Dealing with the endogeneity issue in the estimation of

educational efficiency using DEA

Daniel Santin
Gabriela Sicilia
Complutense University of Madrid

Efficiency in Education Workshop
19th-20th September 2014
London, UK



@ The endogeneity issue

© How to identify this problem?
© How to deal with it?

@ Monte Carlo simulations

© Empirical application

@ Concluding remarks

Santin, D. and Sicilia, G. () Dealing with endogeneity... EEW London



Endogeneity in Education - Self-selection

@ Endogeneity is one of the most important concerns in Education
Economics (Schottler et al. 2011)

@ Better schools attract relatively more advantaged students (high
socio-economic level and more motivated parents)

e Parent motivation (unobserved) is positively correlated with SEL.

@ These pupils (and thus the school they attend) will tend to obtain
better academic results for two reasons:

@ 1 SEL which is an essential input
@ 1 Motivated students which are more efficient

Positive correlation between the input and school efficiency J

Schools with students from a high SEL are more prone to be efficient
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Endogenous input in a single-input single-output set
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The endogeneity issue in non-parametric techniques

@ Endogeneity was widely studied in the econometrics, but little in
non-parametric frontier techniques (Gong and Sickles 1992, Orme and
Smith 1996, Bifulco and Bretschneider 2001, Ruggiero 2004)

@ A priori it seems that this problem does not affect DEA estimates,
since no assumptions about parametric functional form

e But, as Kuosmanen and Johnson (2010) demonstrate that DEA can
be formulated as a non-parametric least-squares model under the
assumption that ¢; <0

o If E(e|X) # 0, then efficiency estimates (;) can be biased

@ In a recent work Cordero et al. (2013) show using MC that although
DEA is robust to negative endogeneity, a significant positive
correlation severely biases DEA performance
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How can be DEA estimates be affected when

E(¢|X) # 07

% Assigned % Correctly % Assigned to % Assigned to

Spearman'’s two or more  assigned to bottom quintile top quintile
. MAE - . .
correlation quintiles bottom actually in thetwo  actually in the
from actual quintile first quintiles two last quintiles
p=0.0 0.73 0.07 13.4 74.7 0.1 11.2
p=0.8 0.27 0.12 38.4 34.2 12.6 34.2
p=04 0.59 0.09 20.7 62.7 0.9 62.7

Note: Mean values after 1,000 replications. Sample size N=100. Translog DGP. DEA estimated under VRS

Source: Cordero, JM.; Santin, D. and Sicilia, G. "Dealing with the Endogeneity Problem in
Data Envelopment Analysis", MPRA, April 2013.
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Next question...

How to deal with this problem?

© How can we identify the presence of an endogenous input in an
empirical research?

@ How can we deal with this issue in order to improve DEA
estimations?

/ 21
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How to identify this problem?

A simple procedure for detecting the presence of positive endogenous
inputs in empirical applications:

@ From the empirical dataset x = {(X;,Y;) ¢ =1,...,n} randomly draw
with replacement a bootstrap sample x; = {(X},Y;;) i =1,...,n}

@ Estimate 6%, i = 1,...,n using DEA LP

@ For each input k£ = 1,...,p compute pj, = corr(:n;kk,é;‘) i=1,..,n

@ Repeat steps 1-3 B times in order to obtain for £k =1,...,p a set of
correlations: {p;,, b=1,..., B}
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How to identify this problem?

B

© Compute v; = B
b=1

o (pp)ls for k=1,...p
where I 1(p);) is the Indicator Function defined by:

I, #0<p, <1,
0, otherwise.

Tio 1y (pk) = {

O Finally, classify each input using the following criterion:

If v;; < 0.25 — Exogenous/Negative endogenous input k

If 0.25 < v < 0.5 — Positive LOW endogenous input k

o If 0.5 < v} < 0.75 — Positive MIDDLE endogenous input k
If v > 0.75 — Positive HIGH endogenous input k
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How to deal with endogeneity in DEA applications?

The “Instrumental Input” DEA propose (II-DEA)

We propose to combine the IV approach (e.g.,Greene, 2003) with DEA
model by instrumenting the endogenous input.

© Find an instrumental input(Z) that satisfies:
o Is correlated with the endogenous input(z.), i.e. E(z.|Z) #0

o Is exogenous from true efficiency, i.e. E(e|Z) =0

@ Isolate the part of (z.) that is uncorrelated with the efficiency by
regressing To; = a+ f1x18+ ... + Brxr; + 02; + & and computing Ze;

© Replace the endogenous input (z.) by #¢; and estimate DEA
efficiency scores for each DMU (¢3;)
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MC experimental design

@ Single-output multi-input framework. We follow the same simple
DGP as in CSS (2013) to compute, Y, X, u, and v.

@ True efficiency (u;) is exogenous from z1 and z2.

@ Seven different scenarios with different levels of correlations between
u; and z3 p = {—0.8,-0.4,-0.2,0,0.2,0,4,0.8}.

o We generate Z~ U|[5, 50] uncorrelated with true efficiency
E(u|Z) = 0 and moderately correlated with the endogenous input z3,
where E(x3|Z) ~ 0.25

e Cobb-Douglas and Translog DGP, N={40,100,400}, and B=1,000

@ We compare estimations from the conventional DEA and from
[I-DEA.

Santin, D. and Sicilia, G. () Dealing with endogeneity... EEW London 1 /21



MC results - Input classification criterio
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MC results - II-DEA Accuracy m

% Assigned % Assigned to % Assigned to

% Correctly

Spearme.m's MAE tv\_/o or more assigned to bottom.quintile top quir.'ltile
correlation quintiles from .. actually inthetwo actually in the
bottom quintile R - -
actual first quintiles two last quintiles
p=0.0 DEA 0.73 0.072 13.3 74.8 0.2 12.3
DEA 0.34 0.116 34.8 40.8 8.2 30.3
p=038
II-DEA 0.76 0.097 10.0 75.7 0.1 15.6
DEA 0.61 0.085 19.8 64.8 0.7 18.6
p=04
II-DEA 0.66 0.099 17.1 62.6 4.0 16.8

Note: Mean values after 1,000 replications. Sample size N=100. Translog DGP. DEA estimated under VRS
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Empirical application

The Uruguayan public secondary schools

@ Highly stratified Uruguayan education system (strong correlation
between SEL and academic results)

e Data from PISA 2012, N=71,p=3,q=1.

@ Output (y): result in mathematics (maths)

e Inputs (X):
e School Quality Educational Resources Index (SCMATEDU)
o Proportion of Certified Teachers (PROPCERT)
o Socio-economic Level Index (ESCS) - potential endogenous input

@ Instrumental input (Z): "Pct. of students who access to Internet
before thirteen” (ACCINT); where ppscs accrnt) = 0.20
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Detection criteria for ESCS in Uruguayan public secondary

schools
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Detection criteria for ESCS-hat in Uruguayan public

secondary schools
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[I-DEA estimates

50
dhat-end
45 - Std- )
Efficiency Mean Min.  Max.
M dhat-inst Dev.
40 dhat-end 1101 0.102 1.000 1.468
dhat-inst 1.167 0.149 1.000 1.640
35
30
2 Quintilesby  Mean z’lhe;':' Z’Ihe;':' Mean
o e ESCS ESCS et eng  [Biasl
20 Bottom quintile 1.68 1.286  1.079 0.206
15 4th quintile 192 1229 1132 0.097
=S 3rd quintile 213 1146 1107 0.050
10 113 2nd quintile 240 1106 1108 0011
5 Top quintile 282 1076 1079 0.003
Source: Author’s estimates using PISA 2012 data
0
1 1-11 11-12 12-13 13+
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Semi-parametric two-stage model results

Dependent variable: Truncated + bootstrap (11-DEA) Truncated + bootstrap (DEA)
dhat Coef Std. Err. z Coef Std. Err. z
TECHVOC* 0.0097 0.057 0.17 0.0536 0.990 0.32
RURAL? -0.0062 0.074 -0.08 -0.0255 0.087 -0.29
SCHSIZE -0.0001 0.000 -1.81 * -0.0001 0.000 -1.53
PCTGIRL 0.0249 0.165 0.15 -0.1433 0.166 -0.87
ICTSCH -0.0395 0.067 -0.59 -0.0395 0.049 -0.80
PCTCORRECT -0.2898 0.117 -2.47 ** -0.1300 0.089 -1.46
ANXMAT 0.2410 0.077 3.14 *** 0.1255 0.064 1.96 **
PCTMATHEART 0.5081 0.268 189 * -0.0087 0.243 -0.04
TEACHGOAL 0.3965 0.253 1.57 -0.3214 0.227 -1.41
TEACHCHECK -0.5443 0.228 -2.39 ** -0.0017 0.189 -0.01
HINDTEACH?* -0.0873 0.039 -2.24 ** -0.0497 0.037 -1.35
TEACHMORAL?® -0.1056 0.049 -2.13 ** -0.0253 0.036 -0.71
RESPCUR -0.0962 0.064 -1.50 -0.0661 0.072 -0.92
RESPRES 0.1902 0.199 0.95 0.1696 0.221 0.77
_cons 0.5361 0.423 127 1.0170 0.401 253
/sigma 0.0926 0.01 8.65 0.0751 - -—

Note: 'Coef' is the estimated coefficient, S.E. is the robust standard error of the coefficient estimate.
N =71. ***p-value < 0.01 ; **p-value <0.05 ; *p - value < 0.10
Source: Author's estimations using PISA 2012 data.
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Concluding remarks

@ We propose a simple and effective criterion to detect endogenous
inputs in DEA empirical applications

@ MC experiments also suggest that the proposed strategy II-DEA
outperforms conventional DEA when p is significantly high
positive.

@ Taking into account the presence of high positive endogeneity has
major implications in educational policy recommendations

@ More research is needed:
o Derive the asymptotic properties of the [I-DEA estimator

o Adapt to our context some previous proposed testing procedures for
independence (e.g.Peyrache and Coelli 2009)

o Extend the analysis to multi-output sets
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