal of Finance, 33, 1133–
1151.

SUTTON, RICHARD S. AND ANDREW G. BARTO (2018): Reinforcement Learning: An Introduction, The MIT Press,
second ed.
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Appendix

A. Proofs

Define the action value as

υs(a) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = a

]
(8)

= ū(s, a) + δ
∑
ω′∈Ω

p(ω′|ω, a)
∑
q′∈Q

p(q′|q, a) υ∗
ω′,q′ ,

which is the expected stream of discounted payoffs from playing action a in state s then playing
optimally thereafter according to an optimal strategy σ∗.

Proof of Lemma 1 Order the set Q so that Q = {−q̄, ...,−2,−1, 0, 1, 2, ..., q̄}. To keep notation
simple, let As = A′ denote the set of all actions for all s ∈ S. The result continues to hold without
this simplification (see Puterman, 1994, pp. 108).22 We have the following observations:

(i) For q ≥ 0, ū(ω, q, a) is non-increasing in q; i.e., ū(ω, q, a) ≤ ū(ω, q′, a) for all ω ∈ Ω and
for all a ∈ A′ when 0 ≤ q′ ≤ q;

(ii) For q ≤ 0, ū(ω, q, a) is non-decreasing in q; i.e., ū(ω, q′, a) ≤ ū(ω, q, a) for all ω ∈ Ω and
for all a ∈ A′ when q′ ≤ q ≤ 0; and

(iii)
∑∞

j=k p(j|q, a) is non-decreasing in q for all k ∈ Q and for all a ∈ A′, where p(j|q, a) is the
transition probability from inventory level q to inventory level j under action a.23

Consider the finite-horizon version of our model up to period N . Let υ∗
s(t) denote the opti-

mal continuation value in state s at period t and adopt the convention that the terminal payoff
ūN(ω, q) = ū(ω, q,DN).

22Indeed, the three conditions laid out on pp. 108 are satisfied with an appropriate adjustment to the ordering of
the set Q and the proof follows with some minor adjustments.

23We adopt the convention that p(j|q, a) = 0 when j /∈ Q.
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Claim 1 For t = 0, 1, 2, ..., N , we have that

υ∗
ω,q(t) = max

a∈A′

{
ū(ω, q, a) + δ

∑
ω′

p(ω′|ω, a)
∞∑
j=0

p(j|q, a) υ∗
ω′,j(t+ 1)

}

is non-increasing in q when q ≥ 0, so υ∗
ω,q(t) ≤ υ∗

ω,q′(t) for all ω ∈ Ω and for all t = 0, 1, 2, ..., N

when 0 ≤ q′ ≤ q. Similarly, when q ≤ 0, υ∗
ω,q(t) is non-decreasing in q, i.e., υ∗

ω,q′(t) ≤ υ∗
ω,q(t) for

all ω ∈ Ω and for all t = 0, 1, 2, ..., N when q′ ≤ q ≤ 0.

Proof of Claim 1 The claim follows from a straightforward modification of Proposition 4.7.3 in
Puterman (1994) using backwards induction. Consider the case q ≥ 0. First, the result holds for
t = N from observation (i) because υ∗

ω,q(N) = ūN(ω, q). Next, assume (for induction) that when
0 ≤ q′ ≤ q, we have υ∗

ω,q(t) ≤ υ∗
ω,q′(t) for all ω ∈ Ω and for all t = n + 1, ..., N . By Proposition

4.4.3 in Puterman (1994), there exists a∗ ∈ A′ so that

υ∗
ω,q(t) = ū(ω, q, a∗) + δ

∑
ω′

p(ω′|ω, a∗)
∞∑
j=0

p(j|q, a∗) υ∗
ω′,j(t+ 1) .

Let 0 ≤ q′ ≤ q. Use observations (i) and (iii), the induction hypothesis, and Lemma 4.7.2 in
Puterman (1994) to write

υ∗
ω,q(t) ≤ ū(ω, q′, a∗) + δ

∑
ω′

p(ω′|ω, a∗)
∞∑
j=0

p(j|q′, a∗) υ∗
ω′,j(t+ 1)

≤ max
a∈A′

{
ū(ω, q′, a) + δ

∑
ω′

p(ω′|ω, a)
∞∑
j=0

p(j|q′, a) υ∗
ω′,j(t+ 1)

}
= υ∗

ω,q′(t) .

When q ≤ 0, similar calculations hold with observations (ii) and (iii). Thus, the claim follows. ■

Finally, the pointwise limit (as N → ∞) of non-increasing functions is non-increasing, and the
pointwise limit (as N → ∞) of non-decreasing functions is non-decreasing. Hence, υ∗

ω,q(t) is
non-increasing in q for all t when q ≥ 0, and υ∗

ω,q(t) is non-decreasing in q for all t when q ≤ 0,
so the lemma follows. □

Proof of Lemma 2 The optimal action a∗ in state s = (ω, q) maximizes the action value in (8).
To show that an action a is not optimal in state s, we show that the action is strictly dominated by
another action a′, i.e., υs(a) < υs(a

′) for state s.
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For q > 0, we first show that submitting a sell limit order LS always dominates do nothing
DN . Specifically, we have

υs(LS) = paω

[
ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1

]
+ (1− paω)

[
−α q2 + δ

∑
ω′

pω′|ω υ
∗
ω,q

]
> −α q2 + paω δ

∑
ω′

pω′|ω υ
∗
ω,q−1 + (1− paω) δ

∑
ω′

pω′|ω υ
∗
ω,q

≥ −α q2 + δ
∑
ω′

pω′|ω υ
∗
ω,q = υs(DN) ,

where the last inequality follows from Lemma 1. Next, do nothing DN always dominates a buy
market order MB because

υs(DN) = −α q2 + δ
∑
ω′

pω′|ω υ
∗
ω,q

> −ϑ

2
− α (q + 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q+1 = υs(MB) ,

where the inequality follows from Lemma 1. Thus, LS dominates DN , which dominates MB.
Therefore, both DN and MB are not optimal for q > 0.

The same reasoning and calculations hold for q < 0. Thus, the result follows because a buy
limit order always dominates do nothing, and do nothing always dominates a sell market order. □

Proof of Proposition 1 For q > 0, Lemma 2 ensures that the optimal action is never DN or MB.
We consider the ten pairwise comparisons from the set of actions {MS,LS, LLS, LLB,LB}. For
each (ω, q), there exists a unique value αa,a′(ω, q) where two action values υω,q(a) and υω,q(a

′) as
a function of α intersect because the action values are linear in α.

To compare the pairwise actions excluding LS versus LLS and LB versus LLB, we choose
a large value of α so that it is optimal to revert to zero inventory as fast as possible and then stop
making markets at zero inventory. That is, MS is the optimal action for all pairs (ω, q > 0) and
DN is the optimal action for all pairs (ω, q = 0), so it is easy to see that for q > 0 and all ω ∈ Ω:

1. There exists αLS,MS(ω, q) such that MS is preferred to LS if and only if α > αLS,MS(ω, q).

2. There exists αLLS,MS(ω, q) such that MS is preferred to LLS if and only if α > αLLS,MS(ω, q).

3. There exists αLLB,MS(ω, q) such that MS is preferred to LLB if and only if α > αLLB,MS(ω, q).

4. There exists αLB,MS(ω, q) such that MS is preferred to LB if and only if α > αLB,MS(ω, q).
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5. There exists αLLB,LS(ω, q) such that LS is preferred to LLB if and only if α > αLLB,LS(ω, q).

6. There exists αLB,LS(ω, q) such that LS is preferred to LB if and only if α > αLB,LS(ω, q).

7. There exists αLLB,LLS(ω, q) such that LLS is preferred to LLB if and only if α > αLLB,LLS(ω, q).

8. There exists αLB,LLS(ω, q) such that LLS is preferred to LB if and only if α > αLB,LLS(ω, q).

For the final two comparisons, we consider a reduced action set without MS. We choose a
large value of α so that it is optimal to revert to zero inventory as fast as possible and then stop
making markets at zero inventory, so for q > 0 and all ω ∈ Ω:

9. If we play LLS instead of LS, the tilt of the book becomes sell-heavy where the probability
of selling a limit order is the lowest, which will take longer to revert to zero inventory.
Therefore, there exists αLLS,LS(ω, q) such that LS is preferred to LLS if and only if α >

αLLS,LS(ω, q).

10. If we play LLB instead of LB, the tilt of the book becomes buy-heavy where the probability
of selling a limit order is the highest, and it will take less time to revert to zero inventory.
Therefore, there exists αLB,LLB(ω, q) such that LLB is preferred to LB if and only if α >

αLB,LLB(ω, q).

With the ten pairwise preferences for q > 0, we have that Figure 2 is the only (non-contradictory)
ordering of action preferences and cutoffs. The same reasoning holds for q < 0. □

Lemma 4 Let 0 < q′ ≤ q. We have that υ∗
ω,q − υ∗

ω,q′ converges to zero from below as α → 0 for

all ω ∈ Ω. Similarly, υ∗
ω,q′ − υ∗

ω,q converges to zero from above as α → 0.

Proof of Lemma 4 The result follows from adapting the proof of Lemma 1 to show that if α = 0

then υ∗
ω,q−υ∗

ω,q′ = 0. First, observe that if α = 0, then ū(ω, q, a) is constant in q when q ≥ 0 for all
ω ∈ Ω and for all a ∈ A′. Following the proof of Lemma 1, we have that the optimal continuation
value υ∗

ω,q is both non-increasing and non-decreasing in q when q ≥ 0. Therefore, υ∗
ω,q − υ∗

ω,q′ = 0

for all q, q′ ≥ 0, and hence, the result follows as a consequence of Lemma 1. □

Lemma 5 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. We have α3(ω, q) > 0 for all ω ∈ Ω

and q ̸= 0.

Proof of Lemma 5 We focus on q > 0. We prove this result by showing that the following claim
holds.
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Claim 2 For q > 0, there exists α > 0 such that MS ≺ LS.

Proof of Claim 2 The action values of LS and MS are given by

υs(LS) = paω

[
ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1

]
+ (1− paω)

[
−α q2 + δ

∑
ω′

pω′|ω υ
∗
ω,q

]
,

υs(MS) = −ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1 ,

and their difference is

υs(LS)−υs(MS) = (1 + paω)ϑ/2−α (1− paω) (2q − 1)+δ (1− paω)
∑
ω′

pω′|ω
(
υ∗
ω,q − υ∗

ω,q−1

)
.

From Lemma 4, we have that υs(LS)− υs(MS) → (1 + paω)ϑ/2 > 0 as α → 0. Thus, the claim
follows because there are values of α > 0 for which MS ≺ LS. ■

The remainder of the lemma follows by contradiction. Suppose α3(ω, q) ≤ 0. Then MS is
optimal for all α > 0, which contradicts Claim 2, so the result follows. The same reasoning holds
for q < 0. □

Lemma 6 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C1) holds, then

α1(BH, q) < 0 for all q > 0. Similarly, if condition (C2) holds, then α1(SH, q) < 0 for all q < 0.

Proof of Lemma 6 We focus on q > 0. The action value of LLB is

υs(LLB) = pbω
[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbω)

[
−α q2 + δ υ∗

BH,q

]
.

To prove the result, we show that if condition (C1) holds, then LLB is never optimal in s =

(BH, q) where q > 0. We proceed by contradiction. Suppose LLB is optimal in s = (BH, q)

where q > 0. This implies the following claim is true.

Claim 3 If LLB is optimal in s = (BH, q) where q > 0, then ϑ/2 − α (q + 1)2 + δ υ∗
BH,q+1 ≥

−α q2 + δ υ∗
BH,q.

Proof of Claim 3 We prove this claim by contradiction. Suppose that −α q2 + δ υ∗
BH,q > ϑ/2 −

α (q + 1)2 + δ υ∗
BH,q+1, then we have

υBH,q(LLB) = pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
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≤ pbBH

[
−α q2 + δ υ∗

BH,q

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= −α q2 + δ υ∗

BH,q ,

which follows from Lemma 1. However, υ∗
BH,q = υBH,q(LLB) because LLB is optimal by

assumption. Therefore, the inequality above becomes υ∗
BH,q ≤ −α q2 + δ υ∗

BH,q, which implies

υ∗
BH,q ≤ − α q2

1− δ
.

Now, consider a suboptimal strategy σ that does nothing in all ω ∈ Ω at inventory level q. The
value of this strategy in s = (BH, q) where q > 0 is given by

υBH,q(σ) = − α q2

1− δ
.

Therefore, υBH,q(σ) ≥ υ∗
BH,q is a contradiction because the strategy σ is suboptimal as a conse-

quence of Lemma 2. Hence, the claim follows. ■

Next, the claim implies that υSH,q(LLB) ≥ υBH,q(LLB) because

υSH,q(LLB) = pbSH
[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbSH)

[
−α q2 + δ υ∗

BH,q

]
≥ pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= υBH,q(LLB) ,

where the inequality follows as a result of pbSH > pbBH .
Use 1−pbBH = (1−paBH)+(paBH −pbBH) in the action value of LLB in s = (BH, q) to obtain

υBH,q(LLB) = pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (paBH − pbBH)

[
−α q2 + δ υ∗

BH,q

]
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ pbBH max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (paBH − pbBH)max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
= paBH max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
,

where the inequality above follows as a result of pbBH < paBH from condition (C1) and because
x ≤ max{x, y} and y ≤ max{x, y} for all x, y ∈ R.
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Next, observe that both ϑ/2−α (q+1)2 + δ υ∗
BH,q+1 and −α q2 + δ υ∗

BH,q are less than ϑ/2−
α (q − 1)2 + δ υ∗

SH,q−1 because υ∗
SH,q−1 ≥ υ∗

SH,q ≥ υSH,q(LLB) ≥ υBH,q(LLB) = υ∗
BH,q ≥

υ∗
BH,q+1. Therefore,

υBH,q(LLB) ≤ paBH max
{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ paBH

[
ϑ/2− α (q − 1)2 + δ υ∗

SH,q−1

]
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ paBH

[
ϑ/2− α (q − 1)2 + δ υ∗

SH,q−1

]
+ (1− paBH)

[
−α q2 + δ υ∗

SH,q

]
= υBH,q(LLS) ,

where the last inequality follows from υ∗
SH,q ≥ υSH,q(LLB) ≥ υBH,q(LLB) = υ∗

BH,q. This
implies that υBH,q(LLB) ≤ υBH,q(LLS). Hence, we have a contradiction as LLB cannot be
optimal in s = (BH, q) where q > 0.

Finally, if LLB is never optimal in s = (BH, q), then α1(BH, q) < 0. Thus, the lemma
follows. The same reasoning holds for q < 0. □

Lemma 7 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C2) holds, then

α1(ω, q) > 0 for all q > 0 and ω = SH . Similarly, if condition (C1) holds, then α1(ω, q) > 0 for

all q < 0 and ω = BH .

Proof of Lemma 7 We focus on q > 0. We require the following claim.

Claim 4 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C2) holds, then there

exists α > 0 such that LS ≺ LB for all q > 0 and ω = SH . Therefore, for this α > 0, LS is not

optimal.

Proof of Claim 4 The action values of LS and LB are given by

υs(LS) = paω ϑ/2 + δ
∑
ω′

pω′|ω υ
∗
ω,q + δ paω

∑
ω′

pω′|ω
(
υ∗
ω,q−1 − υ∗

ω,q

)
− α paω(q − 1)2 − α(1− paω)q

2

υs(LB) = pbω ϑ/2 + δ
∑
ω′

pω′|ω υ
∗
ω,q + δ pbω

∑
ω′

pω′|ω
(
υ∗
ω,q+1 − υ∗

ω,q

)
− α pbω(q + 1)2 − α(1− pbω)q

2 .

As α → 0, υs(LB) − υs(LS) →
(
pbω − paω

)
ϑ/2 as a consequence of Lemma 4. Therefore,

LS ≺ LB in ω = SH because of paSH < pbSH from condition (C2). Hence, LS cannot be optimal
because LS ≺ LB. ■
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From Claim 4, there exists α > 0 such that LS ≺ LB so that LS is not optimal. We set the value
of α so that MS is not optimal. For this value of α, either LB, LLB or LLS is the optimal action.
If LB or LLB is the optimal action, then we have α1(ω, q) > 0. To complete the proof we see that
LLS cannot be the optimal action for the value of α. We proceed by contradiction. Assume LLS

is optimal and take α close to zero so that the effect of inventory is negligible when considering
the optimal continuation value. We denote υ∗

ω = υ∗
ω,q = υ∗

ω,q′ to obtain

υSH(LLB) = pbSH(ϑ/2 + δ υ∗
BH) + (1− pbSH) δ υ

∗
BH = pbSH ϑ/2 + δ υ∗

BH

≥ pbSH ϑ/2 + δ υBH(LLS) = pbSH ϑ/2 + δ (paBH ϑ/2 + δ υ∗
SH)

> pbSH ϑ/2 + δ (paSH ϑ/2 + δ υ∗
SH) ,

where the last inequality follows from paBH > paSH .
Observe that

pbSH ϑ/2 + δ (paSH ϑ/2 + δ υ∗
SH) = pbSH ϑ/2 + δ υSH(LLS) = pbSH ϑ/2 + δ υ∗

SH ,

where the last equality follows from assuming that LLS is optimal at SH . Therefore, we have

υSH(LLB) > pbSH ϑ/2 + δ υ∗
SH > paSH ϑ/2 + δ υ∗

SH = υ∗
SH ,

which is a contradiction. Therefore, LLS is not optimal. The same reasoning holds for q < 0. □

Lemma 8 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. For ω = N , we have α1(ω, q) > 0

for either q > 0 or q < 0.

Proof of Lemma 8 From Lemma 4, we have

υN(LLS) = paN ϑ/2 + δ υ∗
SH and υN(LLB) = pbN ϑ/2 + δ υ∗

BH ,

for a small enough value of α so that if

paN ϑ/2 + δ υ∗
SH > pbN ϑ/2 + δ υ∗

BH ,

then α1(ω, q) > 0 for q < 0. Similarly, if

paN ϑ/2 + δ υ∗
SH < pbN ϑ/2 + δ υ∗

BH ,

then α1(ω, q) > 0 for q > 0. □
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Proof of Theorem 1 Lemma 5 ensures that α3(ω, q) > 0 for all ω ∈ Ω and q > 0, while Propo-
sition 1 ensures that α0(ω, q) < α1(ω, q) for all ω ∈ Ω and q > 0. The result is immediate from
Lemmas 6, 7, and 8. □

Proof of Corollary 1 The result follows as an immediate consequence of Theorem 1. □

Lemma 9 Let paSH < paN < paBH , pbSH > pbN > pbBH , and (C3) hold. If (pbN − paN) >
δ

1+δ
(pbSH −

paBH), then α1(ω, q) > 0 for q > 0 and ω = N . Similarly, if (paN − pbN) >
δ

1+δ
(paBH − pbSH), then

α1(ω, q) > 0 for q < 0 and ω = N .

Proof of Lemma 9 To prove the lemma, we first establish the following claim.

Claim 5 If paSH < paN < paBH , pbSH > pbN > pbBH , and (C3) hold, then for a small enough value

of α, LS ≺ LLS for ω = BH , LB ≺ LLB for ω = SH , and LB ≺ LLB and LS ≺ LLS for

ω = N .

Proof of Claim 5 If (C3) holds, then the following hold:

paBH − pbSH < (pbSH −max{paN , pbN})
pN |BH

pBH|BH

, pbSH − paBH < (paBH −max{paN , pbN})
pN |SH

pSH|SH
,

paBH − pbSH < (pbSH −max{paN , pbN})
pN |N

pBH|N
, pbSH − paBH < (paBH −max{paN , pbN})

pN |N

pSH|N
.

We first focus on ω = BH . For a small enough value of α, the optimal action is LS or LLS.
Moreover, LLS is preferred to LS if and only if

υ∗
SH > pBH|BH υ∗

BH + pN |BH υ∗
N + pSH|BH υ∗

SH ⇐⇒

pBH|BH υ∗
SH + pN |BH υ∗

SH + pSH|BH υ∗
SH > pBH|BH υ∗

BH + pN |BH υ∗
N + pSH|BH υ∗

SH .

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH , then the last inequality trivially holds.24 On the other hand, if
max{υ∗

SH , υ
∗
N , υ

∗
BH} = υ∗

BH , then the last inequality holds if and only if

pN |BH (υ∗
SH − υ∗

N) > pBH|BH (υ∗
BH − υ∗

SH) ⇐⇒ υ∗
BH − υ∗

SH < (υ∗
SH − υ∗

N)
pN |BH

pBH|BH

.

24It is not possible for both v∗N > v∗SH and v∗N > v∗BH to hold because paN < paBH and pbN < pbSH . This is enough
to exclude the case max{υ∗

SH , υ∗
N , υ∗

BH} = υ∗
N .
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If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH , then υ∗
BH < paBH ϑ/2 + δ υ∗

BH so that

υ∗
BH − υ∗

SH < paBH ϑ/2 + δ υ∗
BH − pbSH ϑ/2− δ υ∗

BH = (paBH − pbSH)ϑ/2 .

Now, the optimal action in ω = SH is LLB because max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH . Hence, since
υ∗
N < max{paN , pbN}ϑ/2 + δυ∗

BH

v∗SH − v∗N = vSH(LLB)− v∗N > pbSH
ϑ

2
+ δ v∗BH −max{paN , pbN} ϑ

2
− δ v∗BH = (pbSH −max{paN , pbN}) ϑ

2
.

Therefore, if

paBH − pbSH < (pbSH −max{paN , pbN})
pN |BH

pBH|BH

,

then LLS is preferred to LS because

(v∗SH − v∗N)
pN |BH

pBH|BH

> (pbSH −max{paN , pbN})
ϑ

2

pN |BH

pBH|BH

> (paBH − pbSH)
ϑ

2
> v∗BH − v∗SH .

For ω = SH , we follow a similar reasoning so that if

pbSH − paBH < (paBH −max{paN , pbN})
pN |SH

pSH|SH
,

then LLB is preferred to LB in ω = SH .
For ω = N , we first compare LLS with LS. As before, LLS is preferred to LS if and only if

v∗SH > pBH|N v∗BH + pN |N v∗N + pSH|N v∗SH .

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH , then the former inequality holds. On the other hand, if max{υ∗
SH , υ

∗
N , υ

∗
BH} =

υ∗
BH , then the last inequality holds if and only if

pBH|N v∗SH + pN |N v∗SH + pSH|N v∗SH > pBH|N v∗BH + pN |N v∗N + pSH|N v∗SH ⇐⇒

pN |N (υ∗
SH − υ∗

N) > pBH|N (υ∗
BH − υ∗

SH) ⇐⇒ υ∗
BH − υ∗

SH <
pN |N

pBH|N
(υ∗

SH − υ∗
N) .

The remainder follows the same reasoning as that in the case with ω = BH so that if

paBH − pbSH < (pbSH −max{paN , pbN})
pN |N

pBH|N
,
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then LLS is preferred to LS in ω = N .
Finally, using a similar reasoning, we have that if

pbSH − paBH < (paBH −max{paN , pbN})
pN |N

pSH|N
,

then LLB is preferred to LB in ω = N . ■

For ω = N , if the value of α is sufficiently small, then we have the following action values

υN(LLB) = pbN (
ϑ

2
+ δ υ∗

BH) + (1− pbN) δ υ
∗
BH = pbN

ϑ

2
+ δ υ∗

BH ,

υN(LLS) = paN (
ϑ

2
+ δ υ∗

SH) + (1− paN) δ υ
∗
SH = paN

ϑ

2
+ δ υ∗

SH .

For a sufficiently small value of α, the optimal action is either LLS or LS in ω = BH , whereas
the optimal action is either LLB or LB at ω = SH . From Claim 5, we have LS ≺ LLS for
ω = BH and LB ≺ LLB for ω = SH . Therefore,

vN(LLB) = pbN
ϑ

2
+ paBH

ϑ

2
(δ + δ3 + ...) + pbSH

ϑ

2
(δ2 + δ4 + ...) = pbN

ϑ

2
+

δ paBH
ϑ
2
+ δ2 paBH

ϑ
2

1− δ2
,

and similarly

vN(LLS) = paN
ϑ

2
+ pbSH

ϑ

2
(δ + δ3 + ...) + paBH

ϑ

2
(δ2 + δ4 + ...) = paN

ϑ

2
+

δ pbSH
ϑ
2
+ δ2 paBH

ϑ
2

1− δ2
.

Hence, LLB is preferred to LLS if and only if

pbN
ϑ

2
(1− δ2) + δ paBH

ϑ

2
+ δ2 pbSH

ϑ

2
> paN

ϑ

2
(1− δ2) + δ pbSH

ϑ

2
+ δ2 paBH

ϑ

2
⇐⇒

(pbN − paN) (1− δ2) > (δ − δ2) (pbSH − paBH) ⇐⇒ (pbN − paN) >
δ

1 + δ
(pbSH − paBH) .

Similarly, LLS is preferred to LLB if and only if (paN − pbN) >
δ

1+δ
(paBH − pbSH). □

Proof of Theorem 2 The result is immediate from Lemmas 5, 6, and 9. □

Proof of Lemma 3 We compare the value of two strategies. Specifically, we consider an optimal
stationary pure Markov strategy σ∗ and a strategy σ that is suboptimal.
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We run both the suboptimal strategy and the optimal strategy until the states match, and then
the suboptimal strategy plays according to the optimal strategy. Here, the target state continues
to change as a consequence of running the optimal strategy; so the suboptimal strategy is defined
to follow the inventory level of the optimal strategy. Specifically, if the optimal action leads to
the inventory staying at the same level, then the suboptimal strategy does nothing; if the optimal
action leads to the inventory increasing by one unit, then the suboptimal strategy submits a buy
market order; finally, if the optimal action leads to the inventory decreasing by one unit, then the
suboptimal strategy submits a sell market order. Therefore, the states of the two chains are always
at the same level of inventory, so the difference in the payoff received (at each step) is less than ϑ.

Now, for the states to match, the volume imbalance regime ω also needs to be the same. Ob-
serve that at each time step, the probability that the two chains meet at the same volume imbalance
regime (after one step) is greater than m, where m is the minimum element of the transition prob-
ability matrix for the Markov chain given in Figure 1b. Hence, the hitting time is dominated by a
geometric random variable with success probability m; thus, the expectation of the hitting time is
less than 1/m. Therefore, we have

υ∗
ω,q − υ∗

ω′,q ≤ υ∗
ω,q − υω′,q(σ) ≤ ϑ/m

because the discount parameter δ < 1. □

Proof of Proposition 2 From the action values, LLB ≺ LLS if and only if

α >

(
pbω − paω

)
ϑ/2

paω(2q − 1) + pbω(2q + 1)
+ δ

pbω
(
υ∗
BH,q+1 − υ∗

BH,q

)
+ paω

(
υ∗
SH,q − υ∗

SH,q−1

)
+
(
υ∗
BH,q − υ∗

SH,q

)
paω(2q − 1) + pbω(2q + 1)

.

We use the upper bound from Lemma 3 and the upper bound υ∗
ω,q − υ∗

ω,q−1 ≤ 0 from Lemma 1, to
obtain

α1(ω, q) ≤
(
pbω − paω

)
ϑ/2 + ϑ/m

paω(2q − 1) + pbω(2q + 1)
= ᾱ1(ω, q)

as an upper bound for α1(ω, q) that is strictly positive.
From Lemma 5, we have α3(ω, q) > 0 for all ω ∈ Ω and q > 0. Therefore, the result follows

because α1(ω, q) ∧ α3(BH, q) ≤ ᾱ1(ω, q) and α1(ω, q) ∧ α3(BH, q + 1) ≤ ᾱ1(ω, q). □

Proof of Proposition 3 For a fixed volume imbalance regime ω, the function ᾱ1(ω, q) monotoni-
cally decreases as the absolute value of q increases. The choice of α ensures that α /∈ I ′(s) for all
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states s = (ω, q) where q ̸= 0, so the result follows. □

Proof of Proposition 4 If ϑ → 0, then ᾱ1(ω, q) → 0 for all ω ∈ Ω and q ̸= 0. Therefore, the
result follows as a consequence of Proposition 3. □

Lemma 10 If condition (C4) holds, then Proposition 1 continues to hold.

Proof of Lemma 10 The first 8 comparisons follow from the same reasoning in Proposition 1.
Therefore, we consider the comparisons LS vs LLS and LB vs LLB. We consider a reduced
action set without MS. For a large enough value of α, we have v∗BH,q > v∗N,q > v∗SH,q and
v∗BH,q−1 > v∗N,q−1 > v∗SH,q−1 because the probability of selling a limit order is highest (lowest) in
BH (SH). The action values of LLS and LS (excluding the one-step utility) are

υω,q(LLS) = paω

(
(1− κ) υ∗

SH,q−1 +
κ

2
υ∗
N,q−1 +

κ

2
υ∗
BH,q−1

)
+ (1− paω)

(
(1− κ) υ∗

SH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
BH,q

)

υω,q(LS) = paω
(
pSH|ω υ∗

SH,q−1 + pN |ω υ∗
N,q−1 + pBH|ω υ∗

BH,q−1

)
+ (1− paω)

(
pSH|ω υ∗

SH,q + pN |ω υ∗
N,q + pBH|ω υ∗

BH,q

)
,

respectively. Therefore, υω,q(LLS) < υω,q(LS) if and only if

(1− κ− pSH|ω) (p
a
ω υ∗SH,q−1 + (1− paω) υ

∗
SH,q) <

paω

(
(pN |ω − κ

2
) υ∗N,q−1 + (pBH|ω − κ

2
) υ∗BH,q−1

)
+ (1− paω)

(
(pN |ω − κ

2
) υ∗N,q + (pBH|ω − κ

2
) υ∗BH,q

)
,

which follows because(
pN |ω − κ

2

)
υ∗
N,q−1 +

(
pBH|ω − κ

2

)
υ∗
BH,q−1 > (pN |ω + pBH|ω − κ) υ∗

N,q−1

= (1− κ− pSH|ω) υ
∗
N,q−1 > (1− κ− pSH|ω) υ

∗
SH,q−1

and (
pN |ω − κ

2

)
υ∗
N,q +

(
pBH|ω − κ

2

)
υ∗
BH,q > (pN |ω + pBH|ω − κ) υ∗

N,q

= (1− κ− pSH|ω) υ
∗
N,q > (1− κ− pSH|ω) υ

∗
SH,q .

Hence, LS is preferred to LLS for a large enough value of α. Next, we compare LLB and LB.
The action values of LLB and LB (excluding the one-step utility) are

υω,q(LLB) = pbω

(
(1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1

)
+ (1− pbω)

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

)
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υω,q(LB) = pbω
(
pBH|ω υ∗

BH,q+1 + pN |ω υ∗
N,q+1 + pSH|ω υ∗

SH,q+1

)
+ (1− pbω)

(
pBH|ω υ∗

BH,q + pN |ω υ∗
N,q + pSH|ω υ∗

SH,q

)
,

respectively. Thus, υω,q(LLB) > υω,q(LB) if and only if

(1− κ− pBH|ω) (p
b
ω υ

∗
BH,q+1 + (1− pbω) υ

∗
BH,q) >

pbω

(
(pN |ω − κ

2
) υ∗

N,q+1 + (pSH|ω − κ

2
) υ∗

SH,q+1

)
+ (1− pbω)

(
(pN |ω − κ

2
) υ∗

N,q + (pSH|ω − κ

2
) υ∗

SH,q

)
,

which follows because(
pN |ω − κ

2

)
υ∗
N,q+1 +

(
pSH|ω − κ

2

)
υ∗
SH,q+1 < (pN |ω + pSH|ω − κ) υ∗

N,q+1

= (1− κ− pBH|ω) υ
∗
N,q+1 < (1− κ− pBH|ω) υ

∗
BH,q+1

and (
pN |ω − κ

2

)
υ∗
N,q +

(
pSH|ω − κ

2

)
υ∗
SH,q < (pN |ω + pSH|ω − κ) υ∗

N,q

= (1− κ− pBH|ω) υ
∗
N,q < (1− κ− pBH|ω) υ

∗
BH,q .

The same reasoning holds for q < 0. □

Lemma 11 If condition (C4) holds, then Lemma 6 continues to hold.

Proof of Lemma 11 Suppose that LLB is optimal at (BH, q > 0), then

ϑ

2
− α (q + 1)2 + δ ((1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1) > −α q2 + δ ((1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q) .

Suppose the inequality above is not true. We know max{υ∗
BH,q, υ

∗
N,q, υ

∗
SH,q} = υ∗

BH,q because
if the maximum was υ∗

SH,q, then υBH,q(LLS) > υBH,q(LLB), which cannot be true assuming
LLB is optimal at (BH, q > 0). Therefore, if both υ∗

BH,q is the maximum and LLB is optimal
at (BH, q), then staying at (BH, q > 0) forever would be optimal. However, this would give the
same payoff as doing nothing forever, which is never optimal. Therefore the previous inequality
holds. From the previous inequality, we have υSH,q(LLB) > υBH,q(LLB) because pbSH > pbBH .
Therefore, υ∗

BH,q < υ∗
SH,q. Now, observe that

υBH,q(LLB) = pbBH

(
ϑ

2
− α (q + 1)2 + δ

(
(1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1

))
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+ (1− pbBH)
(
−α q2 + δ

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

))
= pbBH

(
ϑ

2
− α (q + 1)2 + δ

(
(1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1

))
+ (paBH − pbBH)

(
−α q2 + δ

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

))
+ (1− pbBH)

(
−α q2 + δ

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

))
≤ paBH

(
ϑ

2
− α (q + 1)2 + δ

(
(1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1

))
+ (1− paBH)

(
−α q2 + δ

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

))
≤ paBH

(
ϑ

2
− α (q − 1)2 + δ

(
(1− κ) υ∗

BH,q−1 +
κ

2
υ∗
N,q−1 +

κ

2
υ∗
SH,q−1

))
+ (1− paBH)

(
−α q2 + δ

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

))
= υBH,q(LLS) .

Hence, a contradiction, so LLB is never optimal at (BH, q > 0). The same reasoning holds for
q < 0. □

Lemma 12 If condition (C4) holds, then Lemma 7 continues to hold.

Proof of Lemma 12 It is straightforward to see that Claim 4 still holds because the transition
probabilities of large limit orders do no play a role in its proof. To show that Lemma 7 continues
to hold, we prove that LLS is not optimal in (SH, q > 0) for a small enough value of α. We
proceed by contradiction. Assuming that LLS is optimal in (SH, q > 0), for a small enough value
of α, we have

vSH(LLB) = pbSH (
ϑ

2
+ δ ((1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH)

+ (1− pbSH) δ ((1− κ) υ∗
BH +

κ

2
υ∗
N +

κ

2
υ∗
SH)

= pbSH
ϑ

2
+ δ ((1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH) ,

vSH(LLS) = paSH (
ϑ

2
+ δ ((1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH)

+ (1− paSH) δ ((1− κ) υ∗
SH +

κ

2
υ∗
N +

κ

2
υ∗
BH)

= paSH
ϑ

2
+ δ ((1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH)
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We have that υ∗
BH > υ∗

SH because paBH > paSH and there is less penalty at q − 1 than at q and
because we assume that LLS is optimal at (SH, q > 0). Therefore, use pbSH > paSH , υ∗

BH > υ∗
SH ,

and (1− κ ) > κ
2

to obtain

pbSH
ϑ

2
+ δ

(
(1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH

)
> paSH

ϑ

2
+ δ

(
(1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH

)
so that υSH(LLB) > υSH(LLS) = υ∗

SH , and therefore a contradiction. The same reasoning holds
for q < 0. □

Remark 1 If condition (C4) holds, then Lemma 8 continues to hold because the transition prob-

abilities of the large limit orders do not play a role in the proof of Lemma 8.

Proof of Theorem 3 The result is immediate from Lemmas 10, 11 and 12 and Remark 1. □

B. Additional Tables and Figures
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Figure 6: Expected stream of discounted payoffs when the manipulative order is filled or not for CSCO with 1 second
decision intervals in s = (N, q = 2). For values of the inventory aversion parameter α below the shaded region,
manipulation is no longer optimal because the optimal action is LB as a consequence of Proposition 1 and Lemma 6.
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Table 12: Transition probability matrix.

(a) AAPL: 5 seconds

SH N BH

SH 0.32 0.41 0.28

N 0.28 0.43 0.29

BH 0.27 0.41 0.32

(b) AAPL: 1 second

SH N BH

SH 0.42 0.37 0.21

N 0.26 0.48 0.26

BH 0.20 0.37 0.43

(c) AAPL: 0.5 seconds

SH N BH

SH 0.52 0.32 0.16

N 0.22 0.55 0.23

BH 0.15 0.33 0.52

(d) AMZN: 5 seconds

SH N BH

SH 0.35 0.41 0.24

N 0.3 0.44 0.26

BH 0.27 0.41 0.32

(e) AMZN: 1 second

SH N BH

SH 0.47 0.35 0.18

N 0.26 0.51 0.23

BH 0.20 0.36 0.43

(f) AAPL: 0.5 seconds

SH N BH

SH 0.56 0.31 0.13

N 0.23 0.57 0.21

BH 0.15 0.32 0.52

(g) CSCO: 5 seconds

SH N BH

SH 0.52 0.39 0.09

N 0.15 0.7 0.15

BH 0.08 0.38 0.54

(h) CSCO: 1 second

SH N BH

SH 0.76 0.21 0.03

N 0.08 0.84 0.08

BH 0.03 0.21 0.76

(i) CSCO: 0.5 seconds

SH N BH

SH 0.82 0.16 0.02

N 0.06 0.87 0.07

BH 0.01 0.16 0.83

(j) INTC: 5 seconds

SH N BH

SH 0.48 0.41 0.11

N 0.17 0.67 0.16

BH 0.11 0.43 0.45

(k) INTC: 1 second

SH N BH

SH 0.71 0.24 0.04

N 0.10 0.81 0.09

BH 0.04 0.26 0.70

(l) INTC: 0.5 seconds

SH N BH

SH 0.79 0.18 0.03

N 0.08 0.85 0.07

BH 0.02 0.20 0.78

(m) MSFT: 5 seconds

SH N BH

SH 0.38 0.34 0.28

N 0.33 0.36 0.31

BH 0.31 0.34 0.35

(n) MSFT: 1 second

SH N BH

SH 0.46 0.32 0.22

N 0.31 0.40 0.29

BH 0.24 0.33 0.43

(o) MSFT: 0.5 seconds

SH N BH

SH 0.52 0.30 0.18

N 0.29 0.44 0.27

BH 0.20 0.30 0.49

(p) TSLA: 5 seconds

SH N BH

SH 0.34 0.39 0.27

N 0.30 0.41 0.29

BH 0.28 0.39 0.32

(q) TSLA: 1 second

SH N BH

SH 0.42 0.37 0.22

N 0.28 0.46 0.27

BH 0.23 0.37 0.41

(r) TSLA: 0.5 seconds

SH N BH

SH 0.49 0.34 0.17

N 0.25 0.50 0.25

BH 0.18 0.33 0.48
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Table 13: Baseline: Average number of manipulation sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.77 20.78 20.80 25.72 21.80 22.45

1 second 25.04 13.88 14.09 28.72 18.56 19.10

0.5 seconds 26.23 11.56 11.68 31.48 16.36 15.08

INTC

5 seconds 25.28 17.27 17.27 28.75 20.27 18.88

1 second 32.00 17.00 17.05 34.83 12.59 13.14

0.5 seconds 35.22 12.04 12.03 39.12 9.40 9.92

MSFT

5 seconds 25.07 21.68 21.70 25.43 22.20 21.97

1 second 25.55 16.87 16.87 27.33 19.15 18.86

0.5 seconds 26.31 10.32 10.30 29.82 15.30 15.95

TSLA

5 seconds 24.97 21.85 21.87 25.41 22.41 22.31

1 second 25.32 18.50 18.55 27.38 20.65 21.01

0.5 seconds 26.13 14.29 14.17 29.25 18.64 19.48

Table 14: Offline learning: Average number of manipulation sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.86 26.09 20.96 22.20 20.79 23.00

1 second 26.31 29.13 15.75 19.00 14.82 20.25

0.5 seconds 28.92 31.90 14.34 16.79 13.54 17.38

INTC

5 seconds 27.79 28.89 21.76 20.62 22.16 19.44

1 second 35.28 35.48 17.76 14.53 21.76 17.39

0.5 seconds 39.53 39.49 12.18 10.66 21.17 18.93

MSFT

5 seconds 25.03 25.77 21.55 22.54 21.72 22.38

1 second 25.94 28.10 17.56 20.08 17.42 19.88

0.5 seconds 27.02 30.51 11.30 16.06 11.24 17.27

TSLA

5 seconds 25.07 25.91 21.98 22.97 21.90 22.86

1 second 25.53 27.66 18.92 21.24 18.73 21.36

0.5 seconds 26.32 29.22 14.83 19.35 14.91 20.09

Lemma 13 Let q > 0. If LLB ≺ LB at (SH,q), then LS ≺ LLS at (BH,q).
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Table 15: Online learning: Average number of manipulation sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.68 25.76 20.80 21.81 20.63 22.40

1 second 21.80 28.62 12.57 18.25 11.84 19.39

0.5 seconds 20.42 31.51 1.49 15.05 1.41 15.10

INTC

5 seconds 22.89 28.53 14.26 19.96 13.75 18.8

1 second 20.26 34.81 0.0 12.36 0.0 12.39

0.5 seconds 27.04 38.39 0.0 14.77 0.0 16.13

MSFT

5 seconds 24.65 25.38 21.27 22.05 21.32 21.85

1 second 23.84 27.33 15.48 18.88 15.41 18.67

0.5 seconds 23.03 29.36 8.53 14.31 8.51 14.37

TSLA

5 seconds 24.56 25.44 21.44 22.31 21.47 22.30

1 second 24.30 27.23 17.67 20.79 17.65 20.86

0.5 seconds 24.18 29.19 12.78 18.91 12.67 19.02

Table 16: Offline learning: Average manipulation statistics.

(a) Percentage of large orders on opposite sides over 50
trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 0.1002% 0.1008% 0.4369%

1s 0.1187% 1.2180% 0.0044%

0.5s 0.0250% 1.0324% 0%

INTC

5s 0.1235% 1.1789% 0.6517%

1s 0.0609% 0.0153% 4.9916%

0.5s 0% 0.0005% 4.1832%

MSFT

5s 0.6766% 1.6972% 0.1863%

1s 0.2604% 1.0269% 0.0401%

0.5s 0.1993% 0.7633% 0.0095%

TSLA

5s 0.1195% 0.1283% 0.5394%

1s 0.3506% 0.2716% 1.9706%

0.5s 1.7434% 1.6606% 0.9519%

(b) Number of times where only one market maker sub-
mits a large order over 50 trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 13.28 18.26 18.47

1s 23.10 25.81 27.52

0.5s 20.75 24.17 28.98

INTC

5s 21.58 20.71 29.97

1s 14.64 8.99 35.89

0.5s 10.10 4.29 39.34

MSFT

5s 25.92 25.22 27.84

1s 24.00 22.06 26.58

0.5s 22.07 17.58 26.12

TSLA

5s 13.48 17.35 18.69

1s 24.01 23.99 27.89

0.5s 22.65 24.07 29.37
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Table 17: Online learning: Average manipulation statistics.

(a) Percentage of large orders on opposite sides over 50
trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 0.2159% 0.4622% 0.5406%

1s 0.3898% 1.3460% 3.5092%

0.5s 0.6900% 0% 0%

INTC

5s 0.3182% 1.6649% 1.7663%

1s 1.7169% 0% 0%

0.5s 1.8299% 8.2368% 0%

MSFT

5s 0.0366% 0.2648% 0.5282%

1s 0.1880% 2.0196% 2.4215%

0.5s 0.3387% 0% 6.8309%

TSLA

5s 0.0415% 0.2238% 0.3103%

1s 0.3340% 1.3380% 1.8276%

0.5s 0.4559% 3.1344% 4.5598%

(b) Number of times where only one market maker sub-
mits a large order over 50 trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 19.24 23.47 19.97

1s 25.29 26.97 24.09

0.5s 26.78 27.36 24.69

INTC

5s 24.01 26.20 25.41

1s 25.89 20.79 23.26

0.5s 19.58 29.51 32.50

MSFT

5s 21.35 22.15 22.31

1s 23.32 23.67 23.77

0.5s 23.81 22.90 23.22

TSLA

5s 18.51 20.67 19.76

1s 21.67 24.39 23.59

0.5s 22.15 25.94 24.22

Proof Suppose not. Then LLB ≺ LB at (SH, q) and LLS ≺ LS at (BH, q). We note that
LLS ≺ LS at ω = BH ⇐⇒

paω(mBH|ωvBH,q−1+mN |ωvN,q−1+mSH|ωvSH,q−1)+(1−paω)(mBH|ωvBH,q+mN |ωvN,q+mSH|ωvSH,q) >

paωvSH,q−1 + (1− paω)vSH,q

so that vSH cannot be maximum at both q−1 and q (that is, it cannot be true that max{v∗BH,q−1, v
∗
N,q−1, v

∗
SH,q−1} =

v∗SH,q−1 and max{v∗BH,q, v
∗
N,q, v

∗
SH,q} = v∗SH,q). But note that if max{v∗BH,q, v

∗
N,q, v

∗
SH,q} = v∗SH,q,

then also max{v∗BH,q−1, v
∗
N,q−1, v

∗
SH,q−1} = v∗SH,q−1, so that at level q we cannot have vSH as max-

imum, that is, we cannot have max{v∗BH,q, v
∗
N,q, v

∗
SH,q} = v∗SH,q.

Similarly, LLB ≺ LB at ω = SH ⇐⇒

pbω(mBH|ωvBH,q+1+mN |ωvN,q+1+mSH|ωvSH,q+1)+(1−pbω)(mBH|ωvBH,q+mN |ωvN,q+mSH|ωvSH,q) >

pbωvBH,q+1 + (1− pbω)vBH,q

so that vBH cannot be maximum at both q and q+1 (that is, it cannot be true that max{v∗BH,q, v
∗
N,q, v

∗
SH,q} =

v∗BH,q and max{v∗BH,q+1, v
∗
N,q+1, v

∗
SH,q+1} = v∗BH,q+1). But note that if max{v∗BH,q, v

∗
N,q, v

∗
SH,q} =

66



v∗BH,q then we also have max{v∗BH,q+1, v
∗
N,q+1, v

∗
SH,q+1} = v∗BH,q+1, so that at level q we cannot

have vBH as maximum (hence we cannot have max{v∗BH,q, v
∗
N,q, v

∗
SH,q} = v∗BH,q).

Therefore, we have seen that if both LLB ≺ LB at (SH, q) and LLS ≺ LS at (BH, q), then vBH

and vSH are not maximum a level q, so that max{v∗BH,q, v
∗
N,q, v

∗
SH,q} = v∗N,q, which is impossible

due to paBH > paN > paSH and pbBH < pbN < pbSH . We then get a contradiction and consequently
the lemma holds.

C. Non martingale case

In the original scenario we had that

E [Y (s, a, s′)] =



pbω ϑ/2 + (2 β − 1) (φ q + pbω φ) for a = {LB,LLB} ,

paω ϑ/2 + (2 β − 1) (φ q − paω φ) for a = {LS,LLS} ,

−ϑ/2 + (2 β − 1) (φ q + φ) for a = MB ,

−ϑ/2 + (2 β − 1) (φ q − φ) for a = MS ,

(2 β − 1)φ q for a = DN ,

which simplified since 2β−1 = 0. In the new case we assume β depends on the regime. Moreover,
by symmetry, we will assume β(BH) = 1 − β(SH) and β(N) = 1

2
. This captures the idea that

when the book is buy-heavy (sell-heavy) the price of the asset tends to increase (decrease). In this
new framework E [Y (s, a, s′)] depends not just on the action a but also on the current state s (since
the transition probabilities regarding the book regime depend on the current state). This does not
allow us to immediately get rid of MB and DN as we did in the previous case, since they may be
optimal for some range of α’s in this new scenario.
We proceed as follows. Let q > 0. For a given book regime ω, the previous 2β − 1 becomes
2β(BH) − 1 if the action is LLB, 2β(SH) − 1 if the action is LLS and for the rest of actions it
becomes:

mBH|ω(2β(BH)− 1) +mN |ω(2β(N)− 1) +mSH|ω(2β(SH)− 1) =

mBH|ω(2β(BH)− 1) +mSH|ω(1− 2β(BH)) = (mBH|ω −mSH|ω)(2β(BH)− 1).

As β(BH) > 1
2

so that 2β(BH) − 1 > 0, the sign of the previous expression depends on the
sign of mBH|ω −mSH|ω. But this is positive for ω = BH and negative for ω = SH (reasonable
assumption seems to be). Given that, we establish the following results:
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Lemma 14 Let ω = SH and q > 0. The action DN is never optimal.

Proof We claim DN is dominated by LS when q > 0 and ω = SH . The continuation values are
the same for both actions, so they do not play a role in the comparison. Observe that the LS is
better than DN both in terms of penalty (since q > 0) and immediate reward not related to change
in the price of the asset (since with LS we gain paSH

θ
2
> 0 and 0 is what we gain with DN ). So far

this is the reasoning used for the martingale case. Here, we finally focus in the immediate reward
related to the change in the price of the asset. By playing LS we get:

(mBH|SH −mSH|SH)(2β(BH)− 1)ϕ(q − paSH)

whereas by playing DN we get:

(mBH|SH −mSH|SH)(2β(BH)− 1)ϕq

But since both expressions are negative for any positive q, and also q > q − paSH , this immediate
reward related to the change in the price favours LS in comparison to DN as well. Therefore the
lemma follows.

Lemma 15 Let ω = SH and q > 0. The action that gets more extra gain in the non-martingale

case compared to the martingale case is LLB.

Proof The extra gains in the non-martingale case, given ω = SH and q > 0, are the following:

For a = LLB:
(2β(BH)− 1)ϕ(q + pbBH)

For a = LLS:
(2β(SH)− 1)ϕ(q − paBH)

For a = LB:
(mBH|SH −mSH|SH)(2β(BH)− 1)ϕ(q + pbBH)

For a = LS:
(mBH|SH −mSH|SH)(2β(BH)− 1)ϕ(q − paBH)

For a = MB:
(mBH|SH −mSH|SH)(2β(BH)− 1)ϕ(q + 1)
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For a = MS:
(mBH|SH −mSH|SH)(2β(BH)− 1)ϕ(q − 1)

The only positive expression of the former 6 is the one corresponding to LLB since (2β(SH) −
1) < 0, (2β(BH)− 1) > 0 and (mBH|SH −mSH|SH) < 0 so that the lemma follows.

Lemma 16 We still have α1(SH, q) > 0 in the non-martingale case

Proof Due to Lemma 1.1 we have DN is never optimal at SH , which allows us to have the
same order that in the martingale case (DN would be problematic regarding penalty, since it is
the action that lies between LLB and LLS regarding the penalty cutoffs). Note that MB is not
causing problems regarding the order, since it is the one that gives less penalty. Moreover, as
Lemma 1.2 says that LLB is even more attractive in the non-martingale case compared to the
martingale case (when we compare it with any other action), the range of values of α where LLB

is optimal in the martingale case is included in the range of values of α where LLB is optimal in
the non-martingale case. Therefore, since we already had α1(SH, q) > 0 in the martingale case,
we must have α1(SH, q) > 0 in the non-martingale case.

We did not consider the action DN in this previous lemma since we have already proved it is never
optimal.

Lemma 17 Assume θ = kϕ for k ≥ 2. Then for ω = BH , the action DN is never optimal.

Proof We again have that in terms of penalty LS is better than DN in the sense that receives less
expected penalty. We again do not need to deal with continuation values since they are the same for
both actions. Given our extra assumption relating spread and tick we will see that the immediate
reward of DN is never higher than the immediate reward of LS, and so the claim follows. To see
that observe that the immediate reward of playing LS is

paBH

θ

2
+ (mBH|BH −mSH|BH)(2β(BH)− 1)ϕ(q − paBH)

and the immediate reward of playing DN is

(mBH|BH −mSH|BH)(2β(BH)− 1)ϕq

Subtracting both expressions we get

paBH

θ

2
+ (mBH|BH −mSH|BH)(2β(BH)− 1)ϕ(−paBH) ≥
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paBH

θ

2
+ ϕ(−paBH) = paBH

θ

2
+

θ

k
(−paBH) ≥ 0

where the first inequality comes from

0 ≤ (mBH|BH −mSH|BH)(2β(BH)− 1) ≤ 1

and the last one holds since k ≥ 2. Therefore the lemma follows.

Lemma 18 If LLB is optimal at (BH, q) and one prefers to go to (BH, q + 1) instead of staying

at (BH, q) when playing LLB, then LLS ≺ LLB at (SH, q).

Proof As one prefers to end up at (BH, q + 1) instead of at (BH, q) and pbSH > pbBH , then
vLLBSH,q > vLLBBH,q.
Suppose now vLLSSH,q > vLLBSH,q. Notice that when playing LLS at (ω, q), one always wants to sell
(and hence go to (SH, q − 1) instead of staying at (SH, q)). The reason is that when playing
LLS, one prefers ending up at (SH, q − 1) over (SH, q) both in terms of penalty (there is less
penalty at q − 1) and in terms of price change (since by playing LLS one reduces the value of the
inventory due to the term (2β(SH)− 1), which is negative). This term multiplies inventory level,
so that the reduction is lower with less inventory. Also by ending at (SH, q − 1) we have gained
an immediate reward of θ

2
. Consequently, as paBH > paSH , we have vLLSBH > vLLSSH . Therefore we

have the following chain of inequalities:

vLLSBH > vLLSSH > vLLBSH > vLLBBH = v∗BH

so that in particular one gets the contradiction vLLSBH > v∗BH . The contradiction comes from having
assumed vLLSSH,q > vLLBSH,q. Therefore the lemma holds.

Lemma 19 Assume LLB is optimal at (BH, q) and one prefers to go to (BH, q + 1) instead of

staying at (BH, q) when playing LLB. Then the cutoff α1 such that vLLBBH (α1) = vLLSBH (α1) and

the cutoff α2 such that vLLBSH (α2) = vLLSSH (α2) cannot be equal.

Proof Suppose they are equal. Then, we have a value α∗ such that

vLLBBH (α∗) = vLLSBH (α∗)

and
vLLBSH (α∗) = vLLSSH (α∗)
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As one prefers to end up at (BH, q + 1) instead of (BH, q) when playing LLB, then vLLBSH (α∗) >

vLLBBH (α∗). Moreover, as seen in the previous Lemma, we always have vLLSBH (α∗) > vLLSSH (α∗).
Therefore, we have the following chain of inequalities:

vLLBSH (α∗) > vLLBBH (α∗) = vLLSBH (α∗) > vLLSSH (α∗)

which contradicts vLLBSH (α∗) = vLLSSH (α∗). Therefore α1 ̸= α2 and the lemma holds.

Lemma 20 Assume LLB is optimal at (BH, q) and one prefers to stay at (BH, q) instead of

moving to (BH, q + 1) when playing LLB. Then LLS ≺ LLB at (SH, q).

Proof Observe that when α → 0, if one plays LLB, it is better to move to (BH, q+1) instead of
staying at (BH, q), due to the combination of having negligible penalty and having more inventory,
so that the total increase in its value is higher. Therefore, if LLB is optimal at (BH, q) and one
prefers to stay at (BH, q) instead of moving to (BH, q+1) when playing LLB, then α ∈ [α1, α2],
with α1 > 0. Take α in this interval [α1, α2]. Then we both have

v∗BH(α) = vLLBBH (α) > vLLBSH (α)

where the inequality holds since we prefer to stay at (BH, q) when playing LLB and pbBH < pbSH ,
and

v∗BH(α) = vLLBBH (α) > vLLSBH (α) > vLLSSH (α).

where the first inequality is due to optimality and the second is always true as we saw in Lemma
1.5.
Suppose now that vLLSSH (α) > vLLBSH (α). Then we have the following chain of inequalities:

vLLBBH (α) > vLLSBH (α) > vLLSSH (α) > vLLBSH (α).

But we know there exists α∗ such that LLB is optimal at BH and one prefers to move to (BH, q+

1). Therefore vLLBSH (α∗) > vLLBBH (α∗). Hence, due to continuity of the value functions with respect
to α, there exists a value α∗∗ such that vLLBBH (α∗∗) = vLLSBH (α∗∗) = vLLSSH (α∗∗) = vLLBSH (α∗∗), which
is impossible since we know that vLLSBH (α∗∗) > vLLSSH (α∗∗), again using the same reasoning we did
in Lemma 1.5.

Lemma 21 Assume LLB is optimal at (BH, q) and one prefers to stay at (BH, q) instead of

moving to (BH, q + 1) when playing LLB. Then the cutoff α1 such that vLLBBH (α1) = vLLSBH (α1)
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and the cutoff α2 such that vLLBSH (α2) = vLLSSH (α2) are not equal, with possibly the exception of a

set of measure 0.

Proof Note we cannot apply the reasoning we did in Lemma 1.6 since now as one prefers to end
up at (BH, q) instead of (BH, q + 1) when playing LLB, then vLLBBH (α∗) > vLLBSH (α∗). However,
note that the value functions are polynomial functions on each of the paω’s and pbω’s. Therefore for
a fixed α and a fixed set of all but one of the paω’s and pbω’s, the remaining one can have at most a
countable number of values for which both

vLLBBH (α∗) = vLLSBH (α∗)

and
vLLBSH (α∗) = vLLSSH (α∗)

hold. Therefore the lemma holds.

Lemma 22 The following statements hold:

If mBH|N < mSH|N then DN is dominated by LS at regime ω = N for q > 0.

If mBH|N > mSH|N then DN is dominated by LB at regime ω = N for q < 0.

If mBH|N = mSH|N then DN is dominated by LS at regime ω = N for q > 0 and by LB at

regime ω = N for q < 0.

Hence, the following statements hold:

If mBH|N < mSH|N , then we have manipulation starting at regime ω = N for q > 0.

If mBH|N > mSH|N , then we have manipulation starting at regime ω = N for q < 0.

If mBH|N = mSH|N , then we have manipulation starting at regime ω = N for both q > 0 and

q < 0.

Proof We just consider the case mBH|N < mSH|N since the others follow a similar reasoning.
Note that by playing LS at regime N one gets

paN ϑ/2 + (mBH|N −mSH|N)(2β(BH)− 1) (φ q − paN φ)− α paN (q − 1)2 − α (1− paN) q
2

whereas by playing DN at regime N one gets

(mBH|N −mSH|N)(2 β(BH)− 1) (φ q)− α(q)2
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Therefore, if mBH|N −mSH|N ≤ 0 we have that LS dominates DN , and therefore we can proceed
as we did for ω = SH at q > 0, so that we have manipulation starting at regime N for positive
inventory.
The other cases follow an analogous reasoning.

Lemma 23 Let q > 0. If LLB ≺ LB at (SH,q), then LS ≺ LLS at (BH,q).

Proof We first show that the cutoff between LS and MS at BH regime increases with respect to
their cutoff in the original scenario. The reason is that the value of playing MS in this price impact
case (denoted MSnew) is the value of playing MS in the original scenario (denoted MSor) plus
adding an extra term, and a similar reasoning applies to the action LS. In particular, forgetting
about the continuation values we have:

MSnew = MSor + (mBH|BH −mSH|BH)(2β(BH)− 1)(φq − φ)

and
LSnew = LSor + (mBH|BH −mSH|BH)(2β(BH)− 1)(φq − paBHφ)

Note that the increase is higher for LS since

(mBH|BH−mSH|BH)(2β(BH)−1)(φq−paBHφ) > (mBH|BH−mSH|BH)(2β(BH)−1)(φq−φ).

Moreover, the increase in continuation values is also higher for LS since in the original case, due
to monotonicity, we have vω,q−1 > vω,q. However in the new case vω,q has a higher increase in
value compared to vω,q−1. Therefore, LS becomes relatively more attractive for any value of α
compared to MS and therefore the cutoff increases.
Second, the cutoff between LB and LLB at SH decreases, which happens since LLB becomes
relatively more attractive in the new scenario. Combining both facts and using that the cutoff
between LLS and LS is lower than the cutoff between LS and MS we get the result.

Theorem 4 Let paSH < paN < paBH , pbSH > pbN > pbBH , (C1), (C2) and (C4) hold, and let

paBH − pbSH < min

{
(pbSH −max{paN , pbN})

(pN |BH − κ
2
)

(pBH|BH − κ
2
)
, (pbSH −max{paN , pbN})

(pN |N − κ
2
)

(pBH|N − κ
2
)

}
pbSH − paBH < min

{
(paBH −max{paN , pbN})

pN |SH − κ
2

(pSH|SH − κ
2
)
, (paBH −max{paN , pbN})

(pN |N − κ
2
)

(pSH|N − κ
2
)

}
(C3’)

hold.
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4.1 If pbN − paN > (paBH − pbSH)
δ(κ

2
+ κ− 1)

1 + δ(1− κ− κ
2
)

holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all

states s = (N, q > 0).

4.2 If paN − pbN > (pbBH − paSH)
δ(κ

2
+ κ− 1)

1 + δ(1− κ− κ
2
)

holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all

states s = (N, q < 0).

Proof First we establish the following claim:

Claim 6 If paSH < paN < paBH , pbSH > pbN > pbBH , and (C3’) hold, then for a small enough value

of α, LS ≺ LLS for ω = BH , LB ≺ LLB for ω = SH , and LB ≺ LLB and LS ≺ LLS for

ω = N .

For non-deterministic transition probabilities we have that at ω = BH , LLS is preferred to LS if
and only if

(1− κ)υ∗
SH +

κ

2
υ∗
N +

κ

2
υ∗
BH > pBH|BH υ∗

BH + pN |BH υ∗
N + pSH|BH υ∗

SH ⇐⇒

(1− κ)υ∗
SH > (pBH|BH − κ

2
) υ∗

BH + (pN |BH − κ

2
) υ∗

N + pSH|BH υ∗
SH ⇐⇒

(pBH|BH−
κ

2
)υ∗

SH+(pN |BH−
κ

2
) υ∗

SH+pSH|BH υ∗
SH > (pBH|BH−

κ

2
) υ∗

BH+(pN |BH−
κ

2
) υ∗

N+pSH|BH υ∗
SH .

This inequality trivially holds if max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH . On the other hand, if max{υ∗
SH , υ

∗
N , υ

∗
BH} =

υ∗
BH , then the last inequality holds if and only if

(pN |BH − κ

2
) (υ∗

SH − υ∗
N) > (pBH|BH − κ

2
) (υ∗

BH − υ∗
SH) ⇐⇒ υ∗

BH − υ∗
SH < (υ∗

SH − υ∗
N)

(pN |BH − κ
2
)

(pBH|BH − κ
2
)
.

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH , then υ∗
BH = paBH ϑ/2 + δ ((1 − κ)υ∗

SH + κ
2
υ∗
N + κ

2
υ∗
BH) <

paBH ϑ/2 + δ ((1− κ)υ∗
BH + κ

2
υ∗
N + κ

2
υ∗
SH) so that

υ∗
BH − υ∗

SH < (paBH − pbSH)ϑ/2 .

Now, the optimal action in ω = SH is LLB because max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH . Hence, since
υ∗
N < max{paN , pbN}ϑ/2 + δ((1− κ)υ∗

BH + κ
2
υ∗
N + κ

2
υ∗
SH)

v∗SH − v∗N = vSH(LLB)− v∗N > (pbSH −max{paN , pbN}) ϑ
2
.
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Therefore, if

paBH − pbSH < (pbSH −max{paN , pbN})
(pN |BH − κ

2
)

(pBH|BH − κ
2
)
,

then LLS is preferred to LS because

(v∗SH − v∗N)
(pN |BH − κ

2
)

(pBH|BH − κ
2
)
> (pbSH −max{paN , pbN})

ϑ

2

(pN |BH − κ
2
)

(pBH|BH − κ
2
)
> (paBH − pbSH)

ϑ

2
> v∗BH − v∗SH .

For ω = SH , we follow a similar reasoning so that if

pbSH − paBH < (paBH −max{paN , pbN})
(pN |SH − κ

2
)

(pSH|SH − κ
2
)
,

then LLB is preferred to LB in ω = SH .
For ω = N , we first compare LLS with LS. As before, LLS is preferred to LS if and only if

(1− κ)v∗SH +
κ

2
v∗N +

κ

2
v∗BH > pBH|N v∗BH + pN |N v∗N + pSH|N v∗SH .

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH , then the former inequality holds. On the other hand, if max{υ∗
SH , υ

∗
N , υ

∗
BH} =

υ∗
BH , then the last inequality holds if and only if

υ∗
BH − υ∗

SH <
(pN |N − κ

2
)

(pBH|N − κ
2
)
(υ∗

SH − υ∗
N) .

The remainder follows the same reasoning as that in the case with ω = BH so that if

paBH − pbSH < (pbSH −max{paN , pbN})
(pN |N − κ

2
)

(pBH|N − κ
2
)
,

then LLS is preferred to LS in ω = N .
Finally, using a similar reasoning, we have that if

pbSH − paBH < (paBH −max{paN , pbN})
(pN |N − κ

2
)

(pSH|N − κ
2
)
,

then LLB is preferred to LB in ω = N .
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For ω = N , if the value of α is sufficiently small, then we have the following action values

υN(LLB) = pbN
ϑ

2
+ δ ((1− κ)υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH) ,

υN(LLS) = paN
ϑ

2
+ δ ((1− κ)υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH) ,

Therefore, again, for a sufficiently small value of α, the optimal action is either LLS or LS in
ω = BH , whereas the optimal action is either LLB or LB at ω = SH . From Claim 6, we have
LS ≺ LLS for ω = BH and LB ≺ LLB for ω = SH . Consequently,

vN(LLB) = pbN
ϑ

2
+ δ(1− κ)υ∗

BH + δ
κ

2
υ∗
N + δ

κ

2
υ∗
SH ,

and similarly

vN(LLS) = paN
ϑ

2
+ δ(1− κ)υ∗

SH + δ
κ

2
υ∗
N + δ

κ

2
υ∗
BH , .

so that

vN(LLB) ≥ vN(LLS) ⇐⇒ pbN
ϑ

2
+ δ(1− κ)υ∗

BH + δ
κ

2
υ∗
SH ≥ paN

ϑ

2
+ δ(1− κ)υ∗

SH + δ
κ

2
υ∗
BH , .

Noting that

υ∗
BH = paBH

ϑ

2
+ δ((1− κ)υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH

and

υ∗
SH = pbSH

ϑ

2
+ δ((1− κ)υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH

we get that

υ∗
BH − υ∗

SH = (paBH − pbSH)
ϑ

2
+ δ((1− κ)(υ∗

SH − υ∗
BH) + δ

κ

2
(υ∗

BH − υ∗
SH)

so that

υ∗
BH − υ∗

SH =
(paBH − pbSH)

ϑ
2

1 + δ(1− κ− κ
2
)
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Hence, vN(LLB) is preferred to vN(LLS) if and only if

pbN
ϑ

2
+ δ(1− κ)(υ∗

SH +
(paBH − pbSH)

ϑ
2

1 + δ(1− κ− κ
2
)
) + δ

κ

2
υ∗
SH ≥

paN
ϑ

2
+ δ(1− κ)υ∗

SH + δ
κ

2
(υ∗

SH +
(paBH − pbSH)

ϑ
2

1 + δ(1− κ− κ
2
)
)

which happens if and only if

pbN − paN > (paBH − pbSH)
δ(κ

2
+ κ− 1)

1 + δ(1− κ− κ
2
)

Similarly, vN(LLS) is preferred to vN(LLB) if and only if

paN − pbN > (pbBH − paSH)
δ(κ

2
+ κ− 1)

1 + δ(1− κ− κ
2
)
+ ∂

□
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