

# Efficiency Measurement of Turkish Public Universities with Data Envelopment Analysis (DEA)

Taptuk Emre Erkoc

Queen Mary, University of London

Efficiency in Education  
19th-20th September  
London

## Motivation of the Paper

- **Global Trend in the Economics of Higher Education**

The apparent decrease in state appropriations to universities as well as increasing costs in higher education (Robst, 2001)

- **Turkish Higher Education**

Dramatic increase in the number of universities between 2005 and 2012 (**from 53 to 110**)

- **Sources of Inefficiencies and Policy Impact**

Findings of these papers would have “policy-making implications to the decision makers to set the priorities in the resource allocation for higher education sector” (Erkoc, 2011)

## What does this paper do?

- Measures technical and cost efficiencies of public HEIs in Turkey
- Non-Parametric Approach - Data Envelopment Analysis
- VRS with Input and Output Orientations
- Panel Data (Bootstrapping and Malmquist Index)
- Figures out likely sources of inefficiencies - Tobit Regression

## Research Questions

**To what extent public HEIs in Turkey allocate their resources efficiently?**

- What are the overall technical and cost efficiency levels of public HEIs in Turkey concerning different input/output specifications and production/cost frontier?
- How efficiency scores are behaving when bootstrapping procedures are taken?
- To what extent efficiency scores are changing throughout 5-year time span?
- What are the determinants of inefficiencies among public HEIs? Do environmental factors matter for universities concerning efficiency performances?
- What is/are the limitation(s) of this particular analysis? Are the results reliable for forthcoming academic and policy-based researches?

## Review of Literature

- Johnes and Johnes (1995) - Coelli (1996) - Madden, Savage, and Kemp (1997)
- Macmillan and Datta's (1998) - Determinants of Inefficiency
- Abbott and Doucouliagos's work (2003) - Australian Universities
- Flegg et al. (2004) - 45 British universities with multi-period DEA

## Review of Literature - 2

- Casu and Thanassoulis (2006) - UK universities' central administrative services
- Johnes (2006) - Universities in England & Bootstrapping
- Worthington and Lee (2008) - inter-temporal analysis , Australian universities - Malmquist index
- Ying Chu NG and Sung-ko LI (2009) and Maria Katharakia and George Katharakis (2010)
- **Kutlar (2004), Baysal et al. (2005) Babacan et al. (2007), Ozden (2008)**

## Methodology

The efficiency of  $DMU_0$  can be written using the duality property of linear programming; an equivalent form of this envelopment system with variable returns to scale (VRS) is illustrated as:

$$\text{Min } \theta_0 - \epsilon \left( \sum_{i=1}^m s_i^- + \sum_{r=1}^n s_r^+ \right) \quad (1)$$

subject to

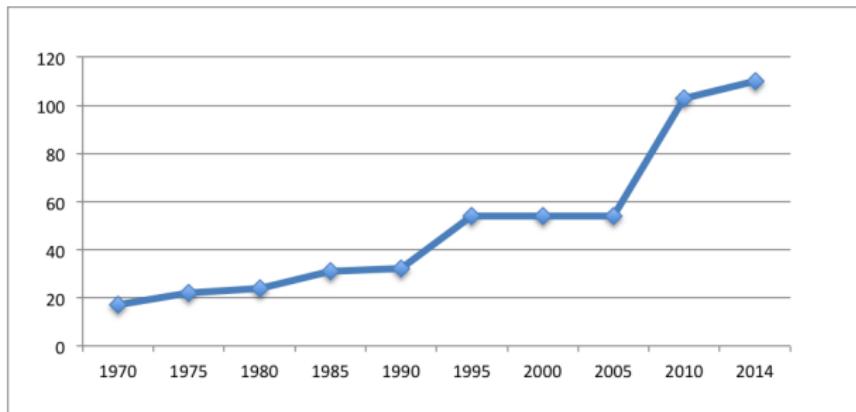
$$\sum_{j=1}^k \lambda_j X_{ij} + s_i^- = \theta X_{i0} , (i = 1, 2, \dots, m) \quad (2)$$

$$\sum_{j=1}^k \lambda_j Y_{rj} + s_r^+ = Y_{r0} , (r = 1, 2, \dots, n) \quad (3)$$

$$\sum_{j=1}^k \lambda_j = 1 , (j = 1, 2, \dots, k) \quad (4)$$

$$s_r^+, s_i^-, \lambda_j \geq 0 , (j = 1, 2, \dots, k) \quad (5)$$

As a result of all these linear programming iterations, the efficiency level of the observed DMU is equal to 100% if and only if:


$$\theta_0 = 1$$

$s_r^+$  and  $s_i^- = 0$  for all  $(i=1,2,\dots,m)$  and  $(r=1,2,\dots,n)$ .

## Methodology - 2

- Bootstrapping
  - Provides statistical properties to DEA estimations (Coelli et al., 2005:202)
  - 're-sampling technique'
- Malmquist Index (Total Factor Productivity)
  - MI-TFP evaluates the efficiency change over time.

## Glimpse on Public Higher Education in Turkey



- The number of public universities from 1970 to 2014
- 2005 is a critical juncture - 41 public universities mostly in the less developed cities were established as a part of regional development policy
- “governmental aspiration for provision of mass education” (Onder and Onder, 2011).

# Variables

- **Output Measures**

- FT Undergraduate Students
- FT Postgraduate Students
- Publications per Faculty (SCI, SSCI and AHCI )
- Research Grants

- **Input Measures**

- Number of Faculty
- Labour Expenditures
- Capital Expenditures
- Goods and Services Expenditures

- **Environmental Variables**

- Age of the university
- Size of the university
- Teaching Load per faculty
- % of full-time staff
- % of professors among faculty
- % of foreign students
- Dummy variable for having medical school (MED).

## Data and Models - 1

- 53 public universities
- 2005 and 2010 - 5 academic years
- 265 observations
- Data Sources
  - The Council of Higher Education (YOK)
  - Measurement, Selection and Placement Centre (OSYM)
  - Ministry of Education of Turkey
  - The Scientific and Technological Research Council of Turkey (TUBİTAK)

## Data and Models - 2

Table : Descriptive Statistics

| Variables                              | Abbreviation | Obs | Mean     | Std.Dev  | Min      | Max       |
|----------------------------------------|--------------|-----|----------|----------|----------|-----------|
| <b>Outputs</b>                         |              |     |          |          |          |           |
| Number of Undergraduate Students       | UG           | 265 | 43262.79 | 148209.7 | 623      | 1581743   |
| Number of Postgraduate Students        | PG           | 265 | 2222.034 | 2556.401 | 76       | 12909     |
| Number of Publications                 | PUB          | 265 | 0.231741 | 8.03E-02 | 1.93E-03 | 0.482192  |
| Amount of Granted Research Project     | RES          | 265 | 2856732  | 4613204  | 7600     | 4.76E+07  |
| <b>Inputs</b>                          |              |     |          |          |          |           |
| Number of Faculty                      | FAC          | 265 | 1028.16  | 275      | 5437     | 1510.21   |
| Labour Expenditures                    | LAB          | 265 | 68121700 | 51690600 | 3744000  | 297693000 |
| Capital Expenditures                   | CAP          | 265 | 25017500 | 10661600 | 500000   | 83533000  |
| Goods and Services Expenditures        | G&S          | 265 | 22117700 | 17283400 | 2627000  | 109375000 |
| <b>Financial Output</b>                |              |     |          |          |          |           |
| Total Annual Expenditures              | TC           | 265 | 1.28E+08 | 8.48E+07 | 8055000  | 5.10E+08  |
| <b>Environmental Control Variables</b> |              |     |          |          |          |           |
| Age of University                      | AGE          | 265 | 27.26415 | 13.78013 | 12       | 66        |
| Size of University                     | SIZE         | 265 | 45484.82 | 148317.2 | 1408     | 1584003   |
| Load of Academic Staff                 | LOAD         | 265 | 28.66435 | 83.9492  | 1.22863  | 888.6197  |
| Percentage of Professors               | PROF         | 265 | 0.115158 | 0.064291 | 0.028874 | 0.378363  |
| Percentage of Full Time Staff          | FTS          | 265 | 0.856985 | 0.241984 | 0.071222 | 1         |
| Percentage of Foreign Students         | FORGN        | 265 | 0.009205 | 0.012179 | 0        | 0.066902  |
| Dummy for Medical School               | MED          | 265 | 0.679245 | 0.46765  | 0        | 1         |

Note: \*Turkish Liras (TLs)

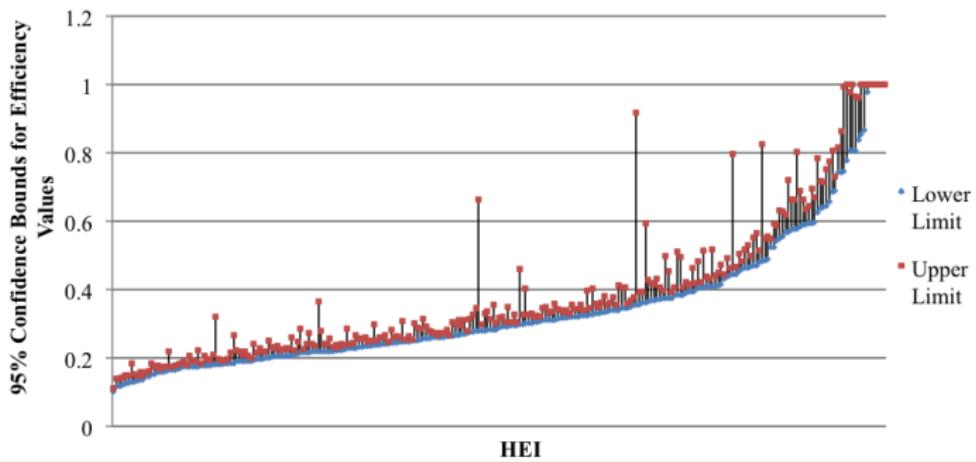
## Data and Models - 3

Table : Model Specifications

| Variables                 | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
|---------------------------|---------|---------|---------|---------|---------|---------|
| <b>Outputs</b>            |         |         |         |         |         |         |
| UG                        | X       | X       | X       | X       | X       | X       |
| PG                        | X       | X       | X       | X       | X       | X       |
| PUB                       |         |         | X       | X       |         | X       |
| RES                       | X       | X       | X       | X       | X       | X       |
| <b>Inputs</b>             |         |         |         |         |         |         |
| FAC                       |         |         |         |         | X       |         |
| LAB                       | X       | X       | X       | X       |         |         |
| G&S                       |         | X       | X       | X       |         |         |
| CAP                       | X       | X       | X       | X       |         |         |
| <b>Financial Variable</b> |         |         |         |         |         |         |
| TOTEXP                    |         |         |         |         | X       | X       |

## Interpretation of Results - 1

### Efficiency Values (Technical and Cost Efficiency)


Table : Summary Statistics for Efficiencies (DEA)

| Model   | Orientation | Mean   | Std.Dev | Min    | Max |
|---------|-------------|--------|---------|--------|-----|
| Model 1 | Input       | 0.2769 | 0.2326  | 0.0476 | 1   |
|         | Output      | 0.3303 | 0.2425  | 0.0427 | 1   |
| Model 2 | Input       | 0.3735 | 0.2267  | 0.0726 | 1   |
|         | Output      | 0.3708 | 0.2487  | 0.0516 | 1   |
| Model 3 | Input       | 0.4158 | 0.24    | 0.1048 | 1   |
|         | Output      | 0.6043 | 0.1924  | 0.1695 | 1   |
| Model 4 | Input       | 0.5647 | 0.2114  | 0.2267 | 1   |
|         | Output      | 0.6182 | 0.1947  | 0.1755 | 1   |
| Model 5 | Input       | 0.2525 | 0.2069  | 0.0537 | 1   |
|         | Output      | 0.3114 | 0.2367  | 0.0416 | 1   |
| Model 6 | Input       | 0.3074 | 0.2367  | 0.0675 | 1   |
|         | Output      | 0.5822 | 0.1928  | 0.1071 | 1   |

## Interpretation of Results - 2

### Confidence Intervals and Bootstrapping

Figure-1: 95% Confidence Intervals of DEA Efficiency Scores



## Interpretation of Results - 3

### Malmquist Index (Inter-Temporal Analysis)

Table : Average Malmquist Results across HEIs, by period

| Average/Period | Period 1 | Period 2 | Period 3 | Period 4 |
|----------------|----------|----------|----------|----------|
| TFP            | 1.023    | 0.6697   | 1.487    | 1.1156   |

## Interpretation of Results - 4

### Spearman Rank Comparison of DEA Models

Table : Spearman Rank Correlations

| Models  | Model 1  | Model 2  | Model 3  | Model 4  | Model 5 | Model 6 |
|---------|----------|----------|----------|----------|---------|---------|
| Model 1 | 1        |          |          |          |         |         |
| Model 2 | 0.896564 | 1        |          |          |         |         |
| Model 3 | 0.869533 | 0.955112 | 1        |          |         |         |
| Model 4 | 0.850428 | 0.880198 | 0.90661  | 1        |         |         |
| Model 5 | 0.964431 | 0.911273 | 0.871489 | 0.853839 | 1       |         |
| Model 6 | 0.941888 | 0.905349 | 0.903175 | 0.902046 | 0.96187 | 1       |

## Determinants of Inefficiency

$$u_{it} = z_0 + z_1 AGE_{it} + z_2 SIZE_{it} + z_3 LOAD_{it} + z_4 PROF_{it} + z_5 FTS_{it} + z_6 FORGN_{it} + z_7 MED_i + \alpha_{it} \quad (6)$$

Tobit regression model  
1- efficiency scores yielded in Model 1

Table : Determinants of Inefficiencies

| Variables  | Pooled                         | Panel                          |
|------------|--------------------------------|--------------------------------|
| AGE        | -0.00041009<br>(-0.00154432)   | -0.00030839<br>(-0.00177478)   |
| SIZE       | -0.149576D-05<br>(0.12252D-05) | -0.169582D-05<br>(.17329D-05)  |
| LOAD       | 0.003159<br>(-0.00219382)      | 0.0031588<br>(-0.00296712)     |
| PROF       | -0.2731<br>(-0.41148656)       | -0.27300681<br>(-0.52132894)   |
| FTS        | 0.12641**<br>(-0.0611377)      | 0.12638375**<br>(-0.05765066)  |
| FORGN      | 2.80765<br>(-1.86065793)       | 2.80685771<br>(-2.61961309)    |
| MED        | 0.0730076*<br>(-0.03921196)    | 0.07392279<br>(-0.05037202)    |
| Constant   | 0.52245***<br>(-0.07449951)    | 0.52244864***<br>(-0.06441148) |
| $\sigma_u$ | 0.02243458***<br>(-0.00997657) | 0.02243458<br>(-0.02398005)    |
| log-L      | 7.8755                         | 7.8755583                      |

## Summary of the Findings

- Public HEIs in Turkey are performing in unsatisfactory levels although some of them are doing fairly well
- As the model gets closer to the full input/output set, both individual and overall efficiency scores are getting relatively higher values
- Spearman Rank Correlations are very high implying that efficiency rankings of the universities are robust
- Even though there is not any systemic increase during this five-year time span, efficiencies of public HEIs in Turkey increased at the course of last two years
- The share of full-time academic staff in the whole faculty and having medical school are founded as the determinants of inefficiencies among HEIs regarding Tobit regression analysis

## Limitations & Concluding Remarks

- Inherent Problems of DEA
- Quality of Outputs - Lack of Data
- More data on the environmental variables
- Robustness Checks with SFA